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Distinct neural representational
geometries of numerosity in early visual
and association regions across visual
streams
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Alireza Karami 1 , Elisa Castaldi2, Evelyn Eger3 & Manuela Piazza 1

Visual numerosity, traditionally linked to the parietal cortex, is now thought to be represented across a
broader cortical network, including early visual and associative areas in both streams. However, how
numerosity is encoded relative to other visual features remains unclear. We conducted a whole-brain
functional magnetic resonance imaging (fMRI) study with thirty-one adults performing a numerosity
estimation task on visual sets varying in number, item size, total item area, field area, and density,
ensuring tight stimulus control. Using model-based representational similarity analyses, we found
numerosity represented independently of other visual properties in early visual areas and amplified in
retinotopic and non-retinotopic associative regions across both streams. Dimensionality reduction of
BOLD patterns revealed distinct geometries: a one-dimensional representation of numerical rank in
early visual and ventral retinotopic areas, and a curved structure encoding rank and distance-to-
endpoints in associative dorsal and ventral regions. These results demonstrate distinct neural coding
schemes for numerosity across cortical regions.

The ability to estimate the number of objects (numerosity) in the envir-
onment is ontogenetically precocious and phylogenetically ancient. In
animals, it is of high adaptive value1. In humans, it was suggested to also play
a role in scaffolding the acquisition of symbolic numeracy2–4, representing a
potential target for math education and remediation. Single cell recording
studies indicate that in both in the animal5–7 and the human brain8 there are
numerosity-tuned neurons, whose Gaussian tuning functions reflect scalar
variability and underlie behavior in numerosity comparison and matching
tasks, similarly adhering to Weber’s law9–12. This approximate and com-
pressed code can also be inferred from the population-level responses to
numerosity as measured by fMRI using multivariate pattern analyses,
adaptation, or population receptive field mapping approaches13–15. How-
ever, because numerosity is necessarily coupled with other visual char-
acteristics of the sets (e.g., more items tend to occupy a larger area, or to be
more densely spaced), establishing the degree to which the observed neural
response to numerosity is distinct from the response to other visual attri-
butes is not trivial. Castaldi et al.16. measured the human fMRI BOLD
response to numerosity and approached this issue by combining multi-
variate representational similarity analyses with multiple regression,

estimating the brain activity evokedby numerosity once taking into account
the effects of other relevant non-numerical variables at the same time16. This
study, solely focusing on the dorsal stream, demonstrated that numerosity is
represented over and above other visual features across all retinotopic
regions along the dorsal stream, and, especially when task-relevant,
amplified in parietal areas. In terms of localization, these results seemed in
agreement with single cell recordings in macaques5,17 and fMRI studies in
humans13,18–20 that pointed to the parietal cortex as the key brain region for
numerosity processing (see for a review: Eger21 or Faye et al.22). They were
also consistent with the neuropsychological literature that associates deficits
in numerosity processing to parietal cortex damage23,24. Partially biased by
these initial observations, several later key fMRI studies on numerosity
restricted the brain data acquisition to a limited volume centered on parietal
cortex14,16 or focussed the analyses on parietal cortex using an ROI
approach25,26. While a few studies looking at the whole brain did sometimes
report numerosity-related response outside parietal cortex, both in the
frontal and in the occipito-temporal cortex27,28, they mostly tested small
numerosities, which some suggest to be elaborated by a dedicated
mechanism, referred to as “subitizing”, potentially different from the one at
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playwith large numerosities29,30. One notable exception is the recentwork of
Cai et al.31, who employed a population receptive field mapping (pRF)
method and found that the numerosotopic maps that encode small
numerosities in association regions in the dorsal and ventral stream also
encode large numerosities. Two important limitations of this study, how-
ever, call for further confirmation of this stand-alone report:
1) In the study, non-numerical features were neither controlled for nor

their impact on brain response analyzed: in all trials, total surface area
washeld constant across numerosities; thus, as a consequence, bothdot
size anddensitywere 100%correlatedwithnumber. This is particularly
problematic as the authors themselves had previously shown that
numerosity and object size are represented in overlapping topographic
maps32.

2) They presented stimuli in strictly ordered sequences (increasing or
decreasing numerosity). This approach, while ideal for pRFmodeling,
likely creates expectations33–35 and attentional biases36–38, the effect of
which cannot be readily disentangled from the effect of numerosity
itself. Thus, the question of whether large numerosity is encoded over
and above the other visual properties solely along the dorsal stream, or
whether it is also represented in other associative regions of the human
brain, still remains open.

Another set of studies that found numerosity information outside the
parietal cortex are the ones mainly performed by Fornciai and
collaborators39,40 who used EEG and fMRI and found pure numerosity
information over midline occipital electrodes very early in the time course,
suggesting that it is initially extracted in early visual regions (V1/V2). Early
visual regions' involvement in encoding numerosity was also previously
reported by Lasne et al.41, who scanned subjects with fMRI a reduced brain
volume including early visual and parietal sites and showed that numerosity
could be successfully decoded not only in parietal but also in V1. Interest-
ingly, despite the various differences in stimuli, tasks, and analytical
approaches, all previous studies on numerosity that employedmodel-based
methods—such as decoding, RSA, or pRF modeling14–16,31—have assumed
that numerosity is encoded in a unidimensional space (i.e., a line) of well-
ordered magnitude, while to the best of our knowledge no one has tried to
approach thedatausingmodel-freeanalytical approaches,which couldbeof
great value in revealing coding schemes that were not previously
predicted42,43. Thismodel-free approachcouldhelp in resolving the question
ofwhether the geometry of theneural representationof numerosity varies in
different brain regions, and, if so, how.

In order to probe these questions, in the current study we recorded the
BOLD signal from the whole brain of subjects looking at sets of different
number of dots, and analyzed the data using both a model-based repre-
sentational similarity analysis in pre-defined ROIs and across the whole
brain and model-free dimensionality reduction technique to better char-
acterize the neural representational geometries of numerosity across
regions.

