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Infra-slow scale-free dynamics modulate
the connection of neural and behavioral
variability during attention
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The activities of the human brain vary across different timescales, exhibiting scale-free dynamics.
Previous research has highlighted thepsychological andphysiological significance of brain dynamical
fluctuations across the Delta to Gamma bands. However, there has been less focus on infra-slow
scale-free dynamics, e.g. power law exponent (PLE), and neural variability, e.g. standard deviation
(SD), and sample entropy (SE), in mediating brain-behavior connection during attention. In this study,
we recruited 49 participants and recorded functionalmagnetic resonance imaging (fMRI) resting-state
and task data during a sustained attention task paradigm to investigate how the threemeasures—SD,
SE, and PLE—modulate the dynamics of behavioral performance. Our findings demonstrate the
following: (i) PLE, SD, and SE exhibit differential topographic distribution with a hierarchical structure
from sensory to associative networks, during their rest-task modulation. (ii) PLE, SD, and SE show
different topographic extensions from visual cortex to default-mode network in their relationship with
behavioral variability. (iii) The relationship betweenSDandSE ismediated byPLE in the empirical data,
which (iv) is further confirmed in simulation. Collectively, our results highlight the topographically- and
dynamically-layered mechanisms of distinct neurodynamical features during attention processing:
scale-free dynamics modulate neural and behavioral variability.

Infra-slowdynamics –Howdo theymodulate cognitive function?
The brain is a highly dynamic system. Understanding its neural activity
across various timescales is crucial for unraveling its intricate relationship
with cognitive functions and disorders1–5. Previous research has pre-
dominantly focused on faster frequency ranges [e.g., Theta (4–8Hz), Alpha
(8–12Hz), Beta (12–40Hz), and Gamma (40- Hz)] in Electro-
encephalography/Magnetoencephalography (EEG/MEG) studies6–9. Recent
investigations have shed light on infra-slow oscillations in the blood-
oxygen-level-dependent (BOLD) signal (0.01~0.5 Hz). Some work suggests
that these infra-slow BOLD fluctuations predominantly reflect the con-
volution of high-frequency neural activity—including gamma, as well as
theta and alpha bands—with the hemodynamic response function10,11. How
the infra-slow BOLD fluctuations mediate behavior such performance
during an attention task remains yet unclear, though.Addressing this gap in
the literature is the goal of our study.

While neuro-vascular effects cannot be excluded12, emerging evidence
suggests the neural basis of the infra-slow BOLD signals, proposed as the
dark brain energy by a recent paper13. For example, significant correlations
between infra-slow BOLD signals and infra-slow local field potential (LFP)/

EEG correlations indicate that low-frequency neural coordination underlies
large-scale BOLD networks implicated in task performance14–16. Further-
more, converging infra-slow electrophysiological, BOLD, and behavioral
data reveal that suchoscillations across differentmodalities play a key role in
regulating both the integrationwithin anddecouplingbetweenconcurrently
active neuronal communities17. Further support comes from studies
showing that the activationof thenucleusbasalis ofMeynertmodulates low-
frequencyglobalBOLDsignals18.Collectively,whilenon-neural factors such
as vascular activity and neural-vascular coupling contribute to the BOLD
signal (Das et al. 2021), these findings suggest that infra-slow BOLD signals
are not merely a byproduct of high-frequency neural activity. This could be
further supported by showing how these intrinsic infra-slow neural pro-
cessesmodulate behavioral and cognitive functions; themechanismsof such
neuro-behavioral modulation remain yet to be explored, though19–23.

Relating infra-slow dynamics to cognitive function confronts one with
a methodological challenge. Given that high-frequency brain activity can
capture specific cognitive processes within milliseconds, it can measure the
effects of single trials lasting 100 to 1000ms2,24,25. This is different in the
infra-slow frequency band, which encompasses several to hundreds of

1Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China. 2Mind, Brain Imaging and Neuroethics Research Unit, Institute of
Mental Health Research, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. e-mail: wyf@sicnu.edu.cn; georg.northoff@theroyal.ca

Communications Biology | (2025)8:1057 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-025-08448-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-025-08448-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-025-08448-3&domain=pdf
http://orcid.org/0000-0002-8248-8841
http://orcid.org/0000-0002-8248-8841
http://orcid.org/0000-0002-8248-8841
http://orcid.org/0000-0002-8248-8841
http://orcid.org/0000-0002-8248-8841
http://orcid.org/0000-0002-0942-899X
http://orcid.org/0000-0002-0942-899X
http://orcid.org/0000-0002-0942-899X
http://orcid.org/0000-0002-0942-899X
http://orcid.org/0000-0002-0942-899X
http://orcid.org/0000-0002-0743-9986
http://orcid.org/0000-0002-0743-9986
http://orcid.org/0000-0002-0743-9986
http://orcid.org/0000-0002-0743-9986
http://orcid.org/0000-0002-0743-9986
http://orcid.org/0000-0002-5236-0951
http://orcid.org/0000-0002-5236-0951
http://orcid.org/0000-0002-5236-0951
http://orcid.org/0000-0002-5236-0951
http://orcid.org/0000-0002-5236-0951
mailto:wyf@sicnu.edu.cn
mailto:georg.northoff@theroyal.ca
www.nature.com/commsbio


seconds, thus aligning with behavior across a multitude of trials in a tem-
porally more continuous way26. This raises the question of how the long
durations of the infra-slow dynamics can be linked to the usually shorter
durations of the cognitive events or trials, such as for instance during
attention. Addressing this challenge is needed to better understand the
mechanisms how infra-slow dynamics modulate cognition and behavior;
that is the main focus of our paper.

Different facets of infra-slow neural dynamics - Scale-free
dynamics and variability
Neural timescale refers to the processing duration, from short to long, over
which neural activity fluctuates, capturing the duration and temporal
structure of brain signals27. This broad concept encompasses multiple
dynamical properties, such as autocorrelation window28,29, power spectrum
density (PSD)30, all of which describe different aspects of temporal persis-
tence in neural activity5.

