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Visuoaffective day residue in hypnagogia
involves sequential bihemispheric
interactions between cortical,
subcortical, and cerebellar structures

Check for updates

George Vagner Souza 1,5, Natália Bezerra Mota 2,3,5, Allan Kardec Barros1 & Sidarta Ribeiro 3,4

The intricate interplay between visual perception and emotion determines how waking experience
influencesmentation through a ‘day residue’ at once conspicuous yet hard to predict. Here we set out
to map the neural sources associated with the visuo-affective processing of the ‘day residue’ during
hypnagogic sleep. To this end, we assessed 28 healthy participants on a combined nap protocol with
serial awakenings, pre-sleep stimulationwith affective visual images, yokedmeasures of the semantic
similarity between image and imagery reports, affect ratings, estimation of 64-channel EEG sources,
and functional connectivity analysis. Overall, low-frequency EEG power was associated with weaker
residues, andhigh-frequencyEEGpowerwasassociatedwith stronger residues. The source networks
most significantly correlated with imagetic and affective residues were markedly different across
wake-sleep states, partially overlapping with the default mode network during N1 for up to 50% and
61%, respectively. The results allowedus to identify neural correlatesof the visuo-affectiveprocessing
of the day’s residue, showing that the hypnagogic processing of the waking experience involves
complex, dynamic and sequential bi-hemispheric interactions among multiple cortical, subcortical,
and cerebellar structures with visual, limbic, optokinetic, and cognitive functions.

The use of serial awakenings to investigate dream content has shown that
the vast majority of dream reports are related to waking-life events1. The
incorporation of content from these events into rapid eyemovement (REM)
sleep dreams peaks twice after an event of interest. The first peak, known as
the day residue, occurs within one to two nights after the event2–10. The
second peak, known as the dream lag, occurs five to seven nights after the
same event3,6,11,12. While the day residue reflects the reverberation of recent
memories10, the dream lag seems to correspond to long-term memory
consolidation7.

Approximately 40% of dreams are related to events from the day
immediately preceding the dream, i.e. correspond to a day residue1. The day
residue is most prevalent during the N1 and the REM stages, occurring in
about 50% of the dreams obtained upon awakenings from these stages13. As
the earliest offline stage, sleep onset is increasingly recognized14,15 as
important for learning & memory processes.

Both sleep16–18 and dreaming1,10,19 are known to regulate the affective
valence associated with past waking experiences. While incorporated
waking life events tend to be emotional and deemed important by the
dreamers, waking-related dreams are often emotionally less intense than the
original waking event to which they are associated1,10.

Dreaming during REM sleep engages the default mode network
(DMN)20–22, which includes themedial prefrontal cortex, posterior cingulate
cortex, hippocampus, precuneus, inferior parietal lobe, and temporal lobe,
among other regions23. REM sleep dreaming has been proposed to be an
enhanced form of daydreaming, sharing similar associative mechanisms
and underlying neural networks, particularly the DMN24.

An investigation of the electroencephalographic (EEG) correlates of
dreaming across sleep stages found that oneiric imagerywas associatedwith
decreased low-frequency (1–4Hz) activity and increased high-frequency
(20–50Hz) activity in posterior cortical regions25. While REM sleep
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dreaming tends to be vivid and intense, visual imagery can also occur during
non-REMstages25, in associationwith sparse, small, and shallow slowwaves,
particularly in central and posterior brain regions26.

While much has been learned about imagery during consolidated sleep,
much less is known about the hypnagogic day residue and the interplay
between visual imagery and affect at sleep onset. Using a serial awakenings
protocol during brief nap episodes, with yoked pairs of affective visual sti-
muli and respective offline imagery, we have recently shown that the ima-
getic and affective aspects of the day residue are differentially processed
during non-REM stages N1 and N2, so that the imagetic residue tends to
linger while the emotional residue fades at sleep onset10. Since this imagetic
lingering was inversely correlated with EEG power in the theta frequency
band (4.5–6.5Hz), we hypothesized that the visual reverberation of recent
waking experiences as one falls asleep occurs against a stream of sponta-
neously generated memories, in association with theta oscillations generated
in memory-related temporal circuits involving the hippocampus10. Here we
set out tomap the neural sources and the functional connectivity of the same
dataset to 1) elucidate the brain regions involved in visuo-affective processing
at sleep onset, 2) map the overlap of the identified regions with the DMN23,
and 3) test the prediction that the imagetic residue is inversely correlated
with theta activity in the hippocampus10.

