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Language is the primarymedium throughwhich humans achieve information transfer and exchange. It
enables the conveyance of ideas, concepts, and messages, thereby playing an indispensable role in
social interaction and knowledge dissemination. Linguistic neural decoding aims to obtain
outstanding language information from the evoked human brain during information interaction of both
textual and spoken formats. In this work, we present a taxonomy of recent neural decoding progress,
focusing on deep learning architectures and strategies, especially those implementing large language
models (LLMs) for their powerful information understanding, processing, and generation capacity.We
concludewith a concise observation of the challenges and potential future directions. This article aims
to provide brain scientists and deep learning researchers with an overarching viewpoint of the
significant correlations observed in the human brain during language perception and production from
a methodological perspective, and thus facilitate their further investigation.

Language facilitates human communication and information exchange, in
which the human brain plays a crucial role, enabling complex cognitive
processes supporting the linguistic perception, comprehension and
production. Despite advancing insights into the human brain, the linguistic
representation andprocessing are still underexplored,making it challenging
to explain intuitively the internal mechanisms1. Deep learning presents
a viable solution for understanding language in the brain by utilizing
large-scale trainable parameters to map the correlation between external
stimuli and neural activity. This paper summarizes representative solutions
and current progress on linguistic neural decoding, addressing the potential
promotion by leveraging large language models (LLMs). Progress in
this field involves the joint efforts of neuroscientists and artificial
intelligence researchers. We introduce the neurological foundations
supporting neural decoding with deep networks and illustrate multiple
model architectures. We classify task forms into multiple standardized
paradigms, facilitating researchers to further progress their work, and
conclude by discussing the challenges faced by related fields and proposing
directions for potential applications. It is important to note that the
language discussed in this paper is a synthesis of semantic and syntactic
information, featuring specific content presented in a defined format, pri-
marily including text and speech forms. Visual image reconstruction is
excluded, as it contains semantic content but lacks linguistic syntactic
presentation. Similarly, motions such as handwriting are not considered,

given their involvement with bodily movements and minimal relevance to
language.

SupplementaryNote1 summarizes themain content of this survey.We
begin by discussing the neurological basis of linguistic decoding. Neural
tracking ensures the temporal alignment of brain responses with linguistic
properties, while continuous neural prediction supports the integration of
contextual information. Stimuli recognition is the simplest form of neural
decoding, involving the differentiation of linguistic stimuli by analyzing the
subject’s evoked brain responses. For text stimuli reconstruction, decoding
is performed at the word or sentence level using classifiers, embedding
models, and customnetworkmodules. Considering the dynamics of speech
flow, restoring the speech envelope, mel-frequency cepstral coefficient
(MFCC), and speech waves present broader challenges. Brain recording
translation paradigms are applied in natural reading and listening scenarios,
where the decoding system generates the stimulus sequence in textual or
speech form based on the evoked brain response. This task is analogous to
machine translation, treating brain activity as the source language and
translating it into human-understandable text. Speech neuroprosthesis
focuses on decoding inner or vocal speech based on human intentions. The
field has progressed from phoneme-level recognition to open-vocabulary
sentence decoding. Brain-to-speech technology is a promising direction,
with spectrograms generated through matching algorithms or by con-
sidering speech properties, synthesizer parameters, and articulator
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movements. Additionally, to assist neuroscientists and artificial intelligence
researchers in better developing decoding systems, we provide evaluation
metrics introduced fromdeep learning tasks before the introductionof brain
decoding solutions (Section 2) and a concise summary of the machine
learning models and algorithms discussed in this review (Supplementary
Note 1). Compared to previous reviews of neural decoding2,3, our article
includes recent advances and expands the task formats to a larger scope.
Furthermore, our work focuses on the specification of task paradigms and
methodology, which complements the work on the internal mechanisms of
language models and human language systems4.

Brain-network alignment
Brain signal recordingsmeasure and quantify the biometric neural response
from the human brain, which can be divided into two categories: invasive
and non-invasive. The latter, including functional magnetic resonance
imaging (fMRI), electroencephalography (EEG), magnetoencephalography
(MEG), etc., are affected by transcranial attenuation with a lower signal-to-
noise ratio (SNR)5. On the other hand, invasive methods such as electro-
corticography (ECoG) arehamperedby the limitedpublic availability due to
the necessity of neurosurgery. The essence of deep learning lies in leveraging
the inherent correlations within data to complete prediction, regression and
generation, and the alignment of neural activities and linguistic repre-
sentations is crucial for enabling these capabilities. Specifically, neural
tracking enables the theoretical possibility of achieving temporally con-
tinuous decoding from evoked brain activities, while the neural prediction
process underscores the benefit of contextual information integration,
which is commonly used in current neural decoding approaches.

In this paper, the process bywhich the brain receives external language
stimuli and transforms it into specific neural representations is referred to as
perception, which primarily involves neural encoding. During this process,
external stimuli are transformed into specific neural response patterns, with
neural tracking ensuring the association between language and neural
representations6, as shown in Fig. 1a. The cortical activity automatically
tracks the dynamics of speech as well as various linguistic properties,
including surprisal, phonetic sequences, word sequences, and other lin-
guistic representations7–10. A minor time shift has been observed for infor-
mation transfer and neural response. It ensures the temporal alignment of
brain recordings with linguistic representations, facilitating the serialized
and temporal modeling of cortical activities. As shown in Fig. 1b, language

stimuli are encoded into regular evoked brain responses. In contrast, lin-
guistic neural decoding aims to reconstruct the stimuli perceived or the
intention expressed from high-dimensional brain responses. In Fig. 1c, the
brain undergoes the following processes in communications: perception
converts external linguistic stimuli into specific neural patterns; compre-
hension involves steps such as semantic extraction, understanding, and
reasoning; generation (production) entails outputting responses in a specific
form, for example, by guiding the vocal organs to produce speech. In natural
listening settings, the human brain encodes awide range of acoustic features
and processes external language stimuli temporally through prediction,
highlighting the importance of contextual information in cortical percep-
tion, even at the level of single neurons11,12. Predictive processing funda-
mentally forms the comprehensionmechanisms, occurringhierarchically in
both acoustic and linguistic levels13–16. This phenomenon underscores the
profound impact of context on the forecasting and tracking of ongoing
speech streams, necessitating the use of contextual representations to
investigate cortical responses17–19. This characteristic is similar to language
models constructedbyneural networks,where the same stimuli presented in
varying contexts are mapped onto diverse semantic features. Despite ample
evidence supporting the predictive characteristics of human language pro-
cessing, it has recently been suggested that the benefits actually come from
the capacities of models to predict brain responses20. Regardless of the
mechanisms in the perception process, language models have the potential
to understand and infer neural responses.

When processing natural language, artificial neural networks exhibit
patterns of functional specialization similar to those of cortical language
networks21. Research, particularly focused on Transformers and LLMs,
shows that the representations in these models account for a significant
portion of the variance observed in the human brain22,23. To further this
analogy, it has been verified that the brain encodingmodels and pre-trained
LLMs follow the scaling laws, where themodel performance increases as the
number of parameters grows, indicating the necessity to develop larger
systems to bridge the brain activity patterns and human linguistic repre-
sentations if given sufficient data and other necessary conditions24,25. A
recent study26 has indicated that, in addition tomodel scaling, the amount of
data utilized during the training process positively influences the similarity
of representations between the brain and neural networks. Furthermore,
alignment training is deemed an effective approach to enhancing this
similarity.
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Fig. 1 | The formation of linguistic representation in the human brain. a The
human brain tracks the dynamic flow of speech and linguistic properties withminor
response delay, and the neural response is performed in a continuous predictive
manner. b The human brain and the neural networks can both encode textual or

verbal stimuli into specific representations, and the decoding process aims to
reconstruct the linguistic information. c In vocal communications, the brain pro-
cesses the perception, comprehension, and generation of language. The processor
and communication icons are from Vecteezy and Dreamstime.
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Neural decoding division and evaluation
Linguistic neural decoding aims to generate the corresponding external
stimuli or inner intention from the activated brain signals. This field has
lacked a fine-grained division, preventing researchers from system-
atically conducting their work. In this review, previous research has been
categorized according to the experiment design, stimulus type and
decoding target (Table 1). Stimuli recognition is the simplest form and
usually requires a modest candidate set and limited sequence length. For
speech stimuli, in addition to identifying the textual content, some work
considers reconstructing simple speech features and waveforms. These
tasks are typically treated as simple classification or regression. Brain
recording translation differs in its ability to handle open-vocabulary
continuous decoding, which means a sharp increase in the search space
and results in a deterioration in the accuracy without introducing
intrusive signals. This task focuses more on semantic consistency rather
than the absolute identity of the text. Speech neuroprosthesis aims to
generate inner speech from spontaneous neural activation patterns.
The subjects do not receive external stimuli but perform pronunciation
tasks of imagined speech or attempted speech. Researchers have
achieved word-level high-precision continuous decoding with invasive
recordings.

As an interdisciplinary field of neuroscience and artificial intelligence,
earlyworkonneural decodingmainly follows the paradigmof classification,
recognition and sequence decoding. Similar experiments are closely related
to machine translation (MT), text-to-speech (TTS), and automatic speech
recognition (ASR). Table 2 summarizes the evaluation metrics. In the tex-
tual stimuli classification paradigm, accuracy is widely used to measure the
percentage of correct instances. As for sequential decoding, ASR and MT
tasks generate text sequences with distinct accuracy requirements. The
evaluation metrics for the latter focus on semantic consistency, which is
extensively employed in brain recording translation. To be more specific,

BLEU (bilingual evaluation understudy)27 calculates the precision of
n-grams compared to reference translations, and ROUGE (recall-oriented
understudy for gisting evaluation) pays more attention to recall.
BERTScore28 is a recent metric leveraging deep contextualized embeddings
from BERT29 to capture semantic similarity instead of matching exact
n-grams.When invasive data is used, ASRmetrics becomemore applicable,
such as inner speech recognition in speech neuroprosthesis. WER (word
error rate) is a commonmetric of ASR systems. It measures the accuracy of
decoded hypotheses word by word. In addition to the word-level calcula-
tion, CER (character error rate) and PER (phoneme error rate) are carried
out on character- and phoneme-level, respectively.