A key concept in understanding neural timescales is scale-free
dynamics, which can be measured by the power-law exponent (PLE)2,31–33.
This concept of scale-free dynamics describes temporal self-similarity in
PSD, where the power distribution of smaller frequency ranges resembles
the one of the entire infra-slow frequency ranges. The PLE indicates the
distribution of power density/variance across frequencies, e.g., 1/fβ: higher
PLE (i.e., the value β) reflects more power/variance in lower frequency
components and vice versa31,34,35. Recent studies have shown that the PLE in
the infra-slow frequency range is higher in transmodal association cortices
like default-mode network (DMN) and lower in unimodal sensory
cortex36–39. Furthermore, infra-slow PLE has been linked to various psy-
chological and physiological functions, including aging40, consciousness36,
task performance34,41, and rest-task modulation42,43. While these findings
suggest that scale-free dynamics play a role in cognition and behavior, the
precise mechanisms through which scale-free dynamics shape behavioral
variability remain yet unclear. One possibility, as suggested by studies on
scale-free dynamics44,45, is that the brain’s distribution of slow and fast
frequencies may, in a complex corresponding way46, be manifest on the
behavioral and cognitive level and its own variability. However, a critical
question remains: How do the different neural dynamic measures (SD, SE,
and PLE) interact with one another and thereby shape behavioral
fluctuations?

In this study, we aim to investigate this brain-behavior relationship by
examining the inter-dependencies between SD, SE, and PLE acrossmultiple
large-scale networks and their links to behavioral variability in an attention
task.While our approach is primarily correlational, our findings, supported
by meditation models and simulation, suggest a hierarchical structure in
which PLE acts as a background constraint that modulates the relationship
between neural variability (SD and SE) and behavioral fluctuations. Such a
layered dynamic organization is in accordance with the recently proposed
“Dynamic layer model of brain” (DLB)5 that has been supported by both
fMRI47,48 and EEG29 studies; the present paper aims to show the key rele-
vance of such a dynamically layered organization for a specific cognitive
process, namely attention.

In addition to its scale-free dynamics, the brain’s neural dynamics
exhibit significant variability across different timescales28,35,49. The concep-
tion of neural variability describes the degree of change of neural activity
across time50. The simplest andmost commonmeasure of neural variability
is the standard deviation (SD), representing the distributional width of a
neural time series50. It has beenapplied invarious functions inneuroimaging
studies including cognition51,52, consciousness42,53–55, mental disorders56,57,
aging40,58, and various other functions and processes50. This makes neural
variability a promising candidate to link neural and behavioral dynamics in
the infra-slow frequency range50,52,59–62.

The sample entropy (SE) estimates neural variability and specifically its
predictability by analyzing the distribution of temporal patterns based on
information theory, i.e., the complexity50,63. SE has been validated and
effectively used in fMRI studies48,64–66. For instance, SE of the BOLD signal
was demonstrated to be related to the task performance67, aging68, and

mental disorders such as attention deficit and hyperactive disorder
(ADHD)69. However, the relationship between variance-based SD and
information-based SE, andhow they aremediated by their underlying scale-
free dynamics, as measured by the PLE, remains yet unclear.

From neural to behavioral dynamics –what are the mediating
mechanisms?
Like brain dynamics, behavioral dynamics exhibit temporal variability and
share temporal patterns with neural activity5,70. For example, Ding and
colleagues showed that MEG signals at different timescales concurrently
tracked the timescales of different linguistic units such as words, phrases,
and sentences71. Evidence supports that both sustained attention and neural
activity in the frontoparietal network exhibit theta rhythm6,25,72. The steady-
state evoked potential (SSEP) findings revealed that the brain’s neural
entrainment to rhythmic stimuli, strongly supporting the alignment of brain
and behavior73,74.

Together, these studies revealed a direct brain-behavior connection
through entrainment and alignment in the high-frequency range of EEG/
MEG. This leaves open the dynamic mechanism of such brain-behavior
connection in the infra-slow frequency range.A few individual fMRI studies
have begun to explore this question, suggesting a potential direct relation-
ship in this slower frequency domain. For instance, two studies using a
simple reaction time task with fixed trial intervals at frequencies of
0.0625 Hz and 0.125Hz found increasedPSDat corresponding frequencies,
which is knownas low-frequency steady-state brain response (lfSSBR)75,76. A
recent study using an n-back task also revealed that reaction time and
working memory capacity are related to BOLD activity at the same fre-
quency as stimuli presentation47. These studies suggest that behavior, neural
activity, and task stimuli share their temporal structure in the infra-slow
frequency range—behavior and brain activity may thus share the same
infra-slow timescale, e.g., “common currency”70 in their fluctuations. Such
commonly shared fluctuations allow linking all three levels, external input,
internal neural activity, and the subsequently resulting behavior. However,
despite these advances, the mechanism through which infra-slow neural
dynamics process the temporal features of the input stimuli andhow that, in
turn, shapes behavior across different timescales, remains yet unclear.

Sustained attention, a fundamental psychological function, exhibits
fluctuations ranging from seconds to minutes77. These attentional fluctua-
tions occur within the infra-slow frequency range (0.01–0.1 Hz) of neural
activity and cognitive performance, highlighting the close interplay between
infra-slow neural dynamics and attentional dynamics17,23,77. For example,
recent studies have revealed that infra-slow oscillatory transcranial direct
current stimulation (tDCS) enhances performance in sustained attention
tasks, advancing research on the relationship between neural dynamics and
fluctuations of sustained attention78. Thus, investigating sustained attention
fluctuations may provide important insights into the mechanisms of how
infra-slow neural dynamicsmediates cognitive function, e.g., the dynamical
brain-behavior connection.

Aims, hypotheses, and procedures
In this study, we utilized the Gradual-onset Continuous Performance Task
(GradCPT) paradigm to measure moment-to-moment attention fluctua-
tions by constantly recording reaction time at intervals of 1200ms (see Fig. 1
top-left)79. A key advantage of this paradigm is its alignment with the fMRI
sampling rate, as the repetition time (TR) of our fMRI acquisition was
800ms. This results in an approximate ratio of 2 RT values per 3 BOLD
volumes, enabling simultaneous exploration of brain and behavioral
dynamics within the same infra-slow frequency range79. Through this
approach, we aim to connect neural and behavioral dynamics, with three
specific objectives and steps (conceptualized in Fig. 1):

Step1: Investigationof the rest-taskmodulation inGradCPTparadigm
for SD, SE, and PLE in the infra-slow frequency range. We primarily
hypothesized that all threemeasures show task-relatedmodulation in visual
and somatomotor networks, the unimodal cortex, which are thought to
primarily process visual-motor inputs as required in our task28,80.
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Additionally, we hypothesized that the dorsal and ventral attention net-
works, important in attentional control functions, will participate in such
dynamic taskmodulation reflecting the cognitive demands of our sustained
attention paradigm81.

