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single molecule localization microscopy
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Density-based clustering is used in many contexts including in single molecule localization microscopy
(SMLM), where it is commonly used to elucidate the nanoscale organization of molecules. However, little
guidance is available for evaluating clustering performance, which is often dependent on user-input
parameters. Here, we develop an efficient implementation of density-based cluster validation (DBCV) that
can quantitatively evaluate clustering in SMLM-sized datasets. We demonstrate that maximizing DBCV
scores accurately identifies clusters in noisy, simulated data. Coupling DBCVwith Bayesian optimization,
we outline a method, DBOpt, that selects input parameters in an unbiased manner for density-based
clustering algorithms. We demonstrate that optimal parameters can be selected for popular algorithms
(DBSCAN, HDBSCAN, OPTICS) with minimal user input. Finally, we show that DBOpt reports accurate
feature sizes in 2Dand3Dexperimental data. In sum,DBOptwill improve the integrity, reproducibility, and
quality of cluster analyses for SMLM and beyond.

Single-molecule localization microscopy (SMLM) describes a class of super-
resolution techniques commonly employed to overcome the diffraction limit
associated with traditional microscopy1. Many forms of SMLM exist,
including stochastic optical reconstruction microscopy (STORM)2, photo-
activatable localization microscopy (PALM)3, and point accumulation in
nanoscale topography (PAINT)4. Regardless of the chosen technique, SMLM
data consists of point coordinates with associated uncertainties that corre-
spond to fluorophore positions. While great advances have been made to
develop new and refine established SMLM techniques, efficient and accurate
analysis of the resulting data still presents major challenges5. In coordinate-
based SMLM data, clustering analyses are commonly performed to reveal
insights into the complex underlying structure and spatial coordination of
biological molecules5,6. Among clustering methods, density-based clustering
is a common choice for SMLM data, as it avoids biasing towards convex
shapes like other clustering methods such as k-means, Gaussian mixture
models, and various hierarchical clustering algorithms7–10. Instead, density-
based methods allow arbitrary cluster shapes by identifying clusters as high-
density connected regions separated by regions of low density6,7,11–13.

A popular density-based clustering method is density-based spatial
clustering of applications with noise (DBSCAN)14. DBSCAN connects
points into clusters based on a reachability distance. DBSCAN is commonly
employed for SMLMdata andhasbeen shown toperformwellwhenground
truth information is available6,15. A recent modification of DBSCAN, hier-
archical DBSCAN (HDBSCAN), aims to improve DBSCAN by allowing
clusters to vary in density through selection from a hierarchical tree

constructed frommutual reachability distances16,17. HDBSCAN is relatively
understudied compared to DBSCAN, likely due to its more recent devel-
opment. A third algorithm, ordering points to identify the clustering
structure (OPTICS), allows variable density clusters to be identified through
the ordered reachability of points18. For eachof these algorithms, at least two
input parameters are required to identify clusters.

In nearly all clustering algorithms, challenges in choosing input
parameters exist, and parameter choice is not intuitive even when domain
knowledge is available12. Thus, cluster validation should be implemented to
guide parameter selection and increase reproducibility. Many choices for
cluster validation exist, falling primarily into two classes, external and
internal. External validation requires ground truth knowledge, allowing
comparisons to be made between clustering algorithm outputs and the
ground truth assignment of points into clusters19. While effective, external
validation is impractical in almost all real-world scenarios, where ground
truth information is rarely available. Despite this, there are practical uses of
external validation for experimental SMLM data. For example, Nieves et al.
proposed a framework in which experimental data is compared to a set of
simulated datasets to determine which simulationmost closely matches the
experimental data. A clustering algorithm and corresponding parameters
are then chosen for experimental data that perform best on the nearest
matching simulated data15. To our knowledge,Nieves et al. provide themost
comprehensive guidance for choosing clustering parameters for SMLM.
However, critical limitations exist with this approach. Themethod is limited
to the simulated datasets analyzed, restricting users to predefined structures
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and making the approach impractical for varied and/or complex clusters.
Moreover, given that there can be no standard set of simulations for all
possible clustering scenarios, outcomes could vary across research groups.

Alternatively, internal validation methods do not rely on ground truth
information, instead scoring the clustering performance based on intrinsic
properties of the data19. Many internal validation algorithms exist, such as the
commonly used silhouette score or Davies-Bouldin index20, though most are
unsuitable for validating non-globular clusters. Density-based cluster valida-
tion (DBCV) is one of the few validation methods tailored to density-based
algorithms21, although it remains underutilized. In brief, DBCV evaluates
clustered data by comparing the intra-cluster spread of points to the inter-
cluster separation locally. Intuitively, clusters are scoredhigher as the spreadof
pointswithin a cluster decreases and the separationbetween clusters increases.
Unlike other density-based validationmethods, such as the composed density
between and within clusters (CDbw) index22, DBCV does not require input
parameters, improving its strength as an unbiased evaluator21.

Here, we propose a clustering optimization method that utilizes the
internal validation metric DBCV to identify optimal clustering input
parameters. This method optimizes clustering by iteratively assessing the
performance of different parameter combinations and selecting the com-
bination with the highest validation scores. To our knowledge, the fastest
publicly available implementations of DBCV remain far too slow for vali-
dating SMLM-sized datasets, especially when considering many distinct
parameter combinations23–25. Furthermore, naively sweeping parameters to
find optimal clustering is not scalable to large parameter spaces. Therefore,
this approach requires both a performance-efficient implementation of
DBCVandamethod toefficiently sweep large parameter spaceswhere there
is little knowledge of appropriate parameter bounds. Herein, we (1) provide
an efficient implementationofDBCVthat is appropriate for SMLMdata, (2)
couple this improvedDBCV implementationwithBayesian optimization to
efficiently sweep the parameter space of density-based clustering algorithms
tofindDBCVmaxima (DBOpt), and (3) demonstrate the efficacyofDBOpt
by evaluating its performance on simulated and experimental datasets.