In natural listening and speaking scenarios, the metrics derived from
TTS are mainly used in speech reconstruction tasks, for the decoding out-
puts of both are speech waves. The simplest method is to calculate the
statistical correlation between the generated and reference speech, with the
PCC (Pearson correlation coefficient) showing the most preference. It
measures the linear relationship between two continuous variables. STOI
(short-time objective intelligibility)30 is used to evaluate the speech intel-
ligibility. It is designed to provide an objective measure that correlates well
with human subjective intelligibility ratings. FFE (F0 frame error)30 and
MCD (mel-cepstral distortion)31 aim to evaluate the accuracy of pitch and
MFCC, respectively, which have been widely used in TTS. MOS (mean
opinion score) is commonly used to estimate the perceived quality of audio,
video, and multimedia content. It provides a subjective measure of quality
based on human judgments and typically uses a five-point scale where
participants rate the quality of the synthesized speech slices.

Stimuli recognition
As shown inFig. 2a, comparedwithfine-graineddecoding, amoderate set of
candidates is necessary for stimulus recognition. The subjects passively
receive external information by reading text or listening to podcasts, and

Table 1 | Divided categories and their corresponding characteristics

Category Task/Experiment Data Stimuli Decoding Target

Stimuli recognition Textual stimuli classification N Text Text id (word, sentence, ...)

Speech stimuli reconstruction N Speech Text ID, speech features, and waves

Brain recording translation Nature reading N Text Text sentences

Nature listening N Speech Text sentences

Speech neuroprosthesis Inner speech recognition I Speak Text (phoneme, word, sentence)

Brain-to-speech I Speak Speech wave

‘N’ and ‘I’ in the Data column represent non-invasive and invasive data, respectively.

Table 2 | Evaluation metrics for linguistic neural decoding

Target Metric Application Origin Methods

Text Accuracy Textual stimuli classification Classification Percentage of correct output

BLUE Precision of n-grams

ROUGE Brain recording translation MT Recall of n-grams

BERTScore Semantic similarity

PER Phoneme accuracy

CER Inner speech recognition ASR Character accuracy

WER Word accuracy

Speech PCC Statistics Linear correlation of variables

STOI Intelligibility Human intelligibility correlation

FFE Speech reconstruction Accuracy of pitch (F0)

MCD TTS Accuracy of MFCC

MOS Subjective human evaluation
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deep learning methods are adopted to classify the original stimuli based on
evoked brain signals.

Textual stimuli classification
Language presented in text highly condenses information and avoids the
temporal variability of corresponding speech signals. Early work focused on
recovering language information from text stimuli. This paradigm distin-
guishes the original information provided to the subject from several can-
didates. The previous approach defined a word set of concrete nouns to
avoid neural representations of abstract concepts32,33. Classifiers were
adopted to distinguish which word had been perceived by the subject.
Following this, other studies extended to abstract nouns, proving the

superiority of text-based models over visually grounded approaches34,
resulting in the evaluation of 8 different word embedding models for pre-
dicting another given either the neural activation patterns or word
representations35. In ref. 36, the researchers presented a neural decoding
system based on a semantic space trained on massive text corpora. The
decoded representations were detailed enough to differentiate between
sentences with similar meanings. Larger vocabularies bring greater diffi-
culties. In ref. 37, a networkmodulewithdense layers anda regression-based
decoder was implemented to directly classify an fMRI scan over a 180-word
vocabulary. The recognition effect far exceeded the chance probability
(5.22% Top-1 and 13.59% Top-5 accuracy). Following these achievements,
researchers predictedmaskedwords and phrases38. The proposed approach
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Fig. 2 | Stimuli recognition of evoked brain activity. a An overview of the stimuli
recognition task. The subject receives textual or vocal information while the active
brain signals are collected. The raw brain recordings are processed into feature space,
followed by classifiers, networks or pre-trained models to distinguish the original
stimuli based on the complexity and candidate size. Several approaches adopted
word embeddings (i.e., word2vec87) to compare the decoded vector in a semantic
space. b In natural listening scenarios, restoring the original speech features and
waveform is a more complex task. Regression models (i.e., ridge regression), CNN

and RNN-based network modules, and paramount generation models (i.e., GAN)
are widely used. c The decoding architecture for various speech-related targets. The
speech envelope can be easily reconstructed with CNNs, while more complex net-
works are necessary for the decoding of MFCC61,65. The most difficult task is to
synthesize the stimulus wave, where an encoder-generator-vocoder architecture has
been verified effective70. The non-invasive collection icon is from Vecteezy.
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utilized an encoder-decoder paradigm and achieved 18.20% and 7.95% top-
1 accuracy over a 2000-word vocabulary on the two tasks, respectively.

Starting from these approaches, some work treated the sentence-level
responses as a combination of latent word effects, bridging the relationship
between the neural process when receiving words and a whole sentence39–41.
Following these approaches, the holistic encoding of sentence stimuli was
proposed42,43. Studies further evaluated various distributed semanticmodels
to predict or decipher brain response to textual sentences, with the
Transformer-based model achieving the best performance44. Another
classification task was performed on the passage level. The researchers
predicted the evoked brain response during natural reading and classified
the corresponding brain activity by distance to the synthesized brain
image45. In ref. 46, the approach bridged the textual stimuli pattern and
MEG recordings usingmultiple network architectures, with BERT showing
the best performance.

Textual stimulus classification is greatly limited by the decoding range
and is almost performed on dozens or hundreds of candidates, which is
separate from real-world applications. As an initial attempt, this task illus-
trates the possibility of obtaining textual information from the evoked
cortex, gradually developing into open vocabulary sequence decoding.

Speech stimuli reconstruction
Speech perception entails processes that convert acoustic signals into neural
representations. In neuroscience, this includes the complete pathway from
the cochlear nerve to the auditory cortex areas. Previous research has
demonstrated that the hierarchical structure in neural networks trained on
speech representations aligns with that of the ascending auditory pathway,
supporting the feasibility of deep learning approaches47.

The speech stimuli reconstruction aims at forming semantic infor-
mation, acoustic features, and synthesized perceived speech from evoked
brain activity (Fig. 2). Classifiers had been used to distinguish perceived
stimuli before the deep learning methods were applied. The logistic
regression was applied to classify the speech stimuli perceived by an
unseen subject during training48. Inspired by the ASR systems, the
phoneme-level Viterbi decoding was introduced to recognize the heard
utterance in a question-answering setting49. Another work introduced a
contrastive learningmodel inspired byCLIP50 topredict the correct segment
out of 1000 possibilities51. It leveraged the correlation between speechwaves
and EEG/MEG time series with wav2vec 2.052 and convolutional neural
networks (CNNs) as the speech and brain modules, respectively. The
research on content and subject recognition is not separated, considering
that the speech flow can be identified in both spaces. One attempt was to
adopt variational autoencoders to transform the EEG space into disen-
tangled latent spaces, representing the content and subject distribution,
respectively53.

The speech envelope refers to the variations in amplitude and intensity
of a speech signal over time. It plays a crucial role in speech perception and
understanding, for our brains are tuned to these variations, helping recog-
nize speech sounds, syllables, and words54,55. Earlier work focused on the
signal processing and linearmodel to align the envelope representationwith
brain activity56. After that, some other research implemented convolutional
models57,58 or based on mutual information analysis59. In ref. 60, the
researchers evaluated the envelope construction performance of ridge
regression, convolution and fully connected layers. The more in-depth
research led to the development of the VLAAI, a convolution-based
architecture to achieve more precise reconstruction61. Considering the
highly robust correlation between envelope and linguistic information,
some extended to a cocktail party setting, where the attended speech
envelope was predicted with a context-aware neural network62. A recent
work adopted a transformer-based encoder-decoder architecture63. Com-
pared with the speech envelope, MFCC is a widely used feature in speech
recognition that represents the short-term power spectrum of sound. The
parallels between speech recognition and brain-to-text technologies
inspired the prediction of MFCC from brain recordings using custom
networks, regression and generative models64,65. Subsequent research

extended this approach to various acoustic features, predicting 16 different
types using an attention-based regression model66.

Instead of reconstructing the acoustic features, synthesizing speech
directly from brain recordings is more challenging, yet it holds greater
practical significance and application prospects. In ref. 67, the researchers
opened up the possibility of speech restoration with evoked brain record-
ings. This approach implemented a linear spectrogram model with strict
recording quality and word selection requirements. The following studies
investigated the reconstruction performance of linear and non-linear
models based on speech spectrogram and vocoder parameters of the
synthesizer68. The result demonstrated the significance of non-linear neural
networks. Other studies leveraged Wasserstein GAN (wGAN)69 for gen-
erator pre-training to obtain the spectrogram representation70, and dual
generative adversarial network (DualGAN)71 for cross-domain mapping
between EEG signals and speechwaves72. In this field, network optimization
contributes to performance improvement, with the self-attention module
demonstrating its superiority tomulti-layer perceptrons (MLPs) andCNNs
to restore the spectrogram73.

Compared with text, speech varies more and contains richer infor-
mation, which bringsmore challenges to restoring the speech stimuli. From
the current perspective, reconstructing recognizable speech waveforms
requires multiple rounds of iterations of recording quality and network
architecture.

Brain recording translation
Decoding natural sentences from brain signals remains a significant chal-
lenge. Unlike simpler tasks that convert brain signals into categorical labels,
brain recording translation directly decodes linguistic stimuli into word
sequences (Fig. 3).This process borrows concepts frommachine translation,
as both tasks aim to map representations between two different units of
analysis. Brain recording translation involves open-vocabulary decoding
based on neural patterns, which implies a vast search space. However, it
fundamentally differs from machine translation, for the stimulus text or
speech is deterministic, while the potential targets can be numerous for the
latter. Given the resolution limitations of non-invasive neuroimaging, this
task demonstrates the balance between the brain recording quality and the
recognition granularity.

