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Human trophoblast stem (TS) cells are informative in vitro models for the generation and testing of
biologically meaningful hypotheses. The goal of this project was to derive patient-specific TS cell lines
from clinically available chorionic villus biopsies. Cell outgrowths were captured from human chorionic
villus tissue specimens cultured in modified human TS cell medium. Cell colonies emerged early during
the culture and cell lines were established and passaged for several generations. Karyotypes of the
newly established chorionic villus-derived trophoblast stem (TS®) cell lines were determined and
compared to initial genetic diagnoses from freshly isolated chorionic villi. Phenotypes of TS cells in
the stem state and following differentiation were compared to cytotrophoblast-derived TS (TS®") cells.
TS and TS cells uniformly exhibited similarities in the stem state and following differentiation into
syncytiotrophoblast and extravillous trophoblast cells. Chorionic villus tissue specimens provide a
valuable source for TS cell derivation. They expand the genetic diversity of available TS cells and are
associated with defined clinical outcomes. TS cell lines provide a new set of experimental tools for

investigating trophoblast cell lineage development.

The placenta is a critical organ that allows the fetus to develop within the
female reproductive tract'. Specialized functions attributed to the placenta
are executed by trophoblast cells”™. The trophoblast cell lineage arises from
the initial differentiation event of the embryo5 . In the human, trophoblast
cells organize into villous and extravillous structures. A villous is comprised
of trophoblast and non-trophoblast cell types and includes a self-renewing
trophoblast cell population referred to as cytotrophoblast*’. Cytotropho-
blast are the progenitors for two differentiated cell populations: syncytio-
trophoblast (STB) and extravillous trophoblast (EVT) cells”™*. STBs have a
fundamental role in regulating nutrient and waste transfer between mother
and fetus®, whereas EVT cells exit the placenta and transform the uterus into
an environment supporting placental and fetal development™. Failures in
placentation are the root cause of an assortment of disorders of pregnancy,
including early pregnancy loss, preeclampsia, intrauterine growth restric-
tion, and pre-term birth®’. Regulatory mechanisms underlying human
cytotrophoblast self-renewal and differentiation have largely remained
elusive.

Recently, conditions for capturing and maintaining human tropho-
blast stem (TS) cells in vitro were described'’. Human TS cells have the
capacity for self-renewal and differentiation into STB or EVT cells. This

in vitro model system has led to the generation of new insights into
mechanisms regulating human trophoblast cell development'' . Initial
human TS cell lines were derived from blastocysts or first-trimester pla-
cental tissue obtained from pregnancy terminations. Establishment of cul-
ture conditions for human TS cells led to the derivation of TS cells from
pluripotent stem cells” . These in vitro model systems have provided new
insights regarding trophoblast cell development; however, it is unknown
whether the origin of these TS cells was compatible with a healthy pregnancy
outcome.

Chorionic villus sampling (CVS) represents a standard prenatal care
procedure that is performed between 10 and 14 weeks of gestation™.
Sampling involves the removal of a small amount of chorionic villus tissue
for the purpose of genetic testing. Common indications for retrieving
chorionic villus tissue include advanced maternal age, history of infertility,
family history (e.g., sibling with genetic anomalies), or an abnormal non-
invasive prenatal test result’””". In addition to their use in genetic diagnosis,
first-trimester chorionic villus tissue has become a robust platform for
investigation of placental pathobiology” .

In this study, we derived patient-specific human TS cell lines from
clinically available chorionic villus tissue. Modifications of the epigenome,
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which are required for the derivation of TS cells from pluripotent stem cells,
are not required for the derivation of TS cells from chorionic villus tissue™.
Furthermore, utilization of chorionic villus tissue as a source for deriving TS
cell lines significantly expands the genetic diversity of available human TS
cell lines and each chorionic villus-derived TS cell line is linked to clinical
data describing pregnancy outcomes.

Results
Derivation of TS cells from chorionic villus biopsies
Chorionic villus biopsies were acquired with patient consent as part of
standard medical care. Surplus tissue fragments not used for clinical genetic
testing were placed in culture medium used for the expansion of human TS
cells™ (Fig. 1A). Tissue pieces attached to type IV collagen-coated tissue
culture-treated plates (Fig. 1B). Cell outgrowths were evident at sites of
attachment and expanded over the first several weeks of culture (Fig. 1C).
Cells and tissue fragments were passaged prior to reaching confluency and
replated in 24 well plates. Cell colonies emerged after the first passage and
steadily expanded with culture medium changes every 2 days. Colony
morphology and growth rates were heterogeneous for the first few passages
but became more homogenous after 5-6 passages. The morphology of
chorionic villus-derived TS (TS) cells was consistent with the morphology
of cytotrophoblast-derived TS cells (TS"; Figs. 1B, 2A). TS® cell line
expansion was carried out slowly to reduce clonal pressure on derived cells.
Cell lines were slowly transitioned into 6-well and 10 cm plate formats after
passages 3-4 and 7-8, respectively (Fig. 1C). Newly established cell lines
were cryopreserved beginning at passage 6. Importantly, TS cells tolerated
cryopreservation. Revived cells survived, attached, and proliferated for
further expansion. Overall, TS cell line derivation required approximately
3 months from sample acquisition to functional assessments of
derived lines.