Results
DBCV Implementation
DBCVcalculates individual cluster scores (Ci score) based on the intra-cluster
sparseness and inter-cluster separation of each cluster (Ci), as shown in Eq.
121. An aggregateDBCV score summed over all clusters (l) is computed from
the individual cluster scores as a weighted average based on the number of
points in each cluster (NCi) and the total number of points in the dataset,
including noise (Ntotal) (Eq. 2, see Methods: Eqs. 3, 4 for more details)21.

Ciscore ¼
SeparationðCi;Cj≠iÞ � Sparseness Ci

� �

maxðSeparationðCi;Cj≠iÞ; Sparseness Ci

� �Þ ð1Þ

DBCV score ¼
Xl

i¼1

NCi

Ntotal
Ciscore
� � ð2Þ

DBCV for SMLMmust be scalable to large datasets. To our knowledge,
the fastest implementations currently available are too slow for practical use
on SMLM-sized data23–25. To improve upon this, we quantified cluster
separation leveraging a k-dimensional tree to find nearest neighbor dis-
tances of core points. A k-dimensional tree is constructed with an
approximate time complexity OðNcoreðlogðNcoreÞÞ where Ncore are all clus-
tered, core points as defined by DBCV26. Once constructed, the separation
value of each cluster canbe calculated byquerying the treewith approximate
timecomplexityOðNCicore

ðlogðNCicore
þ 1ÞÞ26.Withmanyother steps in the

algorithm, the overall theoretical time complexity of the improved imple-
mentation (k-DBCV) is difficult to calculate. Thus, we benchmarked the
performance of k-DBCV on simulated datasets and show up to orders of
magnitude increases in speed relative to previous implementations while
maintaining efficient memory usage (Fig. S1).

Density-based clustering parameter selection with Bayesian
optimization (DBOpt)
With an improved implementation of DBCV in hand, we now optimize
clustering by selecting parameters that result in the highest DBCV score.
DBOpt combines k-DBCV computation with Bayesian optimization to
maximize the DBCV score of a clustering algorithm within a user-defined
parameter space. Bayesian optimization provides an efficient method to
maximize the output of a function without requiring exploration of every
possible parameter combination, making it suitable for cases where there is
little to no knowledge of optimal parameters and/or sensitivity to
parameters27. In brief, the optimization relies on a Gaussian prior function
with an upper confidence bound acquisition function that balances max-
imization and explorationduring optimization to iteratively select points for
evaluation. Multiple iterations are performed to efficiently find the
maxima27,28.

The proposed cluster analysis pipeline is shown in Fig. 1. Before the
optimization process, hyperparameters must be selected for DBOpt. This
includes the lower and upper bounds of the parameters unique to the
clustering algorithm employed and the number of iterations to be per-
formed. The clustering algorithmparameters, the recommendedparameter
bounds, and the number of Bayesian optimization iterations to perform are
described in Supporting Text 1 and Fig. S2.

The Bayesian optimization step produces a series of parameter com-
binations with corresponding DBCV scores between −1 and 1, with −1
automatically assigned when there are fewer than two clusters identified. In
addition to the global DBCV score (Eq. 2), the resulting clusters have
individual cluster scores (Eq. 1), allowing for comparisons across datasets as
well as outlier detectionwithin datasets, respectively. The output commonly
contains several parameter combinations that produce equal maximum
global DBCV scores (to within two significant figures). DBOpt selects
between these by choosing parameters for which the median individual
cluster score is highest.

Additional DBOpt runs should be performed in cases where the initial
hyperparameters for parameter bounds may be too small or too large to
effectively optimize the parameters. Evidence of insufficient size would be

Fig. 1 | Cluster analysis pipeline.DBOpt is initialized with broad hyperparameter selections, the parameter space is explored, and the parameters identifying clusters with
maximum DBCV score are selected for clustering. Following DBOpt, cluster analysis is performed and DBCV scores are reported.
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maximumDBCV scores at the edge of the parameter space. Evidence of an
optimization space that is too large would be a small number of parameters
evaluated near the DBOpt selected parameters or a small number of scores
near the maximumDBCV score. Confirmation of proper optimization can
be achieved by performing DBOptmultiple times on the same dataset from
a random set of initial parameters and ensuring the maximum score con-
verges to approximately the same value. Following DBOpt, cluster analysis
can be performed, and the selected clustering parameters, along with the
cluster validation scores, should be reported.

Validation of DBOpt with simulated data
To assess DBCV as a validation metric and test the ability of DBOpt to
identify optimal parameters, we evaluated simulated datasets with the three
density-based algorithms, DBSCAN, HDBSCAN, and OPTICS. We
simulated SMLM data across five categories of clusters, with representative
datasets shown in Fig. 2. For each category of clusters, 25 unique datasets
were simulated on a ≈3 × 3 μm 2D plane as described in Methods. The
simulations varied in cluster size, shape, density, number of clusters, and
noise density (Supporting Text 2, Table S1a–e).

