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Lung NR3C1+ and CXCR6high T cells
distinguish immunopathogenesis of
human emphysema
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There is a significant knowledge gap in how T cells promote emphysema in smokers with chronic
obstructive pulmonary disease (COPD). Single-cell RNA sequencing (scRNA seq) analysis of human
samples and relevant clinical data can provide new mechanistic insights into disease pathogenesis.
We generated a human lung scRNA seq dataset with extensive disease characteristic annotation and
analyzeda second independent scRNAseqdataset to examine thepathophysiological role of Tcells in
emphysema. Comparisons of pulmonary immune landscapes in emphysematous (E)-COPD, non-
emphysematous (NE)-COPD, and control showed positive enrichment of T cells in E-COPD. Pathway
analyses identified upregulated inflammatory states in CD4 T cells as a distinguishing feature of
E-COPD. Compared to controls, glucocorticoid receptor NR3C1 CD4 T cells were enriched in NE-
COPD but were reduced in E-COPD. Interactions between macrophages and NR3C1+ CD4 T cell
subsets via CXCL signaling were strongly predicted in E-COPD but were absent in NE-COPD and
control. The relative abundance of CD4 CXCR6high effector memory T cells positively correlated with
preserved lung function in E-COPD but not in NE-COPD. These findings suggest that NR3C1+ and
CXCR6high effector memory subsets of CD4 T cells distinguish the immune-pathophysiological
featuresof emphysema in human lungs. Targeting relevant T cell subsets in emphysemamight provide
new therapeutic opportunities.

Long-term cigarette smoking profoundly changes the transcriptomic
landscapes in the lungs1–3 and is directly linked to the development of
chronic obstructive lung diseases (COPD)4,5. Studies in human smokers and
experimental animal models of smoke-induced emphysema suggest that
both the adaptive6–10 and innate11,12 immune systems contribute to the tissue
destruction and severity of lung disease in COPD. Many human studies,
however, classify COPD based on the degree of airway flow limitation, but
the extent of lung tissue destruction, emphysema, which is the most clini-
cally consequential outcome in smokers13–17, is not reported. Under-
reporting and excluding distinct subphenotypes have culminated in a poor

understanding of the immune-mediated pathophysiological changes in
human emphysema.

Genome-wide association studies (GWAS)18–20, proteomic21,22, and
transcriptomic23,24 studies recognize emphysema as an independent disease
phenotype inCOPD.Notably, radiographic detection of emphysema can be
discordant with the physiological manifestation of airflow obstruction25–27.
These observations call for a better characterization of emphysema and
COPD endotypes in preclinical and clinical studies.

The molecular mechanisms underlying the diverse clinical presenta-
tions of COPD remain less clear. Inflammation is strongly associated with
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the development of COPD among tobacco smokers, and the emphysema
variant ofCOPD is linked to the activationof the adaptive immune system28.
Specifically, identification of oligoclonal autoreactive T cells in humans and
experimental emphysemamodels7,8,29 suggests apathogenic role for antigens
that can activate and expand immune cells in the lungs. Although the
contribution of adaptive immunity in the pathophysiology of emphysema is
widely acknowledged, how different types and states of T cells and their
interactions with innate immune cells in the lungs emerge and promote
disease development in emphysema remain unclear.

Despite significant efforts in identifying biomarkers that may predict
disease outcomes in tobacco smokers, immune profiles in the peripheral
blood have not always mirrored tissue immunity in the lungs18,30.
This knowledge gap suggests theneed to examine lung tissue cellular profiles
to decipher how immune cells promote lung tissue destruction. Single-cell
(sc)RNA sequencing has been revolutionary in characterizing the
cellular landscape at a high-throughput scale in single-cell resolution31,
but large-scale studies that include exhaustively annotated clinical infor-
mation are rare and have not focused on the role of T cells in human
emphysema.