The success rate of TS line derivation was 42%, with ten TSV lines (6
XY; 4 XX) successfully derived from 24 unique patient tissue specimens (15
XY; 9 XX). Success in cell line derivation may be impacted by the negative
consequences of overnight shipping (Los Angeles to Kansas City) or the
cellular contents of the tissue fragments but did not appear to be associated
with the clinical karyotype of the CVS specimens. Characterization of four
TS lines with normal karyotypes is presented in this report. Information
about maternal age, karyotype, maternal and paternal ancestries, and
gestational age at chorionic villus collection is presented in Supplemen-
tary Data 1.

Characterization of TS cells in the stem state

Karyotyping was repeated on TS®" cells following line derivation and
expansion. Cell line karyotypes were largely consistent with the clinical
karyotyping (Supplementary Data 1 and Supplementary Fig. 1). Karyotypes
of TS*" and TS“*** lines were normal and consistent with the clinical
results. TS®*” and TS®** cell lines exhibited mosaicism and were not
consistent with the clinical results. A subset of cells karyotyped for TSV
were 46, XY. The remaining cells analyzed displayed other genetic
anomalies; however, each individual anomaly was restricted to 1-2 total
cells. A subset of TS?** cells was identified as mosaic for trisomy 20 (47,
XX, +20) following cell line derivation (Supplementary Data 1 and Sup-
plementary Fig. 1).

TSC™ (XX) and TS™ (XY) served as reference standard human TS
cell lines" used for comparative characterization of the TS®" cell lines.
TS cells were maintained in a stem/proliferative state and propagated
beyond the Hayflick limit of 50 cell divisions for non-stem cells, which is
consistent with TS®" cell proliferation'’. TSV cells in the stem state grew
in discrete colonies and displayed a cobblestone morphology, consistent
with the morphology of cytotrophoblast-derived cell lines, TS“"" and
TS™ (' Fig. 2A). TSV cells displayed additional characteristics con-
sistent with their trophoblast cell identity”, including expression of
microRNAs from the Chromosome 19 microRNA cluster (Fig. 2B;
C19MC; hsa-miR-517a-3p, has-miR-517-5p, and hsa-miR-526b-3p) and
hypomethylation of the E74 Like ETS Transcription Factor 5 (ELF5)

promoter relative to induced pluripotent stem (iPS) cells (Fig. 2C).
Additionally, cell proliferation rates were comparable between TS and
TS cell lines (Supplementary Fig. 2A). All TS cell lines demonstrated
the ability to survive and proliferate during single-cell cloning (Supple-
mentary Fig. 2B). Overall, TS®Y and TS®" cells cultured in the stem state
displayed similar proliferative, morphologic, microRNA expression, and
methylation properties.

Analysis of the differentiation capacity of TS® cells

Comparisons of TS®Y and TS®" cell capacities for differentiation into STB
and EVT cell lineages were performed following cell line derivation
(Fig. 1C). Assessments of cell differentiation were routinely performed
following 10 passages. Differentiation was assessed at morphological and
functional levels.

STB differentiation. The ability of TSV cells to differentiate into STB was
assessed using previously described two-dimensional (ST2D) and three-
dimensional (ST3D) protocols'’. STB differentiation using ST3D con-
ditions elicited significant morphological changes, including the forma-
tion of suspended spheroid cell clusters (Fig. 3A). Complementary to the
morphological changes observed, TS®V-derived STB displayed down-
regulation of stem state transcripts TEA domain transcription factor 4
(TEAD4), LDL receptor related protein 2 (LRP2), and Lin-28 homolog A
(LIN28A; Fig. 3B) and upregulation of STB lineage-specific transcripts,
including cytochrome P450 Family 11 Subfamily 1 (CYP11A1), chorionic
gonadotropin beta 7 (CGB?), and syndecan 1 (SDCI; Fig. 3C). STB dif-
ferentiated from TSV cells secreted chorionic gonadotropin (CG) at
levels comparable to STB differentiated from TS cells as measured by
ELISA (Fig. 3D). Additionally, E-cadherin (CDH1) immunostaining
revealed comparable levels of syncytialization for TS®V- and TS“"-derived
STB using the ST2D protocol (Supplementary Fig. 3). Overall, TS~
derived STB had similar cell morphology, expression patterns of sig-
nature STB transcripts, CG production, and syncytialization that is
observed in TS®"-derived STB.

EVT cell differentiation. Canonical features of EVT cell differentiation
observed in TS" cells were evident in TSV cell lines with normal kar-
yotypes (TSVK, TSVK® TSYVKZand TS®*), including elongated
cell morphology, cell migration (Fig. 4A; Supplementary Videos 1-3),
and expression of major histocompatibility complex, class I, G (HLA-G)
protein (Fig. 4B). EVT cells displayed downregulation of stem state
transcripts TEAD4, LRP2, and LIN28A (Fig. 4C). Characteristic EVT
transcripts were upregulated, including HLA-G, matrix metallopeptidase
2 (MMP2), and C-C motif chemokine receptor 1 (CCRI; Fig. 4D).
Additionally, HLA-G and CCRI1 protein levels were similar among
TS and TS" cell lines (Supplementary Fig. 4). Overall, these TS stem
cell derived EVT cells were comparable to EVT cells derived from
TS cells.

Transcriptomic analysis of the developmental potential of

TS cells

To obtain a broad comparative assessment of TS and TS" in stem, STB,
and EVT differentiated cell states, transcriptomes were captured using
RNA-sequencing (RNA-seq).