Results
Thirty-one healthy adult volunteers were presented with visual arrays of
dots orthogonally varying in numbers of items (6, 10, 17, 29), average item
areas (0.04, 0.07, 0.12, 0.2 visual squares degree), and total field areas (9 or
13.5 visual degree diameter) while being scanned in a 3 T MRI. Their task
was to keep the number of dots in memory to compare it with an occa-
sionally presented subsequent match stimulus. Behavioral performance on
this numerosity comparison task was overall high (Mean=82.14%, SD =
6.83%, Range=66.66%—93.75%), indicating that subjects were attentive.

A widespread network of cortical fronto-parietal regions was
overall involved in the task (univariate analyses)
We started the analysis of the functional imaging data by evaluating the
overall regional activation during the experiment. Surface-based random-
effects group analysis for sample stimulus against the implicit baseline
revealed activation across both hemispheres in a wide set of regions

extending both dorsally from early visual to parietal up to the postcentral
gyrus and the precentral sulcus in the frontal cortex and ventrally including
medial and lateral inferior occipito-temporal areas (Fig. 1C, thresholded at
p < 0.01, TFCE corrected).

Numerosity is encoded over and above the other features in
retinotopic regions along both the dorsal and the ventral visual
stream (ROI semipartial correlation RSA)
Following Castaldi et al.16, to disentangle the contribution of numerical and
non-numerical features of the stimuli on the distributed patterns of activity
of the BOLD signal, and to ask whether and where in the brain the repre-
sentations of numerical and non-numerical features of the stimuli could be
dissociated, we performed RSA44 using semipartial correlation, which
ensures that the resulting coefficients reflect the unique variance explained
by eachmodelwhile partialling out the effect of all othermodels (Fig. 2).We
performed this analysis on 12 ROIs derived from a surface-based prob-
abilistic atlas basedonvisual topography: 3 in early visual areas (V1,V2,V3),
4 along the dorsal stream (V3AB, V7, IPS12, IPS345) (replicating Castaldi
et al., 2019), and 5 supplemental regions along the ventral stream (hV4,
VO1, VO2, PHC1, PHC2).

The results indicate that the variance in brain activation patterns was
significantly explained by number over and above all other non-numerical
features in almost all regions (as shown by semi-partial correlations, where
p < 0.01 with the exception of V3 and PCH2) starting in early visual areas
and reaching its highest explanatory power in higher-level regions V7-IPS
along the dorsal stream (thus perfectly replicating Castaldi et al.16.) and in
regionsVO1-VO2 along the ventral stream. Importantly, while number did
account for unique variance, other predictors, such as total field area,
exhibited stronger overall partial correlation coefficients with the neural
signal in several regions, especially in early visual and in the ventral stream
regions. An opposite pattern of results was seen for most non-numerical
features thatweremaximally represented in early visual areas: totalfield area
explained independent portions of variance in all regions, but maximally in
V1-V3 and less so in higher-level regions of both streams; total surface area
was significant only up to V3AB and hV4; density also was significant in
V1–V3 and hV4, then ceased to explain a significant portion of the variance
but regain some effect in IPS1-5. Average item area, instead, was never
significant, neither in the dorsal nor in the ventral stream regions
(Fig. 3C, D).

To statistically evaluate the impact of the different features across the
ROIs,weanalyzed the semipartial correlation coefficientswith four repeated
measures ANOVAs (see below) with ROIs and features as factors. ROIs
were consideredbothaggregated in threebig regions, and separately for each
of the individual regions, for the ventral and the dorsal stream. The sig-
nificant two-way interaction betweenROIs and features that we observed in
all the four ANOVAs confirmed that the five features were differently
encoded across ROIs across both the dorsal (for the three large regions:
F(4.30,128.95) = 36.680, p < 0.001; for the individual seven regions: F(8.10,
243.08) = 32.404, p < 0.001) and the ventral stream hierarchy (for the three
large regions: F(3.56, 106.91) = 29.330, p < 0.001; for the individual eight
regions: F(9.56, 286.82) = 27.513, p < 0.001).

We then performed five one-way repeated measures ANOVAs
on each feature across the ROIs. They revealed that, with the
exception of average item area, all other stimuli features were
encoded differently across ROIs along both streams (main effects of
ROIs: p < 0.01 for dorsal regions and p < 0.01 for ventral regions, for
both aggregated and individual ROIs)(average item area: three large
ventral regions: F(1.91,57.40) = 2.304, p = 0.111; eight individual
ventral regions: F(5.45,163.43) = 1.362, p = 0.238).

Taken together, these results indicate that numerosity is represented
independently from other visual features along both dorsal and ventral
retinotopic regions and that, contrary to all other features, it is amplified in
associative areas (IPS andVO) in both streams. This is further supported by
a positive linear regression of the semipartial correlation coefficient of
number fromV1 to IPS (β = 0.02, p < 1 × 10-4) and fromV1 toVO(β = 0.02,
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p < 1 × 10-4), with a negative linear regression coefficient observed across
regions for all other features from V1 to IPS (TFA: β =−0.09, TSA:
β =−0.02, Density: β =−0.01, p < 0.01) and from V1 to VO (TFA:
β =−0.06, TSA: β =−0.02, Density: β =−0.04, p < 0.001), except average
item area (p < 0.05).

Numerosity is encoded beyond retinotopic regions in both the
dorsal and the ventral visual stream (Searchlight semipartial
correlation RSA)
After having replicated and extended the results of Castaldi et al.16 to the
ventral visual retinotopic regions, we broadened our analyses across the
entire cortical surface through a surface-based searchlight RSA. Results
revealed that numerosity explained independent variance in several
regions spread across the cortical surface (Fig. 4), extending well beyond
the previously defined retinotopic ROIs. These regions include the mid
and anterior parietal cortex, both superior, inferior, and anterior to the
intraparietal sulcus, the parieto-occipital cortex, the precentral gyrus and
the superior frontal sulcus. Along the ventral stream, these regions
extended anteriorly and laterally in the mid inferior temporal lobe
compared to the retinotopic regions VO1 and VO2. Relating our results
to previously described functional parcellations of the ventral stream, our
large ventral numerosity-related region [RH: 38, −69, −14; LH: −46,
−69, −1] appears to potentially overlap with the ‘number form area’
reported by Yeo et al.45, located at MNI coordinates [RH: 55, −50, −12],
and may also potentially extend further and include the “visual word
form area-1”, the “fusiform face area” and the “fusiform body area”, as
defined by the functional atlas by Rosenke et al.46. Thus, numerosity is
also encoded, irrespective of other visual features, in non topographically
organized areas in the parietal, occipito-temporal, as well as in the frontal
lobes. On the contrary, all non-numerical features (apart from average

item area, for which we could not find any regions representing it)
explained variance mainly in the early visual cortex (Fig. 4).