In this study, we analyzed scRNA sequencing data using a total of 108
human lung tissues. We used sixty-two human lung samples from well-
characterized groups of smokers and non-smokers with extensive disease
characteristic annotation and radiographic quantification of emphysema
using percent low attenuation area to separate cases into three strata:
emphysema predominant (E-COPD), non-emphysematous COPD (NE-
COPD), and controls.We took advantage of the transcriptomic information
of different immune cell types and cell states in the lungs to investigate the
factors that may precipitate the emergence of pathogenic cell types across
different COPD endotypes. A published scRNA sequencing dataset from
46 samples was used to validate the main results.

Results
Distinct human lung immune cell landscape in emphysema
Weacquiredhuman lung tissue samples from62 individuals andperformed
scRNA sequencing (Fig. 1a). Patients were first stratified to COPD (n = 37)
and Control (n = 25) based on airflow obstruction (FEV1/FVC). COPD
patients were further categorized based on computed tomography (CT)-
basedmeasurement of low attenuation area percentages (LAA%) below 950

Hounsfield units for each subject (Supplementary Fig. 1a–g, Table 1). We
used the 5% LAA cutoff as the accepted threshold for the presence of
emphysema32. Percent LAA separated the COPD cohort into non-
emphysematous COPD (NE-COPD) (n = 21) and predominant emphy-
sema (E-COPD) phenotypes (n = 16).
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Fig. 1 | Positive enrichment of T cells and negative enrichment ofmacrophages in
Emphysematous COPD (E-COPD). a Study design for in-house discovery dataset
(b–f), and (g) for validation dataset (h–j). UMAP embedding of the global cellular
landscape for the in-house discovery dataset (b) and the published validation dataset
(h). Collective cellular proportions across disease groups in the in-house discovery
dataset (c) and published validation dataset (i). Pairwise comparison of cell type
differential abundance using scCODA in in-house discovery dataset between
E-COPD vs. Control (d), E-COPD vs. NE-COPD (e), and NE-COPD vs Control (f).

Pairwise comparison of cell type differential abundance using scCODA in the
published validation dataset between COPD and Control (j). The final parameter
shown on the horizontal axis indicates degrees of enrichment. Positive values suggest
positive enrichments, and negative values suggest negative enrichments. The false
discovery rate (FDR) for scCODA differential abundance analyses was set at a
threshold of 0.25. Artworkwas generated fromBioicons (https://bioicons.com/) and
NIH NIAID BioArt Source (https://bioart.niaid.nih.gov/). Modifications of the
artwork were performed in Inkscape (https://inkscape.org/).

Table 1 | Patient characteristics, in-house dataset one

Variable Control N = 25 No Emphysema
COPD N = 21

Emphy-
sema
COPD
N = 16

p-valuea

Age, Median (IQR) 62 (52–72) 72 (67–75) 68 (66–68) 0.034

Sex, n (%) 0.062

F 14 (56) 9 (43) 3 (19)

M 11 (44) 12 (57) 13 (81)

Smoke, n (%) <0.001

Current 5 (20) 8 (38) 0 (0)

Former 9 (36) 12 (57) 16 (100)

Never 11 (44) 1 (4.8) 0 (0)

PackYear,
Median (IQR)

15 (0–25) 28 (16–54) 39 (20–52) 0.001

GOLD, n (%) <0.001

Control 25 (100) 0 (0) 0 (0)

GOLD 0 0 (0) 7 (33) 0 (0)

GOLD 1 0 (0) 6 (29) 2 (13)

GOLD 2 0 (0) 8 (38) 2 (13)

GOLD 4 0 (0) 0 (0) 12 (75)

LAA %,
Median (IQR)

0 (0–1) 1 (0–2) 19 (16–30) <0.001

FEV1%
predicted,
Median (IQR)

100 (94–100) 77 (65–80) 23 (19–34) <0.001

FEV1/FVC,
Median (IQR)