STB differentiation from the stem state resulted in broad changes in
gene expression in TS T cells (TS°™, TS“™; Fig. 5A; Supplementary Data 2)
and TS cells (TS, TSSVX®, TS®Y**, and TS®V**; Fig. 5B; Supplemen-
tary Data 3), including downregulation of stem markers epithelial cell
adhesion molecule (EPCAM), LIN28A, LRP2, paternally expressed 10
(PEGI10), and TEAD4 and upregulation of STB markers chorionic gona-
dotropin beta 2 (CGB2), CGB7, CYP11AlI, cytochrome P450 family 19
subfamily A member 1 (CYP19A1), and SDCI. STB differentiation-induced
changes in gene expression were consistent between TS (TS and
TS™) and TS (TS, TSCVK® TSEVK and TSV**) cells (R = 0.87,
p <2.23-16; Fig. 5C).
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Fig. 1 | Deriving TS cells from chorionic villus tissue specimens. A Simplified
schematic depicting the process of obtaining chorionic villi tissue fragments, deri-
vation of TS cells, and then subsequent differentiation into STB and EVT cell
lineages. Created with BioRender.com. B Chorionic villus tissue fragments attach
and form cellular outgrowths within a few days of initial plating. Within 1-2 weeks,
the outgrowths expand and proliferate across the well. Two to three weeks after
plating, the cells were passaged, and colonies emerged. Colony clusters were initially

10 days 5 days 4 days 4days | 4days | 4days
Freeze . _ _ _ _ _ _ _ _ _ _ _ > Test
stock Differentiation

small but proliferated and grew rapidly. Significant heterogeneity is present initially,
but subsequent passaging selects for a TS cell population that displays a similar
morphology to the original TS cell lines, which possess the ability to differentiate into
STBand EVT cell lineages. Scale bars represent 250 pm in the first panel and cropped
inset images. All other scale bars represent 500 um. C An example timeline for TS cell
line derivation and characterization.
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Fig. 2 | Characterization of TS cells. A Stem state phase contrast images of four
chorionic villus-derived TS cell lines (TSCVX"!, TS®VX, TSSVK% TSV alongside
images of the reference cytotrophoblast-derived TS cell lines (TS“"” and TS™) at
different passage numbers (15-21). Scale bars represent 250 pm. B Bar graphs
depicting expression of three microRNAs (miR) from the C19MC cluster (hsa-miR-
517a-3p, has-miR-517-5p, and hsa-miR-526b-3p) in TS and TS cell lines relative
to induced pluripotent stem (iPS) cells, measured by RT-qPCR. Data were
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normalized to the control miRNA, hsa-miR-103a-3p. Data are presented as the
mean + SEM. Each dot represents a biological replicate, n = 3 samples per group;
*p <0.05, ¥*p < 0.01, ¥**p < 0.001, ****p < 0.0001. C Plots representing DNA
methylation levels in the ELF5 promoter at 11 sites in TS and TS cell lines
compared to iPS cells. Methylated sites (black) and unmethylated sites (white) are
shown for 10 replicates, and the average percent methylation is listed.
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Fig. 3 | TS® cell line differentiation into STB. A Representative phase contrast in stem (dark gray) and STB differentiated (gray) TS®™, TS, TSV, TS<VK®,
images of cytotrophoblast-derived TS“"” and TS®™ cells and four chorionic villus-  TS®**, and TS®*** cells. D Chorionic gonadotropin (CG) protein levels (mlU/mg
derived TS cell lines possessing a normal karyotype, TS, TS?***, TS?** and  protein) were quantified by ELISA in cell culture supernatants collected from TS
TS®Y** cultured under STB differentiation conditions. Scale bars represent 250 um.  and TS cultured cells. Data are presented as the mean + SEM. Each dot represents a
B, C Stem cell-associated transcripts (B; TEAD4, LRP2, and LIN28A) and STB cell-  biological replicate, n = 3 samples per group; **p < 0.01, ***p < 0.001,

associated transcripts (C; CYP11A1, CGB7, and SDCI) were quantified by RT-qPCR ~ ****p < 0.0001.
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Fig. 4 | TS cell line differentiation into EVT cells. A Representative phase
contrast images of cytotrophoblast-derived TS“"”” and TS" cells and four chor-
ionic villus-derived TS cell lines possessing a normal karyotype, TS® "', TS<VX%,
TSV, and TS®V** cells cultured under EVT cell differentiation conditions. Scale
bars represent 250 um. B Immunofluorescence detection of HLA-G (gray) by
immunocytochemistry in TS and TS cells cultured in the stem state and on day 8
of EVT cell differentiation. DAPI (magenta) stains cell nuclei. Scale bars represent
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100 pm. C, D Stem cell-associated transcripts (C; TEAD4, LRP2, and LIN28A) and
EVT cell-associated transcripts (D; HLA-G, MMP2, and CCR1) were quantified by
RT-qPCR in stem (dark gray) and EVT differentiated (gray) TS, TS™, TS®VX",
TSVK®, TSVES and TS“V*** cells. Data are presented as the mean + SEM. Each dot
represents a biological replicate, n = 3 samples per group; *p < 0.05, **p < 0.01,
¥ p < 0.001, ¥***p < 0.0001.
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EVT cells successfully differentiated from the stem state exhibited
broad gene expression changes in TS®" (TS, TS"; Fig. 5D; Supple-
mentary Data 4) and TS®" cell lines with normal karyotypes (TS<V*",
TSV, TSVES, and TS®**% Fig. 5E; Supplementary Data 5). These
changes included the downregulation of stem markers EPCAM, LIN28A,
LRP2, PEGI0, and TEAD4 and upregulation of EVT cell markers CCR1,
HLA-G, integrin subunit alphal (ITGAI), MMP2, and Notum,
palmitoleoyl-protein carboxylesterase (NOTUM). Gene expression changes
induced by EVT cell differentiation were consistent between TS™ (TS“™
and TS“™) and TSV (TSEVX!, TSCVK® TSVKS and TSSVX*) cells (R = 0.85,
p<223-16; Fig. 5F).