The neural representational geometry of numerosity differs
between early visual and association cortices (multidimensional
Scaling)
To further explore whether the neural representational geometry of our
stimulus space was similar or differed across early and associative regions
and across associative regions of the two streams, we usedmultidimensional
scaling (MDS), a data-driven approach that recovers a low-dimensional
representation of the neural similarity structure and that can potentially
reveal unpredicted coding properties. We applied MDS both across and
within ROIs.

The MDS across all retinotopic ROIs (Fig. 5A) revealed three
clusters: one grouping together all early visual regions, the other all
ventral regions, and the third one all the dorsal regions, suggesting that
these three groups of regions represent the stimulus space differently.
This result prompted us to further investigate the neural representational
geometry of each ROI separately (see Fig. 5B). The reconstructed neural
geometry of the early visual areas indicated a clear ordered representation
of numerosity along both the first two dimensions of the stimulus space,
akin to a number line, as well as a clear separation between stimuli with
large and small total field area, coherently with the RSA results. While
this pattern remained approximately constant along the ventral stream
ROIs up to VO2, it changed as we approached the higher ROIs along the
dorsal stream (IPS12 and IPS345): here, the separation based on total
field area decreased, and a curved pattern around the midpoints of the
number continuum emerged. This parietal curved pattern (a bent
“number line”, where along the second dimension central numbers are
encoded separately from extreme numbers) was not at all evident in the

Fig. 1 | Stimulus set, task design, and univariate
activation maps showing cortical responses to
numerosity stimuli. Stimulus set, design, and uni-
variate effect of stimuli.A Illustration of the stimulus
conditions. Stimuli orthogonally varied in number
(6, 10, 17, 29), average item area (0.04, 0.07, 0.12 and
0.2 visual square degree), and total field area (9 and
13.5 visual degree). B Illustration of the temporal
presentation of the stimuli during scanning. Parti-
cipants were instructed to attend to the number of
dots and keep the number in mind until the next set
of dots was shown (after a variable time interval of
3.5–5.5 s). From time to time, the color of the fixa-
tion cross changed from red to green. When the
color changed, subjects were required to compare
the number of dots in the current set (match sti-
mulus), with the previous one (sample stimulus) by
pressing a button. C Results obtained from the
univariate surface-based group analysis (n = 31).
The maps show the activation elicited for all sample
stimuli contrasted against the implicit baseline.
Activation maps are thresholded at p < 0.01, TFCE
corrected, and displayed on Freesurfer’s fsaverage
surface with colored outlines identifying ROIs along
the early visual areas (V1, V2, V3), the dorsal
(V3AB, V7, IPS12, IPS345), and the ventral stream
(hV4, VO1, VO2, PHC1, PHC2) from a surface-
based probabilistic atlas87.
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ventral stream retinotopic association areas VO1 and VO2, even if
numerosity was equally well represented across streams.

Interestingly, however, this difference in the neural manifold across
the dorsal and the ventral streams was reduced when we focused on
regions outside the retinotopic ROIs. Within the group-level maps
resulting from the searchlight analysis, we isolated the most reproducible
parcels across subjects (group-constrained subject-specific (GCSS) ana-
lyses, seeMethods) that resulted in three clusters: two parietal (one anterior
and one posterior, labeled “NPC1” (as in Numerosity Parietal Cortex) and
NPC2, and one occipito-temporal, labeled “NTO” (as in Numerosity
Temporo-Occipital). We adopted these naming conventions following the
one used by Harvey & Dumoulin28 because of the apparent overlap
between our clusters and the ones reported by those authors. For a direct
comparison with the Harvey and Dumoulin numerotopic maps, the MNI
x,y,z peak coordinates of our ventral parcels were [RH: 38, −69, −14; LH:
−46, −69, −1], while the centers of NTO as found by Harvey and
Dumulin were [RH: 44(7), −75(1), −4(3); LH: −42(3), −77(3), −3(8)].
Our parietal peaks of cluster NPC1 were [RH: 35, −54, 56; LH: −39,−41,
43] while those fromHarvey and Dumulin were [RH: 22(5),−61(7), 60(5);
LH− 22(4),− 59(11), 61(8)]; our peaks for NPC2 were [RH: 46, −25, 40;
LH:−63,−23, 28] while those fromHarvey and Dumulin were [RH 33(3),
−40(4), 52(7), LH− 38(3), −43(8), 48(8)]. These comparisons have to be
taken cautiously, however, as in both Harvey and Dumoulin and the
present research, the clusters were very large and not necessarily well
represented by the localization of the peak voxel.

We then completed our analyses by performingMDS on the activity in
those clusters, and the results revealed a clear curved number line structure
both in the parietal regions NPC1 and NPC2, as well as in the infer-
otemporal region NTO. These results suggest that while along the dorsal
stream the representational geometry of numbers looks like a bent line,
along the ventral stream there is a mixture of representational geometries
across regions, taking the form of straight or curved number lines. In order
to assesswhether additional variance or hidden structures could be captured
fromadditional latent dimensions of theMDS,we also investigated the third
dimension of theMDS; as detailed in the SupplementaryMaterials (Section
1), however, we found that the third dimension did not explain significant
more variance, nor it did reveal additional features of the neural repre-
sentational geometry that was not already captured by the first two
dimensions.

In sum, while in early visual cortex regions and in most retinotopic
regions of the ventral stream the neural manifold was essentially a straight
number line, in all associative regions along the dorsal stream and in one
lateral patch along the ventral stream the manifold consisted in a curved
structurewhere in one dimensionnumerosities arewell orderedwhile in the
otherdimension the extremeones are encoded separately from intermediate
ones (Fig. 6).