The brain recordings are typically collected during natural reading and
listening scenarios (Fig. 4a). Researchers reconstruct text stimuli through
deep learning solutions. In ref. 74, the authorsfirst introduced the concept of
machine translation into neural decoding. Although this work decoded
word sequencesduring attempted speech, the serializationof text generation
provided new insights for subsequent work. The neural network archi-
tecture contained temporal convolution to model contextual relations and
encoder–decoder recurrent neural networks (RNNs) to generate predicted
text. The experiment was conducted with ECoG recordings and carried out
on a vocabulary list of several hundredwords. The followingwork turned to
the BLEU and ROUGE scores75. This work largely expanded the decoding
vocabulary (~50,000) by fully leveraging the inference capabilities of pre-
trained LLMs. Specifically, a multi-layer Transformer encoder is used to
map non-invasive EEG features to the embedding space of the BART
tokenizer76, and the decoded sentence is generated through its decoder.
Following these achievements, this paradigm was progressed by directly
interpreting raw brain signals with contrastive learning methods and
introducing discrete encoding into the EEG recording representation bor-
rowed from VQ-VAE77,78. However, their models were highly estimated
with teacher-forcing schema during evaluation79, which means instead of
feeding the model’s previous predictions for the next time step, the actual
target values were used during inference. This prevented them from gen-
erating meaningful sentences in real-life applications.

Alternatively, a solution with implementation potential was proposed
to generate text directly from MEG recordings without teacher forcing80.
The proposed architecture, NeuSpeech, utilized MEG instead of EEG or
fMRI and incorporated aWhispermodel. During the training process, only
a small portion of parameters within the encoder were fine-tuned, while the
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Transformer layers in the encoder and the entire decoder remained frozen.
The advanced solution contributed to an open-vocabulary MEG-to-text
translation model capable of generating unseen text81, where multiple
alignmentswere conducted between theMEG recordings and speech audio.
The brainmodule wasmapped toWhisper representations in three aspects:
the Mel spectrogram, hidden state and decoded text. Another work pro-
posed simultaneously leveraging the inferring ability of LLMs and imple-
mented an fMRI encoder to learn a suitable prompt in an auditory-decoding
setting. The prompt of text and fMRI modalities were aligned through a
contrastive loss82. In ref. 83, the researchers directly used the representation
decoded fromfMRIas the input forLLMsand founda closer alignmentwith
content deemed surprising for the LLM backbone. As for the improvement
from modeling strategies, PREDFT utilized the predictive encoding with a
side network to generate predictive representation with a multi-head self-
attention module84.

The setting of the brain recording translation is reasonable. Under this
paradigm, more work emerged that implements LLMs to translate brain
signals in large vocabularies, including schemes using contrastive learning
and curriculum learning85. By constructing positive and negative sample
pairs from the EEG of different subjects exposed to identical or different
sentence stimuli, the method aimed to pull closer the representation dis-
tances of semantically similar inputs, while pushing apart dissimilar ones.
More similar sample pairs are considered challenging, and the strategy
followed a progression from easy to difficult. A similar approach was also
used for decoding fMRI signals, which used an encoder-decoder archi-
tecture with BART as a text generator86. The reconstruction loss of fMRI
signalswas used to train a better encoder, and thediscretizedEEGsignal and
the text vector after word2vec87 were fed to the contrastive learning module
in EEG-text pairs, inwhich the EEGrepresentation alignedwith pre-trained
language models. Another method of experiment was to collect brain
recordings while participants listened to narrative stories88. The fMRI data
was sent into GPT after the feature extractor to complete the sequence
generation task. Under the same experimental context,89 employs encoders
and projectors to align the distributions between fMRI and text. An external
largemodel, GPT, samples candidatewords before selecting the optionwith
the closest distribution to the predicted fMRI signal. This process completes
the sequence decoding in an autoregressive manner.

The models of brain recording translation, especially the structures
proposed in the past year, and their performance on various datasets are
shown in Supplementary Table 1. The word sequence decoded from the

non-invasive brain signal shows great disparity with the original textual
signal, as reflected in the highWER, while they are consistent with semantic
correlation, achieving a promising BERTScore. Considering the promotion
prospects of non-invasive signal acquisition equipment, this is a feasible
experiment design, which does not require accurate decoding of text
information but focuses more on semantics reconstruction.

Speech neuroprosthesis
Someneurological diseases can result in the loss of communication abilities.
Many patients rely on a brain–computer interface (BCI) to spell words90,91,
move the computer cursor92, and direct handwriting93. Although these
systems can improve the quality of life for patients, communication effi-
ciency is a concern. A major challenge is to overcome the limitations of
current spelling-basedmethods to achieve a natural rate of communication.
The goal of speech neuroprosthesis (SN) is to directly decode the words or
speech waves that the experiment participants intend to speak from their
brain signals (Fig. 4). This represents a hopeful path for creating devices that
assist in voice communication.

Inner speech recognition
The inner speech was first called imagined speech in a two-phoneme clas-
sification task94. The subjects have lost their ability to produce recognizable
sounds, and the brain signals are recorded as they try to speak. In some
experiments, the brain signals during vocal speech are also collected. Unlike
brain recording translation, inner speech recognition demands high-quality
brain waves, as high-resolution neural recordings improve the accuracy of
speech decoding95. This task is highly correlatedwithASR, for they both: (1)
model the relation between diverse temporal features and deterministic
textual information; (2) correlate with pronunciation and acoustics; (3) aim
to generate language-compliant text. A recent study shows that even at the
level of a single neuron, there are significantneural representations related to
inner and vocalized speech that are sufficient to discriminate betweenwords
from a small vocabulary96.

Phonemes, recognized as the foundational elements of speech pro-
nunciation, have historically been the focus of initial studies aiming to
decipher human articulatory patterns through brain activities. Previous
studies have provided evidence for the neural representation of phonemes
and other acoustic features during the perception of speech97,98. The pioneer
attempted to apply instance-based matching algorithms and demonstrated
the feasibility of text decoding from brain recordings even without learning
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Fig. 3 | The experiment setting and model architecture of brain recording
translation. a For natural reading, the subjects are exposed to text while the active
brain signals are collected. The eye movements are typically recorded to determine
the text transcription corresponding to the brain data at each time step. A sequence-
to-sequence model processes the evoked brain recordings to determine the related

word and then forms the decoded sentences. b A feasible translation model archi-
tecture, including feature extraction, feature transformation and a pre-trained
encoder–decoder to generate the decoding sentence. Both the pre-trained language
models (i.e., BART) and speech models (i.e., Whisper) have been verified to be
effective. The non-invasive collection icon is from Vecteezy.
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Fig. 4 | Overview of speech neuroprosthesis. a The experimental setting for inner
speech recognition. From the neurological perspective, brain waves control the
movement of the articulatory system to complete the pronunciation of each pho-
neme in a series, indicating the mapping from evoked brain signals tomovements of
the articulators to phonemes. The classification and recognition module is adopted
to generate the corresponding phoneme sequences before leveraging the language
model to form word sequences. b The comparison between ASR and inner speech
recognition (ISR). The raw time-series signals are processed for feature extraction
and then fed into the acoustic and brain models, respectively. Both models aim to
bridge the relationship between learnable features related to acoustics and phoneme
sequences. The Viterbi decoding algorithm is performed on the sum of the phoneme
probability from the acoustic/brainmodel and the language probability derived from

a language model trained on an extensive corpus to generate the decoded word
sequences. cThe brain model can be implemented to decode variousmodalities. For
inner speech recognition, the phoneme and word sequences are decoded with the
aim of language models. For brain-to-speech decoding, the speech waves are syn-
thesized according to the articulator gestures, synthesizer parameters or speech
properties. By modeling the articulator gesture probability and adopting a gesture-
animation system, the talking head can be generated. Different modalities are
associated through TTS, ASR, talking head generation (THG) and synthesis
methods. d The acoustic-related brain activities show the potential to develop
communication-aided BCI for ALS patients, considering the decoding feasibility of
text, speech and facial expressions. The articulation and ALS icons are from Oxford
Academic, Springer Open, and Iconfinder. The talking head image is from ref. 153.
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for features99–101. The following research concentrated on identifying these
phonetic units, framing the task similarly to classification due to the rela-
tively narrow scope of phoneme varieties. Experiments have been con-
ducted using linear classifiers102, support vectormachine (SVM)103–105, naive
Bayes classifier106, k-nearest neighbor classifier94, linear discriminant ana-
lysis (LDA) classifier107–109, flexible discriminant analysis (FDA)110, and
based on brain recording features after principal component analysis
(PCA)111. The above work was conducted with a few phoneme candidates
with clear acoustic boundaries. Following this, the researchers achieved full-
set phoneme decoding of American English112, and implemented a similar
approach with brainwave recorded by mobile EEG devices113.

Progressing from phonemes, researchers achieved advancements
towarddecodingbrain signals intowordswithin amodest vocabulary range.
Many investigations were conducted in severely restricted sets with clearly
distinguishable pronunciations. Due to the small vocabulary (typically
involving several, a dozen, or several dozen candidates), such approaches
employed classifiers. In refs. 114–116, the researchers introduced a human-
defined lexicon,where amulticlass SVMand relevance vectormachinewere
used for intended speech decoding. Another work based on classification
distinguished five words in Spanish and focused on the multiple-modality
fusion of text, sound and EEG signals117. The most recent achievements
conducted the illustration of speech-related representation on a single
neuron level recognition96. TheLDAclassifierwas adopted to distinguish six
words and twopseudowords.Deep learningmethodshave alsobeen applied
to the recognition of imagined speech. The premier attempt implemented
several networks to classify imagined words “yes” and “no”118, followed by
research utilizing deep belief neural networks for brain activity feature
extraction as well as phoneme and word recognition119. The cascade
approaches divided the pipeline into convolutional-based modules,
including an MFCC prediction module and a word classification model65.
Network structures with larger parameters are suitable for more complex
recognition units, for instance, conducting long word recognition using a
mixed network module containing CNNs and RNNs120. To test the recog-
nition performance of the network model on longer units, the researchers
investigated the decoding performance of five imagined and spoken phrases
with fully connected layers and CNNs121.