Step 2: Investigation of the connection between neural and behavioral
dynamics. We hypothesized that SD and SE of the BOLD signal relates to
behavioral variance (SD) although in distinct ways in the networks like the
visual, somatomotor, and attention networks that are known tomediate the
attention task81. We also suppose that the PLE will mediate the brain-
behavior relationship in sensory input regions like the visual network, given
its key role in input processing33,36,37,39,44.

Step 3: Investigation of the relationship of BOLD signal’s SD with SE
and PLE.We primarily hypothesized the three measures to reflect different
facets or layers of neural dynamics as suggested in the ‘Dynamic layermodel
of brain’5. This may be reflected by their topographical differences along for
instance, lower-order sensorimotor and higher-order cognitive
networks36–38. Furthermore, we hypothesize that the PLE, as a more com-
prehensive andmost basic or fundamental measure operating in the neural
background48, mediates the relationship of neural SD and SE in the neural
and behavioral foreground. This step involves empirical data analysis and
simulated data analysis to assess themathematical relationship of SDand SE
in dependence on varied PLE values.

Results
Differences in neural dynamics between rest and task states
occur mainly in sensorimotor and attention-related cortices
This study primarily aimed to examine the differences between rest and task
states using three measures of brain dynamics: SD, SE, and PLE. Figure 2A

illustrates the topographical distributions of these measures during both
resting and task states. Notably, the spatial distributions of SD, SE, and PLE
are significantly different from each other. For instance, during the task
state, SD and PLE exhibit elevated distributions in frontoparietal network
(FPN) but diminished distributions in somatomotor network (SMN) (see
Fig. 2A, and Supplementary Fig. 1 for statistics).

Crucially, the significant t-test differences [n = 49, p < 0.05, false dis-
covery rate (FDR) corrected] between rest and task states in these measures
are consistently manifested in and overlap with each other across all three
measures within unimodal regions and attention-related networks, speci-
fically the visual network (VIS), SMN, dorsal attention network (DAN), and
ventral attention network (VAN) (Figs. 2B and 3). Although the changes in
SDwithinDMNare significant, the effect isminimal when compared to the
SD changes observed in the unimodal and attention-related cortices. Fur-
thermore, the study found a decrease in the values of SD and PLE from rest
to task in those networks, while SE increased in the same regions; this
suggests that SE may inversely influence behavioral outcomes during our
attention task.

Together, these findings reveal a consistent pattern of rest-to-task
changes across all three dynamical measures (SD, SE, and PLE) in
unimodal networks. However, in high-order networks such as the default
mode network (DMN), only SD exhibits a task-related increase, while SE
and PLE follow different patterns (schematized in Fig. 2C). Importantly,
this pattern was also observed after task regression (Supplementary
Table 1), indicating that in unimodal networks the three measures
converge in their responses to the task, whereas in higher-order networks
(FPN and DMN) their changes diverge. Moreover, it shall be noted that
we observed task-related decreases in both PLE and SD, whereas SE

Fig. 1 | Concept and procedure of the current study.This Figure contains three key
steps: (1) Examining the sustained attention task modulation by detecting the rest-
task difference in three measures; (2) Investigating the connection between

behavioral and brain dynamics by correlating neural and behavioral measures; (3)
Conductingmediation analysis to assess PLEmediation on the relationship between
SD and SE.
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exhibited the opposite pattern, showing a task-related increase across all
examined networks.

From neural to behavioral dynamics: the differentiation of brain-
behavior relation through the distinct neural dynamics of SD, SE,
and PLE
We next explored how the three dynamic measures correlate with beha-
vioral performance as indexed by the SD of the RT. Figure 4A demonstrates
the Pearson correlations between the three BOLDmeasures and RT across
the seven networks at the group level (n = 49, FDR corrected for 21
comparisons).

Specifically, PLE displayed significant positive correlations exclusively
within the VIS, a key network predominantly involved in processing visual
stimuli in our attention paradigm. A different pattern was observed in SE,
which showed negative brain-behavior correlations in both the sensor-
imotor cortex and attention-related networks, including VIS, SMN, DAN,
and VAN.

Finally, SD of RT positively correlated with BOLD SD in networks
overlapping with SE but also in DMN, as shown in Fig. 4B. This correlation
remained significant in the task-regressed data (Supplementary Table 2).
Supplementary Fig. 2 shows that the distributions of SD, SE, and PLE values
are approximatelyGaussianwith awide range, supporting the validity of our
correlation analysis. We also calculated Spearman’s rank correlations
(Supplementary Table 1). Although the Spearman correlations for SD and
SE in the VIS and SMN (and for PLE in VIS) were nominally significant
(n = 49, p < 0.05), none survived correction for multiple comparisons. This
suggests that the RT–BOLD relationship is primarily linear rather than
monotonic or non-linear. Moreover, the broad data distributions (Supple-
mentary Fig. 2) justify using Pearson’s correlation to capture the full
variability in the data.

We also examined both Pearson’s and Spearman’s correlations
between the three BOLD measures and additional behavioral metrics,
includingmeanRT, numberof commission errors, andnumber of omission
errors (Supplementary Tables 3–9). None of these correlations survived
multiple comparison correction, indicating that the variability-based BOLD
measures are primarily associated with behavioral variability, rather than
with the mean behavioral performance as averaged across the single trials.

Overall, we show a linear relationship between the variability of the BOLD
signal and the variability of the RT.

Together, these findings suggest a hierarchical topographic-dynamic
structure of brain-behavior connections that extend fromPLE to SE andSD,
moving from the visual network over attention-related networks to higher-
order networks like DMN. This pattern suggests distinct roles of the three
measures of the dynamics of BOLD signal in mediating behavioral
dynamics.

From the neural background to the connection of neural and
behavioral foreground: PLE mediates the relationship between
BOLD variability and behavioral variability
Next, we raised the question about the role of PLE in mediating the
relationship between neural and behavioral dynamics in VIS, which
showed significant correlation between brain and behavior in all our
three dynamical BOLDmeasures. Given that a previous study48 showed a
mediating role of PLE, we first tested whether the relationship between
BOLD and behavioral SD was mediated by PLE (Fig. 4B). This indeed
yielded a partial mediation effect, showing that PLE is a key factor in
mediating the transition from neural variability to behavioral variability.
In contrast, BOLD SE showed no significant PLE mediation effects with
behavioral SD. In the task-regressed data, we found full mediation, fur-
ther underscoring PLE as a fundamental background linking neural
variability to behavioral variability.