Toevaluate theperformanceof eachalgorithmagainst ground truth,we
use the external validation score V-measure (see Methods)29. We choose
V-measure rather than other external validation scores such as adjusted
Rand index, Fowlkes–Mallows index, or adjustedmutual information29–32, as
V-measure handles diverse scenarios, as detailed in ref. 29. Here, we sys-
tematically explored parameter combinations with the three density-based
algorithms considered and assessed the V-measure score of the resulting
clusters against the ground truth assignments. We refer to this method as a
naive external validation sweep (EVS). We then select the parameters that
result in themaximumV-measure score for comparisons between clustering
algorithms and against DBOpt performance. For all simulations, naive EVS
was performed with DBSCAN, HDBSCAN, and OPTICS as described in
Methods. Separately,DBOpt (which does not use ground truth information)
was performed to assess its ability to match EVS performance.

Representative results corresponding to simulations shown in Fig. 2
from EVS and DBOpt on challenging simulations (>50% noise) are shown
in Fig. 3. The contour plots depicting V-measure scores for EVS andDBCV
scores for DBOpt show qualitatively similar character. To quantify this, we
calculated the Pearson R correlation coefficient between V-measure and
DBCV scores for every simulation across the parameter space assessed as
described in Supporting Text 3. This shows a generally high correlation
between V-measure and DBCV scores, with DBSCAN yielding the highest
overall correlation (Fig. S3). Furthermore, the contour plots show that the
DBCV and V-measure scores are at or near their maxima over a range of
parameter combinations for a given simulation. Thus, multiple runs of
DBOpt may produce different parameters for the same dataset without
significantly affecting the clustering result.

We plotted representative simulated clusters (Fig. 2) and the clusters
resulting from the highest scoring parameters for each clustering algorithm
based on naive EVS V-measure scores and, separately, based on DBOpt
DBCVscores in Fig. S4. Between all algorithms,we show the highest scoring

cluster results in Fig. 3, right panel. Naive EVS identifies clusters that qua-
litatively match ground truth information for DBSCAN, while HDBSCAN
and OPTICS deviate from ground truth for more complex clustering sce-
narios, indicating a weaker performance by these algorithms (Fig. S4).

When the best-performing parameters identified by EVS led to good
clustering results and a high V-measure score, the best-performing para-
meters identified by DBOpt also performed well and qualitatively matched
naive EVS performance (Fig. S4). To assess the quantitative performance of
DBOpt on every simulated dataset, we calculated the V-measure scores of
the parameters chosen by DBOpt and plotted them vs. the maximum
V-measure scores achieved by naive EVS for each algorithm (Fig. 4a–c).We
calculated themean squared error (MSE) of the residuals and show themon
each corresponding plot. Here, DBOpt paired with DBSCAN most closely
matches scores achievedwithnaive EVS,withweakerperformance for some
fibrillar and mixed clustering scenarios. Also shown is the combined per-
formance, where the selected parameters correspond to the maximum
DBOpt DBCV score between all clustering algorithms (Fig. 4d).

The overall performance of DBOpt relative to naive EVS is shown by
taking the ratio of the DBOpt to EVSV-measure scores from Fig. 4a–d, and
distributions of these ratios for all 125 simulations performed are shown in
Fig. 4e. The median normalized V-measure score was 0.97, 0.98, 0.97, and
0.97 for DBSCAN, HDBSCAN, OPTICS, and all algorithms combined,
respectively, indicating that in most cases DBOpt as effectively identified
clusters as if ground truth assignments were known. We further compared
V-measure and, separately, DBCV scores associated with optimal para-
meters between algorithms for every simulated SMLM dataset (Fig. 4f–h).
Statistical analysis of Fig. 4e–g is discussed in Supporting Text 4, Table
S2a–c. These comparisons indicate that DBSCAN generally scores sig-
nificantly higher than HDBSCAN and OPTICS for each cluster type. In
cases where noise was low, HDBSCAN occasionally returned a slightly
higher V-measure score, and in rare circumstances, OPTICS returned the
highest DBCV score. Finally, we compared the runtime of each algorithm
with DBOpt. Here, DBOpt paired with DBSCAN and HDBSCAN had
similar runtimes, while OPTICS was slower for every simulation (Fig. S5).

We note that, as can be appreciated from Fig. 4g, DBCV scores are
relatively low compared to the theoretical maximum of 1 as well as to the
maximum V-measure scores. This is primarily because DBCV values are
reducedby the presence of noise, as inEq. 2Ntotal includes points assigned to
noise. With simulated datasets, we can ensure that clusters are properly
identified even when DBCV scores are low because ground truth infor-
mation is available. However, for experimental data, a threshold may exist
where scores are too low to distinguish accurate clustering from the clus-
tering of noise. To determine this threshold, we evaluated DBOpt on
simulated 2D noise and showed that the threshold decreases as the lower
bound of theMinPts parameter increases (Supporting Text 5, Fig. S6).

To broaden the simulations to capture more experimental scenarios,
we also evaluated DBOpt performance on multi-emitter data. Here, each
originally simulated point may have multiple corresponding points drawn
from the same uncertainty distribution, resulting in more localizations for
both clustered andnoise points (SupportingText 6, Fig. S7).DBOpt remains

Fig. 2 | Representative plots of simulated data. a Circular (C02), b elliptic (E14),
c micellular (M22), d fibrillar (F18), and e mixed (V12) cluster scenarios. Alpha-
numeric code in parentheses corresponds to simulations described in Table S1.