Methods
Participants
Healthy adults (N = 28) were screened to exclude individuals with mental,
neurological, or sleep disorders through interviews conducted by a psy-
chiatrist (NBM, second author). The sample size was estimated based on a
pilot study (n = 3, image residue correlated with PSD in theta frequency
bandwith ρ = 0.505), using a 5%alpha error level and a 20%beta error level.
A total of 16men and 12womenwere recruited, with an age range of 20–43
years, a mean of 30.99, and a SD = 7.25. To enhance the ability to recall and
report dreams, the participants were instructed to maintain dream diaries
during the two weeks prior to data collection. Additionally, they were asked
to abstain from alcohol and caffeine consumption the day before the
experiment. To increase sleep pressure, the participants underwent 50%
sleep deprivation during the second half of the night before data collection.

All ethical standards pertaining to research with human participants
were followed, as reviewed and approved by the UFRN Research Ethics
Committee (approval #650.714/2014). In addition, all the participants
provided written informed consent.

EEG recordings
Preparation for the recording sessions usually began at 7:30, and recordings
typically ran from 9:40 to 14:00. Participants were prepared for recordings
with 64-channel Brain Products EEG equipment, using a 10–20 standard
cap and a sampling rate of 1 kHz. Electrooculogram (EOG) and electro-
myogram (EMG) sensors were also used to assist in sleep staging and
subsequent signal processing. The sensorswere properly testedand adjusted
using conductive gel for optimal impedance matching. Subsequently, the
participants were positioned on a reclining sofa, with a screen for stimulus
display positioned at a distance of 1m. The data collection room had
acoustic and light insulation and was equipped with a sound system for
audio recording and communication with the participant, as well as a beep
to induce awakening. After the participant was properly installed in the
experimental room, the lights were turned off, she/he received instructions
on how the experiment would proceed, and a brief training session was
conducted before initiating the experiment.

Experimental design
Figure 1 shows the sequence of events that make up each trial of the
experiment, starting with 1) presentation of an affective image, followed by
2) oral description of the image, 3) oral rating of the image’s affective valence,
4) nap, 5) awakening, 6) oral description of the hypnagogic imagery and 7)
oral rating of the affective valence of the hypnagogic imagery. Thus, each trial
contained one awakening. In the first phase of the trial, a random image
from the validated database of affective images27, or publicly available images
matched to those but with better resolution, was displayed. The images were
the same across participants, and the image order was randomized for every
participant, without repeating the image between trials. The images were
sorted according to affect, with 1/3 of the images (n = 12 images) being
positive (e.g. children laughing, puppies), 1/3 of the images (n = 12 images)
negative (e.g. shark attack, person beheaded) and 1/3 of the images (n = 12
images) neutral (e.g. a truck, an umbrella). The image remained on the
screen for 15 s, after which the participant was invited to verbally describe
the image for 30 s, responding to the question “What did you see?". Addi-
tionally, the participant verbally evaluated the image by rating its Affective
Valence (AVs) on a scale from 1 to 9, with 1 for an extremely negative image
and 9 for an extremely positive image. In the second phase of the trial, the
participant was asked to close their eyes and sleep. In a second room, an
expert tracked the electrical EEG activity online. To check for possible
changes in the ‘day residue’ processing network as sleep deepens, the trials

Fig. 1 | Experimental design. A trial consisted of 1) presentation of an affective
visual image, 2) oral description of the image, 3) rating of the affective valence of the
image, 4) closing the eyes for a variable duration acrossWK,N1 or N2, 5) awakening
by a beep, 6) oral description of the imagery, and 7) rating of the affective valence of
the imagery. Representative examples of EEG recordings within WK, N1, or N2

illustrate the three target hypnagogic stages of the experiment.When the participant
was able to recall any visual imagery, the trial was considered a “recall” trial;
otherwise, it was considered a “no recall” trial and was not used in subsequent
analyses. Adapted from Fig. 1 of ref. 10.
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were randomly pre-assigned to WK, N1 and N2, and the resulting sequence
of target states was implemented by the expert, via online sleep staging,
during the recording session. The criteria were as follows: for WK, robust
alpha oscillations in occipital channels; for N1, marked decrease in those
oscillations; for N2, presence of cortical spindles and/or K complexes. When
the signal characteristics of a randomized target sleep stage remained stable
for 30 s, the experimenter triggered the beep to wake the participant. We
aimed to capture the initial moments of each sleep stage. The median time
with eyes closed before being startled by the beep that ended each nap was
128.5 s, with a minimum of 1.7 s and a maximum of 1768.5 s. Upon awa-
kening, the participant was once again questioned with the prompt “What
did you see?”, during which she/he verbally reported the imagery for 30 s.
They were also required to evaluate the Affective Valence of the imagery
(AVi), using the same rating scale. There were no word count differences
between eyes open and eyes closed for stages N1 and N2, but there was a
significant difference during WK (Supplementary Table S1). Furthermore,
across the three stages of interest there were significant positive correlations
between Image Residue and word count, with eyes open as well as closed
(Supplementary Table S1). Thus, the more the participant talked about both
image and imagery, the greater was the similarity between their imagetic
contents. In contrast, there were no significant correlations between word
count and Affect Residue (Supplementary Table S1).

