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Conserved wing shape variation across
biological scales unveils dialectical
relationships between micro- and
macroevolution
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Keita Saito1, Masahito Tsuboi 2,4 & Yuma Takahashi 3,4

Variation enables short-term evolution (microevolution), but its role in long-term evolution
(macroevolution) is debated.Here,weanalyzedadataset ofDrosophilawing variation across six levels
of biological organization to demonstrate that microevolutionary variation and macroevolutionary
divergence are positively correlated at all levels from variation within an individual to macroevolution
over 40 million years. Surprisingly, the strongest relationship was between developmental noise and
macroevolutionary divergence—which are traditionally considered the most distant— while the
relationship between standing genetic variation and population divergence was modest, despite
established theoretical predictions and empirical evidence.Our results indicate that the congruence of
the developmental system with the long-term history of fluctuations in adaptive peaks creates
dialectical relationships between microevolution and macroevolution.

Since the modern synthesis of evolutionary biology, it has been argued that
microevolutionary processes of mutation, selection, genetic drift, and gene
flowoperatingwithinpopulations can explain, or at least are consistentwith,
evolution at long timescales1. Although debates on the role of additional
processes operating above the population level remain2,3, the extrapolating
view of macroevolution profoundly influences our current thinking of
evolution4. Arguments in favor of this view rest on evidence from evolu-
tionary genetics. Previous studies have demonstrated that the pattern of
phenotypic divergence in high-dimensional phenotype space is biased in
directions that harbor high amounts of additive genetic variance5–7 (e.g., the
genetic lineof least resistance).Rapidly accumulating evidence indicates that
macroevolutionary divergence in various traits and taxa is predictable from
standing genetic variation in contemporary populations8–11, as predicted if
genetic constraints are relevant formacroevolution.The increasing evidence
for the constraints hypothesis provides apparent support for the extra-
polating view of macroevolution, but the mechanisms underlying this
inference remain elusive (e.g., the paradox of predictability)12.

The paradox of predictability could be reconciled if variability—the
ability of a developmental system to produce variation13—mirrors the pat-
ternof long-termfluctuations in adaptivepeaks.This idea, hereafter referred
to as the congruence hypothesis, challenges the established theory of evo-
lutionary genetics by arguing that the standing genetic variation of a

population (i.e., evolvability)14 is a consequence, rather than a cause, of
macroevolution. Two lines of evidence support this hypothesis. First, it has
been shown that the pattern of phenotypic plasticity is consistent with a
major axis of phenotypic divergence through computer simulations15,
laboratory experiments16, andmeta-analyses17. Second,Rohner andBerger18

have recently demonstrated that the subtle responses of development to
random and localized environmental fluctuations (i.e., developmental
noise)19,20 are correlated with the pattern of macroevolutionary divergence.
The congruence hypothesis offers a new class of mechanisms regarding the
role of non-genetic variations in evolution21–24, in ways that are consistent
with the established theory of genetics25,26.

In evaluating the constraints and congruence hypotheses, measures
of variance at different levels of biological organization are necessary.
Here, a multivariate approach was used to estimate the pattern of var-
iation in the wing morphology of Drosophila flies at six levels: (i) species
divergence, (ii) population divergence within a species (D. simulans), (iii)
genetic variation within a population, (iv) phenotypic plasticity, (v)
mutational variance, and (vi) developmental noise. Each variation was
summarized as the co/variance matrix and expressed as follows: R,
divergence among 112 species; Dsp, divergence among 14 species; Dpop,
population divergence; G, genetic variation; E, phenotypic plasticity; M,
mutational variance; F, developmental noise.
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Wewill examine the relationship of variation across these six levels and
discuss the role of constraints and congruence hypotheses to explain the
paradox of predictability using theoretical predictions of quantitative
genetics27,28 and statistical physics29 as our guiding principles. Our basic
predictions are that the relationship between standing genetic variation (G)
and microevolution (Dpop) will support the constraints hypothesis, while
the relationship between variability (F or M) and macroevolution (R) will
support the congruence hypothesis. By examining the degree of support for
these predictions based on the exponent (i.e., the slope of log-log regression)
and the coefficient of determination (R2) of the relationships, we will pro-
pose a pluralistic perspective for understanding the relationship between
microevolution and macroevolution.