Simulated clusters are shown in color, noise is shown in gray. a, d, e have gradient
noise. b, c have homogeneous noise.
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robust in most multi-emitter scenarios for DBSCAN and HDBSCAN.
Furthermore, when accounting for fluorophore-to-antibody ratios when
setting theMinPts hyperparameter, DBOpt fully recovers and in some cases
improves its performance in the presence of multi-emitters (Fig. S7c).
Regardless of parameter bounds,OPTICSperformance is diminished by the

presence of multi-emitters, limiting its practicality for evaluating
SMLM data.

Extension of traditional SMLM to 3D imaging has revealed complex
cellular structures in unprecedented detail33,34. To test whether DBOpt per-
forms well on 3D data, ten unique datasets containing 3D ellipsoidal clusters

Fig. 3 | Naive EVS and DBOpt parameter sweeps. Elliptic (E14), micellular (M22),
and mixed (V12) parameter sweeps of cluster scenarios are also shown in Fig. 2 for
DBSCAN, HDBSCAN, and OPTICS, with optimal EVS and DBOpt cluster out-
comes plotted in the right panel. Parenthetical notations indicate the simulated data
as described in Table S1. Points on the contour plots represent each parameter

combination that is scored from which the contour plot is prepared (discrete sam-
pling for naive EVS, Bayesian sampling for DBOpt); the white “X” represents the
optimal chosen parameters from EVS and DBOpt. Right panel plots show clusters
identified from the highest scoring set of parameters from the highest scoring
algorithm and correspond to those marked with * in Fig. S4.
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and ten unique datasets containing 3D fibrillar clusters were simulated (Table
S1f) as described in Methods. Naive EVS and DBOpt were performed sepa-
rately for each algorithm.A representative simulation is shown in Fig. 5a, with
the clustered data resulting from DBOpt shown in Fig. 5b. Comparisons
between DBOpt and external validation of each algorithm are shown in Fig.
5c–f. The median normalized V-measure scores for DBSCAN, HDBSCAN,
and OPTICS are 0.98, 0.99, and 0.99, respectively. Comparing across algo-
rithms reveals thatDBSCAN scores significantly higher thanHDBSCANand
OPTICS with both naive EVS and DBOpt (Supporting Text 4, Table S2d).
Simulated noise was evaluated to assess the presence of a threshold in 3D
under which cluster identification cannot be distinguished from clustering
noise (Fig. S8). Overall, the noise threshold was reduced by the increase in
MinPts, as also seen in 2D simulations (Fig. S6).

Experimental SMLM analysis
To demonstrate a practical use case for DBOpt, we quantified the size and
shape of β1 integrin nanoclusters in the ligand-bound conformation within
focal adhesions. MBA-MB-231 cells were fixed, and regions of interest
(ROI) were identified by the presence of vinculin, an adapter protein
localized to focal adhesions35. β1 integrin was labeled with an antibody
specific to the ligand-bound conformation36. A widefield image of cells
labeled for vinculin and β1 integrin was acquired, followed by 2D dSTORM
imaging of β1 integrin. A representative reconstructed image is shown in
Fig. 6a, b. To identify clusters, DBOpt coupled with DBSCAN was per-
formed on each acquired dataset (Fig. 6c). The optimal parameters identi-
fied with corresponding DBCV scores are shown in Table S3. A
representation of resulting clusters, colored to depict individual cluster
scores, is shown in Fig. 6d, with the corresponding full cell integrin clus-
tering result shown in Fig. S9. For analysis, clustered integrin localizations
within the ROI co-localized with vinculin were selected. Identified clusters
with positive individual cluster scores were analyzed (Fig. 6e). Cluster shape
(aspect ratio) and size were determined (Fig. 6f) as described in Methods.

This analysis reveals a short-axis median FWHM of 53 nm and a median
aspect ratio of 1.51, results that are in close agreement with previously
reported integrin cluster sizes37,38.

To analyze a more challenging dataset, we sought to quantify clathrin-
coated pits in MDA-MB-231 cells. To do this, we performed 3D dSTORM
on fixed cells labeled for clathrin. A representative reconstruction of all
molecules projected in 2D is shown in Fig. 6g, with a select region shown in
Fig. 6h, illustrating the pit structure. DBOpt was performed on each 3D
dataset withDBSCAN (Fig. 6i).MaximumDBCV scores were between 0.09
and 0.15, above the corresponding noise threshold for the MinPts para-
meters used (Fig. S8 andTable S3).A selectionof identified clusters is shown
inFig. 6j, with the corresponding full cell clathrin clustering results shown in
Fig. S9.All clusters from the full cell resultswere evaluated for size, excluding
clusters with a negative individual cluster score. The mean FWHM of cla-
thrin clusters was found to be 145 ± 40 nm, in agreement with previously
reported results (Fig. 6l)39. Excluding clusters with low individual cluster
scores may be useful in particular cases. Here, evaluating clusters with a
stricter individual cluster score requirement (individual cluster score ≥ 0.5;
inset Fig. 6l) minimally affects results (FWHM 141 ± 39 nm).We note that
while the FWHMs of clathrin clusters across five analyzed images were in
close agreement with previous results, one result showed a distribution with
notably greater cluster size (Table S3). We explored this further in Sup-
porting Text 7 and showed that when experiments have a high level of noise
and are therefore difficult to cluster, selecting a single parameter combi-
nation that results in the best average DBCV score across all datasets can
reduce variability between datasets (Table S4).