Together, these findings demonstrate the key role of scale-free
dynamics in operating in the neural background that facilitates the more
foreground connection of BOLD variability with behavioral variance.

Scale-free dynamics operate as neural background for neural
foregroundSDandSE: their relation is strongest in thepinknoise
regime (empirical and simulated data)
Our findings showed that PLE, as a background index, mediates the rela-
tionship from neural variability to behavioral variability (Fig. 4). This raises
the question of whether PLE also operates in the neural background for the
relationship of SE and SD on a purely neuro-dynamical level. To test this
hypothesis, we test the relationship between PLE and other dynamical
measures such as SD and SE in the seven networks.

Fig. 2 | Rest-task difference of SD, SE, and PLE. A The topographies of SD, SE, and PLE in resting and task states. B: Paired t-test results for rest-task differences within
subjects (n = 49, p < 0.05, FDR corrected). C Schematics for the overlapped networks in three measures.
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As shown in Fig. 5A, we first examined the correlations among the
three measures in seven networks (n = 49). There were consistently
negative correlations between SE and the other two measures in every
network. Notably, the relationship between SD and PLE appeared non-
linear in VIS and SMN, showing a second-order polynomial trend,
whereas in other networks, the association was more linear but with
lower R² values. Visual inspection suggested that the observed non-
linearity stemmed from an inflection point at PLE = 0 in VIS and SMN
for some subjects, indicating a potential transition from blue noise to
pink noise. Based on this observation, we hypothesized that the media-
tion effects of PLEmay differ depending onwhether PLE values are above
or below zero.

To test this hypothesis, we examined how PLE modulates the corre-
lation between SD and SE within simulated data. For this purpose, we
generated time series data with different PLE regimes, corresponding to
distinct noise types: white noise (PLE = 0), pink noise (PLE = 1), and blue
noise (PLE =−1).

White noise (PLE = 0) is characterized by a flat power spectrum,
indicating that all frequencies contribute equally, resulting in a highly
unstructured and random signal. Pinknoise (PLE = 1), in contrast, follows a
1/f power distribution,meaning that lower frequencies dominate, leading to
long-range temporal correlations that are commonly observed in biological
and cognitive systems. Blue noise (PLE =−1) exhibits the opposite trend,
with power increasing at higher frequencies, generating rapid fluctuations
with little persistence over time.

As shown in Fig. 5B, in conditions when PLE =−1 (blue noise) or
PLE = 0 (white noise), there was no correlation between SD and SE. In
contrast, their correlation begins to increase when PLE exceeds 0.
Remarkably, this correlation value approaches -1, indicating a fully negative
correlation in the presence of pink noise (PLE = 1), which aligns well with
our empirical findings.

Together, both empirical data and simulation findings support: (1) the
relationship between BOLD SE and SD, and (2) the modulation of their
relationship by PLE, which (3) only holds in certain regimes where it relates
to pink noise as distinguished from both blue and white noise. This
observation underscores the critical role of the PLE in modulating the
interaction of BOLD SD and SE, particularly under conditions mimicking
biological noise patterns, such as pink noise.

Discussion
The brain-behavior connection is a fundamental question in cognitive
neuroscience. Previous research has primarily investigated the neural
mechanisms of cognitive processes at high frequencies. However, recent
advancements have highlighted the importance of infra-slow frequency
dynamics inmediating behavior although the exactmechanisms remain yet
unclear. In our study, we provide evidence that three neural dynamic
measures—SD, SE, and PLE—are related to behavioral variability, the SDof
RT, on an infra-slow timescale in the range of 0.01 to 0.1 Hz.

Notably, we also show that PLE, SD and SE take on distinct roles in
mediating brain-behavior connection in our sustained attention task. Spe-
cifically, showing in both empirical and simulated data, PLE seems to
operate in the neural background from where it mediates the more fore-
ground neural connection of SE and SD as well as the latter’s dynamic
relationshipwith thedynamics of thebehavior, e.g., SDofRT.That is further
supported by our simulation showing a mathematical relationship of SD
and SE through their mediation by scale-free dynamics (PLE).

Together, we demonstrate the key relevance of infra-slow dynamics
and its distinct features, SE, SD and PLE, inmediating behavioral dynamics
along a background-foreground distinction. This sheds light on the key role
of the brain’s infra-slow dynamics for behavior including its mechanisms
that mediate cognitive-behavioral dynamics.

The brain-behavior connection in the infra-slow frequency range
Recent cognitive neuroscience research increasingly emphasizes the
importance of large-scale networks in understanding the brainmechanisms
underlying human attention23,82. Many studies have highlighted the sig-
nificance of the DMN and the FPN in attention, linking them to the inverse
attentional processes involved in attention-demanding tasks25,72,83,84. Addi-
tionally, the GradCPT study revealed the activation of the DMN, the DAN,
and regions within the FPN during tasks, associating these networks with
changes in attentional capacity79.

Our currentfindings alignwith these observationswhile also extending
previous research. Notably, our study demonstrates consistent modulation
of neural dynamics between rest and task states in theVIS, SMN,DAN, and
VANnetworks, which are associated with the unimodal cortex. In contrast,
within transmodal/high-order networks (including the Limbic network,
FPN, and DMN), only SD exhibited task-related changes in the DMN.

Fig. 3 | The statistics of rest-task differences for three measures in seven networks. Error bars in dot-plots indicate the median value with 95% CI of the measure across
participants (n = 49). Significance levels are denoted as follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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This distinction suggests that while the three dynamic measures (SD, SE,
and PLE) follow similar patterns of rest-task modulation in unimodal
regions, they diverge in transmodal networks, particularly the DMN.