Principal component analysis of TS®" and TS cell lines identified
three primary cell-state-specific clusters (Fig. 5G). TSV cells displayed
consistent clustering in the stem state and following STB and EVT cell
lineage differentiation (Fig. 5G). Differential gene expression analysis of
RNA-sequencing datasets from each TSV cell line showed individual gene
differences (Supplementary Data 6-13). Results from correlation analyses
performed to compare cell expression profiles are indicative of comparable
transcriptomic changes across TS®Y and TS°T cell lines (Fig. 5H and Sup-
plementary Fig. 5). Transcriptomic changes in TS®V*" cells differentiated to
STB and EVT showed the highest correlation to TS®" (TS“"¥ and TS“™)
cells (STB R=0.79; EVT R=0.75; Supplementary Fig. 5B, F). TS®"**
showed the lowest correlation in both STB and EVT differentiation states
(STBR =0.65 EVT R = 0.60; Supplementary Fig. 5D, H). Correlation values
for TS®™' (STB R=0.76; EVT R=0.67; Supplementary Fig. 5A, E) and
TSV (STB R=0.72; EVT R =0.67; Supplementary Fig. 5C, G) were in a
similar range. Overall, these results indicate that TS®" cells are capable of
self-renewal and effective differentiation into both STB and EVT cell
lineages and can be considered Bonafide TS cells.

Discussion

Our understanding of placenta development and function has benefited
from the availability of in vitro model systems. In the human, these model
systems have included primary cell and explant cultures, choriocarcinoma-
derived cell lines, and immortalized cell lines**”’. Each in vitro approach has
had merits but also limitations™”. Over two decades ago, Rossant and col-
leagues reported a procedure for culturing TS cells from the mouse™. These
cells could be maintained in a proliferative stem state or induced to differ-
entiate. Furthermore, TS cells could be reintroduced into blastocysts and
shown to possess the capacity to contribute to mouse placentas™. Mouse TS
cells became an effective model system to elucidate gene regulatory net-
works controlling trophoblast cell differentiation and placental
development™*, Efforts ensued to establish TS cells in other species with
some success*!, but human TS cells represented an enigma®*’. Culture
protocols for sustaining mouse TS cells were ineffective in the human*. The
discovery of culture conditions for propagating and differentiating human
TS cells represented a major advancement'’. Utilizing these human TS cell
culture tools, we have demonstrated the feasibility of capturing and
expanding authentic TS cells from human chorionic villus specimens.
Unique to these newly derived stem cells is the ability to obtain clinical
outcomes that can be used to study placental development, leading to
healthy outcomes and disease states.

The initial human TS cell lines were derived from either blastocysts or
cytotrophoblast from first-trimester pregnancy terminations'’. These
human TS cell lines represent the benchmark for all TS cell lines subse-
quently derived. Chorionic villus biopsies are an alternative tissue source for
deriving TS cells. They are retrieved during the first trimester of pregnancy
as part of standard medical care’®"****', Thus, chorionic villus-derived TS
cell lines can be connected to robust pregnancy outcome information.
Human TS cell lines have also been derived from miscarriages', term
human placenta tissue”’, and reprogrammed from pluripotent stem
cells” >, These alternative TS cell models are potentially useful tools for
investigating trophoblast cell development, but each offers caveats for
consideration. TS cells derived from trophoblast tissue obtained from

miscarriages may best contribute to understanding trophoblast cell-related
mechanisms linked to pregnancy failure and the impact of a failed preg-
nancy on TS cells. TS cells recovered from term placental tissue reflect the
culmination of events transpiring throughout the duration of pregnancy, as
epigenomic differences are observed in the placenta during gestation™*”.
Pluripotency is established through extensive genomic reprogramming™®”’,
which minimizes the impact of the epigenetic landscape established during
pregnancy on the TS cell phenotype. Additionally, unlike trophoblast tissue-
derived TS cells, derivation of TS cells from pluripotent stem cells under-
mines genomic imprinting’®*’, which is fundamental to development of the
trophoblast lineage and placentation®™®". It is reasonable to assume that
genetic background and source of trophoblast tissue for TS derivation will
influence TS cell behavior. Culturing TS cells under optimized conditions
may normalize some features attributed to an adverse pregnancy and
maternal environment, whereas in other cases, the aberrant behavior may
persist. Advantages of using chorionic villus-derived TS cells for investi-
gating trophoblast cell-gene regulatory networks contributing to placental
development are evident.

Chorionic villus-derived TS cells could be interrogated in the stem state
and following differentiation into either STB or EVT cell lineages. The
phenotypic and functional parameters evaluated revealed similarities
between cytotrophoblast and chorionic villus-derived TS cells when cul-
tured for stem state maintenance or following STB and EVT cell differ-
entiation. Some differences in the capacity for EVT cell differentiation
among chorionic villus-derived TS cells were noted. Variability in the
capacity for human TS cell differentiation into EVT cells has been previously
reported'*"****”. Numerous factors, such as unreported clinical character-
istics, undetected genomic differences, or inherent sample variability, could
be contributing to the differences observed. Thus, chorionic villus-derived
TS cells represent a unique in vitro model to investigate functional variability
in TS cells isolated from a temporally relevant tissue source.