The number of localizations and corresponding runtimes for all
experimental datasets are shown in Table S5. Here, runtimes vary greatly
between datasets, with a larger number of localizations typically corre-
sponding to longer runtimes. In cases where datasets could be prohibitively
large, we suggest usingDBOpt to identify optimal parameters on a subset of
the full data to improve runtimes (Supporting Text 8 and Table S5). We

Fig. 4 | DBOpt performance on 2D simulated data. Comparisons of V-measure
scores for parameters chosen with naive EVS and V-measure scores for parameters
chosen with DBOpt for a DBSCAN, bHDBSCAN, c OPTICS, and d all algorithms
combined. MSE relative to the dashed line is shown on each plot. e Distributions of
the ratio of DBOpt V-measure scores to maximum naive EVS V-measure scores
(dotted line represents median and “X” represents mean; n = 125 simulations).
f Maximum V-measure and g maximum DBCV score comparisons between

algorithms for each cluster simulation type (n = 25 simulations). Box indicates 25th
and 75th percentile, whiskers indicate 5th and 95th percentile, interior line indicates
the median, and outliers are shown as points. h Percentage of the simulations for
which each algorithm had the highest V-measure and DBCV scores, respectively
(n = 25 simulations for each cluster type). The legend in f applies to (f–h). Statistical
analysis of (e–g) is discussed in Supporting Text 4, Table S2a–c.
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demonstrate the effectiveness of this approach by plotting cluster sizes for
full cell data between the originally selected parameters and those identified
through such sub-sampling, which are in close agreement (Figs. S10, S11).

Discussion
Cluster analysis is a common and important step in interpreting SMLM
data. However, the importance of proper parameter selection is often
overlooked, as evidenced by the relative lack of guidance for parameter
selection in the literature. For these reasons, we developed DBOpt, which
employs (1) a novel and efficient implementation of the internal validation
metric DBCV, termed k-DBCV for its use of a k-dimensional tree and (2) a
procedure for leveraging k-DBCV to choose optimal clustering parameters,
incorporating Bayesian optimization to efficiently optimize large parameter
spaces. Taken together, the DBOpt method provides a valuable tool for
selecting robust and reproducible clustering parameters without the need
for domain knowledge.

The results from simulated datasets suggest that in most scenarios,
DBOpt, without ground truth information, is nearly equal in performance
to naive EVS as evaluated via V-measure. Furthermore, we demonstrate
DBOpt performance on experimental data and show sensible results from
cluster evaluation. Among the clustering algorithms tested, DBSCAN was
the best-performing algorithm for most simulated datasets. Paired with its
relative simplicity and speed, we recommend DBSCAN when clustering
SMLM data. While we evaluated DBSCAN, HDBSCAN, and OPTICS,
DBOpt can be readily adapted to evaluate performance with any density-
based algorithm, such as density peakorDENCLUEclustering,which could
be a preferable approach for some datasets40,41.

Through the approach outlined herein, we expect that DBOpt will
improve both the integrity and reproducibility of SMLM clustering. While
this work highlights the utility of DBOpt for SMLMdata, the importance of
accurate clustering extends across biology and into many other fields of
study42–45. Thus, we expect DBOpt to have many practical use cases outside
of SMLM.

Methods
Simulations
Simulated data were generated using our custom-built Python library
(ClustSim: https://github.com/Kaufman-Lab-Columbia/ClustSim). Gen-
erally, for each cluster, a centroid was randomly chosen on the ≈3 × 3 μm
simulation plane, and points were placed around this centroid. When
simulating in 3D, an additional axial dimension of 3 μm was added.
Circular, spherical, and elliptic clusters were built by making random
selections from a normal distribution centered around the centroid in
each dimension. The cluster width was defined as four standard devia-
tions of the underlying normal distribution. For elliptic clusters, the
distribution was stretched randomly along one direction, defined by the
desired aspect ratio. For micellular clusters, points were randomly and
uniformly distributed between an inner and outer diameter, with the
inner diameter defined as two-thirds of the outer diameter. Fibrillar
clusters were generated via a three-step process. First, the fiber backbone
was grown from a random starting point along a simulated trajectory,
defined by an angular path dictating the direction of longitudinal growth.
The angular path was generated using the method described in ref. 46.
Subsequently, point deposition to a specified density was conducted
around each backbone point using a normal distribution, with four
standard deviations of the distribution equal to the reported widths.
Finally, for clusters containing a variety of shapes, clusters were simulated
separately and merged, ensuring that clusters were adequately sepa-
rated by eye.

Each simulationwas generated on a simulation plane containing either
randomly distributed or gradient noise to mimic inhomogeneous illumi-
nation. Gradient noise was generated by increasing the percentage of points
distributed every 300 nm in the x direction, such that the right-most side of
the simulation had approximately four times more noise points than the
left-most side. Formulti-emitter simulations, the number of localizations at
each target point was drawn from a Poisson distribution with a mean of
three positions per molecule.