Discussion
We used representational similarity analysis (RSA) andMDS to investigate
whether, where and how the human adult brain represents numerosity

Fig. 2 | Neural representational dissimilaritymatrices (RDM) derived from fMRI
were entered into a semipartial correlation analysis. fMRI RDMs were created
using 1—Pearson correlation between the activations of voxels in that region for
each pair of images. Five representational dissimilarity matrices, model RDMs, used

as predictors in the semipartial correlation analysis. These matrices represent the
logarithmic distance between pairs of stimuli in terms of number, average item area,
total field area, total surface area, and density.
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independently from other visual features using fMRI and a numerosity
estimation task.

The region of interest and searchlight RSA showed that numerosity
and the other visual properties of sets are represented independently from
one another in several brain regions, consistent with the existence of par-
tially independent channels for different quantitative properties of visual
sets. However, while the representations of the non-numerical visual
quantitative features such as total field area, total surface area and density
tended to remain confined to early visual areas (with the notable exception
of average item area, whichwe did not find to be encoded in any region), the
representation of numerosity was presentmore widely across the cortex, far
exceeding the retinotopic regions, and amplified in association areas not
only along the dorsal stream, as often previously reported in the literature,
but also along the ventral visual stream of both hemispheres. Starting from
early visual regions (V1–V3), numerosity is progressively amplified both

within and outside retinotopic regions along both streams, extending to
both anterior, superior, and inferior to the IPS, and both anterior and lateral
to the occipito-temporal areas VO. While most previous studies investi-
gating large numerosity representations reported activation around the
parietal cortex, there is extremely little evidence for large numerosity
representation along the ventral stream. Notably, Cai et al.31, using the pRF
mapping method15, also found large numerosity representations (in the
form of numerotopic maps) in association regions of both the dorsal and
ventral streams.However, this study had two important limitations. First, in
their stimuli, object size and density were correlated with number; thus, we
cannot exclude that their results reflected an ordered representation of size
instead of number. Second, they presented stimuli in a strictly ordered
manner (with numerosity either increasing or decreasing), a design that can
introduce expectations and attentional biases whose effects cannot be easily
separated from the sensory representation of the stimuli themselves. Indeed,

Fig. 3 | Color-coded dorsal and ventral ROIs, and semipartial correlations
showing feature representations across retinotopic areas. Color-coded ROIs for
A dorsal and B ventral streams defined by the probabilistic atlas87 are displayed on
Freesurfer’s fsaverage inflated surface. C Semipartial correlation coefficients
obtained from the representational similarity analysis for number, average item area,
total field area, total surface area and density from predefined dorsal retinotopic
ROIs. Number is represented along with other visual features in almost all regions
and is amplified in association areas (from V3AB to IPS). Data points show mean
semipartial correlation coefficients across subjects (n = 31) ± standard error of the
mean (SEM). The colored points above the figure indicate where the effect sig-
nificantly exceeds zero (p < 0.01). D Semipartial correlation coefficients obtained

from the representational similarity analysis for number and all other features from
predefined retinotopic ventral ROIs after normalizing with the corresponding noise
ceiling. Note that the results from early visual areas V1-3 are the same across panels,
as the ventral and dorsal components of these areas were merged into a single ROI.
Within the ventral stream, number is amplified in intermediate areas (VO1 and
VO2). Data points show mean semipartial correlation coefficients across subjects
(n = 31) ± standard error of the mean (SEM). The colored points above the figure
indicate where the effect significantly exceeds zero (p < 0.01). All corresponding
p-values and the upper/lower bounds of the noise ceiling are reported in Supple-
mentary Data 1.
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Fig. 5 | Multidimensional scaling visualizes representational similarities across
ROIs and stimulus configurations. A Multidimensional scaling (MDS) reveals
similarity of the representational structures between the predefined ROIs in a two-
dimensional space. Here, the proximity between any two ROIs indicates how similar
their representation of the stimuli is. Three clusters of regions become apparent.
MDS reveals representational similarities between stimuli in a two-dimensional

space for regions in the B EVC, C dorsal regions, and D ventral regions. The black
circles represent the 32 stimuli. They are labeled according to their numerosity (6, 10,
17, 29), and scaled in size to represent stimuli with small totalfield area (small circles)
and larger total field area (large circles). The red circles indicate the average coor-
dinates of each number.

Fig. 4 | Surface-based searchlight representational similarity analysis searchlight
(RSA) results obtained from the surface-based group analysis (n= 31).Themaps
show how patterns of activity across the cortical surface are captured by each model
of interest (Number, Total Field Area, Total Surface Area, and Density) while par-
tialling out the effect of other models. Activation maps are thresholded at p < 0.01,

TFCE corrected, and displayed on Freesurfer’s fsaverage surface with colored out-
lines identifying ROIs along the early visual (V1, V2, V3), the dorsal (V3AB, V7,
IPS12, IPS345), and the ventral stream (hV4, VO1, VO2, PHC1, PHC2) from a
surface-based probabilistic atlas87.
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expectations about specific categories can lead to an increase in BOLD
signals within category-selective regions, even in the absence of stimuli. Set
aside the study by Cai et al.31, the fact that the numerosity representation
along the ventral stream has been largely neglected in the previous neu-
roimaging literature could be explained by the fact that, due to prior biases
towards parietal cortex, some only scanned a limited brain volume centered
on thedorsal visual pathway16,41, while those recording thewhole brain often
restricted their analyses onparietal cortex regions25; others,finally,mayhave
been limited in their power to detect such ventral activation due to the use of
passive or minimally demanding tasks13. However, also in light of the
neuropsychological literature that consistently associates deficits in
numerosity processing with parietal rather than occipito-temporal cortex
damage23,24, our report of a robust response to numerosity in occipito-
temporal regions paves the way for future studies investigating its role in
numerosity perception.We propose two potential hypotheses based on this
result, which can be tested in future research. The first one sees the repre-
sentation of numerosity in the ventral stream as the result of formal math
education and of the functional connectivity between this region and the
parietal regions47,48. This view stems from two observations: 1) young

children are endowed with a precocious sense of numerosity that seems to
mainly emerge from a parietal cortex circuit18,49,50, 2) duringmath education
a specific portion of the ventral visual stream functionally specializes in the
recognition of digits, giving rise to the Number Form Area (NFA)45,51–54.
Also, the cortical areas corresponding to the NFA appear as potentially
partially overlapping with those we find to represent numerosity along the
ventral stream. However, further work at the individual level is necessary to
delineate the specific contributions of these areas.