Results and discussion
Correlation between mutational variance and fluctuating
asymmetry
Two theoretical frameworks have been proposed to elucidate the relation-
ship between variation and divergence. First, the quantitative geneticmodel
of Lande27 proposed the following relationship:

Δ�z ¼ Gβ

where z denotes a phenotype,G represents the additive genetic co/variance
matrix, and β is the selection gradient (the covariance between phenotype
and relative fitness). Under the assumption that genetic drift is the sole
driver of evolutionary changes, this framework predicts a positive rela-
tionshipbetweenG anddivergence amongconspecificpopulations,with the
scaling exponent of one. IfG remains stable for a long period of time and the
drift dictates evolution, then the pattern of genetic constraints characterized
by G scales up to the divergence across species and higher taxa1. The
influence of directional, disruptive, and stabilizing selection on the rela-
tionship between variation and divergence can be described by:

D ¼ GγG

where D represents phenotypic divergence based on the mean trait values
among populations within a species and γ is the multivariate selection
matrix30,31. When selection influences the pattern of divergence, the expo-
nent of the relationship between variation and divergence is expected to
deviate from1. Specifically, the exponentwill range from0when divergence
is primarily driven by rapid fluctuations in adaptive optima, to 2 when
directional selection dominates the divergence process8,11.

The second framework, based on the quantitative genetic model of
Lynch and Hill28 and the statistical physics model of Kaneko and
Furusawa29, indicates that variability is proportional to the pattern of long-
term evolutionary divergence among species. Traditionally, variability has
been measured as the subset of phenotypic variance attributable to

spontaneousmutation, which is summarized in the mutational co/variance
matrix, M32. Based onM, Lynch and Hill28 proposed that the rate of mac-
roevolution (R) is proportional to 2M:

R / 2M

In a related model, Kaneko and Furusawa29 conceptualized variability
as developmentalfluctuation (developmental noise), and theyproposed that
the rate of evolution is proportional to the variance of developmental noise
δXð Þ2� �

. This evolutionary fluctuation–response relationship can be
expressed as follows:

Xh iaþΔa � Xh ia
Δa

/ δXð Þ2� �

where Xh ia and δXð Þ2� � ¼ X � Xh ið Þ2� �
a represent the average and

variability, respectively, of the phenotypic trait X for a given system para-
meterized by a. The relationship described above was derived under the
assumption that thedistributionPðX; aÞ follows an approximatelyGaussian
form, with the effect of changes in a on the distribution represented by a
bilinear coupling between X and a. When a is assigned as a parameter that
specifies the genotype, the left-hand side of the equation,
ð Xh iaþΔa � Xh iaÞ=Δa, quantifies the phenotypic change resulting from a
genetic alteration and represents the rate of evolution (R)33. Therefore, the
above relationship can be reinterpreted as a proportional relationship
between phenotypic fluctuations due to developmental noise and the rate of
evolution. Bothmodels predict positive correlations between variability and
the rate of macroevolution with the scaling exponent of one.

The two formulations differ in two key aspects. First, while Lynch and
Hill28 consider M—a property of the organism—as a model parameter,
Kaneko and Furusawa29 treat a—a property of the system in which the
organism resides—as a model parameter. Second, the two models evaluate
variability differently. M is estimated from mutation accumulation
experiments34, whereas developmental noise can be measured as the ran-
dom difference between the left- and right sides of laterally symmetric
homologs (fluctuating asymmetry, FA)35–37. FA represents several favorable
attributes as a measurement of variability18, but to operationalize FA, and
therefore the formulation of Kaneko and Furusawa29 in the context of
genetics, we need to establish that FA is correlated with heritable variability
(i.e.,M).