80 (74–80) 67 (63–73) 27 (22–58) <0.001

Steroids, n (%) 1 (4.0) 4 (19) 10 (63) <0.001

IQR interquartile range.
aKruskal–Wallis rank sum test; Pearson’s Chi-squared test; Fisher’s exact test.
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Atotal of 48,569 cells from the control, 45,692 cells fromNE-COPD, and
34,172 cells from the E-COPD group passed quality control. Twenty-four cell
types were identified (Fig. 1b and Supplementary Fig. 1h). Immune cells
represented over 90% of recovered cells, with macrophages (~48%) and αβT
lymphocytes (~33%) together comprising over 80% of total cells (Fig. 1c).
Other top immune populations include monocytes (~8%), NK (~10%), and
cDCs (~4%). Top recovered non-immune components include alveolar epi-
thelial cells (~2%) and vascular and lymphatic endothelial cells (~2%).

Because of thedisparity of total cell counts and samplenumbers inboth
COPD and control groups, we opted for the proportion-based Bayesian
modeling approach, scCODA, for compositional analyses between different
groups33. We compared cell-type enrichment distribution in E-COPD vs
Control (Fig. 1d) and E-COPD vsNE-COPD (Fig. 1e). CD14monocytes, B
cells, and αβ CD4 T cells were positively enriched, whereas macrophages
and epithelial cells showed negative enrichments in E-COPD compared to
controls. In addition to the same cell populations, CD8 T cells were also
enriched in E-COPD compared to NE-COPD, but this enrichment was not
detected when compared to controls. In NE-COPD, macrophages showed
positive enrichment when compared to controls (Fig. 1f). These findings
indicate that the E-COPDphenotype has a distinctive immune profile from
NE-COPD, suggesting that while adaptive immunity is highly associated
with E-COPD, positive enrichment of macrophages is a characteristic fea-
ture in NE-COPD.

Because active smoking can strongly affect systemic and lung tissue
immunity, we next examined its effect on immune cells. In the Control
group, 20% of cases were current, 36% former, while 44% were never
smokers (Table 1). In theNE-COPDgroup, 38% of cases were current, 57%
former, while 5% were never smokers (Table 1). Because all patients in
E-COPD were former smokers, we assessed the effect of smoking in the
Control and NE-COPD groups. In the NE-COPD group, when comparing
former smokers with never-smokers, macrophages were positively enri-
ched, whereas CD8 and NK cells were negatively enriched (Supplementary
Fig. 2a–c). In the same group, current smokers exhibited positive enrich-
ment of pulmonarymacrophages, but CD4 andCD8T cells were negatively
enriched (Supplementary Fig. 2). Consistently, comparing current smokers
with former smokers, CD4T cells were negatively enriched (Supplementary
Fig. 2e). In the Control group, when comparing former smokers with never
smokers, CD4 T cells were positively enriched, but macrophages were
negatively enriched (Supplementary Fig. 2f–h). Current smokers, compared
to former smokers, showed positive enrichment of CD8 T cells and mac-
rophages but negative enrichment of CD16 monocytes (Supplementary
Fig. 2i). Comparison between current and never smokers in the Control
group did not yield any statistically significant results that passed the false
discovery rate threshold.

We next used an independent and publicly available scRNA-seq
dataset34,35 that included end-stage COPD lung explant and rejected donor
lung samples as controls to validate our findings (Fig. 1g,

Supplementary 3a–c, Table 2). Because information regarding %LAA was
not available for the second COPD cohort, we could not stratify radio-
graphically confirmed emphysemaandwere only able to compare end-stage
COPD to controls. We found similar cellular enrichment patterns in the
validation dataset with positive enrichments of the αβ CD4 and CD8 T
lymphocytes, B cells, and negative enrichment ofmacrophages in end-stage
COPD when compared to controls (Fig. 1h–j; Supplementary Fig. 3d).

Together, these two independent datasets provided evidence that the
emphysema variant of COPD is characterized by the positive enrichment of
αβ CD4 T cells and negative enrichment of pulmonary macrophages.