TS cell lines were successfully derived from chorionic villus biopsies
possessing both normal and abnormal karyotypes. TS cells with a triploid
karyotype have also been established from human blastocysts*’. Most
recently, trophoblast organoids with abnormal karyotypes have been
derived from chorionic villus biopsies™. The true impact of the chromo-
somal abnormalities on TS cells and their differentiation into STB or
EVT cells will require successful cultivation and characterization of multiple
cell lines possessing the same abnormal karyotype.

Mosaicism is a characteristic feature of the human placenta® . Tro-
phoblast cells possess a tolerance for karyotypic abnormalities not evident in
the embryo or fetus™*"*. Each cotyledon of the placenta exhibits elements of
trophoblast cell clonality”. Placental mosaicism is manifested in genetic and
functional differences among cotyledons within a human placenta™""".
Among the TS cell lines derived from chorionic villus biopsies, some
exhibited a karyotype consistent with the karyotype of chorionic villus tissue
used for the clinical genetic analysis, whereas others differed. Chorionic
villus biopsies contain a mixture of trophoblast and extraembryonic
mesoderm’. Thus, differences in TS cells versus chorionic villus tissue could
be attributed to confined placental mosaicism or alternatively, linked to an
unappreciated consequence of culture conditions required to establish the
TS cell lines.

In summary, the generation of chorionic villus biopsy-derived human
TS cells expands the genetic diversity of existing T'S cell models available for
basic research and provides an opportunity to associate pregnancy out-
comes with trophoblast cell biology. Importantly, this tissue source for
capturing TS cells is available during early stages of human placental
development, is part of standard medical care, is not associated with the
political and ethical concerns that accompany deriving TS cells from human
embryos or elective pregnancy terminations, and does not require mod-
ifications of the epigenome. Finally, investigating chorionic villus-derived
TS cells offers the potential for obtaining insights into the significance of
genetic anomalies and mosaicism in trophoblast cell development and
introduces a novel precision medicine approach to the study of placentation.
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Materials and methods

Chorionic villus tissue collections, karyotypic analysis, and clin-
ical phenotyping

Chorionic villus tissue was obtained by highly experienced perinatologists as
part of standard medical care between 10 and 14 weeks of gestation for
clinical genetic diagnosis at Cedars-Sinai Medical Center’*”. Clinical
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cytogenetic analysis was performed on tissue specimens by direct and long-
term culture and reviewed by a team of cytogeneticists”’. Residual tropho-
blast tissue fragments not required for clinical cytogenetic analysis were
recovered, suspended in Complete TS Cell Medium [DMEM/F12
(11320033, Thermo Fisher, Waltham, MA), 100 uM 2-mercaptoethanol,
0.2% (vol/vol) fetal bovine serum (FBS), 50 pM penicillin, 50 U/mL
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Fig. 5| TS® and TS®" cells cluster by cell state and share similar transcriptomes.
A, B Volcano plots depicting significantly up- and downregulated genes based on
transcripts measured by RNA-seq in STB versus stem cell states in TST (A) and TS
(B) cells. Gene transcript levels unchanged between STB and stem state cells are
depicted in gray (n = 3 per group; absolute Log, fold change >1, adjusted p < 0.05).
C Two-dimensional density plot comparing gene expression changes between STB
and stem cell states in TSCT (TS™ and TS™) cells versus TS (TSCVK!, TSCVK®,
TSV, and TS®V***) cells (Pearson correlation coefficient (R) = 0.87, p < 2.2e-16).
D, E Volcano plots depicting significantly up- and downregulated genes based on
transcripts measured by RNA-seq in EVT versus stem cell states in TS®" (D) and

TS (E) cells. Gene transcript levels unchanged between EVT and stem cell states
are depicted in gray (n = 3 per group; absolute Log, fold change >1, adjusted

p <0.05). F Two-dimensional density plot comparing gene expression changes
between EVT and stem cell states in TS (TS™ and TS"®) cells versus TSV
(TSCVKOL TSEVKO TSEVEZ "and TSVX*) cells. Pearson correlation coefficient

(R) =0.85, p < 2.2e-16. G Principal component analysis based on RNA-seq datasets
generated from TS" and TS cells cultured in the stem state or following differ-
entiation into STB and EVT cell lineages. H Heat map showing scaled normalized
read counts representing gene expression profiles of stem state, STB, and EVT
differentiated cells across TS" and TS cell lines.

streptomycin, 0.3% bovine serum albumin (BSA, BP9704100, Thermo
Fisher), 1% Insulin-Transferrin-Selenium-Ethanolamine (ITS-X) solution
(vol/vol, 51500056, Thermo Fisher)], 8.5 uM L-ascorbic acid (A8960,
Sigma-Aldrich, St. Louis, MO), 50 ng/mL epidermal growth factor (EGF,
E9644, Sigma-Aldrich), 2 uM CHIR99021 (04-0004, Reprocell, Beltsville,
MD), 0.5uM A83-01 (04-0014, Reprocell), 1 uM SB431542 (04-0010,
Reprocell), 800 uM valproic acid (P4543, Sigma-Aldrich), and 5 uM Y27632
(04-0012-02, Reprocell)"’, shipped overnight to the University of Kansas
Medical Center, and used for TS cell derivation. Demographic data were
collected from patients and included parental ages, races and ethnicities, and
ancestry (Supplementary Data 1).