Fig. 5 | DBOpt performance on 3D simulated data. a Representative simulation
(S01, Table S1f) of 3D clusters, b optimal clustering of the representative simulated
data via DBOpt, c comparisons of V-measure scores between naive EVS and
V-measure scores for parameters chosen with DBOpt for both ellipsoid and fibrillar
clusters, d distributions of the ratio of DBOpt V-measure scores to maximum naive
EVS V-measure scores (dotted line represents median and “X” represents mean;

n = 20 simulations), and emaximum V-measure and fmaximum DBCV scores for
each algorithm found via naive EVS and DBOpt, respectively (n = 20 simulations).
Box indicates 25th and 75th percentile, whiskers indicate 5th and 95th percentile,
and the interior line indicates median. Statistical analysis of d–f is discussed in
Supporting Text 4, Table S2d.
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Fig. 6 | Experimental analysis with DBOpt. a dSTORM image (Integrin 02, Table
S3) of a cell co-labeled for vinculin (red) and active β1 integrin (cyan). (scale bar:
10 μm) b Selected ROI (white box in (a); scale bar: 2 μm). cDBOpt parameter sweep
of Integrin 02 localizations with DBSCAN. d Selected region (corresponding to (b))
of identified integrin clusters from DBOpt; color depicts individual cluster score.
e Distribution of individual integrin cluster scores from vinculin ROIs; clusters
scoring ≥ 0 were analyzed for size (n = 3462 clusters not excluded, pooled from five
samples). fWidth, length, and aspect ratio (AR) of all integrin clusters from vinculin
ROIs (n = 3462 clusters, pooled from five samples). Box plot lines indicate median,
“X” indicates mean, boxes represent 25th and 75th percentiles, and whiskers
represent 5th and 95th percentiles. g dSTORM image (Clathrin 01, Table S3) of a cell

labeled for clathrin (red) (scale bar: 10 μm). h Selected ROI (white box in (g); scale
bar: 2 μm)) with inset showing a 100 nmaxial region of a clathrin structure projected
in 2D (scale bar: 0.2 μm). iDBOpt parameter sweep of Clathrin 01 localizations with
DBSCAN. j Selected region of identified clathrin clusters fromDBOpt; color depicts
individual cluster score. k Distribution of individual cluster scores from full cell
results; clusters scoring < 0 were excluded (n = 2045 clusters not excluded, pooled
from five samples). l FWHMs of clathrin clusters from full cell results (n = 2045
clusters not excluded, pooled from five samples); inset depicts results with individual
cluster scores < 0.5 excluded (n = 1406 clusters not excluded, pooled from five
samples).
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In all cases, after placement, point positions were relocated in the x, y,
and (where relevant) z directions to mimic uncertainties associated with
SMLM imaging. Eachmolecule wasmovedwithin an FWHMdefined from
a log-normal distribution47. This log-normal distribution was set with a
mean uncertainty of 20 nm for the lateral directions and 50 nm axially for
3D simulations with a standard deviation of 5.7 nm33,47,48. Parameter
information for each simulation can be found in Supporting Text 2 and
Tables S1a–f.

DBOpt
DBOpt (DBOpt: https://github.com/Kaufman-Lab-Columbia/DBOpt) was
performed by combining the improved implementation of DBCV (k-
DBCV: https://github.com/Kaufman-Lab-Columbia/k-DBCV) with Baye-
sian optimization. Bayesian optimization was performed with a pre-built
library using a Gaussian prior with an upper confidence bound acquisition
function (Bayesian Optimization: https://github.com/bayesian-
optimization/BayesianOptimization)27. For all simulations, hyperpara-
meters were chosen to attempt to cover the relevant parameter space for all
clustering scenarios and simulations while also testing the data against the
minimum possibleMinPts parameters for k-DBCV. For all simulations, 40
random sets of parameters were probed initially, followed by 200 optimi-
zation iterations (SupportingText 1).Theparameter spaceexploredwas 3 to
200 for all parameters of DBSCAN and HDBSCAN, and the MinPts
parameter of OPTICS. For OPTICS, the ξ parameter space was optimized
between 0.005 and 0.5.

At each optimization iteration, the DBCV score was calculated as
described in Eqs. 1 and 221. Here, sparseness and separation are defined as
the largest intra-cluster and smallest inter-cluster mutual reachability dis-
tances (MRD) between nearest neighboring core points, respectively. The
mutual reachability distance between points is calculated as:

MRD ¼ max allptscoredistðoiÞ; allptscoredistðoj≠iÞ; Edist oi; oj≠i
� �� �

ð3Þ

Here, oi is a point within the dataset, oj is any other point, Edist is the
Euclidean distance between points, and allptscoredist is defined as:

allptscoredist oð Þ ¼

Pni
i¼2

1
KNN o;ið Þ

� �d

ni � 1

0
BB@

1
CCA

�1
d

ð4Þ

where d is the number of dimensions, ni is the points in the cluster i, and
KNN is the Kth nearest neighbor from point o in cluster i. We note that a
minimum of three points is required for a cluster to have at least one core
point. Here, we require core points to compute individual cluster scores;
therefore, k-DBCV prohibits clusters with fewer than three points and
automatically reclassifies points belonging to these clusters as noise.

After completing the optimization iterations, the parameter combi-
nations with the highest DBCV scores to two significant figures were
selected. Subsequently, from this set, the single parameter combinationwith
the highest median individual cluster scores was chosen as the optimal
clustering assignment. The data was then clustered with those parameters,
and in the case of simulated data, external validation was performed for
comparison to ground truth information and naive EVS.