Thus, we compared M in D. melanogaster, estimated by Houle and
Fierst38 and Houle et al.8 and the co/variance matrix that represents the
variation caused by FA (F) in D. simulans (Table 1). Two types ofM were
used: spontaneous mutational variance measured under homozygous
(Mhom) and heterozygous (Mhet) conditions. F was estimated using a ran-
dommixed-effectmodel with repeatedmeasurements fromone population
of D. simulans. The rationale for not estimating M in D. simulans and for
using two types of M is provided in the Supplementary Note 1. Linear
regression analysis of M against F revealed a strong positive relationship
(Fig. 1; Mhom on F: R2 = 0.83, β = 0.67 ± 0.08; Mhet on F: R2 = 0.95,
β = 0.73 ± 0.07). Therefore, the two kinds of variabilities considered by
Lynch and Hill28 and Kaneko and Furusawa29 may be interpreted as a
measure of the property of a developmental system that translates external
perturbations or inputs, such as genotype and environmental parameters,
into phenotypic outcomes39,40. Given that genotype and environmental
parameters are fixed when measuringM and F,M captures the effect of de
novo mutation on phenotype, whereas F captures the effect of intrinsic
developmental perturbation on phenotype. Consequently, both matrices
could measure the robustness of phenotype against different sources of
perturbations. Based on the framework developed by Lynch and Hill28 and
Kaneko and Furusawa29, the robustness of the phenotype during develop-
mental process could affect the rate of evolution and serve as a primary
source of constraint in evolution.

Table 1 | List of used species for estimatingmatrix and theway
of estimating

Matrix Used Species Estimating way Sample size

R 112 species From the previous studyc 112 species

Dsp 14 speciesa Our MCMCglmm model 14 species

Dpop D. simulans Our MCMCglmm model 11 populations

G D. simulans Our MCMCglmm model 33 isofemale lines

E D. simulansb Our MCMCglmm model 8 environments

F D. simulans Our MCMCglmm model 7654 wings¶

M D. melanogaster From the previous studyd 12,075 wings

It includes both left and right wings and replicated measurements.
aIt includes the wing photos obtained from DrosoWing Project.
bIt includes the wing photos obtained from Saito et al. (2024).
cHoule et al. (2017).
dHoule and Fierst (2013) and Houle et al. (2017).
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Variances are positively correlated with divergence at all levels
Next, we examined the validity of the constraints hypothesis27 and the
congruence hypothesis28,29 by comparing the scaling exponent (i.e., the slope
of a log–log regression) and the coefficient of determination (R2) between
divergence and variation or variability. A series of experiments was con-
ducted to estimate the standing variation caused by heritable variation (G)
and plasticity (E) of D. simulans. Divergence was evaluated at three levels:
divergence among populations of D. simulans (Dpop), divergence across 14
Drosophila species (Dsp) from an online database (DrosoWing Project)41

and our dataset, which includes the images used to estimateG, E, andDpop,
as well as wing photos of D. lutescens, and divergence across 112 species of
Drosophilidae representing 40 million years of evolution (R) from Houle
et al.8 (Table 1). If the genetic constraints underpin the relationship between
microevolution and macroevolution, then the strongest relationship (i.e.,
high R2) and the scaling exponent of 1 are predicted between G and Dpop.
Conversely, if the congruence hypothesis underlies the micro–macro rela-
tionships, then the strongest relationship is predicted between F andRwith
the scaling exponent of <1 because the influence of directional selection is
expected to be low at long evolutionary timescales. In addition, we predict
that the R2 will be high when the relationship captures a biologically causal
link, while such causal relationship should become progressively weaker
(i.e., R2 decreases) as the cause and effect will become further and further
apart because measurement and estimation errors are added at each level.