Descriptive statistical information on the word count of oral reports
after different sleep stages is presented in Supplementary Table S1.

Database consolidation
The experiment was performed under polyphasic sleep conditions, under-
going a multiple-awakening protocol. The aim was to collect 36 trials for
each participant, properly balanced between three target stages of the wake-
sleep cycle and uniformly distributed across the valence scale. However, few
participants reached the desired stages in a truly balanced manner. In
addition, for two participants the 36 trials were not achieved, which ledus to
perform a total of 1001 trials. Among these, in 211 trials the participants
reported not remembering visualizing any images nor did they report other
forms of mentation. This further reduced the total number of trials to 790.
Another 54 trials were excluded for noise in the EEG recording. The EEG
data analyzed included the 30 s prior to the beep. Artifacts due to eye
movements and heartbeats were automatically removed using independent
component analysis (ICA), and the missing channels were interpolated, as
described by Mota et al. (2022)10. Finally, the definitive staging of the
polysomnography was performed by an expert blinded to the experiment.
Thus, the database resulted in 736 trials, with an average of 26.29 trials per
participant. Of these, 401 trials were classified as wakefulness stage (WK),
208 as non-REM stage 1 (N1) and 127 as non-REM stage 2 (N2).

Imagetic residue (IR)
IR quantitatively indicates the semantic similarity between oral reports of
the stimulus (s) and reports of images (i), consideringonly the trials inwhich
there was recall of images. Tomeasure IR, aword embedding techniquewas
employed, using statistical regularities to represent words as vectors in a
high-dimensional space where words with similar meanings are located
close to each other. Participants were previously instructed to describe their
visual experiences, and the question they answered upon being awakened
(“What did you see?”) explicitly referred to a visual experience. There were
no cases of reports occurring in non-visual sensory modalities. Because
participants were sleep deprived during the second half of the night before
the experiment, they typically experiencedvery intrusive visual imageswhen
closing their eyes10. The reports were recorded in MP4 format and then
transcribed by experimentally blind professionals (http://ww.audiotext.
com.br/). The reports were then transformed into lowercase letters, toke-
nized bywords and cleaned of non-alphabetic tokens and stop-words, using
the Portuguese stop-word list nltk28. Aword embeddingwas then calculated
for each report, with the neural network of the pre-trained multilingual
word embedding model Fasttext29,30. Finally, the Image Residue was com-
puted as the cosine similarity of the average word embedding (v1,v2), as

presented in Eq. (1).

IR ¼ cosðv1:v2Þ ¼
v1:v2

jv1j:jv2j ð1Þ

where ∣Vi∣ refers to the Euclidean norm of vector Vi. Thus, a higher
Image Residue indicates greater similarity between the imagistic content of
the two reports. Descriptive statistical information on the distribution of
image residues across different sleep stages is presented in Supplementary
Table S2. Further details on the IR calculation are available in ref. 10.

Affective residue (AR)
ARmeasures the similarity between the affective valence of the stimulus and
the affective valence of the imagery, as per Eq. (2):

AR ¼ jAVi � AVsj ð2Þ

Consequently, AR yields an integer value for each trial within the closed
interval of 0 to 8, where 0 represents maximum similarity between affective
valences, and 8 represents the greatest distance between affective valences.
Descriptive statistical information on the distribution of affective residues
across different sleep stages is presented in Supplementary Table S2.

EEG source estimation
The sources were estimated using the SLORETA algorithm31. To achieve
this, two sets of information were prepared.

The first set groups the structural information. It presents an anato-
mical model representing the individuals, created using the high-resolution
ICBM152MRI32, given that the subjectswere adults, andnoprior individual
MRI collection was performed. The MRI underwent tissue segmentation
using the Freesurfer software33. It was segmented into three layers, separ-
ating the brain mass, the skull and the scalp. The three-layer three-
dimensional model reconstruction was then performed using the boundary
element method described by (Brebbia; Dominguez, 1977)34 through the
neural signal analysis software Brainstorm35. The layer of the anatomical
model representing the source space was subdivided into 16006 voxels,
evenly distributed throughout the volume of the brain and cerebellum.
Additionally, fiducial pointsmarked in the ICBM152were used to place the
sensors in the created model, following the international 10–20 standard,
thereby generating the coordinate map for the 64 channels.