Derivation of TS cells from chorionic villus tissue specimens
Chorionic villus biopsy tissue fragments were dissected and transferred to
complete human TS cell medium. Briefly, individual villus fragments were
minced and transferred to a 1.7 mL tube, washed with PBS, and centrifuged
at 500xg for 3 min. Tissue pellets were resuspended in HBSS (with Ca** and
Mg"") supplemented with 1.25U/mL dispase II, 0.4 mg/mL collagenase IV
and 80 U/mL DNase I. Samples were then agitated for 15 min at 37 °C.
After incubation, tissue suspensions were centrifuged at 500xg for 3 min.
and washed with basal TS cell medium. Finally, cells and tissue suspensions
were centrifuged at 500xg for 3 min, resuspended in complete human
TS cell medium and plated in 5 mg/mL Corning® mouse type IV collagen
(35623, Discovery Labware Inc., Billerica, MA) coated dishes containing
complete human TS cell medium. Cells and remaining tissue fragments
attached within 2-5 days. Medium was replaced with fresh TS cell
culture medium after initial attachment and every 2 days thereafter. Time
to first passage was unique to each sample and determined by the extent
of the outgrowth, but commonly occurred around 21 days post-plating.
Cells and attached tissue fragments were washed with PBS and
detached with TrypLE Express (12604021, Thermo Fisher). Cell and tissue
fragments were replated in human TS cell culture conditions in a 24-well
plate format. Colonies emerged after the first passage. Cells were maintained
in a 24-well plate format for 3-5 passages and then expanded into a 6-well
plate format.

TS cell culture

Following TS cell derivation, TS cells were cultured in dishes pre-coated with
iMatrix511 (1:2000 dilution; NP892-01, Reprocell). TS cells were main-
tained in Modified Complete TS Cell Medium [DMEM/F12 (11320033,
Thermo Fisher), 50 U/mL penicillin, 50 pg/mL streptomycin, 0.15% BSA
(BP9704100, Thermo Fisher), 1% ITS-X solution (vol/vol; 51500056,
Thermo Fisher)], 200 uM L-ascorbic acid (A8960, Sigma-Aldrich), 1%
KnockOut Serum Replacement (KSR, 10828028, Thermo Fisher), 25 ng/mL
EGF (E9644, Sigma-Aldrich), 2 uM CHIR99021 (04-0004, Reprocell), 5 uM
A83-01 (04-0014, Reprocell), 800 uM valproic acid (P4543, Sigma-Aldrich),
and 2.5uM Y27632 (04-0012-02, Reprocell)’’ medium was replaced
every 2 days of culture. TS“™ (XX) and TS™ (XY)'" were used as
reference lines.

For single-cell cloning, cells were seeded at a density of no more than
one cell/well in a 96-well plate with TS Cell Medium supplemented with
0.5 ug/mL iMatrix-511 (NP892-01, Reprocell) and 10 ng/mL BMP4 (314-
BP, R&D Systems, Minneapolis, MN). Medium was replaced after 3 days,
and colony inspection was performed on day 6 of culture.

STB differentiation
To induce STB cell differentiation, we utilized ST2D and ST3D protocols.

ST2D differentiation. TS cells were plated in a 6-well plate pre-coated
with 2.5 ug/mL collagen IV at a density of 100,000 cells per well and cultured
in ST2D Medium [DMEM/F12 (11320033, Thermo Fisher), 50 U/mL
penicillin, 50 pg/mL streptomycin, 0.15% BSA (BP9704100, Thermo
Fisher), 1% ITS-X solution (vol/vol; 51500056, Thermo Fisher)], 200 uM
L-ascorbic acid (A8960, Sigma-Aldrich), 5% KSR (10828028, Thermo
Fisher), 2.5uM Y27632 (04-0012, Reprocell), 2 uM forskolin (F6886,
Sigma-Aldrich)"’. Medium was replaced on day 3, and the cells were ana-
lyzed on day 6 of STB cell differentiation.

ST3D differentiation. TS cells were plated into 6 cm petri dishes at a
density of 300,000 cells per dish and cultured in ST3D Medium [DMEM/
F12 (11320033, Thermo Fisher), 50 U/mL penicillin, 50 ug/mL strepto-
mycin, 0.15% BSA (BP9704100, Thermo Fisher), 1% ITS-X solution (vol/
vol; 51500056, Thermo Fisher)], 200 uM L-ascorbic acid (A8960, Sigma-
Aldrich), 5% KSR (10828028, Thermo Fisher), 2.5 uM Y27632 (04-0012,
Reprocell), 2 uM forskolin (F6886, Sigma-Aldrich), and 50 ng/mL of EGF
(E9644, Sigma-Aldrich)". On day 3 of cell differentiation, 3 mL of fresh
ST3D medium was added to the culture dishes. Cells were analyzed on day 6
of STB cell differentiation.

EVT cell differentiation

EVT cell differentiation was induced by plating human TS cells onto
6-well plates pre-coated with 1 ug/mL of mouse type IV collagen at a
density of 80,000 cells per well. Cells were cultured in EVT Differentia-
tion Medium [DMEM/F12 (11320033, Thermo Fisher), 100 pym 2-
mercaptoethanol, 50 U/mL penicillin, 50 pg/mL streptomycin, 0.3%
bovine serum albumin (BP9704100, Thermo Fisher), 1% Insulin-
Transferrin-Selenium-Ethanolamine  solution  (vol/vol; 51500056,
Thermo Fisher)], 100 ng/mL of neuregulin 1 (NRGI, 5218SC, Cell Sig-
naling, Danvers, MA), 7.5uM A83-01 (04-0014, Reprocell), 2.5uM
Y27632 (04-0012, Reprocell), 4% KSR (10828028, Thermo Fisher), and
2% Matrigel® (CB-40234, Thermo Fisher). On day 3 of EVT cell dif-
ferentiation, the medium was replaced with EVT Differentiation Med-
ium, excluding NRG1 and with a reduced Matrigel® concentration of
0.5%. On day 6 of EVT cell differentiation, the medium was replaced with
EVT Differentiation Medium with a Matrigel® concentration of 0.5%
and excluding NRG1 and KSR. Cells were analyzed on day 8 of EVT cell
differentiation.