This divergence may reflect differences in functional specialization
between unimodal and transmodal regions. The unimodal cortex primarily
processes sensory inputs and motor responses, which are directly engaged
by task-related demands, leading to synchronous changes across different
measures of neural variability (SD, SE, and PLE). In contrast, transmodal
networks, such as theDMN, integrate information acrossmultiple cognitive
domains, including internal mentation, memory, and attentional
control84,85. The fact that only SD exhibited task-related changes in the
DMN, while SE and PLE did not, suggests that SDmay bemore sensitive to
cognitive control mechanisms unique to transmodal regions23, whereas SE
and PLE may predominantly reflect background neural dynamics that
remain stable in these higher-order networks. Thus, our findings do not
simply indicate adynamic characterizationof lower-order visual processing.

Instead, they highlight howneural variability differentially tracks changes in
brain states depending on the functional role of the network for subsequent
behavior—being more homogeneous in unimodal networks but more
heterogeneous in transmodal regions.

In line with the rest-taskmodulation findings, our core discovery is the
differentiated roles of neural SD, SE, and PLE in their correlation with
behavior. All three measures correlate with behavioral performance but
differ across brain networks.We found that SD significantly correlates with
behavior in the DMN, while SE does not, consistent with the rest-task
difference findings. Additionally, the VIS network showed a significant
correlation with RT SD across all three measures. Importantly, the VIS was
the only network where RT SD significantly related to the neural PLE,
highlighting its role in processing visual inputs in a visually demanding task
like ours86,87.

Notably, both SD and SE exhibited significant behavioral correlations
in the SMN, DAN, and VAN, networks specifically involved in sustained

Fig. 4 | BOLD-RT correlation of SD, SE, and PLE at the group level in task state.
A Pearson correlations for three measures in seven networks. The regression plots
with blue-shaded indicate significant correlation (n = 49, FDR corrected). B The
schematics for the hierarchical structure for SD, SE, and PLE. And the mediation

model (n = 49) for the relationship between BOLD SD/SE and RT SD in task state.
Significance levels are denoted as follows: *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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attention tasks. In contrast, PLE did not show significant behavioral cor-
relations in these networks. This divergence between PLE and SD/SE sug-
gests that PLE functions as a topographic and dynamic background
measure, which appears to be less sensitive to specific cognitive-attentional
task demands. In other words, while SD and SE reflect task-related fluc-
tuations in brain activity that are closely tied to performance in attention-
related tasks, PLE operatesmore as a general and task-unspecificmeasure of
neural dynamics that is not directly influenced by the specific demands of
the task. This distinction in the roles of PLE, SD, and SE is further supported
by our other findings, indicating that each measure may capture different
aspects of brain dynamics.

Scale-free dynamics regulates the SD-SE and brain-behavior
relationship: the main contribution of the low-frequency oscilla-
tory component
To investigate the background role of scale-free dynamics and the differ-
ential roles of SD and SE, as well as their relationship, we examined the
mediation effect of PLE on the correlation between neural variability and
behavioral variability as well as its modulating effects on the purely BOLD

correlation of SD and SE. First, we found that PLE significantlymediates the
relationship between BOLD SD and behavioral SD but not between BOLD
SE and behavioral SD. This suggests again a special role for PLE as distinct
from both SD and SE in mediating behavioral dynamics. Moreover, it also
implies differential roles of SE and SD, which again further supports our
findings of their subtle differences in the networks of their rest-task mod-
ulation. Accordingly, our findings strongly indicate differential roles of PLE,
SE, and SD in mediating brain-behavior relationship, suggesting a layered-
like organization of the brain’s neural dynamics in mediating behavioral
dynamics5.

The special role of PLE operating in the neural background is further
supported by the purely neuronal, e.g., BOLD relationship of PLE with SE
and SD. Our results show that both SD and PLE are negatively correlated
with SE, consistent with a previous study48. A notable finding is the non-
linear relationship between SD and PLE, with an inflection point at
approximatelyPLE = 0.The simulateddata further support the results of the
non-linear relationship between SD and PLE from real data. During both
blue noise (PLE =−1) and white noise (PLE = 0), the correlations between
SD and SE are close to zero. In contrast, when PLE increases to 1 (pink

Fig. 5 | PLE as themediator for brain-behavior and SD-SE relationship. ACorrelations between threemeasures (n = 49).BThe relationship between SD and SEmediated
by varying PLE in simulated data. Scatter plots depicted the correlations (n = 49) between SD and SE under PLE = -1, 0, and -1.
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noise), the correlation between SD and SE evolves to a nearly full negative
correlation in our simulation just as we observe it in our empirical data: as
the signal’s scale-free dynamics increases moving from white to pink noise,
SD and SE start relating to each other.

The underlying idea is that scale-free dynamics, such as those seen in
pink noise, provide a temporal background structure in the neural activity
that facilitates themore foreground connectionbetween twodistinct aspects
of neural variability, SD (which reflects the fluctuation magnitude) and SE
(which measures the complexity or entropy). These two measures, which
operate on different timescales, becomemore related with each other in the
presence of scale-free dynamics. This connection between SD and SE may
thus be mediated by the temporal structure of pink noise which, in turn,
plays a key role in linking neural dynamics to behavioral outcomes48.

While we pointed out the differentiation of distinct layers of neural
dynamics, e.g., background and foreground, their relationship to physio-
logical and psychological features remains yet unclear. The PLE ismeasured
across the whole frequency range which renders it a perfect candidate to
serve as more global (here understood in a temporal sense in terms of the
range of frequencies) background measure. In contrast, cognition and
behavior require specific frequencies in both high frequency8,88 and also
within the infra-slow frequency range78,89. Together, our findings suggest a
topographic-dynamic organization with various layers organized along a
gradient from the global brain including all its regions and frequencies/
scale-free dynamics (PLE) to more local activity with specific regions and
frequencies (SD, SE) specific and restricted regions and frequencies/oscil-
lations (SE, SD) which, in turn, modulates behavior, e.g., SD of RT. That is
well in accordance with and supports the recently proposed ‘Dynamic layer
model of brain’ as an integrated dynamic-topographic brain-mind model5

(see below for details).
Another, though not exclusiv,e perspective is the concept of energy

reallocation in PSD, describing the change in the distribution of power in
PSD to meet the temporal structure of cognitive tasks35,76,90. In the current
GradCPT task, subjects were required to respond to ever-changing stimuli
that demand sustained attention on a faster timescale. Thus, the specific task
shifts the brain signal to a faster timescale to meet the fast-changing input,
resulting in a loss of low-frequency energy, explaining the decrease in low-
frequency power as well as the PSD. This also partly explains the increased
SE in the task state: as the ratio of low/high-frequency power decreases, the
details/information in a signal increase91, which is well compatible with our
observation of task-related decreases in PLE and SD accompanied by
concurrent SE increase.