The second data set covers the functional information. This set includes
the EEG signals with the 30 s of recordings preceding the alarm in each trial.
The first 10 s of all trials were used to model noise characteristics, calculating
a noise covariance matrix of the sensors for each subject.

Structural and functional data were related in Brainstorm through a linear
system, allowing the determination of the Forward Solution. It consists of a data
transformation matrix capable of taking functional data from the source space
to the sensor space on the scalp. Subsequently, the noise covariancematrix and
the Forward Solution were incorporated into the SLORETA algorithm,
enabling the creation of an inverse operator for each subject in the database.
Finally, the last 20 s of each EEG recording were selected to be subjected to
the inverse operator, providing the source estimation for all 736 trials.

Computation of power from estimated signals
Brainstorm was used to calculate the power spectral density (PSD) for the 20 s
of source estimation of each test, similarly to what was adopted, in EEG signals,
by ref. 10. For this, theWelch method36 was used along the time axis, with a 4s
Hamming window length, 80% overlap, and 512 frequency points. Subse-
quently, the frequency points were grouped, forming 14 bandswith a frequency
window of 2Hz each, ranging from 0.5Hz to 28.5Hz, according to Eq. (3):

PowBANDii
¼

PfHIGHi
fLOWi PSDP

PSD
; i ¼ 1; 2; :::; 14 ð3Þ

where High and Low refer to the upper and lower limits of each band.
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Statistical analysis
In this phase, we sought a statistical basis to determine whether the phe-
nomena of Image Residue and Affective Residue have a significant rela-
tionship with neuronal electrical activity. Correlation, clustering and
functional connectivity tools were used to analyze the sources. In addition,
tests were performed to confirm the localization accuracy of the inverse
operator for the deep sources mapped in the previous steps.

Correlation analysis. Kolmogorov–Smirnov and Levene tests showed
that the Image Residue and Affect Residue data are not normally dis-
tributed but had homogeneous variance. Kruskal–Wallis tests were used
to verify differences related to wake-sleep stages (Supplementary
Table S2). Consequently, Spearman’s correlation test was chosen to
investigate the relationship between phenomena and electrical source
activity. Spearman’s correlation was calculated between the IR/AR
ranking and themap ofmean power comprising 16,006 sources. This was
done individually for each of the 14 frequency bands during each of the
three sleep stages. The significance threshold for correlation was deter-
mined through multiple comparisons using the Friedman test, with P
value ≤0.01, among the 14 correlation maps. The test was iteratively
conducted, reducing the correlation P value until a positive result indi-
cating differences between the 14 maps was achieved. The P value was
corrected using the False Discovery Rate (FDR) technique37. Then, the
brain regions38 whose Spearman’s Rho modulus indicates values greater
than 0.1 were projected into word clouds (Figs. 2b, 3b), to display the
networks of regions with the strongest and most significantly correlated
EEG source power with IR or AR.Words are displayed in the cloud in red
for positive correlations and blue for negative correlations. Word sizes
were scaled linearly by correlation strength, in descending order from left
to right and top to bottom.

K-means clustering. K-means clustering of the 16,006 sources was
performed using theMatlab functions to determine whether the detected
neural activities are regionalized or diffuse throughout the brain volume.
The K-means algorithm was run to generate 20 clusters, using a total of 5
repetitions, to ensure stability, and limited to 100 iterations. To calculate
the distances between points, the City-Block metric, also known as
Manhattan distance or L1 norm,was used. For each studied phenomenon
(IR or AR) and each sleep stage (WK, N1, or N2), a feature vector
X24×16006 was formed, composed of X1−14, by 14 Correlation Maps
between the respective frequency band of power and the phenomenon
(IR or AR); of X15−19, by 5 Principal Components, calculated with PCA,
between the 14 maps of statistical moments of power (Mean, Median,
Variance, Skewness, Kurtosis); of X20−24, by 5 Statistical Moments of the
Mean, among all trials of each sleep stage, from the estimated LORETA
signal: (Mean, Median, Variance, Skewness, Kurtosis).

Then, the sources were mapped to their respective spatial location,
confirming the regionalization of the activities detected through the clusters.
In this way, it was possible to proceed with the analyses, treating the source
space as a set of several neuroanatomical regions, spatially well defined. For
this, the sources were labeled in 170 regions using the Automated Anato-
mical Labeling Atlas 3 (AALA3) developed by Rolls et al.38. Labeling was
carried out in an iterative process through the Brainstorm software to adjust
AALA3 to the ICBM152 anatomy. The set of 16,006 sources resulted in the
mapping of 160 regions, since 10 regions labeled in AALA3 had no corre-
spondence in the ICBM152 anatomy.