According to this view, when a cortical patch in the ventral stream
develops its response to number symbols, it concurrently increases its
connectivity with the parietal regions encoding numerosity. This increased
connectivity might cause numerosity representations to be broadcast
between parietal cortex and the NFA, such that both regions eventually
come to represent both Arabic digits and the associated numerosities14,55.
Interestingly, and in line with this idea, a recent study performed on a few
subjects and using the pRF approach indicated that neuronal populations
tuned to small numerosity in the ventral occipitotemporal cortex region
NTO also respond to Arabic digits56. This hypothesis predicts that the
occipito-temporal response to numerosities may not be present in

Fig. 6 | ROIs outside retinotopic cortex, their representational similarity struc-
ture, and feature-specific semipartial correlations. A ROIs (NTO, NPC1, NPC2)
chosen using group-constrained subject-specific (GCSS) analysis from outside the
retinotopic regions of interest, as defined in the probabilistic atlas by Wang et al.87,
were visualized on the number activationmap derived from the searchlight analysis.

BMultidimensional scaling (MDS) reveals representational similarities between
stimuli in a two-dimensional space for regions in the dorsal (NPC1, and NPC2) and
the ventral (NTO) stream. C Semipartial correlation coefficients obtained from the
representational similarity analysis for number and all other features from regions in
the dorsal (NPC1, and NPC2) and the ventral (NTO) stream.
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preschoolers, and that it develops as a result of formal math education52,57.
However, this hypothesis must be considered as highly tentative as the
precise anatomical location of the NFA region remains rather poorly
determined, and the overlap between our NTO map encoding numerosity
and theNFAas defined in a recentmeta-analysis45 is only partial.Moreover,
we do not know whether our ventral numerosity-responsive regions NTO
would also encode digits, as we did not expose subjects to such stimuli.

Another possible interpretation, not necessarily exclusive of the first
one, posits that both the dorsal and the ventral stream possess sufficient
computational resources to independently represent numerosity, and
that different representations of numerosity might serve different func-
tional purposes. This view would also be in line with some results from
the literature on visuo-spatial attention, where, in both monkeys and
humans, it was shown that attentional control networks, containing
attentional priority location-based maps of the stimuli, and typically
associated with a dorsal fronto-parietal circuit, also include a ventro-
temporal cortical node, the phPTG, whose location seems compatible
with that of our ventral activation patch58,59. Prior research on numerosity
representation had indeed speculated that it could emerge from a
saliency-map type of system, where attention is distributed on as many
locations as there are items in the display, providing a good proxy for
approximate numerosity representation60,61. In contrast with the first
hypothesis, this hypothesis predicts that numerosity is represented in
both streams, independent of and prior to math education.

To investigate the differences in how various numerosity-coding
regions represent numerosity, we applied Multidimensional Scaling, a
hypothesis-free dimensionality reduction approach that can uncover latent
patterns in the neural data thatmay otherwise remain invisible withmodel-
based approaches. In early visual cortices (V1–V3), we observed a clear
linear rank-ordering of numerosities, which was consistently present in all
dimensions tested. In contrast, associative regions along both the dorsal and
the ventral stream, displayed a curved manifold, with two main axes: one
ordering the numerosities and the other(s) separating extreme frommiddle
values (see Supplementary Material Section 1 and Section 2). The fact that
associative and early visual regions are characterized by two different neural
representational geometries could be explained in two ways.

The first one is that while early visual regions solely encode the
quantitative aspect of the stimuli (numericalmagnitude), associative regions
represent both numerical magnitude (encoded in the first dimension of the
MDS of the neural RDM) and at the same time the relative status of each
number within the rank, encoding extreme values differently from the
intermediate ones (corresponding to the second dimension of the MDS of
the neural RDM). Such differential encoding of extreme vs. middle values
would nicely align with prior similar findings that during rank-ordering
tasks43, the posterior parietal cortex encodes the stimuli with a bent “number
line”. Thiswould suggest thatmagnitude and order are represented through
a similar neural schema, fitting with the proposal that the posterior parietal
cortex abstracts relational information and compresses decision-relevant
variables into low-dimensional representations62. However, we must
acknowledge a major difference between our experiment and the one by
Nelli et al.43, in that in our experiment we analyzed the brain activity evoked
solely during the encoding of the stimuli, prior to and independent from the
comparative judgment, thus devoid from explicit decisions. Indeed, in our
experiment subjects were primarily passively encoding numerosity, with
only a very small subset of trials in which they were asked to perform a one-
back number comparison task (which we later excluded from the analysis).
It is possible that even if subjects were not required to perform an explicit
decision during the fMRI recording, they nevertheless activated a response
classifying the sets as having extreme (smallest/largest), or intermediate
numerosities. Thiswould be coherentwith previous reports that associative,
but not primary areas, host numerosity representations that are explicitly
read out for numerical decisions-making41,63. For example, Lasne et al.41

showed adult subjects a visual set of different numbers of dots and observed
thatwhile numerosity couldbe equallywell decodedby theBOLDactivity in
both early visual and parietal cortex, the inter-individual variability in

numerosity comparison performance was predicted by the decoding
accuracy of the BOLD signal in parietal, but not in early visual cortex.
Currently, however, no studies have directly compared the behavioral
relevance of the parietal and the occipito-temporal representations of
numerosity; thus, this remains a question that future studies should resolve.