The dynamic layer model of the brain: bridging neural activity,
cognition, and behavior
Together, bothour empirical and simulationfindings suggest a background-
foreground distinction and organization in the brain’s neural dynamics,
which is well in line with other empirical findings32,47, and, on a more
theoretical level, with the Dynamic layer model of brain (DLB)5. Roughly,
the DLB characterizes and defines the brain by the dynamic features of its
neural activity that are supposed to be organized along different layers
featured by their distinct timescale,s ranging from long to short. This does
not mean that the DLB is a purely neural model of the brain, though. The
DLB targets a deeper layer of the brain, namely the dynamics of its neural
activity and how that, in turn, modulates its cognitive and behavioral
function. Such layered dynamical organization of the brain’s neural activity
distinguishes the DLB from other brain models like the predictive coding
model92 that, rather than on neural activity itself, focus more on the brain’s
neural function like its cognitive function, and its underlying computational
mechanisms.

The results of the present and others47,93,94 demonstrate clearly how
such dynamically- and topographically-layered organization modulates
both cognition and behavior as indices of the brain’s neural function. The
rest-task PLE increase in visual cortex suggests that it plays a key role in the
temporal encoding (and processing) of the paradigm’s input and its tem-
poral structure, e.g., entrainment74 and alignment73 (see also Klar et al. 2023,

Wolman et al. 2024 for similar findings). This presents the deepest dynamic
layer of the brain. A next layer allows for temporal integration of the various
inputs, e.g., trials of the task, over time as possibly mediated by information
complexity asmeasuredbySE.That is complementedbyyet another layer of
neural variability (SD), which provides temporal scaffolding of the output,
e.g., the reaction time and its behavioral variability – this is supported by
their correlation.

Together, our findings demonstrate three dynamic layers of the brain’s
neural activity and their respective mechanisms, including (i) scale-free
dynamics with temporal input encoding, (ii) information complexity/
entropy allowing for temporal input integration, and (iii) neural variability
providing temporal scaffolding of the behavioral output and its variability.
Reflecting different layers of the brain’s neural dynamics, these temporal
mechanisms allow connecting input and output through their shared
dynamics. This is manifest in the brain’s dynamic shaping of its cognition,
which stands at the very core of what we recently introduced as “Spatio-
temporal Neuroscience”5,70,95.

Limitations
Several limitations should be noted. Firstly, our experimental paradigm
involved behavioral responses in a highly controlled environment with
limited dynamics. The human brain operates onmultiple timescales, which
need tobe investigated innatural environments that provide complex inputs
aligning with real-world brain function. For instance, music and movie
stimuli have been shown to trigger complex brain responses, including
changes in functional connectivity. To our knowledge, no study, including
our current one, has explored the complex dynamical relationship between
brain and behavior across multiple timescales using natural stimuli. Our
study may pave the way for investigating the brain-behavior connection on
varied timescales.

A critical aspect of our study is the differentiation between fractal and
oscillatory properties in the PSD. We focus exclusively on the former,
specifically the PLE.While the scale-free nature of the background supports
cognitive functions—such as attention in our case—oscillations also play a
significant role, particularly when considering the timescale in certain fre-
quency points. These oscillations may serve as a stronger indicator of
behavioral variability, as suggested by ref. 96. Todate, only a limited number
of fMRI studies have examined the oscillatory component within the infra-
slow frequency range, such as in the context of aging40.However, no research
has yet explored its cognitive implications. Further investigation is needed to
understand the cognitive relevance of this oscillatory component.

Some methodological considerations should be noted. Firstly, we
applied the sample entropy calculation with parameters m = 2 and r = 0.5.
Although these parameters are commonly used and validated by previous
studies48,64,97, further methodological research is necessary to explore the
impact of different sample entropy parameters. The parameter m is parti-
cularly important as it represents the time length of the mode, which is
sensitive to the intrinsic timescale of the data. Furthermore, our analysis
focused on the conventional infra-slow frequency range of 0.01–0.1 Hz,
which is considered to have a higher signal-to-noise ratio and is less influ-
enced by physiological noise. However, many studies have emphasized that
important neural information is also contained in higher frequencies
(>0.1 Hz)3,4. Future research should investigate these dynamical measures,
particularly scale-free dynamics, across a broader frequency range. This
approach would provide a more comprehensive understanding of the
relationship between brain and behavior across the full spectrum of time-
scales, from longer to shorter durations.

Conclusion
In the current study, we demonstrated the direct connection of the beha-
vioral dynamics of task performance during sustained attention with the
dynamics of the infra-slow frequencyBOLDactivity. Basedon our research,
we propose that the temporal dynamics and their relationship to behavior,
and more importantly, the layered structure of SD, SE, and PLE, play a
pivotal role in organizing the different temporal features of the brain’s
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task-related processing including its link to behavioral dynamics. This
supports the idea that infra-slow frequency scale-free dynamics with its
nested faster timescales as a global component98,99, like the PLE, provides a
“neural background” for cognitive function such as sustained attention,
serving as a fundamental function for other cognitive functions operating in
the foreground77. This is well in line with the recently proposed ‘Dynamic
layer model of brain’ (DLB)5, which, briefly, proposes that the brain’s
dynamically layered neural activity is instrumental in mediating and
shaping behavior and cognition.

Together, our findings emphasize the importance of scale-free
dynamics and neural timescales, their spatiotemporal structure, in influ-
encing neural and behavioral dynamics, advancing the understanding of
fMRI low-frequencyactivity and its relation to cognitive functions70,95. These
findings serve as a catalyst for future research, enabling more nuanced,
dynamic, and topographic examinations of infra-slow frequency brain
dynamics in brain-behavior connectio,n including its abnormalities in
mental disorders.

Methods
Participants and experiment design
The study recruited 49 healthy adult participants at Sichuan Normal Uni-
versity, comprising 24 males and 25 females (age of 21.15 ± 2.10 years). All
participants were confirmed to have no psychiatric disorders and were not
taking any psychiatric medications. They were required to abstain from
alcohol and caffeine for 24 h before the experiment and tomaintain regular
sleep patterns. The experimental procedures received approval from the
Ethics Committee of the Institute of Brain and Psychological Sciences at
Sichuan Normal University. All ethical regulations relevant to human
research participants were followed.