The challenge of low SNR in brain signal recordings, primarily from
non-invasive techniques, is a significant obstacle to expanding the decoding
space5. In ref. 74, the authors achieved word sequence decoding on a
vocabulary of 250words using anRNN-basedencoder-decoder architecture
with invasive ECoG recordings. The most promising approach to gen-
erating sentences originates from speech recognition tasks. Specifically, the
hybrid model ASR includes an acoustic model, a language model, and a
lexicon. The acoustic model calculates the scores of recognition units and
then adds them to the language model scores to generate the decoding
hypothesis. The cascade speech neuroprosthesis replaces the acousticmodel
with a brain model and decodes the corresponding phoneme or small-
vocabulary word hypothesis before generating the sentences122,123. These
works typically adopted the Gaussianmixture model (GMM) to fit the data
distribution of invasive brain activities. Such approaches did not make a
groundbreaking impact until the replacement ofGMMwith artificial neural
networks contributed to a steady improvement124,125. This groundbreaking
work usedRNNs tomodel themapping relationship between invasive brain
activityandphonemes.Thephoneme scores, in conjunctionwith ann-gram
languagemodel trained on a large amount of external text, worked together
through the Viterbi search algorithm to decode sentence hypotheses, and a
lexicon established the connection from phonemes to words. Through this
work, researchers achieved a 25.8%WER on a vocabulary of 125,000 words
within the acceptable boundsofperformance126,with a recognition rate of 62
words per minute. A similar previous work was proposed127, in which an
encoder–decoder architecture with a feature regularization module was
used to decode character sequences from ECoG recordings. However, the
regularization process consumed acoustic and articulatory kinematic fea-
tures, which are unavailable for ALS patients. The continuous speech
decoding has extended to logosyllabic languages like Mandarin Chinese,

designing three CNNs to predict the initials, tones and finals of Pinyin, a
phonetic text input system based on the Latin alphabet128. The prediction of
initials was based on the articulatory feature, including the place and
manner of articulation andwhether voiced or aspirated. Amore convincing
result appeared in multilingual recognition, where the participant was
presented with the target phrases either in English or Spanish129. In ref. 130,
encoder–decoder RNNs were implemented to recognize the vocal speech,
where the representations generated by revised wav2vec131 yielded superior
decoding performance to the original ECoG data. Another recent approach
introduced an end-to-end framework with pre-trained LLMs for decoding
invasive brain signals, leveraging the comprehensive inferring capability of
GPT-2, OPT, and LLaMA2132–135. As an initial attempt, this model achieved
comparable performance to the cascademodel, demonstrating a promising
avenue.

Since cascade inner speech recognition and LLM-augmented
approaches have achieved efficient and accurate performance, break-
throughs in this field have been accelerated. However, invasive data col-
lection introducesmedical risks, whichmakes it difficult to promote among
patient groups. Additionally, it has been verified that brain patterns vary
over time and in subjects124. We believe that inner speech recognition is the
most promising solution for communication-aided BCI, but there’s still a
distance from a high-security, high-quality, and low-latency strategy.

Brain-to-speech
Another challenging approach is to directly synthesize speech waves from
brain signals.Neuroprostheses using speech synthesis employ deep learning
models to convert brain activity records sequentially into synthesizer
commands136,137, kinematic features (e.g., amplitude envelope), or acoustic
features (e.g., pitches and MFCC)138,139, thereby reconstructing the original
speech signal. For instance, a study implemented the DenseNet regression
model140 to map ECoG features to the spectrogram141. Articulatory-based
speech synthesizers generate intelligible speech signals fromprimary speech
articulators using articulator representations142 or electromagnetic articu-
lography (EMA)143,144. EMA measures the position of mouth articulators:
the tongue, lips, velum, jaw, and larynx. Thismethod is based on thefinding
that during speech production, activity in the brain’s sensorimotor cortex
closely aligns with articulatory characteristics145. Additionally, various fea-
tures related to synthesized speech, such as vocal pitch146, articulatory
kinematic trajectories147,148, and speech energy149, can be identified based on
brain activity. Speech synthesis without relying on deep learning, such as
unit selection, has also been extensively studied150. Besides synthesizing
intelligible waves, researchers are also focusing on generating spontaneous
speech, including speech with accurate lexical tones. A feasible approach
involved constructing specific neural networks to separately decode the
neural activities of tones and syllables, then using the combined decoded
features to synthesize tonal speech151. The synthesis delay is an important
factor in realizing speech-centric BCI systems. In ref. 152, an online speech
synthesis was proposed with a neural voice activity detection to generate
speech-sensitive neural pieces, a bidirectional decoding model to estimate
acoustic features and a vocoder to obtain the corresponding speech wave.

In addition to speech synthesis, information related to othermodalities
canbeobtained through invasive brain signals. Themost intuitive attempt is
to leverage articulator gestures for facial movement synthesis125, which can
be achieved by decoding orofacial representations in the speech motor
cortex142,147. It has been verified that facial movement could be generated
using an avatar-animation system, and the progress on talking head gen-
eration inspired restoring the patient’s own face153. In theory, multiple ele-
ments of building a digital human can be obtained from invasive brain
activity, including textual sentences, speechwaves, facialmovements, aswell
as body movements not related to language154,155. This may be the future
developmentdirectionof communication-aidedBCIs,which can restore the
patient’s dignity to the greatest extent possible and communicate with the
outside world through a virtual image that is the same as a normal person’s
(Fig. 4d). For patients who are confined to bed and unable to move, espe-
cially ALS patients, this can greatly improve their quality of life.
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Progress, challenges, and future
Progress to idea BCI and current challenges
Language is the primary means of human communication, and decoding
linguistic information from brain activity is crucial for the development of
future BCIs. We summarize the gap between neural decoding systems and
ideal BCIs from the following aspects, addressing both progress and chal-
lenges (Fig. 5):
• Neural signal collection: Even though the invasive recording outper-

formswith its superior qualities of brain imaging, the necessary surgery
and unbearable medical risks prevent its spread in patients. The col-
lection of high-quality non-invasive data is a prerequisite for word-
level fine-grained sequence decoding. Limited by the current level of
neural recording collection and the noise resistance of the network
architecture, it hasnot yet beenpossible to achieve anacceptable level of
open-vocabulary continuous decoding with non-invasive data. A
feasible alternative, brain recording translation, is to focus on the
semantic consistency of the decoded text, not requiring absolute
consistency of the corresponding text or high restoration of the speech,
but achieving a considerable level of semantic accuracy.

• Subject- and time-invariant: For the same neural stimulation, brain
activity varies across subjects and acquisition time124. On a small
vocabulary, a 3-month clinical trial in an ALS patient showed that
speech commands could be accurately detected and decoded without
recalibrating or retraining themodel156, and another study showed that
the developed decoding system worked successfully in two human
patients96. However, experiments on a wider population with an open
vocabulary have not yet been carried out, and the generalization of
models trained on a single data source still needs to be discussed.

• High precision, low latency and multi-function: the upper bound of
speech-related BCIs can be viewed as a corresponding ASR system,
considering the unified backend of the neural networks and the
superposition of noise from the brain response to speech. The
development of more sophisticated and responsive BCIs could
revolutionize how we interact with machines, offering applications
in medical rehabilitation, verbal communication and even enter-
tainment. Furthermore, integrating multiple modalities-such as
visual and auditory inputs-can enhance the functionality of BCIs,

enabling more comprehensive communication solutions. Current
experiments on multiple tasks have shown that text, speech, and
visual reconstruction of neural signals have achieved the ability to
restore semantic features80,152,157–159, which indicates a potential
solution by modality fusion and system integration. However, it
must be emphasized that the detailed restoration performance of the
above experiments needs great improvement. There are also
discussions to be addressed on striking a balance to avoid error
accumulation and promoting the main modalities with auxiliary
information.

• Privacypreservation: ethical debates regarding collecting and decoding
neural signals from the human brain remain an important limiting
factor160,161. Invasive data collection is only carried out on a small
population due to its surgical risk and usually requires ensuring the
necessity of craniotomy for medical treatment. Non-invasive data has
much more promotional potential but also carries significant risks of
privacy leakage—amore comprehensive datausage conventionmaybe
necessary, including the standardization of the collection process, the
requirements of experiment subjects, the decoding granularity and
vocabulary, and necessary solutions to avoid violation of personal
privacy. To have widespread potential, BCI systems must be privacy-
preserving and ethically sound. The system should be clearly aware of
what information can be accessed, displayed, or made public, and
choose to conceal or ignore when it comes to personal privacy or inner
thoughts. A responsible stance within society that firmly opposes the
misuse of neurodata would serve as the ethical guide for the future
advancement of neurotechnology.

Future directions
Even though we are still a long way from efficient and harmless BCIs, some
directions have shown bright prospects. A unified brain representation
could be the next big breakthrough in neural decoding, which has made a
great impact on othermodalities. There is a consensus on the individual and
temporal variability of neural signals. Performing individualized data col-
lection and model training is not a feasible solution considering the corre-
sponding recording duration and computational resources. Instead, the
implementationof aunifiedneural representation is a promising solutionby
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Fig. 5 | Characteristics of an ideal BCI system for communication its achieving
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problem of individual and time differences through strategies such as domain
alignment. Additionally, the reform of network structure, especially the application

of LLM, provides ideas for high-precision, low-latency, and multi-functional
interactions. Some icons are from Dreamstime, Vecteezy and Iconfinder.
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fine-tuning with limited user-specific recordings to form personalized
decoding systems. This requires expanding the previous experiment to a
group population and collecting much more dynamic neural recordings,
with self-supervised learning providing a strong relationship with semantic
information130,162,163.

While invasive neural decoding has demonstrated superior perfor-
mance, the main limitation of non-invasive signals is their significant noise
level. It is worth practicing to perform data augmentation and denoising on
neural signals, and existing solutions aremainly basedongenerativemodels,
such as GAN and diffusion164,165. Research on the robustness of model
architectures is still in its early stages, especially since LLM has recently
demonstrated extraordinary reasoning performance. Considering the sig-
nificant mismatch between the tokenized text and neural space, robust
neural networks with a stable training strategy are possible to boost the
generation performance.

Large language models preserve powerful understanding, reasoning,
and generation capabilities, and previous studies have shown that LLMs
trained on vast amounts of textual corpus enable the ability to be aligned
with othermodalities through smaller-scale fine-tuning, thereby generating
content with strong semantic consistency and vivid details. The same
phenomenon also applies to neural data, where themost significant trend in
linguistic neural decoding has been implementing a textual LLM as the
backend decoder for text generation82,85,135. As shown in Fig. 5, in the initial
attempts, the LLMs were adopted to generate hypothesis candidates with a
separate module score for each potential sentence89,166. A more promising
approach treats the LLM as the inferring core to generate correlated textual
information135, and gradually evolves into a unified decoding system with
multi-modality inputs and user-specified output167. We believe that the
update and iteration of LLMs will promote qualitative changes in neural
decoding, thereby achieving application levels in the near future.