Together with this interpretation of the curved vs. linear structure of
the neural representations of number across brain regions, we must
acknowledge an alternative one, that more directly relates to the tuning
scheme of the underlying neurons: according to this interpretation, the
linear structure observed in the MDS of the early visual regions reflects a
monotonic neural code for number, while the curved structure observed in
the MDS of parietal regions reflects numerosity-tuned responses. This
interpretation would align with findings from Paul et al.64, who, using a
receptive field mapping approach, found that while the BOLD response to
numerosity in early visual areas, particularlyV1, followamonotonic pattern
— a consistent increase or decrease with numerosity without peaking at a
specific number— higher-order regions, such as the lateral occipital and
parietal cortices, exhibit numerosity-tuned responses,where different voxels
peak at specific numerositieswith a gaussian-like response function (activity
peaking at a preferred numerosity and decreasing for both smaller and
larger values). Could this difference account for our different representa-
tional geometries as extracted through the multivoxel pattern similarity
approach? While the relationship between tuning functions and repre-
sentational geometry is complex—since differently tuned units can induce
similar representational geometries at the population level65,66—we con-
ducted some simple simulations. In those simulations, we analyzed the
activity of a population of synthetic voxels, hypothesizing that each one
would respond preferentially to one numerosity with either amonotonic or
tuned response. Initially, we assumed that the same proportion of voxels
would code each numerosity, and then we varied the number of voxels
tuned to each number range based on biologically plausible results31, noti-
cing that the results did not vary. We performed RSA on those modeled
responses and used MDS to visualize the resulting representational geo-
metries. As detailed in the Supplementary Materials (Section 2), our
simulations show that, under certainparameter settings (e.g., relatively small
tuning widths not constrained by biological plausibility), monotonic
responses yield a linear arrangement, whereas numerosity‑tuned responses
give rise to a curved structure inMDS. To bemore biologically plausible, we
also ran the simulation with a larger standard deviation, following the
estimates of Cai et al.31—but these results deviated from those obtainedwith
the smaller SD and failed to produce the curved MDS configuration. The
cause of this discrepancy remains unclear. Although grounded in over-
simplified assumptions and parameter choices that are not always biologi-
cally plausible, our findings support the notion that a curved “number line”
in fMRI data could emerge from numerosity‑tuned neural populations,
while a linear representation may reflect aggregated monotonic responses.
However, given these model simplifications and sensitivity to parameter
choice, this interpretation remains provisional and warrants further
investigation.

In summary, this study demonstrates that numerosity representations,
independent of other non-numerical visual features, are broadly present in
the brain starting from early visual areas and further amplified following a
gradient from early visual areas, reaching its peak in association cortices
alongboth the dorsal (up to anterior parietal cortex) and ventral streams (up
to lateral and inferior occipito-temporal cortex), challenging the main-
stream view of a preferential role of the dorsal stream in numerosity
representation67,68. Model-free dimensionality reduction analyses further
indicated that the neural representational geometry of numerosity differs
substantially across early and association regions: the former encode
numerosity solely according to numerical rank order while the latter,
especially along the dorsal stream, are characterized by a curved manifold.
These findings are compatible with two not necessarily exclusive inter-
pretations: early visual regions encode solely numberwhile association areas
encode both number and their status on a mental line (extreme vs. inter-
mediate values), or early visual regions code for number with a monotonic
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code while associative regions with a numerosity-tuned code. Future work
will disentangle the two.

Materials
Participants
Thirty-seven healthy adults (22 females; mean age 21.9 years) with normal
or corrected vision participated in the study. Given their excessive head
motion (translation, in one of the directions x,y or z, greater than 3mm, or
rotation, around one of the axes, greater than 2 degrees) or poor behavioral
performance (accuracy <65%), data from six participants (four for poor
behavioral performance and two for excessive head motion) were excluded
from the final analysis. This led to the final sample of thirty-one subjects
(eighteen females; mean age 21.9 years).

Experimental design and statistical analyses
Stimuli and procedure. Participants were familiarized with the task by
practising 20 trials outside of the MRI before the experiment. During
fMRI scanning, arrays of black dots on a mid-gray background were
centrally shown to participants. Dots orthogonally varied in number,
average item area, and total field area (similar to Castaldi et al.16). There
were 32 conditions (resulting from crossing 4 numerosities, 4 average
item areas, and 2 total field areas): six, ten, seventeen, or 29 dots were
presented with varying average item area (0.04, 0.07, 0.12, 0.2 visual
square degree) that weremade to fit within a small or large total field area
(defined by a virtual circle of either about 9 or 13.5 visual degree diameter;
Fig. 1A). Numbers and average item areas were chosen based on previous
behavioral studies16,69 to be equally discriminable. Total field areas were
selected to have suitably sparse arrays of dots (1 dot/vd2) to be within the
numerosity estimation and not the density estimation regime70.

In each trial, a set of dots was presented for 500ms over a wide thin red
fixation cross, and participants were required to estimate their number and
keep them in memory until, after a variable ISI of 3.5–5.5 s, the next set of
dots appeared (Fig. 1B). When the color of the fixation cross changed from
red to green, subjects were required to compare the number of dots in the
current set (match stimulus)with theprevious oneanddeterminewhether it
was larger or smaller by pressing one of two buttons following the
instructions. After a button press, the background cross turned red again,
and a variable blank delay of 3.5–5.5 s preceded the following trial. Match
stimuliweredesigned tobe~2 JNDs larger or smaller innumerosity than the
previous sample stimulus, based on an average numerosity Weber fraction
estimated on an independent group of healthy adults69, while the other
dimensions (total field area and average item area) were the same. Match
trials occurred ~20% of the time.