A correlation matrix of the relationships across all pair-wise relation-
ships among variation, variability, and divergence revealed universally
positive relationships between the three descriptors of variation (genetic
variance, plasticity, and variability) and three levels of divergence (Fig. 2). In
addition, to avoid the potential impact of using different species’ M, we
conducted additional comparisons between M and the other matrices
(Supplementary Fig. 1). The correlations are all high (Supplementary
Table 1), which indicates that the variation in the 20-dimensional pheno-
type space of the Drosophila wing morphology is packed into a low-
dimensional manifold in a remarkably similar manner, regardless of the
causes of variation or the levels of divergence. These similarities are evident
in the relative change in the position of each landmark on the wing (Fig. 3).
Most landmarks showed a propensity to vary along the lateral axis,

particularly landmarks 7, 8, 9, and 10, while the landmarks at the base of the
wing exhibited relatively low variation.

The comparison of the coefficient of determination (R2) and slope (β)
showed that the relationship between F and R is the strongest (R2 = 0.85,
β = 0.67 ± 0.07) among all pair-wise relationships. This result is surprising
because these two levels represent the two most distant levels in the biolo-
gical hierarchy, namely, internal subtle variability of an individual (F) and
40million years ofDrosophilawing evolution (R). Equally surprising is that
the relationship between G andDpop is modest (R2 = 0.58, β = 0.80 ± 0.16),
although these two levels are thought to be adjacent to each other and have
established theoretical and empirical bases to predict a positive
relationship6,27. These observations support the congruence hypothesis as a
leading explanation for the relationship betweenvariation anddivergence in
phenotypic evolution8–11.

Congruence of variability with macroevolution underlies the
pattern of Drosophilawing-shape evolution
The results shown in Fig. 2 are based on the posterior mode of the co/
variancematrices estimated at the respective levels (except forR). However,
considering the difficulty of estimating variation and variability with high
precision, some of the results may reflect estimation errors. To examine the
impact of the estimation accuracy of each matrix on our inference, the
posterior distribution obtained from the Bayesian mixed model was ana-
lyzed.The ordinary least-squares regressionswere usedwith the co/variance
matrices describing each level of divergence presented in Fig. 2 as the
response variable and one of the 1000 posteriors of G, E, or F as the
explanatory variable to obtain the distribution of the coefficient of deter-
mination (R2) and the scaling exponent (log–log slope, β) of the relation-
ships. This analysis (Fig. 4) confirmed that the relationship betweenF andR
had the highest R2 value among all pairs, which is significantly higher than
the R2 value between G and Dpop.

From a purely statistical point of view, R and F are the most reliably
estimatedmatrices in our dataset, and this clearly has contributed to a tight
relationship between these two matrices. R is estimated from 21,138 wings
representing 117 taxa using a phylogenetic mixed model to extract phy-
logenetic variances8. F is measured by controlling many sources of varia-
tion and instrumental measurement error to extract variances only
attributable to local environmental perturbations and is estimated from
7654 wings in a single species (Table 1). By contrast, other matrices (i.e.,
Dsp, Dpop, G, and E) are subject to substantial errors that should have
contributed to the low R2 value. For example, (i) Dsp is estimated on the
basis of the divergence among 14 species; (ii) G, E, andDpop are measured
at a certain time from a few representative lines of a single species; (iii)G is
known as a “broad-sense” G that confounds additive with non-additive
effects (e.g., epistasis and dominance), and (iv) E is at best a poor repre-
sentation of the inherent plasticity because the environmental conditions
that are tolerable by the reared genotypes of D. simulans in our experi-
ments are likely a small subset of the range of plasticity available in wild
populations of this species42. Given these substantial errors, it is remarkable
that all matrices are still unambiguously correlated. Hence, we interpret
our results to suggest that all matrices studied here are biologically con-
nected to one another. Rather than placing emphasis on any one of the
levels of biological organization as the cause of universal correlations, we
favor a “dialectical” perspective (sensu Levins and Lewontin43). According
to Levins and Lewontin43, a dialectical perspective holds that the whole and
its parts are interdependent, with no predetermined directions of causality
across levels of biological organization. In the context of our explanation of
the paradox of predictability, a dialectical framework would oppose pri-
vileging any single level—whether it is mutational variance (M), devel-
opmental noise (F), standing genetic variation (G), plasticity (E),
microevolution (Dpop) ormacroevolution (R)—as the primary explanatory
factor. Instead, all levels are considered interconnected parts of a dyna-
mical system that co-evolve through complex causal relationships44,45,
where multiple directions of causes and effects play distinct and com-
plementary roles. Three observations support our view.