Parallel to model improvement, in neuroscience, a pressing issue is the
precise collection of neural recordings related to language processing,
including acoustic and phonological aspects. This requires identifying spe-
cific neuronal populations and brain areas involved in language functions11,12
,168. High-resolution scanners, wearable neurotechnology devices and
advanced equipment are also necessary169, andmore reasonable experimental
settings need to be explored. An important aspect is to unify the data col-
lection framework to explore the possibility of developing a massive neural
corpus from multiple resources, which means diverse stimuli and subject
conditions. The neural recordings from a single experiment trial are typically
suitable for small network training, while pre-training and fine-tuning on a
larger scale are likely to process data spanning several orders of magnitude.

As for privacy preservation and technology regulation, strict man-
agement and supervision need to cover the entire process of data collection,
model training and deployment application161. The premise is to form clear
data usage standards, minimize the dimensions and duration of neural
recordings while ensuring decoding performance, and strictly discard
potential privacy-aware instances. The dissemination and use of neural data
need to ensure that the goal of the corresponding experiment is for human
welfare, and data encryption, differential privacy and federated learning are
protection measures that need to be considered. As the modality and
experimental population of neural decoding expand, we strongly call for the
formation of a unified ethical perspective, such as human rights guidelines,
which requires neural computing companies and related major researchers
to assume corresponding scientific responsibilities.

The interaction between the brain and the environment is bidirec-
tional. This article mainly explains the direction of neural decoding, that is,
from the neural recordings to linguistic stimuli or intended messages. Sti-
muli encoding, by performing tiny simulated currents on the cortex to
generate evoked brain activity, might be a solution for sensory loss,
including blindness and deafness.Guiding brain cognition through artificial
stimulation, commonly known as deep brain stimulation (DBS), is a pro-
mising direction for disease treatment and has emerged as an effective
treatment for neurological conditions such as Alzheimer’s170 and Parkin-
son’s disease171. Another question is whether BCIs can improve the

efficiency of information transmission. Information interaction via voice or
visual text is limited by the rate of speech flow and vision refresh, while the
brain’s information reception rate may far exceed both thresholds. When
machine operating efficiency reaches a certain level, a large-scale industrial
revolutionmay come from a leap in information transmission efficiency. In
general, brain linguistic decoding is a cross-disciplinary collaboration. We
expect a further revolution from strengthened cooperation betweenbiology,
engineering, andmachine intelligence to promote innovation and accelerate
the development of brain signal recording technology and its applications.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Received: 3 September 2024; Accepted: 10 July 2025;

References
1. Abnar, S., Beinborn, L., Choenni, R. & Zuidema, W. Blackbox meets

blackbox: Representational similarity & stability analysis of neural
language models and brains. In: Proceedings of the 2019 ACL
Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pp 191–203 (2019).

2. Frisby, S. L., Halai, A. D., Cox, C. R., Ralph, M. A. L. & Rogers, T. T.
Decoding semantic representations inmind andbrain.TrendsCogn.
Sci. 27, 258–281 (2023).

3. Silva,A.B., Littlejohn,K. T., Liu, J. R.,Moses,D.A. &Chang,E. F. The
speech neuroprosthesis. Nat. Rev. Neurosci. 25, 473–492 (2024).

4. Tuckute, G., Kanwisher, N. & Fedorenko, E. Language in brains,
minds, and machines. Annu. Rev. Neurosci. 47, 271–301 (2024).

5. Ball, T., Kern, M., Mutschler, I., Aertsen, A. & Schulze-Bonhage, A.
Signal quality of simultaneously recorded invasive and non-invasive
eeg. Neuroimage 46, 708–716 (2009).

6. Ahissar, E. et al. Speech comprehension is correlated with temporal
response patterns recorded from auditory cortex. Proc. Natl Acad.
Sci. USA 98, 13367–13372 (2001).

7. Brodbeck, C., Hong, L. E. & Simon, J. Z. Rapid transformation from
auditory to linguistic representations of continuous speech. Curr.
Biol. 28, 3976–3983 (2018).

8. Koskinen, M., Kurimo, M., Gross, J., Hyvärinen, A. & Hari, R. Brain
activity reflects the predictability of word sequences in listened
continuous speech. NeuroImage 219, 116936 (2020).

9. Donhauser, P. W. & Baillet, S. Two distinct neural timescales for
predictive speech processing. Neuron 105, 385–393 (2020).

10. Gillis, M., Vanthornhout, J., Simon, J. Z., Francart, T. & Brodbeck, C.
Neural markers of speech comprehension: measuring EEG tracking
of linguistic speech representations, controlling the speech
acoustics. J. Neurosci. 41, 10316–10329 (2021).

11. Leonard, M. K. et al. Large-scale single-neuron speech sound
encoding across the depth of human cortex. Nature 626, 593–602
(2024).

12. Khanna, A. R. et al. Single-neuronal elements of speech production
in humans. Nature 626, 603–610 (2024).

13. Clark, A. Whatever next? predictive brains, situated agents, and the
future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013).

14. Schrimpf, M. et al. The neural architecture of language: Integrative
modeling converges on predictive processing. Proc. Natl Acad. Sci.
USA 118, e2105646118 (2021).

15. Heilbron, M., Armeni, K., Schoffelen, J.-M., Hagoort, P. & De Lange,
F. P. A hierarchy of linguistic predictions during natural language
comprehension. Proc. Natl Acad. Sci. USA 119, e2201968119
(2022).

16. Caucheteux, C., Gramfort, A. & King, J.-R. Evidence of a predictive
coding hierarchy in the human brain listening to speech. Nat. Hum.
Behav. 7, 430–441 (2023).

https://doi.org/10.1038/s42003-025-08511-z Review article

Communications Biology |          (2025) 8:1350 10

www.nature.com/commsbio


17. Broderick, M. P., Anderson, A. J., Di Liberto, G. M., Crosse, M. J. &
Lalor, E. C. Electrophysiological correlates of semantic dissimilarity
reflect the comprehension of natural, narrative speech. Curr. Biol.
28, 803–809 (2018).

18. Caucheteux, C., Gramfort, A. & King, J.-R. Disentangling syntax and
semantics in the brain with deep networks. In: International
conference on machine learning, pp 1336–1348 (PMLR, 2021).

19. Toneva, M., Mitchell, T. M. & Wehbe, L. Combining computational
controls with natural text reveals aspects of meaning composition.
Nat. Comput. Sci. 2, 745–757 (2022).

20. Antonello, R. & Huth, A. Predictive coding or just feature discovery?
An alternative account of why language models fit brain data.
Neurobiol. Lang. 5, 64–79 (2024).

21. Alkhamissi, B., Tuckute, G., Bosselut, A., Schrimpf, M.: The llm
language network: A neuroscientific approach for identifying
causally task-relevant units. In Proceedings of the 2025 Conference
of the Nations of the Americas Chapter of the Association for
Computational Linguistics: Human Language Technologies, vol. 1,
pp. 10887–10911 (2025).

22. Whittington, J. C., Warren, J. & Behrens, T. E. Relating transformers
tomodels and neural representations of the hippocampal formation.
In: International Conference on Learning Representations (2021).

23. Liu, X. et al. Coupling artificial neurons in Bert and biological neurons
in the human brain. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 37, 8888–8896 (2023).

24. Antonello, R., Vaidya, A. & Huth, A. Scaling laws for language
encoding models in fMRI. Adv. Neural Inf. Process. Syst. 36,
21895–21907 (2024).

25. Lin, H. et al. Selecting large languagemodel to fine-tune via rectified
scaling law. In Proceedings of the 41st International Conference on
Machine Learning, pp. 30080–30107 (2024).

26. Ren, Y., Jin, R., Zhang, T. & Xiong, D. Do large languagemodels mirror
cognitive language processing? In: Proceedings of the 31st
International Conference on Computational Linguistics, pp.
2988–3001 (2025).

27. Papineni, K., Roukos, S., Ward, T. & Zhu, W.-J. Bleu: a method for
automatic evaluation of machine translation. In: Proceedings of the
40th annual meeting of the Association for Computational
Linguistics, pp 311–318 (2002).

28. Zhang,T., Kishore, V.,Wu,F.,Weinberger, K.Q.&Artzi, Y.Bertscore:
evaluating text generation with bert. In: International Conference on
Learning Representations (2019).

29. Devlin, J.,Chang,M.-W., Lee,K.&Toutanova,K.Bert: pre-trainingof
deep bidirectional transformers for language understanding. In
Proceedings of the 2019Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, vol. 1, pp. 4171–4186 (2019).

30. Taal, C. H., Hendriks, R. C., Heusdens, R. & Jensen, J. A short-time
objective intelligibility measure for time-frequency weighted noisy
speech. In: 2010 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp 4214–4217 (IEEE, 2010).

31. Kubichek, R. Mel-cepstral distance measure for objective speech
quality assessment. In:Proceedings of IEEEPacificRimConference
on Communications, Computers and Signal Processing, vol. 1,
125–128 (IEEE, 1993).

32. Just, M. A., Cherkassky, V. L., Aryal, S. & Mitchell, T. M. A
neurosemantic theory of concrete noun representation basedon the
underlying brain codes. PloS ONE 5, e8622 (2010).

33. Sudre, G. et al. Tracking neural coding of perceptual and semantic
features of concrete nouns. NeuroImage 62, 451–463 (2012).

34. Anderson, A. J., Kiela, D., Clark, S. & Poesio, M. Visually grounded
and textual semantic models differentially decode brain activity
associated with concrete and abstract nouns. Trans. Assoc.
Comput. Linguist. 5, 17–30 (2017).

35. Abnar, S., Ahmed, R., Mijnheer, M. & Zuidema, W. Experiential,
distributional and dependency-based word embeddings have
complementary roles in decoding brain activity. In: Proceedings of
the 8th Workshop on Cognitive Modeling and Computational
Linguistics (CMCL 2018), pp 57–66 (2018).