The experiment consisted of six runs, with two blocks within each run.
Each block consisted of 36 trials: 4 match trials and 32 sample trials, one for
each condition (4 number × 4 average item area × 2 total field area). After
the third run, in the middle of the experiment, participants’ hand-response
correspondence was switched. There was a brief practice session at the
beginning of the experiment, and after changing the hand assignment. Each
run lasted ~7minutes.

fMRI recordings and preprocessing. Functional images were acquired
at the Centre for Mind/Brain Sciences (CIMeC) with a SIEMENS
MAGNETOM PRISMA 3T with a gradient insert of 80mT/m max and
using a SIEMENS Head/Neck 64-channel phased array coil. Visual sti-
muli were presented through a mirror system connected to a 42″ LCD
monitor (MR-compatible, NordicNeuroLab) positioned at the back of
the magnet bore. Functional images were acquired using echo-planar
(EPI) T2*-weighted fat-saturation echo-planar image (EPI) volumes
with 1.75 mm isotropic voxels using a multi-band sequence71 (https://
www.cmrr.umn.edu/multiband/, multi-band [MB] = 3, GRAPPA accel-
eration with [IPAT] = 1, partial Fourier [PF] = 7/8, matrix = 120 × 120,
repetition time [TR] = 2 s, echo time [TE] = 31.2 ms, echo spacing
[E] = 0.62 ms, flip angle [FA] = 60°, bandwidth [BW] = 2450 Hz/px,
phase-encode direction Anterior » Posterior). In total, 1206 volumes

from the six experimental runs made up the functional acquisition. A
whole-brain gradient echo B0 map, matched for spatial resolution, was
acquired after the functional scans for fieldmap-based correction of
susceptibility-induced geometric distortions. T1-weighted anatomical
images were acquired at 1 mm isotropic resolution using an MPRAGE
sequence (GRAPPA acceleration with [IPAT] = 2, matrix = 176 × 256,
repetition time [TR] = 2530 s, echo time [TE] = 1.69 ms, time of inver-
sion [TI] = 1100 ms, flip angle [FA] = 7°, bandwidth [BW] = 650 Hz/px).
Padding and tape were used to reduce head movement. In their left and
right hands, participants held two response buttons. Stimuli were pre-
sented using a custom-written Psychtoolbox 372 script running in
MATLAB R2018 (The MathWorks, Inc., Natick, MA).

Functional images were preprocessed in MATLAB R2019 using the
Statistical ParametricMapping Software (SPM12,https://www.fil.ion.ucl.ac.
uk/spm/software/spm12/). Preprocessing included the following steps:
Slice-time correction of functional images to the middle slice, applying
distortion correction to all functional images, realignment of each scan to
the mean of each run, co-registration of the anatomical scan to the mean
functional image, and segmentation of the anatomical image into native
space tissue components.

The preprocessedEPI images (in subjects’native space)were high-pass
filtered at 128 s and pre-whitened by means of an autoregressive model
AR(1). A general linear model (GLM) was used to estimate subject-specific
beta weights. For each run, 32 regressors of interest were included for all
sample stimuli (4 number × 4 average item area × 2 total field area).
Regressors for match stimuli, left hand, and right hand were also included.
Nuisance regressors were identified with the PhysIO toolbox73 using six
motion parameters and CompCor with five components74 and were
included in the GLM.

The surface of each subject was generated using Freesurfer 6 (https://
surfer.nmr.mgh.harvard.edu/)75. The surfaces were then converted to a
SUMA standard mesh of 141,000 nodes per hemisphere76 from each par-
ticipant’s anatomical scan using algorithms implemented in the Surfing
toolbox (https://surfing.sourceforge.net)77 to produce node-to-node ana-
tomical correspondence across participants’ surfaces. For each subject, the
parameter estimates (beta weights) for each of the 32 regressors of interest
were converted into a t-statistic and projected on the SUMA standardmesh
using AFNI’s 3dVol2Surf (https://afni.nimh.nih.gov/)78 with the “average”
mapping algorithm,which roughly represents the value at each vertex of the
surface as the average value along a line connecting the smoothwhitematter
and pial surfaces.

fMRI data analysis. First, in order to visualize the brain regions with
activation during the stimuli, we smoothedwith aGaussian 4mmFWHM
filter using the SurfSmooth function with the HEAT_07 smoothing
method the contrast map of the sample stimulus against the implicit
baseline79. We then performed a surface-based random-effects group
analysis using a one-sample t-test. The result was then corrected using
threshold-free cluster enhancement (TFCE)80 using Monte Carlo simu-
lations with 10,000 permutations, as implemented in the CoSMoMVPA
MATLAB toolbox81 and projected onto the fsaverage surface for visua-
lization (thresholded at p < 0.01, one-tailed).

Second, in order to test if and in which brain regions the representa-
tions of numerical andnon-numerical features could bedissociated,weused
RSA44,82, which allows us to assess the effects of the experimental conditions
on distributed activity patterns. We adopted two approaches: a Region Of
Interest (ROI) and a whole-brain searchlight approach (see below). In both
cases,weused the t-statistics from thefirst-level analysis to extract theneural
representational dissimilarity matrix (RDM) by computing the correlation
distance (Pearson correlation) between activation patterns for each pair of
conditions. Each pattern underwent voxel-wise scaling by demeaning the
data across conditions before computing the correlation. We then applied
semipartial correlation (Pearson correlation) analysis to test if and to what
extent the fMRI pattern dissimilarity structure could be explained by
multiple predictor matrices reflecting the stimuli’s dissimilarity along
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several quantitative dimensions: numerosity, average item area, total field
area, total surface area and density. Note that our design orthogonally
manipulated numerosity, average item area and total field area. As a result,
numerosity was partly correlated with density and total surface area (cor-
relation between number and density predictor matrix = 0.84; between
number and total surface area predictor matrix = 0.36). In order to control
thepotential impact of sharedvarianceamongourpredictor variables and to
ensure a more accurate assessment of each variable’s contribution, we
employed semipartial correlation analysis83. This statistical technique
allowed us to disentangle the unique influence of each predictor variable
from the common variance they share, thereby preventing an over-
estimation of their individual effects due to repetitive inclusion of shared
components in our analysis. Thus, the coefficient of semipartial correlation
between the neural RDM and the model RDM of interest represents the
portion of unique variance shared between the neural RDM and the model
RDM of interest while partialling out the effect of all other models. A
schematic representation of this process is shown in Fig. 2. To account for
different levels of noise in different brain areas, we estimated the noise
ceiling in all ROIs and normalized the semipartial correlation coefficients
with the corresponding noise ceiling84,85. The noise ceiling was determined
by correlating themean across individual participant’s RDMand the group-
averaged RDM86.