Fig. 1 | Relationship between two kinds of variabilities. Points represent log10
(variance inM or F) along the eigenvectors of G in Drosophila melanogaster. Key
gives log–log regression result, β ± s.e. and R2. Lines indicate ordinary least
squares regression lines, and they have slopes equal to β. Only upper 17 dimensions
of Mhom and eight dimensions of Mhet were used.

https://doi.org/10.1038/s42003-025-08376-2 Article

Communications Biology |           (2025) 8:990 3

www.nature.com/commsbio


First, the tight relationship between R and F indicates that the mac-
roevolutionary history of fluctuations in adaptive peaks has shaped the
developmental system of the Drosophila wing. Our causal hypothesis is
explicitly that macroevolution determines variability and not vice versa,
because if F were the cause and R were the effect, the measurement and

estimation errors induced at each level (F orM→G or E, G or E→Dpop,
Dpop→R) would have progressively weakened the relationship. Moreover,
the evolution of co/variancematrices should have decayed the ability of our
estimates obtained from a single species (D. simulans) to predict evolution
when wider taxonomic groups are considered6, but our results revealed the

Fig. 2 | Relationships between variations (G, E,
and F) and divergence (Dpop, Dsp, and R). Points
represent log10 (variance in each matrix) along the
eigenvectors of G in Drosophila melanogaster. Key
gives log–log regression result, β ± s.e. and R2.

Fig. 3 | Ellipses representing variation in landmark position. Ellipses are centered, and they represent six SDs (onlyDsp: 1.5 SD) for better visibility. Points represent the
mean values of species (Dsp), populations (Dpop), genotypes (G), and rearing environments (E).
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opposite. The congruence between macroevolutionary variation and the
property of organisms (developmental and genetic systems) is relevant to
macroevolutionary models of trait evolution proposed by Simpson46 and
Hansen47, which suggest that macroevolutionary phenomena can be
interpreted as the average effect of patterns and processes observed along
individual lineages. The evidence supporting the tight link between F andR
lends credibility to the idea46,47 that macroscopic environment and varia-
bility are directly and biologically connected.

Second, F strongly correlates with M, while its correlation with G
and E is positive but modest. Previous studies39,40 suggested that devel-
opment can serve as a mediator that converts different sources of input to
phenotypic variation. If phenotypic variations caused by different sources
are shaped through the same developmental system, then the pattern of
phenotypic variation should be similar regardless of whether the varia-
tion is genetically or environmentally encoded48. The correlation between
M and F supports this idea and indicates that the propensity of this
developmental system to generate variation shapes G and E. As cir-
cumstantial evidence of this, the correlation between G and E (r = 0.66)
roughly corresponds to the product of the correlation between F and G
(r = 0.81) and F and E (r = 0.79). This would be expected if F causes G
and E independently but in a similar manner.