Grangercausality. Granger causality was calculated among the 160 regions
for each sleep stage directly from the estimated LORETA signal, using the
MVGC Multivariate Granger Causality toolbox39. Due to the non-
stationarity of the signal, indicated by the unit root, using the Augmented

Fig. 2 | Network of brain regions with significant
correlations between EEG source power and
imagetic residue. a Spearman correlation maps
between EEG source power and IR are shown.
During WK, significant correlations between EEG
source power and IR (P ≤ 5.0833 × 10−8) were
detected in the frequency bands 4.5–6.5 Hz (nega-
tive correlations) and 10.5–14.5 Hz (positive corre-
lations). Significant correlations occurred more
broadly during N1, in frequency bands 0.5–6.5 Hz
(negative correlations), 8.5–12.5 Hz (positive cor-
relations) and 26.5–28.5 Hz (positive correlations).
bWord clouds depicting the networks of brain
regions38 with EEG source power most strongly and
significantly correlated with IR (∣Rho∣ > 0.1, red for
positive, blue for negative correlations). The word
sizes are linearly scaled by correlation strength, in
descending order from left to right and top to bot-
tom. Please note that only negative correlations are
above the cutoff, i.e. all the positive significant cor-
relations were quite small. c Graph showing the
Granger causality of the brain structures identified
in (b). Blue, red and gray nodes correspond
respectively to negative, positive and absence of
correlation between EEG source power and IR.
Arrows indicate causality direction, arrow width
linearly represents causality strength. The abbre-
viations adopted in (b) and (c) follow the nomen-
clature used in the model atlas AALA338.
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Dickey–Fuller test (ADF)40, causality was calculated using a sliding window
of 1s (ADF test indicated stationarity in 87.88% of windows in WK, 91.39%
in N1, and 94.33% in N2), with 50% overlap and FDR-corrected P value (P
valueWK≤5.37 × 10

−4, P valueN1≤ 2.09 × 10
−4, P valueN2 ≤ 1.31 × 10

−4). The
Granger order was set to 1 for all three cases, determined by the Akaike
Information Criterion (AIC)41. Furthermore, data were normalized by the
overall maximum connectivity value found across all analyses (WK/N1/N2).
To focus on regions with higher connectivity, data were filtered to display
only relationships greater than 10% of the maximum value found when
examining connectivity using all 736 trials, regardless of sleep stage, resulting
in Supplementary Tables S3 (WK), S4 (N1), and S5 (N2). Furthermore, the
functional connectivity of the regions highlighted by the correlation analysis
was indicated through graphs in Figs. 2c, 3c. They were generated using the
tool (https://graphonline.ru). For this purpose, blue, red, and gray nodes were
created, corresponding respectively to negative, positive correlation, and
absence of correlation between EEG source power and IR/AR. The direction
of causality was indicated by arrows, whose width linearly represents the
strength of this causal relationship.

Inverse operator accuracy test for deep sources. The use of 64
channels and a template head model for source reconstruction hinders

the localization and spatial resolution of SLORETA for deep brain
structures. To overcome this limitation, the localization accuracy of the
inverse operator was confirmed for all deep sources with EEG source
power most strongly and significantly correlated with the imagery and
affective residues (∣Rho∣ > 0.1) or that showed significant causal rela-
tionship between each other, in the different sleep stages, across the
different sleep stages (Supplementary Table S6). Among the structures
verified, the precuneus is also included, as it extends from the cortical
surface to deeper regions. All sources composing subcortical structures of
interest (structures selected in the correlation and/or causality analyses),
a total of 1311 sources, were separately tested as follows: (1) All sources in
the model space were loaded with the value 0, except for the source Xi,
under analysis, which was loaded with the value unit. Where ‘i’ is an
integer ranging from 1 to 1311, corresponding to the source under
analysis; (2) next, the forward operator was applied to the source map
generated in (1) to simulate the 64-electrode EEG signal, equivalent to the
source signal; (3) the EEG signal simulated in (2) was subjected to the
inverse operator, generating a source map; (4) the map estimated in (3)
was evaluated, checking whether the peak of the SLORETA signal occurs
at source Xi. The procedure was repeated for all 1633 sources of interest,
resulting in an average accuracy of 33.19%. Sources with 0% hits were