Cell line karyotyping

Chromosome analysis of TS®V cells was performed using standard cytoge-
netic methods™”. GTG banded chromosomes were analyzed at 450-550
band levels. Cytogenetic and fluorescence in situ hybridization results were
described according to the current International Standing Committee on
Human Cytogenetic Nomenclature (ISCN, 2009).

Immunocytochemical analysis

Cells were fixed with 4% paraformaldehyde (Sigma-Aldrich) for 15 min at
room temperature. Fixed cells were incubated with primary antibody
against HLA-G (ab52455, Abcam) or E-cadherin (4A2, Cell Signaling
Technology), followed by Alexa488-conjugated goat-anti-mouse immu-
noglobulin G (IgG; A32723, Thermo Fisher Scientific) secondary antibody
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and 4/,6-diamidino-2-phenylindole (DAPI; Molecular Probes, Eugene,
OR). Fluorescence images were captured on a Nikon 80i upright microscope
(Nikon) with a Photometrics CoolSNAP-ES monochrome camera (Roper
Technologies, Inc., Sarasota, FL).

Western blotting

Cell lysates were prepared using RIPA buffer (sc-24948A, Santa Cruz Bio-
technology, Dallas, TX). Proteins were separated via SDS-PAGE and
transferred onto polyvinylidene fluoride (PVDF) membranes (10600023,
GE Healthcare, Chicago, IL). Membranes were blocked with 5% Nonfat dry
milk in TBS containing 0.1% Tween-20 and then incubated with primary
antibodies against HLA-G (1:5000, ab52455, Abcam), CCR1 (1:1000,
PB9991, Boster Bio, Pleasanton, CA), and/or GAPDH (1:5000, AM4300,
Thermo Fisher). The following HRP-conjugated antibodies were used:
horse anti-mouse IgG (1:5000, 70768, Cell Signaling Technology) and goat
anti-rabbit IgG (1:5000, 7074S, Cell Signaling Technology). Immunor-
eactive proteins were visualized using chemiluminescence detection
(Immobilon Crescendo, WBLUR0500, EMD Millipore).

iPS cell culture

Human iPS cells were propagated in tissue culture plates pre-coated with
Matrigel® (1:100 dilution; 356231, Corning Life Sciences, Tewksbury, MA).
iP$ cells were maintained in complete iPS Cell Medium [mTeSR1 Basal
Medium + mTeSR1 5X Supplement (85850, STEMCELL Technologies,
Inc., Vancouver, CA) and 10 pM Y27632 (04-0012-02, Reprocell)] and
incubated at 37 °C and 5% CO,. After the first day of culture, cells were
cultured in complete iPS cell medium without Y27632. Medium was
replaced every other day of culture. Cells were passaged or harvested at 80%
confluency.

DNA methylation analysis

Genomic DNA was isolated using the DNeasy Blood and Tissue Kit (69504,
Qiagen, Germantown, MD). Bisulfite convertion of 500 ng of DNA was
performed using the EZ DNA Methylation-Gold Kit (D5005, Zymo
Research, Irvine, CA) according to instructions. Following bisulfite con-
version, the ELF5 promoter region was amplified using a nested PCR
approach with previously reported primers (Primer Set A: forward: 5-
GGAAATGATGGATATTGAATTTGA-3; reverse: 5-CAATAAAAATA
AAAACACCTATAACC-3’ Primer Set B: forward: 5-GAGGTTTTAAT
ATTGGGTTTATAATG-3; reverse: 5-ATAAATAACACCTACAAAC
AAATCC-3’; Supplementary Data 15°>**). PCR was performed with a hot
start DNA polymerase, ZymoTaq (E2001, Zymo Research). After the sec-
ond PCR, Taq polymerase-amplified PCR products were gel-purified with
QIAquick Gel Extraction Kit (28706x4, Qiagen), using manufacturer pro-
tocols. The purified DNA was inserted directly into a plasmid vector using
TOPO® TA Cloning® Kits for Sequencing (450030, Thermo Fisher)
according to the manufacturer’s instructions. One microliter of purified
PCR product was cloned into the plasmid vector (pCR™4-TOPO®) for
5 min at room temperature. Competent E. coli cells were transformed with
the pCR4-TOPO construct, cultured, and minipreps were prepared using
the QIAprep Spin Miniprep Kit (27106x4, Qiagen). Purified DNA was
sequenced (GENEWIZ, South Plainfield, NJ).

CG enzyme-linked immunosorbent assay (ELISA)

Conditioned medium was collected following 6 days of STB culture for each
cell line. CG levels were measured using an ELISA kit (HC251F, Calbiotech,
El Cajon, CA), following the manufacturer’s protocol. The measurements
were normalized to total cell protein content.

miRNA/mRNA isolation, cDNA preparation, and quantitative real-
time PCR

For miRNA, total RNA was isolated using mirVana kit (AM1560, Thermo
Fisher), and RNA concentration was measured with the Qubit™ RNA BR
Assay Kit (Thermo Fisher). cDNA synthesis was performed with TagMan®
Advanced miRNA ¢DNA Synthesis kit (A28007, Thermo Fisher). RT-

qPCR was performed using TagMan"Fast Advanced Master Mix (4444556,
Thermo Fisher) and targeted miRNAs MIR517a-3p, MIR517-5p, MIR-
526b-3p, and housekeeping miRNA MIR103a-3p (479485_mir,
478996_mir, and 478253_mir; TagMan™ Advanced miRNA Assays,
Thermo Fisher; Supplementary Data 14). Relative expression of each
transcript was calculated using the AACT method and normalized to hsa-
miR-103a-3p.