Surface-based ROI RSA. Following Castaldi et al.16, we selected several
retinotopic regions of interest (ROIs) along the dorsal stream from a
surface-based probabilistic atlas based on visual topography, averaging
across the two hemispheres87. Moreover, because contrary to Castaldi
et al.16, we recorded from the whole brain, we extended the analysis to the
retinotopic regions of the ventral stream as defined by the same atlas87.
The ROIs in early visual areas were V1, V2 and V3. The ROIs along the
dorsal stream were V3AB (merging V3A and V3B), V7, IPS12 (merging
IPS1 and 2), IPS345 (merging IPS3, 4 and 5; Fig. 3A). These were further
merged into two large ROIs that correspond to intermediate (V3A, V3B,
and V7, also known as IPS0), and higher-level (IPS1 to IPS5) areas. The
selected ROIs from the ventral stream were hV4, VO1, VO2, PHC1,
PHC2 (Fig. 3B). The ventral ROIs were also furthermerged into two large
intermediate (VO1 andVO2), and higher-level (PHC1 and PHC2) ROIs.
In order to ease comparisons betweenROIswe performed the subsequent
analyses based on the 600most active vertices (in the contrast “all sample
stimuli > baseline”) in all ROIs88. We choose the vertices from each
individual ROI and the large ROI separately. The number of vertices
(600) was chosen to be slightly lower than the maximum number of
vertices across all ROIs (ranging from 661 to 1510). It is important to
note, though, that when we selected all vertices across each ROI the
results remained substantially unchanged. For the ROI RSA, we used
unsmoothed data, but the results remained consistentwhenwe smoothed
the data. ROI-based RSA was implemented using the CoSMoMVPA
MATLAB toolbox79 and custom-written code in MATLAB R2019. We
used one-sample t-tests against zero across subjects to test the statistical
significance of the Fisher-transformed semipartial correlation coeffi-
cients for each feature and ROI. We analyzed the effects of ROI and
features with repeated measures analysis of variance (ANOVA).

Surface-based searchlight RSA. To find how numerical and non-
numerical quantities are represented across the whole cortical surface, RSA
was performed using a surface-based searchlight approach75, implemented
using the CoSMoMVPA MATLAB toolbox79, the Surfing toolbox75, and a
custom-written code in MATLAB R2019 (The MathWorks, Inc., Natick,
MA). Each participant’s entire t-statistics brain map was smoothed with
the same method we used to smooth the contrast map and underwent a
searchlight (radius 6mm along the cortical surface) procedure. A neural
RDM was constructed using Pearson’s correlation. Similar to the ROI-
based RSA, the semipartial correlation between the neural RDM and
model RDMs was calculated and then mapped on the brain.

To identify vertices in which the Fisher-transformed semipartial cor-
relation resulting from searchlight RSA was significantly above zero, a one-
sample t test was used across subjects. The result was then corrected using
TFCE78 using Monte Carlo simulations with 10,000 permutations imple-
mented in the CoSMoMVPAMATLAB toolbox79. The resulting statistical
map was thresholded at p < 0.01 (one-tailed) and was projected on the
fsaverage surface for visualization.

Multidimensional scaling. The results fromRSA show how each feature
contributes to the variance in our data, in a hypothesis-driven manner.
To further explore the latent structure of our neural data, we com-
plemented RSAwith a data-driven approach, implementingMDS89 using
the MATLAB function cmdscale. MDS spatially organizes the stimuli so
that their relative distance mirrors the differences in the brain activity
patterns they evoke. We used MDS and visualized the first two dimen-
sions to investigate the neural representational geometry of our stimulus
space both across and within ROIs. To compare the similarity of the
neural representation of the stimulus space acrossROIs, we vectorised the
32 × 32 group averages of individual neural RDMs reflecting the corre-
lation across conditions within each of the 12 ROIs and then constructed
a 12 × 12 RDM across ROIs. Then, to further explore the neural repre-
sentational geometry within each stream, we applied the MDS on the
group-average RDM across participants for each ROI. We also extended
these analyses beyond the dorsal and ventral retinotopic regions,
including three additional clusters resulting from the whole-brain
searchlight map of regions encoding numerosity. To isolate these clus-
ters, we used group-constrained subject-specific (GCSS) analyses90,91,
using custom-written MATLAB R2019 code (The MathWorks, Inc.,
Natick, MA) developed by Scott & Perrachione (available at https://
github.com/tlscott/make_parcels). The identification of these clusters
involved a four-step process: Initially, for each participant, the Fisher-
transformed semipartial correlation values resulting from the number
searchlight maps were converted into z-scores. Subsequently, these
z-scores were thresholded at p < 0.01 and binarized. Secondly, a prob-
ability map was generated by overlaying all binary maps. This resulting
map was smoothed using a Gaussian kernel of 6 mm FWHM, and ver-
tices with contributions from fewer than ten subjects were set to zero.
Thirdly, thewatershed algorithm, as implemented in the SPM-SS toolbox
(https://www.nitrc.org/projects/spm_ss)92, was employed to locate local
maxima. Clusters were defined around these local maxima and extended
to neighboring vertices until a localminimumor a zero-valued vertexwas
encountered. The resulting parcels represent regions where multiple
subjects exhibited suprathreshold activity, without the requirement that
this activity occur in the exact same vertex across participants. Finally, the
number of subjects contributing to each parcel was calculated, and par-
cels where more than 80% of subjects contributed were selected as the
final parcels93.

Statistics and reproducibility
Statistically significant effects have been assessed by means of parametric
t-tests (see ‘Results’ for the specific parameters).

Ethics statement
The study was approved by the local Ethics Committee (Comitato Etico per
la Sperimentazione con l’essere umano, University of Trento, Italy), in
accordance with the Declaration of Helsinki. All participants provided
written informed consent prior to the experiment and were reimbursed for
their time. The privacy rights of participants were protected in accordance
with the guidelines of the Ethics Committee of the University of Trento. All
ethical regulations relevant to human research participants were followed.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Data availability
In compliance with the guidelines on data sharing and privacy from the
EthicsCommittee of theUniversity ofTrento, the imaging data are available
from the corresponding authors only for purposes related to the original
research question.

Code availability
All the code related to this study is available throughGitHub: https://github.
com/alireza-kr/numerosity_fmri-meg-cnn/.
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