Fig. 3 | Network of brain regions with significant correlations between EEG
source power and affective residue. a Spearman correlation maps between EEG
source power and AR are shown. Both positive and negative correlations between
EEG source power and AR were significantly detected across several frequency
bands duringWK (P ≤ 0.014), N1 (P ≤ 0.0037), and N2 (P ≤ 1.4962 × 10−4). bWord
clouds depicting the networks of brain regions38 with EEG source power most
strongly and significantly correlated with AR (∣Rho∣ > 0.1, red for positive, blue for

negative correlations). The word sizes are linearly scaled by correlation strength, in
descending order from left to right and top to bottom. cGraph showing the Granger
causality of the brain structures identified in (b). Blue, red and gray nodes corre-
spond respectively to negative, positive and absence of correlation between EEG
source power and IR. Arrows indicate causality direction, arrow width linearly
represents causality strength. The abbreviations adopted in (b) and (c) follow the
nomenclature used in the model atlas AALA338.
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discarded from the study, resulting in the exclusion of 10 thalamic nuclei,
2 raphe nuclei and the right ventral tegmental area.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Brain regions associated with the imagetic residue
Figure 2a shows the significant correlations between IR and EEG power
within each frequency band, adopting an FDR-corrected statistical thresh-
old of p−valueWK ≤ 5.0833 × 10−8 and p-valueN1 ≤ 7.6879 × 10−5 (Supple-
mentary Table S7).

A group of brain regions showed source signals that were inversely
correlated with IR (Supplementary Table S7). During WK, the most pro-
minent negative correlations were foundwithin the theta frequency band of
4.5–6.5 Hz in the right hemisphere, mainly in the AmygdalaR, Heschl’s
gyrusR, Lateral orbital gyrusR, Superior temporal gyrusR, Inferior frontal
gyrus opercular partR, HippocampusR, Middle frontal gyrusR, and Rolandic
operculumR (peak Rho = −0.2193). During N1, negative correlations also
occurred within the delta frequency band 2.5 to 4.5 Hz in the left hemi-
sphere, particularly in Lobule X of the cerebellumL and Inferior temporal
gyrus (peak Rho =−0.1808). A different set of brain regions showed source
signals that were positively correlated with IR (Supplementary Table S7).
During WK, both hemispheres were engaged within frequency bands
10.5–14.5 Hz, in theMiddle cingulate & paracingulate gyriL, Middle frontal
gyrusL, Superiorparietal gyrusR, Superior frontal gyrus dorsolateralL, among
other regions (peak Rho = 0.0882). During N1, positive correlations were
detected in the left hemisphere within the alpha (8.5–12.5 Hz) and beta
(26.5–28.5 Hz) frequency bands, in the Superior frontal gyrus medial
orbitalL, and Superior frontal gyrus dorsolateralL, among other regions
(peak Rho = 0.0629). No significant correlations were found during N2.

Overall, the lower frequencies were negatively correlatedwith IR,while
the higher frequencies were positively correlated with IR. Figure 2b lists the
brain regions that were most strongly and significantly correlated with IR.
During WK, the maximum negative correlation occurred in the right
amygdala (Rho=−0.2193) and theminimumnegative correlationoccurred
in the rightRolandicoperculum(Rho=−0.1001).DuringN1, the respective
network comprises only two brain regions: the left cerebellar lobule X (Rho
=−0.1808) and the left inferior temporal gyrus (Rho =−0.1547). Figure 2c
shows the Granger causalities comprising the brain structures identified in
Figure 2b. Significant causalities were only detected during WK, when
source signals from the right lateral orbital cortexmodulated source signals
in the occipital cortex, the precuneus and the superior parietal gyrus.

Brain regions associated with the affective residue
Figure 3 a shows the significant correlations between AR and EEG
power within each frequency band, adopting an FDR-corrected sta-
tistical threshold of p-valueWK ≤ 0.014, p-valueN1 ≤ 0.0037, and p-
valueN2 ≤ 1.4962 × 10−4(Supplementary Table S8):

A group of brain regions showed source signals that were negatively
correlated with AR (Supplementary Table S8). During WK, this effect
occurred within the alpha frequency band (8.5–12.5 Hz), with peak Rho =
−0.1579 in the Inferior parietal gyrusR (excluding Supramarginal and
Angular Gyri), spreading across regions such as Heschl’s gyrusL (Rho =
−0.1384) and Supramarginal gyrusR (Rho = −0.1378), among others.
DuringN1, negative correlationswere detected in various regionswithin the
delta frequency band (0.5–2.5 Hz), with peak Rho =−0.2105 in the Lateral
Orbital GyrusL, spreading across regions such as Anterior orbital gyrusL
(Rho = −0.2103) and Inferior occipital gyrusL (Rho = −0.1943), among
others. No negative correlations were detected during N2.