Third, the pattern ofmicroevolution (Dpop) is correlated withGwith a
scaling exponent of 0.80 (±0.16 s.e.), which is the closest to 1 among all pairs
we examined. The evolutionary genetics theory proposes that the directions
and rates of microevolution should be determined by G49–53 and that the
exponent between Dpop and G should be 1 if drift is the dominant evolu-
tionary force. Conversely, as the influence of local adaptations or long-term
fluctuations in adaptive peaks strengthens, the scaling exponent of the
variation–divergence relationship should increasingly deviate from 18,11.
Moreover, the relationships are globally consistent with the direction of
causation from M→G and G→ Dpop because R

2 progressively decays in
this order as would be expected if the causal hypothesis is correct and
measurement errors are added at each step of inference. Therefore, our
results are consistent with the established theory of evolutionary genetics
and support the idea that genetic constraints dominate the pattern of
microevolution.

The following scenarios are proposed to explain our results: (i) mac-
roevolutionary history (R and Dsp) shapes the developmental system and
determines variability (F andM) through the congruence mechanism; (ii)
thedevelopmental systemshapes the standingvariation (G andE) under the
influence of local adaptation and drift; (iii) G determines the pattern of

microevolution (Dpop). Based on this hypothesis, macroevolution is often
predictable8,9,11,18 because the long-term pattern of fluctuation in adaptive
peaksmolds variability. Our hypothesis also explainswhymicroevolution is
not always predictable from G and contemporary selection54,55 because
neither microevolution,G, nor selection are direct descriptors of variability
and long-term peak movements.

Allometry is a potential mechanism underlying the strong alignment
among co/variance matrices reported in the present study. Drosophila wing
morphology exhibits allometric variation (i.e., shape variation that covaries
with overall size), in terms of the distance between landmarks 4 and 556. It is
conceivable that allometry—the growth rate of wing parts relative to the
whole wing—converts different sources of perturbations to similar pheno-
typic outcomes. Recently, Rohner and Berger57 demonstrated that allometry
accounts for about 20% of F in a Dipteran species, Sepsis punctum. However,
they also showed that the strong alignment between F and other variance
matrices remains after allometric variations are removed from the matrices.
Therefore, even though allometry constitutes a major part of wing shape
variation in Diptera, the alignment among co/variance matrices across six
levels of organization reported here is unlikely to be solely attributable to
allometry. Nonetheless, studying how allometry, and the variability of allo-
metric slope in particular56, influences the relationship between F and other
co/variance matrices is clearly a fruitful avenue for future research.

Conclusion
Our data support the congruence mechanism to explain the correlation
between macroevolution and the standing variation within a population.
Rather than seeking a single explanation, our perspective advocates for a
pluralistic view that acknowledges the multifaceted link between micro-
evolution and macroevolution, encompassing multiple evolutionary pro-
cesses andmechanisms operating at various levels and directions. Although
our hypothesis that macroevolutionmolds variabilitymay appear radical, it
is consistentwith classic theories of evolutionary genetics5,6,14,27 and evidence
supporting our view is found in the literature of non-genetic inheritance21–24,
systems biology58, and models of macroevolution46,47. Our findings con-
tribute to the development of a unified theory of evolution applicable to all
time scales.

Methods
Sampling and establishment of isofemale lines
We sampled Drosophila simulans from multiple wild locations in Japan,
each separated by more than 20 km (Supplementary Fig. 2). Sampling was

Fig. 4 | Distributions of R2 and slope in each regression with variation as explanatory variables and divergence as response variables. Color difference represents the
difference in response variables. a Distributions of R2 and b distributions of slopes. Each boxplot was constructed from I = 1000 data points.
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conducted through sweeping or by collecting fruits that were likely to have
eggs laid on them. Isofemale lines were then established from the sampled
adult females (Supplementary Table 2). Each isofemale line was repeatedly
inbred over several generations to reduce genetic variation within an iso-
female line. During this process, each isofemale line was maintained under
identical conditions to eliminate environmental and maternal effects. The
condition consists of media described in Fitzpatrick et al.59 (500mL ofH2O,
50 g of sucrose, 50 g of dry yeast, 6.5 g of agar, 5.36 g of KNaC4H6.4H2O,
0.5 g of KH2PO4, 0.25 g ofNaCl, 0.25 g ofMgCl2, 0.25 g of CaCl2, and 0.35 g
of Fe2(SO4)･6.9H2O) in 170-mL bottles, maintained at 25 °C with a 12 h
light :12 h dark cycle. In addition, D. lutescens were sampled from a single
wild population in Japan (the campus of Chiba University: 35° 62′ 79′′ N,
140° 10′ 31′′ E), and isofemale lines were established in the samemanner as
for D. simulans.