Participants underwent two scanning sessions: the first session was
conductedduring resting state, followedby the task state. In the resting state,
participants were instructed to lie down, eyes open, with focus on the cross
on the center of the screen, and rest without engaging in specific thought
processes for 8min.

The Gradual-onset Continuous Performance Task (GradCPT) para-
digm is employed to assess sustained attention (refer to Fig. 1, top-left
panel)100,101. The GradCPT involved 10 circular grayscale images of urban
scenes and an equal number of mountain scenes, standardized in size and
grayscale. The task displayed an asymmetrical distribution in GradCPT,
with mountain images comprising 10% and urban images 90% of the trials.
The sequence of image presentation was randomized to prevent the con-
secutive display of images from the same category. Transitions between
images were achieved by gradually altering their transparency: the outgoing
image faded from opaque (0% transparency) to fully transparent (100%),
and the incoming image transitioned from fully transparent back to opaque.
This fading process lasted for 1200 milliseconds, maintaining constant
grayscale and brightness tominimize the potential attentional effects caused
by abrupt changes in the stimuli. Participants were tasked with pressing a
key using their right thumbwhen they confidently identified an urban scene
and were instructed to refrain from pressing any key upon recognizing a
mountain scene. The task comprised 400 trials and spanned 8min, during
which response times and errors were recorded.

fMRI data and preprocessing
Imaging data were acquired using the Siemens 3-T connectome-Skyra
scanner at the Brain Imaging Center of Sichuan Normal University. The
scanning sequence employedwasGradient-echo EPI, with a repetition time
(TR) of 800 milliseconds, echo time of 38 milliseconds, flip angle of 52
degrees,field of viewof 208×180mm, slice thickness of 2mm, 72 slices, and
a voxel resolution of 2 x 2 x 2 mm.

The preprocessing of fMRI data was performed using fMRIPrep ver-
sion 23.0.2 with default settings102. The processed data were output in the
“fsaverage5” surface format in CIFTI files for subsequent preprocessing and
analysis stages. After discarding the initial four time points, we removed
artifacts related to six estimated headmotion parameters (x, y, z translations

and rotations), frame-wise displacement (FD), as well as signals fromwhite
matter and cerebrospinal fluid. Finally, we extracted signals corresponding
to seven brain networks from the Yeo et al. 2011 template: visual (VIS),
somatomotor (SMN), dorsal attention (DAN), ventral attention (VAN),
limbic, frontoparietal (FPN), and default-mode (DMN) networks. These
signals were then filtered using an ideal filter with a passband of 0.01Hz
to 0.1 Hz.

Behavioral and stimulus confounds control analysis
For each voxel, after performing standard nuisance regression during pre-
processing,we applied an additional general linearmodel (GLM) to account
for potential stimulus-related confounds103. In this GLM, each stimulus
presentation was modeled as an impulse event, convolved with a canonical
hemodynamic response function, and included as regressors for three task-
related event types: correct omissions, commission errors, and omission
errors. We did not regress out correct commission events (accurate
responses to non-target city scenes) because their high frequency effectively
defined the continuous “task state.” All analyses were then repeated on the
residual time series from this regression (the “task-regressed” data), and the
results are reported in Supplementary Tables 1, 2 and Supplementary Fig. 3.
This process is consistent with a previous GradCPT study104.

Behavioral data and their measures
Response times (RTs)were examinedusingmethods established inprevious
GradCPT studies78,79,105. In the GradCPT paradigm, each image is gradually
revealed over a 1200-ms period until it reaches full clarity. Importantly, the
transition to the next image begins immediately once an image is fully
presented at 1200ms. RTs were measured from the onset of each image
transition. Thus, an RT of exactly 1200ms indicated a response at the point
of full image clarity, without overlap with the following image. RTs shorter
than 1200ms suggested that the participant responded while the image was
still transitioning from the previous one. Conversely, RTs longer than
1200ms showed responses during the transition to the next image. In cases
of significantly aberrant RTs (either before 70% clarity of the current image
or after 40% clarity of the subsequent image) or multiple responses, we
employed an iterative algorithm to optimize the accuracy of recorded
responses. Initially, the algorithmallocated clearly correct responses, leaving
a minimal number of ambiguous responses (less than 5% of trials).

Ambiguous responses were reassigned to adjacent trials that lacked a
recorded response.When two consecutive trials weremissing responses, the
ambiguous response was allocated to the trial closest in time, except if that
trial was a no-go—in which case the absence of a response was treated as a
correct omission. If multiple responses occurred within a single trial, only
the fastest response was considered valid. In instances where two con-
secutive trials remainedwithout clear reassignment, themissingRTs for city
andmountain sceneswere imputedusing themedianRT for each scene type
within that run.

Following these adjustments, we computed the standard deviation
(SD)ofRTs as an index of sustained cognitive performance, instead ofmean
of RTs, consistent with previous studies79,100. A lower SD reflectsmore stable
response patterns, which are associated with higher vigilance and sustained
attention in the GradCPT paradigm. In other words, RT variability reflects
fluctuations in attentional stability, whereas the mean RT is primarily
influenced by the periodic response to the fixed stimulus interval. This
metric has been widely used and replicated in prior studies employing
GradCPT to assess cognitive performance, vigilance levels, as well as its
neural mechanism77,104.

The study did not focus on reaction accuracy, where subjects mis-
takenly responded tomountain images or incorrectly identified city images,
as the primary goal was to establish a link between the variability of RT time
series and BOLD signals. Hence, error trials were excluded from the time
series, and interpolated the missing RT value of these trials by cubic spline
interpolation to preserve the time-frequency feature78. However, to enhance
data transparency in brain-behavior correlation analyses, we reported the
results for error trials, including commission errors (responses tomountain
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images), omission errors (missed responses to city images), and the mean
RTs (Supplementary Tables 4–6).

fMRI data measures
SD. SD is a common metric for evaluating signal variance and has been
widely used in fMRI studies. It represents the distributional width of
BOLD signals50. Previous studies have shown that SD carries important
physiological and psychological significance, not merely signal
noise106–108. In our study, we appliedMATLAB’s ‘std’ function to calculate
the SD of the BOLD time series for each network and participant.