Source signals from multiple brain regions were positively correlated
with AR (Supplementary Table S8). DuringWK, these occurred within the
beta frequency band (14.5–28.5 Hz),withpeakRho=0.1576 inLowerFront
Triangular Gyrus PartR, spreading across regions such as Inferior frontal

gyrus opercular partR (Rho = 0.1576) and Posterior cingulate gyrusR (Rho =
0.15), among others. During N1, several brain regions showed positive
correlations within theta, alpha and beta bands (peak Rho = 0.1670 in
Supramarginal GyrusR), spreading across regions such as Inferior parietal
gyrusR (excluding Supramarginal and Angular Gyri) (Rho = 0.0977) and
Superior temporal gyrusR (Rho = 0.07), among others. During N2, positive
correlations occurred in the right hemisphere within the theta band, with
peak Rho= 0.3098 in Lower Front TriangularGyrus PartR, spreading across
regions such as Orbital part of inferior frontal gyrusR (Rho = 0.2584) and
Rolandic operculumR (Rho = 0.2469), among others. Figure 3b lists the
brain regions that were most strongly and significantly correlated with AR.
During WK, the network ranged from the Inferior frontal gyrus opercular
partR (Rho = 0.1576) to the Paracentral lobuleL (Rho−0.1001). During N1,
the network ranged from the Lateral orbital gyrusL (Rho= −0.2105) to the
Posterior orbital gyrusL (Rho = −0.1140). During N2, the network com-
prised the Lower Front Triangular Gyrus PartR (Rho = 0.3098) and the
Middle frontal gyrusR (Rho = 0.1430). Figure 3c shows the Granger caus-
alities comprising the brain structures identified in Fig. 3b. There was an
increase in connectivity across the hypnagogic transition fromWK toN1 to
N2. During WK, signals in the right medial pulvinar thalamic nucleus
showed a significant contralateral modulation of signals in the left anterior
orbital gyrus, middle frontal gyrus and superior frontal gyrus. During N1,
left hemisphere signals from the inferior pulvinar thalamic nuclei produced
a modulation of signals in the left precuneus and right superior occipital
gyrus. Furthermore, left hemisphere signals from the inferior pulvinar
thalamic nucleus and the ventral posterolateral thalamic nucleusmodulated
signals in the left superior parietal gyrus. During N2, right hemisphere
signals in themediodorsal lateral parvocellular thalamic nucleusmodulated
ipsilateral theta signals in the middle frontal gyrus.

Deep regionsassociatedwith the imageticandaffective residues
The localization accuracy of the inverse operator was tested for the sub-
cortical sources of 45 regions of interest. Among them, the 32 brain regions
with the strongest EEG source power and significantly correlated with the
imagetic or affective residues, in the different stages of sleep or that pre-
sented significant connectivity with the aforementioned regions, as shown
in SupplementaryTable S6.Of these, a total of 1311 subcortical sourceswere
tested, culminating in the exclusion of 10 structures. A total of 22 deep brain
structures were thus confirmed (Fig. 4a) according to the percentage of
accuracy performed by the SLORETA algorithm in each structure (Fig. 4b).
The analysis also includes the precuneus, which extends from the cortical
surface to deeper regions.

Overlap of day residue networks with the DMN
The ‘day residue’ brain regions detected in this study showed a substantial
degree of overlap with the DMN23, depending on the stage and type of
residue considered. For IR, this overlap increased from37.5%duringWK to
50%duringN1 (SupplementaryTable S7). The comparisondid not apply to
N2,whenwe failed todetect any significant correlations. ForAR, the overlap
waxed and waned from 37.5% during WK, to 61.4% during N1, and then
11.11% during N2 (Supplementary Table S8).

Discussion
The results show that the hypnagogic processing of visual and affective
content involves dynamic and sequential bi-hemispheric interactions
across multiple cortical, subcortical, and cerebellar structures with visual,
affective, optokinetic42, and cognitive functions. Low-frequency EEG power
was associated with weaker residues, and high-frequency EEG power
was associated with stronger residues. The visual aspects of the ‘day residue’
were inversely proportional, during relaxed WK immediately before
sleep onset, to low-frequency EEG power in the range of 4.5 to 6.5 Hz,
putatively produced by a right hemisphere network comprising limbic
structures such as the amygdala and the hippocampus. These findings
corroborate the prediction that the imagetic residue is inversely correlated
with theta activity in the hippocampus10. The affective aspects of the ‘day
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residue’ engaged a substantially larger network of cortical and subcortical
brain regions.