Rearing experiments
In quantifying the phenotypic plasticity, previously published data were
used42. Briefly, larvae of individual D. simulans were reared from the egg
stage through hatching and metamorphosis to adults under seven combi-
nations of three environmental factors. These combinations consisted of
three nutrient conditions (high, intermediate, or low), three light–dark cycle
conditions (10L:14D, 12L:12D, or 14L:10D), and three temperature con-
ditions (20 °C, 23 °C, or 26 °C). See Saito et al.42 for further details of this
experiment. In addition, we utilized isofemale lines ofD. simulans collected
from the Chiba University campus and maintained under standard con-
ditions (high, 12L12D, and 25 °C). Consequently, the total number of
environmental conditions was eight (Supplementary Table 3).

Wing collection and datasets
After establishing the isofemale lines, adult females were collected from
isofemale lines ofD. simulans andD. lutescens. The left and rightwingswere
separated from their bodies and then directly placed on the glass slide. To
flatten thewings, a cover glasswas placed on thewings and glued to the glass
slide (i.e., dry mount). The wings were imaged using the CMOS camera
(Leica MC190 HD, 10 million pixels) of the stereoscopic fluorescence
microscope (Leica M165 FC) under the condition in which the wings were
illuminated by the Torres stand under the glass slide. In addition, wing
photos were collected fromprevious studies. First, asmentioned previously,
the datasets of Saito et al.42 were used to estimate E. Second, wing photos of
13Drosophila species were collected fromDrosoWing Project41 to estimate
species divergence. These three wing photo datasets were combined and
used for the following analysis. The total number of wing photos was 5569
(Supplementary Table 4), and all wingswere obtained only from females. In
estimating the narrow range of species divergencematrix, wing photos of 14
Drosophila species were used. By contrast, for population divergence,
genetic variation, variation caused by phenotypic plasticity, and develop-
mental noise, only D. simulans wing photos were used.

Wing measurements and analyses of wing shapes
In the present study, the x and y coordinates of 12 landmark vein inter-
sections were measured following Houle et al.8 from collected photos
(Supplementary Fig. 3), and a semi-automated procedure was used to
acquire these coordinates. First, the machine-learning program, “ml-
morph”60, was used to obtain the x and y coordinates of landmarks auto-
matically. Next, considering that the x and y coordinates of 12 landmarks
extracted from “ml-morph”were rarely incorrect, these x and y coordinates
were manually corrected by using “imglab” of “Dlib.” We also used the
training set for ml-morph described in Saito et al.42. This procedure was
performed twice to evaluate the effect of measurement error. Finally, the x
and y coordinates were geometrically aligned to eliminate the variation
caused by wing size, wing direction, and the magnification of the camera
when shooting using Generalized Procrustes Analysis (GPA). This proce-
dure translates original x and y coordinate data to a common coordinate
system by keeping constant variation in their position, size, and direction.

We performed GPA using the “geomorph” package in R61. These standar-
dized coordinates were used to estimate each co/variance matrix.