SE. Sample entropy (SE) is a measure of complexity or regularity, ori-
ginally developed to assess the unpredictability of fluctuations in time
series data109. Unlike its predecessor, approximate entropy, SE does not
include self-matches, resulting in a more consistent discrimination of
complex signals109,110. This measure is particularly useful in fMRI studies
for evaluating the complexity of neural signals. It functions by identifying
repeated patterns; a higher frequency of repetitions indicates more pre-
dictable and structured data.

The key parameters used in the calculation of SE were the pattern
lengthm and the similarity factor r. The embedding dimensionmwas set at
2, which considers pairs of points in constructing the template vectors. The
tolerance r, representing the width of the similarity criterion, was set to 0.5
times the standard deviation of the time series.

The formula used for Sample Entropy is:

SE m; r;Nð Þ ¼ �ln
A
B

� �

where N is the length of the time series, A is the number of matches for
templates of lengthm+ 1 that remain similar form points, excluding self-
matches, and B is the number of matches for templates of length m. Two
patterns match if the distance is less than r. The value setting of m and r is
consistent with prior fMRI research48,64,97. Our SE calculation script is
accessible at http://www.georgnorthoff.com/code.

In sum, higher values of SE indicate greater signal complexity, sug-
gesting less predictable neural activity, whereas lower values denote more
predictable neural patterns. Although the use of SE in fMRI data can be
criticizeddue to the thermalnoise component in the fMRI signal111, previous
studies have confirmed SE’s validity and effectiveness in distinguishing
between different brain regions and systems, highlighting its ability to
mirror the hierarchical structure and functional diversity of brain
systems48,64.

PLE. The power-law exponent, often denoted as the scaling exponent β, is
a critical measure in understanding the temporal scaling properties of
time series data31,34. To calculate the PLE, we firstly get a power spectral
density (PSD) of a time series. Then the log-log plot of the frequency
versus power from the PSD was used to determine the power-law rela-
tionship. The PLE, represented by the scaling exponent β, corresponds to
the negative slope of this log-log plot, as determined by linear regression
in log-log space36,37,48. This method was utilized, restricting the frequency
range to 0.01–0.1 Hz to mitigate interference from scanner drift and
physiological noise. Notably, visual inspection (see Fig. 1, schematic for
PLE) reveals no apparent oscillatory component within the 0.01–0.1 Hz
range, suggesting that the PLE calculation is primarily influenced by the
1/f component. This approach aligns with established methodologies,
and our script for calculating PLE is also available at http://www.
georgnorthoff.com/code.

The value of the power-law exponent β offers insights into the intrinsic
timescale of brain activity. A β = 1 exponent suggests pink noise, which is
typical for many biological systems. In contrast, lower values of β (closer to
0) indicate a flatter spectrum, reflecting more transient and unstructured
dynamics. This measure has been linked to shifts in attention, arousal, and
pathology-related alterations in brain function31,36,37,45.

Mediation model analysis
To examine whether the power-law exponent (PLE) mediates the rela-
tionship between response time variability (RT SD) and brain signal
variability, we conducted a mediation analysis using the CANLAB media-
tion toolbox for MATLAB112,113. Specifically, we tested two mediation
models:

1. PLE as a mediator between BOLD signal variability and RT
variability:

-The independent variables were the standard deviation (SD) and
sample entropy (SE) of BOLD signals during the task.

-The dependent variable was RT SD.
-PLE served as the mediator, allowing us to assess whether neural

timescale properties (PLE) explain the link between BOLD signal variability
and behavioral variability.

2. PLE as a mediator between different measures of BOLD signal
variability:

-The independent variable was the SE of BOLD signals.
-The dependent variable was the SD of BOLD signals.
-PLEwas tested as amediator to evaluate whether infra-slow scale-free

dynamics contribute to the relationship between different forms of BOLD
variability.

We assessed the significance of direct and indirect effects using a
bootstrapping approach with 10,000 resampled iterations, generating 95%
confidence intervals. This allowed us to determine whether the mediation
effects were statistically robust.

Simulation analysis
To investigate the mathematical relationship between SD and SE under
varying PLE, we generated 1000 samples of colored noise consistent with
different PLE values. This simulation utilized MATLAB’s built-in function
“dsp.ColoredNoise,” covering PLE values ranging from -2 to 2 at equal
intervals. Both SD and SE were calculated in these simulations to explore
how PLE influences their relationship.

Statistics and reproducibility
A significance threshold of p < 0.05 was applied for all two-sided statistical
tests. Sample sizes are reported in themain text. The statisticalmethods and
multiple comparison correction procedures are detailed below.

Difference analysis: We conducted difference analyses using paired
t-tests for SD, SE, and PLE of BOLD signals. These analyses encompassed
comparisons between rest and task state and the z-scores of the three
measures in task state across seven networks.

Behavior-brain correlation analysis: To investigate the relationship
between behavioral variability and three BOLDmeasures, we performed
Pearson’s correlation analyses: (1) For each subject, we extracted one
behavioral measure (RT SD) and three BOLD measures (SD, SE, and
PLE)within each of the seven networks. (2)We then computed Pearson’s
correlations betweenRT SD and each of the three BOLDmeasures within
each network, yielding a group-level behavior-brain correlation for each
network. (3) Additionally, Pearson’s correlations were computed among
the three BOLD measures within both empirical data and simulated
data (Fig. 4).

Three BOLD measures correlations: To assess the relationships
between SD, SE, and PLE, we initially computed Pearson’s correlations.
However, given that visual inspection of scatter plots suggested non-
linear trends, particularly in VIS and SMN, we also performed poly-
nomial regression analyses to better capture these relationships. Speci-
fically, we fitted second-order polynomial models and compared their R²
values to those of linear models. This approach allowed us to determine
whether non-linear relationships were more appropriate for specific
networks.

Multiple comparison correction: Statistical tests (21 analyses across
seven networks and three measures—SD, SE, and PLE; seven networks ×
three BOLDmeasures) were corrected for false discovery rate (FDR) using
the linear step-up procedure introduced by ref. 114.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The fMRI dataset assessed in this analysis is available from the corre-
sponding author upon reasonable request. The source data behind the
graphs in the paper can be found in Supplementary Data 1.

Code availability
The code for replicating the calculations of the three key measures (SD, SE,
and PLE) is publicly available on our website: https://www.georgnorthoff.
com/code.
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