During N1, at the onset of sleep, the networks related to the visual and
affective aspects of the day residuemostly shifted to the left hemisphere and
were less influenced by the limbic system.DuringN2 the networks diverged
entirely: while the visual residue did not correlate with EEGpower from any
source, the affective residue correlated strongly with EEG sources located in
several regions of the right prefrontal cortex. The networks most sig-
nificantly correlated with imagetic and affective residues were markedly
different across wake-sleep states, partially overlapping with the DMN for
up to 50% and 61% during N1, respectively. These include the AmygdalaR,
the HippocampusRL, the InsulaR and the Posterior cingulate gyrusR. The
increased connectivity observed fromWK toN1 (and thenN2 in the case of
the affective residue) points to an evolving dynamic of information pro-
cessing across the brain, as the participants transited from the externally
oriented waking state to the internally driven hypnagogic state.

The results have potential implications for the current debate on the
neural correlates of consciousness. A major point of dissent concerns the
relative contributions of frontal vs. posterior cortical regions, as well as the
role of subcortical structures. We found that the transition from waking to
sleep imagery involves a rich and early dynamic of prefrontal and parietal
cortex engagement, including the Lateral Orbital GyrusL, the Superior
frontal gyrus dorsolateralR, the Middle frontal gyrusR, the Inferior frontal
gyrus opercular partR, the Inferior frontal gyrus orbital partR, and the
Inferior parietal gyrusR. These results are compatible with global workspace
theory (GWT), which posits that consciousness arises from the widespread
broadcasting of information mediated by prefrontal cortex networks43,44.

Notwithstanding, the widely distributed imagery networks engaged
during hypnagogic sleep, despite some methodological differences, also
seem to intersect broadly with the “posterior hot zone” associated with
dreaming during consolidated NREM and REM sleep25. A more recent
analysis of the samedataset as in ref. 25 suggested that occipital activity alone
may suffice to explain the findings, without requiring the prefrontal cortex

or the precuneus45, but in our study we detected the involvement of several
posterior regions including the Superior occipital gyrusR, the Inferior
occipital gyrusL, and the PrecuneusR. Of note, the precuneus is known to be
engaged in self-related visual representations46, visual imagery during psy-
chedelic states47,48 and lucid dreaming49. Altogether, the engagement of these
posterior regions in hypnagogic imagery is compatible with predictions
made by integrated information theory (IIT), which postulates the need for
posterior activation in the generation of conscious imagery.

Our study has some important limitations. The experimental design
deviated substantially from the natural circadian cycle, since participants
were partially sleep deprived and asked to sleep during the day, which may
have contributed to the sample imbalance. Furthermore, because the
experiment was designed to capture the initial 30 s of each target stage,
several trials that were labeled as N2 online were re-labeled as N1 offline,
resulting in sample imbalance. The smaller sample possibly led to the
absence in N2 of statistical significance for the correlation between EEG
power and image or affective residues. Since the data were not perfectly
balanced, we could not determine whether the lack of significant correla-
tions inN2 is real, or rather it reflects anunderpoweredassessment.Another
limitation is the potential interference between the image visualized in the
target trial and the images visualized in previous trials. Furthermore, we
cannot refute the possibility that the images recalledupon awakening froma
given stage (for instance, N2) may reflect mentalization during a preceding
stage (for instance, WK or N1). Also, we did not obtain other memory
measures to assess image retrieval at a later stage, nor did we measure the
success of encoding. Therefore, the use of a single memory measure (i.e.,
semantic similarity between visual stimulus and image report) should be
considered another limitation of our study. Finally, the localization uncer-
tainty related to sourcedepth, theuseof 64EEGsensor channels, and theuse
of a template head model for source reconstruction led us to exclude ten
thalamic nuclei, two raphe nuclei, and the right ventral tegmental area
initially detected. Further source level studies using high-density EEG and
individual head models should re-examine whether these and other deep

Fig. 4 | Inverse operator accuracy test for deep sources. The main structures are
shown in (a), through their respective sets of sources and contours in different colors,
according to the views left lateral, right lateral, front, back, upper and lower. In (b)

the structures are represented individually with the respective percentages of
accuracy of the SLORETA algorithm indicated by the color green. The acronyms
adopted in (a) and (b) follow the nomenclature used in the model atlas AALA338.
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subcortical regions also participate in the different aspects of the hypnagogic
day residue.

Data availability
The dataset containing the estimated signal power is available on figshare
(https://doi.org/10.6084/m9.figshare.29145578.v1)50. Other data generated
and/or analyzed during the current study are available upon request to the
corresponding authors.
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