Estimating variance matrices by MCMCglmm
A Bayesian mixed-effect model implemented in the MCMCglmm package
version 2.3562 was used to estimate the co/variance matrices at five levels:
Dsp, Dpop, G, E, and F. In all models except for the model estimating F,
standardized x and y coordinates averaged across four measurements in
each individual (i.e., repeated measurements of left and right wing) were
analyzed as the multivariate response variable of the model, and a flat
uninformative prior was used. Fourmodels were run, eachwith the random
effects of species, population, treatment, or ID of isofemale lines to estimate
Dsp,Dpop,E, andG, respectively. In amodel estimating F, all measurements
(i.e., four measurements per individual) were used as the multivariate
response variable in which individual and a dummy variable that indexes
individual ID and side (left or right) weremodeled as the random effect.We
did not include side as the fixed effect to estimate directional asymmetry in
this model because preliminary analysis showed no effect of side (Supple-
mentary Table 5). The resultant variance component associated with this
dummy variable of the model was used to evaluate FA accounting for
instrumental measurement error. As a prior of this model, a matrix whose
diagonals are the empirically estimated F reported in Saito et al.42 and off-
diagonals are zeroswasused.Allmodelswere run for 750,000 iterationswith
burn-in and thinning intervals of 250,000 and 5000, respectively, to yield
1000 posterior samples. Model convergence was assessed by evaluating the
posterior, and chain mixing was tested formally in accordance with the
Heidelberg criteria63 where all models passed the test. The details of our
analysis are described in lines 21 to 198 of our R code.

Estimated matrices
For a wider range of species divergence, the rate of macroevolution matrix
(R) was used. This matrix was estimated in Houle et al.8. The species
divergence we estimated with data from online image repository (Dsp)
represents the variance in trait means among species, without considering
their phylogenetic relatedness. In contrast, R (taken from Houle et al.8) is
estimated from a phylogenetic mixed model. Assuming a multivariate
Brownian motion, this model estimates R as the component of variance in
trait means among species that are attributable to phylogenetic relatedness.
Hence, the two matrices describing species divergence (wider taxonomic
range using R vs. narrow taxonomic range usingDsp) differ in whether the
matrices considered phylogenetic information.R is often considered amore
formal estimate of the rate ofmacroevolution than the rawdivergence (Dsp).
Conceptually, the use of Dsp was included in our analyses to test the
established idea (e.g., Holstad et al.11, Tsuboi et al.12, Rohner and Berger57)
that the correlation between variation and divergence should decay pro-
gressively as wider taxa are considered, if genetic constraints are the cause of
this relationship. In addition, M (Mhom and Mhet) in D. melanogaster was
used and estimated in accordance with the methods of Houle and Fierst38

andHoule et al.8 to investigate the subset phenotypic variance attributable to
spontaneous mutation.

Comparison
All co/variance matrices except for R and M were the median of the pos-
terior distribution of co/variance matrices obtained by corresponding
models. To compare co/variancematrices, eachmatrix was projected to the
eigenvector of the additive genetic co/variance matrix (G) of D. melano-
gaster presented in Houle et al8. Each projected matrix has 24 traits (12
landmarks of x and y coordinates), but performing GPA reduces the
number of dimensions by 4. Therefore, the trait-sets corresponding to the
first 20 eigenvectors of D. melanogasterG were used. SinceMhom andMhet

were less than the full rank8, only upper 17 dimensions of Mhom or eight
dimensions of Mhet were used (see Houle et al8. for the rationale). In
examining the relationship among each matrix, the ordinary least-squares
regression was used, and the coefficient of determination (R2) and the slope
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score (β) were calculated. Each analysis was based on Houle et al.8 and
Rohner and Berger18.

Statistics and reproducibility
All statistical analyses were performed using R 4.1.2, with detailed
descriptions provided in the Methods section. Each Drosophila wing spe-
cimenwas photographed twice to ensuremeasurement reliability. Themap
figure was generated using QGIS, an open-source geographic information
system software.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All raw data generated and analyzed during this study are available on
Figshare under the following https://doi.org/10.6084/m9.figshare.2686135664.
The source data underlying all main figures are provided as Supplementary
Data. All other relevant data are available from the corresponding author
upon reasonable request.

Code availability
All code used in this study is available on Figshare under the followingDOI:
10.6084/m9.figshare.2686135664. The parameters used for the analyses are
included in the code, and the software versions are described in theMethods
section.
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