36. Pereira, F. et al. Toward a universal decoder of linguistic meaning
from brain activation. Nat. Commun. 9, 963 (2018).

37. Affolter, N., Egressy, B., Pascual, D. & Wattenhofer, R. Brain2word:
decoding brain activity for language generation. Preprint at arXiv
https://doi.org/10.48550/arXiv.2009.04765 (2020).

38. Zou, S., Wang, S., Zhang, J. & Zong, C. Towards brain-to-text
generation: neural decoding with pre-trained encoder-decoder
models. In: NeurIPS 2021 AI for Science Workshop (2021).

39. Anderson, A. J. et al. Predicting neural activity patterns associated
with sentences using a neurobiologically motivated model of
semantic representation. Cereb. Cortex 27, 4379–4395 (2017).

40. Wang, J., Cherkassky, V. L. & Just, M. A. Predicting the brain
activation pattern associated with the propositional content of a
sentence: modeling neural representations of events and states.
Hum. Brain Mapp. 38, 4865–4881 (2017).

41. Anderson, A. J. et al. An integrated neural decoder of linguistic and
experiential meaning. J. Neurosci. 39, 8969–8987 (2019).

42. Sun, J., Wang, S., Zhang, J. & Zong, C. Towards sentence-level brain
decoding with distributed representations. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, pp 7047–7054 (2019).

43. Gauthier, J. & Levy, R. Linking artificial and human neural
representations of language. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp 529–539 (2019).

44. Sun, J., Wang, S., Zhang, J. & Zong, C. Neural encoding and
decoding with distributed sentence representations. IEEE Trans.
Neural Netw. Learn. Syst. 32, 589–603 (2020).

45. Wehbe, L. et al. Simultaneously uncovering the patterns of brain
regions involved in different story reading subprocesses. PloS ONE
9, e112575 (2014).

46. Jat, S., Tang, H., Talukdar, P. &Mitchell, T. Relating simple sentence
representations in deep neural networks and the brain. In
Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 5137-5154 (2019).

47. Li, Y. et al. Dissecting neural computations in the human auditory
pathway using deep neural networks for speech. Nat. Neurosci. 26,
2213–2225 (2023).

48. Liu, Y. & Ayaz, H. Speech recognition via fNIRS-based brain signals.
Front. Neurosci. 12, 395799 (2018).

49. Moses, D. A., Leonard, M. K., Makin, J. G. & Chang, E. F. Real-time
decoding of question-and-answer speech dialogue using human
cortical activity. Nat. Commun. 10, 3096 (2019).

50. Radford, A. et al. Learning transferable visual models from natural
language supervision. In: International conference on machine
learning, pp 8748–8763 (PMLR, 2021).

51. Défossez, A., Caucheteux, C., Rapin, J., Kabeli, O. & King, J.-R.
Decoding speech perception from non-invasive brain recordings.
Nat. Mach. Intell. 5, 1097–1107 (2023).

52. Baevski, A., Zhou, Y., Mohamed, A. & Auli, M. wav2vec 2.0: A
framework for self-supervised learning of speech representations.
Adv. Neural Inf. Process. Syst. 33, 12449–12460 (2020).

53. Bollens, L., Francart, T. & VanHamme,H. Learning subject-invariant
representations from speech-evoked EEG using variational
autoencoders. In ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp
1256–1260 (IEEE, 2022).

54. Aiken, S. J. & Picton, T. W. Human cortical responses to the speech
envelope. Ear Hear. 29, 139–157 (2008).

https://doi.org/10.1038/s42003-025-08511-z Review article

Communications Biology |          (2025) 8:1350 11

https://doi.org/10.48550/arXiv.2009.04765
https://doi.org/10.48550/arXiv.2009.04765
www.nature.com/commsbio


55. Ding, N. & Simon, J. Z. Cortical entrainment to continuous speech:
functional roles and interpretations. Front. Hum. Neurosci. 8, 311
(2014).

56. Vanthornhout, J., Decruy, L., Wouters, J., Simon, J. Z. & Francart, T.
Speech intelligibility predicted from neural entrainment of the
speech envelope. J. Assoc. Res. Otolaryngol. 19, 181–191 (2018).

57. Crosse, M. J., Di Liberto, G. M., Bednar, A. & Lalor, E. C. The
multivariate temporal response function (mtrf) toolbox: a MATLAB
toolbox for relating neural signals to continuous stimuli. Front. Hum.
Neurosci. 10, 604 (2016).

58. Accou, B. et al.Modeling the relationship between acoustic stimulus
and EEG with a dilated convolutional neural network. In: 2020 28th
European Signal Processing Conference (EUSIPCO), pp 1175–1179
(IEEE, 2021).

59. De Clercq, P., Vanthornhout, J., Vandermosten, M. & Francart, T.
Beyond linear neural envelope tracking: a mutual information
approach. J. Neural Eng. 20, 026007 (2023).

60. Thornton, M., Mandic, D. & Reichenbach, T. Robust decoding of the
speech envelope from EEG recordings through deep neural
networks. J. Neural Eng. 19, 046007 (2022).

61. Accou, B., Vanthornhout, J., Hamme, H. V. & Francart, T. Decoding
of the speech envelope from EEG using the VLAAI deep neural
network. Sci. Rep. 13, 812 (2023).

62. de Taillez, T., Kollmeier, B. & Meyer, B. T. Machine learning for
decoding listeners’ attention from electroencephalography evoked
by continuous speech. Eur. J. Neurosci. 51, 1234–1241 (2020).

63. Xu, Z. et al. Decoding selective auditory attention with EEG using a
transformer model.Methods 204, 410–417 (2022).

64. Krishna, G., Han, Y., Tran, C., Carnahan,M. & Tewfik, A. H. State-of-
the-art speech recognition using eeg and towards decoding of
speech spectrum from eeg.Preprint at arXiv https://doi.org/10.
48550/arXiv.1908.05743 (2019).

65. Petrosyan, A., Voskoboynikov, A. & Ossadtchi, A. Compact and
interpretable architecture for speech decoding from stereotactic
EEG. In: 2021 Third International Conference Neurotechnologies
and Neurointerfaces (CNN), pp 79–82 (IEEE, 2021).

66. Krishna, G., Tran, C., Carnahan, M. & Tewfik, A. H. Advancing
speech synthesis using EEG. In: 2021 10th International IEEE/
EMBS Conference on Neural Engineering (NER), pp 199–204
(IEEE, 2021).

67. Pasley, B. N. et al. Reconstructing speech from human auditory
cortex. PLoS Biol. 10, e1001251 (2012).

68. Akbari, H., Khalighinejad, B., Herrero, J. L., Mehta, A. D. &
Mesgarani, N. Towards reconstructing intelligible speech from the
human auditory cortex. Sci. Rep. 9, 874 (2019).

69. Arjovsky, M., Chintala, S. & Bottou, L. Wasserstein generative
adversarial networks. In: International Conference on Machine
Learning, pp 214–223 (PMLR, 2017).

70. Wang, R. et al. Stimulus speech decoding from human cortex with
generative adversarial network transfer learning. In: 2020 IEEE 17th
International Symposium on Biomedical Imaging (ISBI), pp 390–394
(IEEE, 2020).

71. Yi, Z., Zhang, H., Tan, P. & Gong, M. Dualgan: Unsupervised dual
learning for image-to-image translation. In: Proceedings of the IEEE
International Conference onComputer Vision, pp 2849–2857 (2017).

72. Guo, Y., Liu, T., Zhang, X., Wang, A. & Wang, W. End-to-end
translation of human neural activity to speech with a dual–dual
generative adversarial network. Knowl. Based Syst. 277, 110837
(2023).

73. Senda, J. et al. Auditory stimulus reconstruction from ECoG with
DNN and self-attention modules. Biomed. Signal Process. Control
89, 105761 (2024).

74. Makin, J. G., Moses, D. A. & Chang, E. F. Machine translation of
cortical activity to text with an encoder–decoder framework. Nat.
Neurosci. 23, 575–582 (2020).

75. Wang, Z. & Ji, H. Open vocabulary electroencephalography-to-text
decoding and zero-shot sentiment classification. In: Proceedings of
theAAAI Conference onArtificial Intelligence, vol. 36, pp 5350–5358
(2022).

76. Lewis, M. et al. Bart: denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. In
Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 7871–7880 (2020).

77. Van Den Oord, A. et al. Neural discrete representation learning. Adv.
Neural Inf. Process. Syst. 30, 6309–6318 (2017).

78. Duan, Y., Chau, C., Wang, Z., Wang, Y.-K. & Lin, C.-t. Dewave:
discrete encoding of EEG waves for EEG to text translation. Adv.
Neural Inf. Process. Syst. 36, 9907–9918 (2024).

79. Jo, H. et al. Are EEG-to-text models working? Preprint at arXiv
https://doi.org/10.48550/arXiv.2405.06459 (2024).

80. Yang,Y., Duan,Y., Zhang,Q., Xu,R. &Xiong,H.Neuspeech:Decode
neural signal as speech. Preprint at arXiv https://doi.org/10.48550/
arXiv.2403.01748 (2024).

81. Yang, Y. et al. Mad: Multi-alignment meg-to-text decoding. Preprint
at arXiv https://doi.org/10.48550/arXiv.2406.01512 (2024).

82. Chen, X., Du, C., Liu, C., Wang, Y. & He, H. Open-vocabulary
auditory neural decoding using fMRI-prompted llm. Preprint at arXiv
https://doi.org/10.48550/arXiv.2405.07840 (2024).

83. Ye, Z. et al. Generative language reconstruction from brain
recordings (2024).

84. Yin, C., Ye, Z. & Li, P. Language reconstruction with brain predictive
coding from fMRI data. Preprint at arXiv https://doi.org/10.48550/
arXiv.2405.11597 (2024).

85. Feng, X., Feng, X., Qin, B. & Liu, T. Aligning semantic in brain and
language: a curriculum contrastive method for
electroencephalography-to-text generation. IEEE Trans. Neural
Syst. Rehabil. Eng. 31, 3874–3883 (2023).