Unique transcriptomic signatures of αβ CD4 T cells in
emphysema
Because CD4 T cells were consistently positively enriched in E-COPD and
end-stage COPD, we then set out to assess functional alternations in CD4
T cells using transcription factor activity analyses (Fig. 2a), gene set over
representation analyses (ORA) (Fig. 2b), and gene set variation analysis
(GSVA) (Fig. 2c–f). The transcription factor activity inference data showed
increased STAT3, JUN, NFKB, and RELA activities in E-COPD compared
to the NE-COPD and controls (Fig. 2a). STAT3 is a critical transcription
factor downstream of IL6 signaling and can induce its expression36–38.
Consistent with these findings, we found CD4 T cells in E-COPD exhibit
upregulated IL2-STAT5 and IL6-JAK-STAT3 signaling by both ORA and
GSVA analyses and E-COPD showed increased IL-17 production pathway
in GSVA analysis compared to controls (Fig. 2b, e–g). Responses to che-
mokines and cytokines were also upregulated at an individual patient level
in E-COPD compared to control or NE-COPD cohorts (Fig. 2c, d). IL6
induces expression of IL21 and IL23R inCD4T cells, which are upstreamof
transcription factor, RORC, and IL17 expression39. STAT3 is also indis-
pensable in the development of Th17 cells40,41. Notably, IL6-STAT3 path-
ways and IL-17 upregulation in CD4 in E-COPD further corroborate the
pathogenic role of IL17/Th17 in human emphysema42,43. Furthermore, CD4
T cells in E-COPD also showed upregulation of inflammatory pathways,
including interferon-gamma (IFN-γ), TNF, and IFN-α responses (Fig. 2b).

Together, these results suggest that augmented inflammatorypathways
are a unique feature of CD4 T cells in the lungs of E-COPD and that the
positive enrichments of CD4 T cells might be a result of increased
responsiveness to chemokine and cytokine-mediated recruitment signals.

Identification of distinct CD4 T cell subsets in human lungs
We next examined the heterogeneities of CD4 T cell subsets in the lung.
Broadly, we identified 5 distinct subsets of CD4 T cells (Fig. 3a–d). Effector
memory CD4 T cells were identified by the expression of S100A4 and
IL3244,45. Naïve and centralmemoryT cells were identifiedby the expression
of CCR7, TCF7, CD62L (SELL), and LEF1, while naïve T cells were further
distinguished by the absence of memory markers S100A4 and IL3245.
Regulatory T (Treg) cells were identified by the concurrent expression of
FOXP3, IL2RA, TIGIT, CTLA4, and IKZF246–49. A subset of CD4 T cells
expressing glucocorticoid receptor NR3C1 showed distinct gene expression
profiles (Fig. 3b, c) and transcription factor activity (Fig. 3d), which we
termed the NR3C1+ subset. To confirm the CD4 T cell subsets, we per-
formed pseudotemporal analysis of the different populations using the
Palantir modeling method50. As expected, naïve and central memory CD4
T cells exhibited the lowest levels of differentiation, whereas Tregs showed
the highest level of differentiation (Fig. 3e–g). Notably, effector memory
CD4 T cells exhibited an intermediate level of differentiation, whereas
NR3C1-expressing CD4 T cells showed the second-highest levels of dif-
ferentiation (Fig. 3e–g). We next confirmed the presence of distinct CD4 T
cell subsets using an independent scRNA seq dataset (Supplementary
Fig. 4a–c).