External validation
Naive EVS was performed by analyzing every fifth value of each parameter
between 3 and 200 for DBSCAN, HDBSCAN, and the MinPts OPTICS
parameter. The ξ parameter of OPTICSwas analyzed every 0.0125 between
0.005 and 0.5. V-measure was employed for external validation. V-measure

is given by:

V ¼ 1þ β
� � � h � c
ðβ � hÞ þ c

ð5Þ

Here, homogeneity (h) and completeness (c) were calculated for
comparison to ground truth information as described by Rosenberg
et al.32. βwas set to 1 to equally balance homogeneity and completeness. was
set to 1 to balance homogeneity and completeness. V-measure is bounded
between 0 and 1, with a score of 1 representing clusters that match perfectly
with the ground truth assignment.We note that for simulations with noise,
there is no distinction between noise placed inside or outside of simulated
clusters. Thus, for such simulations, V-measure scores are expected to be
high but < 1 even for optimal clustering, as noise points that fall inside
clusters will likely be assigned to those clusters.

Cell preparation
MDA-MB-231 cells obtained from the American Type Culture Collection
were used for both integrin and clathrin experiments. Cells were cultured at
37 oC and 5% carbon dioxide in high glucose DMEM (Fisher Scientific) with
10% (v/v) fetal bovine serum (Gibco), 1% (v/v) 100x penicillin-streptomycin-
amphotericin B (MP Biomedicals), and 1% (v/v) 100x non-essential amino
acid solution (Gibco). Prior to cell experiments, 35mmhigh-tolerance dishes
(P35G-0.170-14-C:MatTekCorporation)were coatedwith1mLof50 μg/mL
acid-solubilized rat tail collagen type I (AdvancedBiomatrix) in sterilefiltered
20mM acetic acid (97+%, Sigma Aldrich) for 1 h. The plates were washed
three times with 1X phosphate-buffered saline (PBS) (Cytiva). Tetraspeck
microspheres (Invitrogen) of diameter 0.1 μmwere added at a concentration
of ~4 × 1015 microspheres/mL in 1X PBS for 10min at room temperature to
deposit fiducials for later drift correction in post-processing. The plates were
washed again three times with 1X PBS.

Cells were detached with Accutase (MP Biomedicals) and then seeded
onto the coated, high-tolerance 35mmdishes at a density of 100,000 cells/dish
in 2mL high glucose DMEM and incubated for 1.5 h before fixing. Prior to
fixing, cellswerewashed twicewith37 oC1XPBS.Forβ1 integrin labeling, cells
were fixed by initially adding 0.3% glutaraldehyde (8% EM grade solution,
ElectronMicroscopy Sciences) and 0.25% Triton X-100 (10% solution, EMD
Millipore Chemicals) in 1X PBS at 37 oC for 1min followed by 4%methanol-
free paraformaldehyde (16% solution, Thermo Scientific) in 1X PBS at 37 oC
for 10min. For clathrin experiments, 4%methanol-free paraformaldehyde in
1X PBS was added for 10min at 37 oC. After fixing, quenching with 50mM
ammonium chloride (Sigma Aldrich) for 15min was performed. Cells were
washed for 10min three times with 1X PBS. Triton X-100 (0.2%) was applied
for 10min to permeabilize the cell membrane, followed by three 10min
washes with 1X PBS.

Active β1 integrin was labeled with 9EG7 monoclonal antibody
(0.5mg/mL solution, BD Biosciences, 553715). The antibody was first
conjugated toAlexaFluor 647NHSester (Invitrogen).AlexaFluor 647NHS
ester was dissolved in anhydrous dimethyl sulfoxide (DMSO) (Sigma
Aldrich) and dried for storage. The aliquots were desiccated and stored at
−20 oC. Before conjugation, bovine serum albumin (BSA) was removed
(when applicable) from the stock antibody solution with an antibody con-
jugation kit according to the manufacturer's instructions (Abcam). After
BSA removal, the antibody concentration was measured via UV-vis with a
Nanodrop Spectrophotometer (Thermo Scientific). The antibody was then
conjugated with Alexa Fluor 647 NHS ester at a 4:1 fluorophore-to- anti-
bodymolar ratio for 30min by adding 2 μL of reconstitutedAlexa Fluor 647
in sterile DMSO (Sigma Aldrich) to 10 μL of 0.5M sodium bicarbonate
(7.5% stock, Gibco) and 40 μL of antibody solution in 1X PBS. Following
conjugation, the antibody was purified with an Antibody Conjugate Pur-
ificationKit (Invitrogen). Briefly, the columnwas rinsed three timeswith 1X
PBS and centrifuged at 1100×g. The antibodywas then added to the column
and incubated for 5min at room temperature. The final solution was col-
lected via centrifugation at 1100×g. The resulting fluorophore-to-antibody
ratio was measured via UV-vis and calculated to be 1.6:1.
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The conjugated 9EG7-Alexa Fluor 647 was diluted in 1% BSA (w/w)
(Fisher Bioreagents) in 1X PBS for a final concentration of 10 μg/mL along
with 10 μg/mLEPR8185 anti-vinculinAlexaFluor 488 antibody (0.5mg/mL
solution, Abcam, ab196454). To label cells, 100 μL of antibody solution was
added to the plate to fully cover the inner surface of the dish. The solution
was incubated for 18 h at ~4 oC. After labeling, the cells were washed three
times with 1% BSA in 1X PBS.