86. Xi, N. et al. Unicorn: unified cognitive signal reconstruction bridging
cognitive signals and human language. In: Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp 13277–13291 (2023).

87. Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of
word representations in vector space. Preprint at arXiv https://doi.
org/10.48550/arXiv.1301.3781 (2013).

88. Tang, J., LeBel, A., Jain, S. & Huth, A. G. Semantic reconstruction of
continuous language from non-invasive brain recordings. Nat.
Neurosci. 26, 858–866 (2023).

89. Zhao, X. et al. Mapguide: a simple yet effective method to
reconstruct continuous language from brain activities. In
Proceedings of the 2024Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, vol. 1, pp. 3822–3832 (2024).

90. Chen, X. et al. High-speed spelling with a noninvasive
brain–computer interface. Proc. Natl Acad. Sci. USA 112,
E6058–E6067 (2015).

91. Metzger, S. L. et al. Generalizable spelling using a speech
neuroprosthesis in an individualwith severe limbandvocal paralysis.
Nat. Commun. 13, 6510 (2022).

92. Leuthardt, E. C. et al. Using the electrocorticographic speech
network to control a brain–computer interface in humans. J. Neural
Eng. 8, 036004 (2011).

93. Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. &
Shenoy, K. V. High-performance brain-to-text communication via
handwriting. Nature 593, 249–254 (2021).

94. Brigham, K. & Kumar, B. V. Imagined speech classificationwith EEG
signals for silent communication: a preliminary investigation into
synthetic telepathy. In: 2010 4th International Conference on
Bioinformatics and Biomedical Engineering, pp 1–4 (IEEE, 2010).

95. Duraivel, S. et al. High-resolution neural recordings improve the
accuracy of speech decoding. Nat. Commun. 14, 6938 (2023).

https://doi.org/10.1038/s42003-025-08511-z Review article

Communications Biology |          (2025) 8:1350 12

https://doi.org/10.48550/arXiv.1908.05743
https://doi.org/10.48550/arXiv.1908.05743
https://doi.org/10.48550/arXiv.1908.05743
https://doi.org/10.48550/arXiv.2405.06459
https://doi.org/10.48550/arXiv.2405.06459
https://doi.org/10.48550/arXiv.2403.01748
https://doi.org/10.48550/arXiv.2403.01748
https://doi.org/10.48550/arXiv.2403.01748
https://doi.org/10.48550/arXiv.2406.01512
https://doi.org/10.48550/arXiv.2406.01512
https://doi.org/10.48550/arXiv.2405.07840
https://doi.org/10.48550/arXiv.2405.07840
https://doi.org/10.48550/arXiv.2405.11597
https://doi.org/10.48550/arXiv.2405.11597
https://doi.org/10.48550/arXiv.2405.11597
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
www.nature.com/commsbio


96. Wandelt, S. K. et al. Representation of internal speech by single
neurons in human supramarginal gyrus. Nat. Hum. Behav. https://
api.semanticscholar.org/CorpusID:269759448 (2024).

97. Chang, E. F. et al. Categorical speech representation in human
superior temporal gyrus. Nat. Neurosci. 13, 1428–1432 (2010).

98. Mesgarani, N., Cheung, C., Johnson, K. & Chang, E. F. Phonetic
feature encoding in human superior temporal gyrus. Science 343,
1006–1010 (2014).

99. Suppes, P., Lu, Z.-L. & Han, B. Brain wave recognition of words.
Proc. Natl Acad. Sci. USA 94, 14965–14969 (1997).

100. Suppes, P., Han, B. & Lu, Z.-L. Brain-wave recognition of sentences.
Proc. Natl Acad. Sci. USA 95, 15861–15866 (1998).

101. D’Zmura, M., Deng, S., Lappas, T., Thorpe, S. & Srinivasan, R.
Toward EEG sensing of imagined speech. In Human-Computer
Interaction. New Trends: 13th International Conference, HCI
International 2009, San Diego, CA, USA, July 19-24, 2009,
Proceedings, Part I 13, pp 40–48 (Springer, 2009).

102. Tankus, A., Fried, I. & Shoham, S. Structured neuronal encoding
and decoding of human speech features. Nat. Commun. 3, 1015
(2012).

103. DaSalla, C. S., Kambara, H., Sato, M. & Koike, Y. Single-trial
classification of vowel speech imagery using common spatial
patterns. Neural Netw. 22, 1334–1339 (2009).

104. Wang, L., Zhang, X., Zhong, X. & Zhang, Y. Analysis and
classification of speech imagery EEG for BCI. Biomed. signal
Process. control 8, 901–908 (2013).

105. Stavisky, S. D. et al. Decoding speech from intracortical
multielectrode arrays in dorsal “arm/hand areas” of human motor
cortex. In: 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), pp 93–97
(IEEE, 2018).

106. Pei, X., Barbour, D. L., Leuthardt, E. C. &Schalk,G. Decoding vowels
and consonants in spoken and imagined words using
electrocorticographic signals in humans. J. Neural Eng. 8, 046028
(2011).

107. Deng, S., Srinivasan, R., Lappas, T. &D’Zmura,M. Eeg classification
of imagined syllable rhythm using Hilbert spectrum methods. J.
Neural Eng. 7, 046006 (2010).

108. Kim, J., Lee, S.-K. & Lee, B. Eeg classification in a single-trial basis
for vowel speech perception using multivariate empirical mode
decomposition. J. Neural Eng. 11, 036010 (2014).

109. Moses, D. A., Mesgarani, N., Leonard, M. K. & Chang, E. F. Neural
speech recognition: continuous phoneme decoding using
spatiotemporal representations of human cortical activity. J. Neural
Eng. 13, 056004 (2016).

110. Brumberg, J. S., Wright, E. J., Guenther, F. H. & Kennedy, P. R.
Classification of intended phoneme production from chronic
intracortical microelectrode recordings in speech motor cortex.
Front. Neurosci. 5, 7880 (2011).

111. Kellis, S. et al. Decoding spoken words using local field
potentials recorded from the cortical surface. J. Neural Eng. 7,
056007 (2010).

112. Mugler, E. M. et al. Direct classification of all American English
phonemes using signals from functional speech motor cortex. J.
Neural Eng. 11, 035015 (2014).

113. Clayton, J., Wellington, S., Valentini-Botinhao, C. & Watts, O.
Decoding imagined, heard, and spoken speech: Classification and
regression of eeg using a 14-channel dry-contact mobile headset.
In: INTERSPEECH, pp 4886–4890 (2020).

114. Mohanchandra, K. & Saha, S. A communication paradigm using
subvocalized speech: translating brain signals into speech.
Augmented Hum. Res. 1, 3 (2016).

115. Martin, S. et al. Word pair classification during imagined speech
using direct brain recordings. Sci. Rep. 6, 25803 (2016).

116. Nguyen, C. H., Karavas, G. K. & Artemiadis, P. Inferring imagined
speech using EEG signals: a new approach using Riemannian
manifold features. J. Neural Eng. 15, 016002 (2017).

117. González-Castañeda, E. F., Torres-García, A. A., Reyes-García, C.
A. & Villaseñor-Pineda, L. Sonification and textification: Proposing
methods for classifying unspokenwords fromEEG signals.Biomed.
Signal Process. Control 37, 82–91 (2017).

118. Salama, M., ElSherif, L., Lashin, H. & Gamal, T. Recognition of
unspokenwordsusingelectrodeelectroencephalograhic signals. In:
The Sixth International Conference on Advanced Cognitive
Technologies and Applications, pp 51–5 (2014).

119. Zhao, S. & Rudzicz, F. Classifying phonological categories in
imagined and articulated speech. In 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp 992–996 (IEEE, 2015).

120. Saha, P. & Fels, S. Hierarchical deep feature learning for decoding
imagined speech fromEEG. In:Proceedings of theAAAIConference
on Artificial Intelligence, vol. 33, pp 10019–10020 (2019).

121. Dash, D., Ferrari, P. & Wang, J. Decoding imagined and spoken
phrases from non-invasive neural (meg) signals. Front. Neurosci. 14,
490970 (2020).

122. Herff, C. et al. Brain-to-text: decoding spoken phrases from phone
representations in the brain. Front. Neurosci. 8, 141498 (2015).

123. Moses, D. A. et al. Neuroprosthesis for decoding speech in a
paralyzed person with anarthria. N. Engl. J. Med. 385, 217–227
(2021).

124. Willett, F. R. et al. A high-performance speech neuroprosthesis.
Nature 620, 1031–1036 (2023).

125. Metzger, S. L. et al. A high-performance neuroprosthesis for speech
decoding and avatar control. Nature 620, 1037–1046 (2023).

126. Munteanu, C., Penn, G., Baecker, R., Toms, E. & James, D.
Measuring the acceptable word error rate of machine-generated
webcast transcripts. In: Ninth International Conference on Spoken
Language Processing (Citeseer, 2006).

127. Sun, P., Anumanchipalli, G. K. & Chang, E. F. Brain2char: a deep
architecture for decoding text from brain recordings. J. Neural Eng.
17, 066015 (2020).

128. Feng, C. et al. A high-performance brain-to-sentence decoder for
logosyllabic language (2023).

129. Silva, A. B. et al. A bilingual speech neuroprosthesis driven by
cortical articulatory representations shared between languages.
Nat. Biomed. Eng. 8, 977–991 (2024).

130. Yuan, B. A. & Makin, J. G. Improving speech decoding from ECOG
with self-supervised pretraining. Preprint at arXiv https://doi.org/10.
48550/arXiv.2405.18639 (2024).

131. Schneider, S., Baevski, A., Collobert, R. & Auli, M. wav2vec:
Unsupervised pre-training for speech recognition. In Proc.
Interspeech 2019, pp. 3465–3469 (2019).

132. Radford, A. et al. Language models are unsupervised multitask
learners. OpenAI blog 1, 9 (2019).

133. Zhang, S. et al. Opt: Open pre-trained transformer language
models. Preprint at arXiv https://doi.org/10.48550/arXiv.2205.
01068 (2022).

134. Touvron, H. et al. Llama 2: open foundation and fine-tuned chat
models. Preprint at arXiv https://doi.org/10.48550/arXiv.2307.
09288 (2023).