Reduced relativeabundanceofNR3C1+CD4Tsubset inE-COPD
We next examined the relative abundance of glucocorticoid-receptor
NR3C1-expressing T cells in the study cohorts. We found that the relative
abundance of the NR3C1+ subset of CD4 was significantly reduced in

Table 2 | Patient characteristics, validation dataset two

Variable Control N = 28 COPD N = 18 p-valuea

Gender, n (%) 0.64

Female 12 (43) 9 (50)

Male 16 (57) 9 (50)

Age, Median (IQR) 47 (31–63) 62 (58–66) 0.002

Race, n (%) >0.99

Asian 1 (3.6) 0 (0)

Black 1 (3.6) 0 (0)

Latino 1 (3.6) 0 (0)

White 25 (89) 18 (100)

Smoking, n (%) 6 (21) 17 (94) <0.001

IQR interquartile range.
bPearson’s Chi-squared test; Wilcoxon rank sum test; Fisher’s exact test.
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E-COPD but was increased in NE-COPD relative to control (Fig. 4a).
Notably, alterations in the relative abundance of the NR3C1 subset were
independent of individual patients’ glucocorticoid therapy and the types of
steroids used (Fig. 4b, c).Mapping of NR3C1 targets inOmnipath51 showed
that pro-inflammatory IL6,RELA, and JUNare among the inhibited targets,
indicating the possible role of this subset of T cells in inflammation control
(Fig. 4d).Mapping the signature genes of theNR3C1CD4subset topathway
gene sets showed that TGFβ signaling is among the top upregulated path-
ways, suggesting thatTGFβ signalingmight be critical for either the function
or maintenance of this T cell subset (Fig. 4e).

Because CD4 T cells exhibited heightened responses to chemokines
and cytokines in E-COPD (Fig. 2c–fd), we next performed interactome
modeling to identify cellular interactions between different immune cells in
this cohort. Interactome modeling estimated that CXCL signals mediate
interactions betweenmyeloid and T cells (Supplementary Fig. 5a–c). CXCL
signaling activities were largely absent between NR3C1+ CD4 T cells and
myeloid in either the control or NE-COPD groups (Fig. 4f, g, Supplemen-
tary Fig. 5a, b). In contrast, interactions between myeloid cells, especially
pulmonary macrophages and NR3C1+ CD4 T cell subset via CXCL sig-
naling,were strongly predicted inE-COPD(Fig. 4h, Supplementary Fig. 5c).
CCL signals were also predicted to mediate interactions between T cell
subsets and myeloid cells in all three groups (Supplementary Fig. 5d–f).
However, in E-COPD, CCL signals were primarily predicted to mediate
interactions betweenT cell subsets (Supplementary Fig. 5f), whereas inNE-
COPDandcontrols, CCL signalswere largely predicted tomediatemyeloid-
T cell interaction (Supplementary Fig. 5d, e).

Together, these findings suggest that, independent of steroid usage,
reduced relative abundance of the NR3C1+ subset of CD4 T cells in the
E-COPD cohort might be a distinguishing factor that separates them from
the NE-COPD and controls. These findings also suggest a specific potential
interaction between lung myeloid compartments, including macrophages
with NR3C1+ CD4 T cells, that may contribute to their reduced relative
abundance in E-COPD.

Divergent abundance of lung PPARG+ macrophages associates
with disease phenotypes
Because we found a potential interaction between lung macrophages and the
NR3C1+ T-cell subset, we next examined the heterogeneity of human pul-
monary macrophages in the lungs of the same cohort. We classified human
lungmacrophages into four distinct subsets: (1) a proliferative subset marked
by the expression of MKI67, (2) PPARG macrophages, (3) Monocytic mac-
rophages expressing CD14 and IL1β, and (4) C1Q macrophages (Fig. 5a, b).
These four subsets of macrophages exhibited distinct gene expression and
transcription factor activity profiles (Fig. 5c, d). All subsets of pulmonary
macrophages, including PPARG, monocytic, and C1Q pulmonary macro-
phages inE-COPD, showedupregulated inflammatorypathways suchas IFN-
γ signaling (Supplementary Fig. 6a–c), which has been associated with the
inhibition of glucocorticoid signaling52. In NE-COPD, PPARγmacrophages
were relatively increased (Fig. 5e) suggesting increased renewal or persistence
of this subset ofmacrophages. In contrast, the decreased relative abundance of
PPARG macrophages in E-COPD mirrored the reduced proportion of
NR3C1+ CD4 T cells in E-COPD (Figs. 4a and 5e). Further, in NE-COPD,
where PPARγ macrophages were relatively increased, pairwise comparisons
of ligand-receptor activities predicted increased interactions between PPARγ
macrophages with NR3C1+ CD4 T cells through integrins, cell adhesion
molecules and chemokine/cytokine receptors such as ITGB2, ALCAM, and
CXCR4 (Supplementary Fig. 7a–c). In E-COPD, increased interaction
through IL-1β and ADRB2 was estimated to be upregulated between PPARγ
and NR3C1+ CD4 T cells (Supplementary Fig. 7b) compared to NE-COPD.
Notably, however, inNE-COPD, interactions through SIGLEC1-SPN(CD43)
between PPARγmacrophages andNR3C1+CD4T cells were estimated to be
increased (Supplementary Fig. 7e). CD43 is critical forCD4T cell trafficking53