For mRNA, total RNA was isolated using TRIzol®/chloroform pre-
cipitation (15596018, Thermo Fisher) as previously reported™. cDNA was
synthesized from 1 pg of total RNA using the High-Capacity cDNA Reverse
Transcription Kit (4368813, Thermo Fisher) and diluted 10 times with
ultra-pure distilled water. qPCR was performed using PowerSYBR® Green
PCR Master Mix (4367659, Thermo Fisher) and primers (250 nM each).
RT-qPCR primer sequences are presented in Supplementary Data 16.
Amplification and fluorescence detection were measured with a Quant-
Studio 5 Flex Real-Time PCR System (Thermo Fisher). An initial step
(95°C, 10 min) preceded 40 cycles of a two-step PCR (92 °C, 15s; 60 °C,
1 min) and was followed by a dissociation step (95 °C, 15 ;60 °C, 15 s; 95 °C
155s). The comparative cycle threshold method was used for relative
quantification of the amount of mRNA for each sample normalized to the
housekeeping genes B2M or POLR2A.

RNA library preparation and RNA-Seq

Stranded mRNA-sequencing was performed on the Illumina NovaSeq
6000 Sequencing System in the Genomics Core at the University of
Kansas Medical Center. Quality control was completed with the RNA
Screen Tape Assay kit (5067-5576, Agilent Technologies, Santa Clara,
CA) on the Agilent TapeStation 4200. Total RNA (1 pg) was processed in
the following steps: (1) oligo dT bead capture of mRNA, (2) fragmen-
tation, (3) reverse transcription, (4) cDNA end repair, (5) Unique Dual
Index (UDI) adapter ligation, (6) strand selection, and (7) library
amplification using the Universal Plus mRNA-Seq with NuQuant library
preparation kit (0520-A01, Tecan Genomics, Mannedorf, Switzerland).
Library validation was performed with the D1000 Screen Tape Assay kit
(5067-5582, Agilent Technologies) on the Agilent Tape Station 4200.
Library concentrations were determined with the NuQuant module
using a Qubit 4 Fluorometer (Thermo Fisher). Libraries were pooled
based on equal molar amounts and the multiplexed pool was quantified,
in triplicate, using the Roche Lightcycler96 with FastStart Essential DNA
Green Master (06402712001, Roche, Indianapolis, IN) and KAPA
Library Quant (Illumina, Inc., San Diego, CA) DNA Standards 1-6
(KK4903, KAPA Biosystems, Wilmington, MA). Using the qPCR results,
the RNA-Seq library pool was adjusted to 2.125nM for multiplexed
sequencing. Pooled libraries were denatured with 0.2 N NaOH (0.04 N
final concentration), neutralized with 400 mM Tris-HCl, pH 8.0, and
diluted to 425 pM. Onboard clonal clustering of the patterned flow cell
was performed using the NovaSeq 6000 S1 Reagent Kit (200 cycle,
20012864, Illumina). A 2 x 101 cycle sequencing profile with dual index
reads was completed using the following sequence profile: Read 1 - 101
cycles x Index Read 1-8 cycles x Index Read 2-8 cycles x Read 2 - 101
cycles. Sequence data were converted from .bcl to FASTQ file format
using bcl2fastq software and de-multiplexed. Raw FASTQ files were
trimmed using default parameters (-r 0.1 -d 0.03) in Skewer (Version
0.2.2), and reads shorter than 18 bp were discarded. Transcripts were
quantified using Kallisto (Version 0.46.2). Differentially expressed genes
(FDR of 0.05) were discovered using the Bioconductor package DESeq2
in R (Version 1.32.0).

Live cell imaging

Cells were placed into an EVOS Onstage Incubator attached to an EVOS FL
Automated Imaging System (Thermo Fisher). The live cell chamber was
maintained at constant temperature (37 °C), humidity, and 5% CO,. For
stem culture, TS cells were maintained in stem state culture conditions
described above, and images were acquired 1-2 days after passage and
immediately following culture medium change. EVT cell differentiation was
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induced as described above. On the fourth day of the EVT cell differentiation
protocol, cells were placed into the live cell chamber. Phase contrast images
were acquired every 10 min continuously from days 2—4 of stem cell growth
or days 4-6 of EVT cell differentiation.

Statistical analysis

Statistical analysis was completed with the GraphPad Prism 9 software.
Welch’s ¢ tests, Brown-Forsythe and Welch ANOVA tests were applied
when appropriate. The figures depict the data represented as mean +
standard deviation with a statistical significance level of p < 0.05.

Study approval

All human tissue specimens used for research purposes were collected fol-
lowing informed written consent, deidentified, and approved by institu-
tional review boards at both Cedars-Sinai Medical Center and the University
of Kansas Medical Center.

Data availability

All numerical source data and uncropped blots are provided in this
manuscript (Supplementary Data 17 and Supplementary Fig. 6). All raw and
processed sequencing data generated in this study have been submitted to
the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/
geo/; GSE221617).

Materials availability
Materials will be made available upon reasonable request to the
investigators.

Code availability
Only publicly available tools were used for data analysis and are described
where relevant in the methods.
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