135. Feng, S., Liu, H., Wang, Y. & Wang, Y. Towards an end-to-end
framework for invasive brain signal decoding with large language
models. In: Interspeech 2024, pp 1495–1499 (2024).

136. Guenther, F. H. et al. Awireless brain-machine interface for real-time
speech synthesis. PloS ONE 4, e8218 (2009).

137. Chen, X. et al. A neural speech decoding framework leveraging
deep learning and speech synthesis. Nat. Mach. Intell. 6,
467–480 (2024).

https://doi.org/10.1038/s42003-025-08511-z Review article

Communications Biology |          (2025) 8:1350 13

https://api.semanticscholar.org/CorpusID:269759448
https://api.semanticscholar.org/CorpusID:269759448
https://api.semanticscholar.org/CorpusID:269759448
https://doi.org/10.48550/arXiv.2405.18639
https://doi.org/10.48550/arXiv.2405.18639
https://doi.org/10.48550/arXiv.2405.18639
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
www.nature.com/commsbio


138. Anumanchipalli, G. K., Chartier, J. &Chang, E. F. Speech synthesis from
neural decoding of spoken sentences. Nature 568, 493–498 (2019).

139. Krishna, G., Tran, C., Han, Y., Carnahan, M. & Tewfik, A. H. Speech
synthesis using EEG. In: ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp 1235–1238 (IEEE, 2020).

140. Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely
connected convolutional networks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp
4700–4708 (2017).

141. Angrick, M. et al. Speech synthesis from ecog using densely
connected 3d convolutional neural networks. J. Neural Eng. 16,
036019 (2019).

142. Bouchard, K. E., Mesgarani, N., Johnson, K. & Chang, E. F.
Functional organization of human sensorimotor cortex for speech
articulation. Nature 495, 327–332 (2013).

143. Bocquelet, F., Hueber, T., Girin, L., Badin, P. & Yvert, B. Robust
articulatory speech synthesis using deep neural networks for BCI
applications. In: Interspeech 2014-15th Annual Conference of the
International Speech Communication Association (2014).

144. Bocquelet, F., Hueber, T., Girin, L., Savariaux, C. & Yvert, B.
Real-time control of an articulatory-based speech synthesizer for
brain computer interfaces. PLoS Comput. Biol. 12, e1005119
(2016).

145. Cheung, C., Hamilton, L. S., Johnson, K. & Chang, E. F. The auditory
representation of speech sounds in human motor cortex. elife 5,
e12577 (2016).

146. Dichter, B. K., Breshears, J. D., Leonard, M. K. & Chang, E. F. The
control of vocal pitch in human laryngeal motor cortex. Cell 174,
21–31 (2018).

147. Chartier, J., Anumanchipalli, G. K., Johnson, K. & Chang, E. F.
Encoding of articulatory kinematic trajectories in human speech
sensorimotor cortex. Neuron 98, 1042–1054 (2018).

148. Mugler, E.M. et al. Differential representationof articulatorygestures
and phonemes in precentral and inferior frontal gyri. J. Neurosci. 38,
9803–9813 (2018).

149. Angrick,M. et al. Real-time synthesis of imagined speechprocesses
fromminimally invasive recordings of neural activity.Commun. Biol.
4, 1055 (2021).

150. Herff, C. et al. Generating natural, intelligible speech from brain
activity in motor, premotor, and inferior frontal cortices. Front.
Neurosci. 13, 469935 (2019).

151. Liu, Y. et al. Decoding and synthesizing tonal language speech from
brain activity. Sci. Adv. 9, eadh0478 (2023).

152. Angrick, M. et al. Online speech synthesis using a chronically
implanted brain–computer interface in an individual with als. Sci.
Rep. 14, 9617 (2024).

153. Ling, J., Wang, Y., Xue, H., Xie, R. & Song, L. Posetalk: text-and-
audio-based pose control and motion refinement for one-shot
talking head generation. Preprint at arXiv https://doi.org/10.48550/
arXiv.2409.02657 (2024).

154. Song, H. et al. Continuous neural control of a bionic limb restores
biomimetic gait after amputation. Nat. Med. 30, 2010–2019
(2024).

155. Wang, J. et al. Neural correlate and movement decoding of
simultaneous-and-sequential bimanual movements using eeg
signals. IEEE Trans. Neural Syst. Rehabil. Eng. 32, 2087–2095
(2024).

156. Luo, S. et al. Stable decoding from a speech BCI enables control for
an individual with ALS without recalibration for 3 months. Adv. Sci.
https://api.semanticscholar.org/CorpusID:264448311 (2023).

157. Wang, S., Liu, S., Tan, Z. & Wang, X. Mindbridge: A cross-subject
brain decoding framework. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp
11333–11342 (2024).

158. Quan, R., Wang, W., Tian, Z., Ma, F. & Yang, Y. Psychometry: An
omnifitmodel for image reconstruction fromhumanbrain activity. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp 233–243 (2024).

159. Liu, X. et al. Eeg2video: Towards decoding dynamic visual
perception from EEG signals. In: The Thirty-Eighth Annual
Conference on Neural Information Processing Systems.

160. van Stuijvenberg, O. C., Broekman, M. L., Wolff, S. E., Bredenoord,
A. L. & Jongsma, K. R. Developer perspectives on the ethics of AI-
driven neural implants: a qualitative study.Sci. Rep. 14, 7880 (2024).

161. Yuste, R. Advocating for neurodata privacy and neurotechnology
regulation. Nat. Protoc. 18, 2869–2875 (2023).

162. Wang,C. et al. Brainbert: Self-supervised representation learning for
intracranial recordings. In: The Eleventh International Conference on
Learning Representations.

163. Zheng, H. et al. Du-IN: Discrete units-guided mask modeling for
decoding speech from intracranial neural signals. In: The Thirty-
Eighth Annual Conference on Neural Information Processing
Systems https://openreview.net/forum?id=uyLtEFnpQP (2024).

164. Dong,Y. et al. Anapproach for EEGdenoisingbasedonWasserstein
generative adversarial network. IEEE Trans. Neural Syst. Rehabil.
Eng. 31, 3524–3534 (2023).

165. Huang, X., Li, C., Liu, A., Qian, R. & Chen, X. Eegdfus: a conditional
diffusion model for fine-grained EEG denoising. IEEE J. Biomed.
Health Inform. 29, 2557–2569 (2024).

166. Antonello, R., Sarma, N., Tang, J., Song, J. & Huth, A. How many
bytes can you take out of brain-to-text decoding? Preprint at arXiv
https://doi.org/10.48550/arXiv.2405.14055 (2024).

167. Han, J. et al. Onellm: One framework to align all modalities with
language. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp 26584–26595 (2024).

168. Tankus, A., Rosenberg, N., Ben-Hamo, O., Stern, E. & Strauss, I.
Machine learning decoding of single neurons in the thalamus for
speech brain-machine interfaces. J. Neural Eng. 21, 036009
(2024).

169. Feinberg, D. A. et al. Next-generation MRI scanner designed for
ultra-high-resolution human brain imaging at 7 Tesla. Nat. Methods
20, 2048–2057 (2023).

170. Tatulian, S. A. Challenges and hopes for alzheimer’s disease. Drug
Discov. Today https://api.semanticscholar.org/CorpusID:
246553676 (2022).

171. Bucur, M. & Papagno, C. Deep brain stimulation in parkinson
disease: a meta-analysis of the long-term neuropsychological
outcomes. Neuropsychol. Rev. https://api.semanticscholar.org/
CorpusID:247615265 (2022).

Acknowledgements
This work was supported by the National Key R&D Program of China (No.
2022ZD0162101).

Author contributions
YuWangandHeyangLiu contribute equally to thiswork, andYanfengWang
is the corresponding author. Specifically, Yu Wang, Heyang Liu, Yuhao
Wang, Chuan Xuan, Yixuan Hou, Sheng Feng, Hongcheng Liu, Yusheng
Liao, and Yanfeng Wang all participate in the discussions and summarize,
and make contributions to the review. In writing, Yu Wang and Heyang Liu
draft the work, and Yuhao Wang, Chuan Xuan, Yixuan Hou, Sheng Feng,
Hongcheng Liu, Yusheng Liao, and Yanfeng Wang review it critically for
important intellectual content. All authors approve of the version to be
publishedandagree tobeaccountable for all aspectsof thework in ensuring
that questions related to the accuracy or integrity of any part of the work are
appropriately investigated and resolved.

Competing interests
The authors declare no competing interests.

https://doi.org/10.1038/s42003-025-08511-z Review article

Communications Biology |          (2025) 8:1350 14

https://doi.org/10.48550/arXiv.2409.02657
https://doi.org/10.48550/arXiv.2409.02657
https://doi.org/10.48550/arXiv.2409.02657
https://api.semanticscholar.org/CorpusID:264448311
https://api.semanticscholar.org/CorpusID:264448311
https://openreview.net/forum?id=uyLtEFnpQP
https://openreview.net/forum?id=uyLtEFnpQP
https://doi.org/10.48550/arXiv.2405.14055
https://doi.org/10.48550/arXiv.2405.14055
https://api.semanticscholar.org/CorpusID:246553676
https://api.semanticscholar.org/CorpusID:246553676
https://api.semanticscholar.org/CorpusID:246553676
https://api.semanticscholar.org/CorpusID:247615265
https://api.semanticscholar.org/CorpusID:247615265
https://api.semanticscholar.org/CorpusID:247615265
www.nature.com/commsbio


Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-025-08511-z.

Correspondence and requests for materials should be addressed to
Yanfeng Wang.

Peer review information Communications Biology thanks Ziyi Ye and the
other, anonymous, reviewer(s) for their contribution to the peer reviewof this
work. Primary Handling Editor: Jasmine Pan. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s42003-025-08511-z Review article

Communications Biology |          (2025) 8:1350 15

https://doi.org/10.1038/s42003-025-08511-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsbio

	Progress, challenges and future of linguistic neural decoding with deep learning
	Brain-network alignment
	Neural decoding division and evaluation
	Stimuli recognition
	Textual stimuli classification
	Speech stimuli reconstruction

	Brain recording translation
	Speech neuroprosthesis
	Inner speech recognition
	Brain-to-speech

	Progress, challenges, and future
	Progress to idea BCI and current challenges
	Future directions
	Reporting summary

	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