To label clathrin, a polyclonal anti-clathrin heavy chain antibody
(0.9mg/mL solution, Abcam, ab21679) was diluted to a final concentration
of 3.3 μg/mL with 1% BSA (w/w) in 1X PBS. About 100 μL of antibody
solution was added to the plate to fully cover the surface, and the solution
was incubated for 18 h at ~4 oC. The plate was washed three times with 1%
BSA (w/w) in 1X PBS for 10min. About 100 μL of 4 μg/mL secondary, goat
anti-rabbit Alexa Fluor 647 antibody (highly cross-adsorbed, Invitrogen) in
1% BSA (w/w) in 1X PBS was then added and incubated at room tem-
perature for 1 h. The dishwas washed again three timeswith 1%BSA (w/w)
in 1X PBS following secondary antibody labeling.

Imaging
Prior to imaging, 1 mL of freshly preparedOxEA imaging buffer was added
to the samples49. The buffer was composed of 3% (v/v) Oxyfluor (Oxyrase),
20% (v/v) sodium DL lactate (60% stock, Sigma Aldrich), and 50mM
cysteamine hydrochloride (Sigma Aldrich), all in 1X PBS with pH adjusted
to 8–8.5 with 1 NNaOH (Sigma Aldrich). Images were acquired on a Zeiss
Elyra 7 microscope. For 2D experiments, an initial image of vinculin was
acquired using a 488 nm laser via total internal reflection fluorescence
(TIRF). For 2D SMLM, localizations were acquired over 30,000 frameswith
an exposure time of 30ms in a TIRF configuration. For 3D acquisition, the
microscope relies on a spatial lightmodulator to split the vertically polarized
light into two lobes, forming a double helix point spread function (DH-
PSF)50. Prior to imaging, a 0.1 μm Tetraspeck microsphere was imaged for
calibration of the DH-PSF according to the manufacturer's instructions,
such that the z-position of the PSFs could be extracted after acquisition. The
localizations were acquired over 50,000 frames with an exposure time of
30ms via highly inclined and laminated optical sheet (HILO) microscopy.

To process localizations found in 2D, the ThunderSTORMplugin was
used within ImageJ, following the recommended protocol in the Thun-
derSTORM user guide51. Images were first filtered using a wavelet filter (B-
spline order of 3 and B-spline scale of 2), after which molecules were
identified using the local maximum approach (eight connected neighbors)
with a peak intensity threshold of 1.5 times the standard deviation of thefirst
wavelet level. Identified molecules were fit to an integrated Gaussian using
the maximum likelihood method, with a fitting radius of five pixels and an
initial standard deviation of 1.6 pixels. Spurious localizations were removed
from reconstructed images by applying a minimum intensity cutoff of 50
photons, restricting the standard deviation of the Gaussian fit over the
emission peak to 50–250 nm, and removing molecules with a lateral loca-
lization uncertainty greater than 35 nm. Lateral stage drift was corrected by
tracking positions of ~3–6 fiducial markers (Tetraspeck microspheres, see
above plating procedure) during the course of image acquisition. Axial drift
was limited by using the microscope autofocus (Zeiss, Definite Focus sys-
tem) in combination with a piezo stage to continuously maintain axial
position for the duration of the imaging experiment. After drift correction
using ThunderSTORM,molecules within 20 nmof each otherweremerged
when in the on-state consecutively between frames, with a maximum off-
time tolerance of three frames. Processing of 3D STORM data were per-
formed within the Zen Black software (Zeiss). Axial position was first
determined from the DH-PSF calibration. To remove outliers, the lateral
localizationuncertaintywasfiltered tobebetween5and35 nm, and the axial
uncertainty was filtered to be between 5 and 60 nm. The background var-
iance of the numberof photonswas set to less than 80. The imageswere drift
corrected both laterally and axially with the 0.1 μmTetraspeckmicrosphere
fiducials.

For 2D integrin images, DBOpt was performed on the full cell. After
clusteringwith the optimal parameters found forDBSCAN, clusters that fell

within ROIs defined by the presence of vinculin were analyzed. For clathrin
localization, DBOpt was first run on the full cell in 3D, and the identified
clusters were projected onto an x-y plane. The covariance matrix of each
cluster was used to find the long axis (length) and short axis (width). The
clusters were treated as bivariate normal distributions, where the FWHMof
each cluster was calculated. For clathrin clusters, the short-axis FWHM is
reported.

Statistics and reproducibility
DBOptwas tested on 125 unique 2D simulated datasets with 25 simulations
associated with each of five cluster types shown in Fig. 2. Details on each
simulated dataset are shown in Table S1a–e. For 3D data, 20 unique
simulated datasets were analyzed across ellipsoid (n = 10) and 3D fibrillar
(n = 10) datasets. The details for all 3D simulations are shown in Table S1f.
For experimental data, in both the integrin and clathrin analyses, five single
cells, chosen from distinct areas on a single coverslip, were analyzed. Pooled
results fromDBOpt clustering of experimental data are shown in Fig. 6.We
performed a two-sided paired t-test for data corresponding to Fig. 4e and a
two-sided Wilcoxon signed-rank test for data corresponding to Figs. 4f, g,
5d–f. The results of these tests, including the p values and test statistic, are
shown in Supporting Text 4, Table S2a–d.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Simulated datasets are available at https://github.com/Kaufman-Lab-
Columbia/DBOpt52. The source data for all the graphs in the paper can be
found in Supplementary Data 1. Experimental imaging data is available
upon request.

Code availability
DBOpt code is available at https://github.com/Kaufman-Lab-Columbia/
DBOpt52. k-DBCV code is available at https://github.com/Kaufman-Lab-
Columbia/k-DBCV53. Cluster simulation code (ClustSim) is available at
https://github.com/Kaufman-Lab-Columbia/ClustSim54.
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