and is a known counter-receptor for SIGLEC154.

NR3C1+ CD4 subset correlates with lung inflammation
Given the limitation of scRNA seq studies in identifying tissue-based
associations between immune cells, we next performed spatial

e fdc

a

b

g

Fig. 2 | Unique transcriptional signatures of CD4 T cells in Emphysematous
COPD (E-COPD). aTranscription factor activity estimationwith a univariate linear
model of CD4 T cells using decoupleR in Controls, Nonemphysematous COPD
(NE-COPD), and Emphysematous COPD (E-COPD) in the in-house discovery
dataset. bFunctional enrichment of biological terms by over-representation analyses
(ORA) of CD4 T cells across Controls, NE-COPD, and E-COPD using Hallmark
pathway gene set in the in-house discovery dataset. Gene set variation analyses

(GSVA) of Leukocyte response to cytokine (GeneOntology) (c), Leukocyte response
to chemokine (Gene Ontology) (d), IL2 mediated signaling (KEGG) (e), and IL6-
JAK-STAT3 Signaling (KEGG) (f) and IL17 production (g) across three disease
groups in the in-house discovery dataset. Statistical significance between the 3
groups was determined using the Kruskal–Wallis’ test. Pairwise comparisons were
performed usingWilcoxon rank-sum test withHolm’s correction. Significance code:
p < 0.05(*), p < 0.01(**), p < 0.001 (***), ns: non-significant.
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transcriptomics to establish the correlation between NR3C1+ CD4 T cells
and inflammatory cells in the lungs. We employed the Nanostring GeoMx
platform to measure bulk RNA transcript levels in microscopic regions of
interest (ROI), including the lung parenchyma, using samples from the
same cohorts as the in-house single-cell RNA sequencing dataset. This
spatial transcriptomics data of the lung parenchyma from the GeoMx
platform were then deconvoluted for the relative abundance of cell types
withCibersortX using the in-house single-cell RNA-sequencing defined cell
type signatures as references. 55 Our spatial transcriptomic data showed that
within the lung parenchyma ROIs, the relative abundance of NR3C1+CD4
T cells positively correlates with neutrophils andmigratory dendritic cells in
NE-COPD (Fig. 6a). This is consistent with our scRNA-seq data where we
found an increase in the relative abundance of NR3C1+ CD4 T cells in
NE-COPD.

Next, we correlated the relative abundance of CD4 subsets using the
single-cell RNA-sequencing dataset and the plasma chemokine/cytokine
levels in the same E-COPD and NE-COPD cohorts. We found that in
E-COPD cohort, CXCL13, CXCL5, and CXCL1 positively correlated with
the relative abundance of NR3C1+ CD4 T (Fig. 6b). CXCL13 is a major
chemokine for germinal center formation56, whereas CXCL557 and CXCL158

are involved in neutrophil chemotaxis. These findings suggest that the pre-
sence of NR3C1+ CD4 T cells in the lung is significantly associated with
neutrophils in the regions, and the abundance of this T cell subset is asso-
ciated with chemokines that are critical in the lymphoid follicle development.

The CXCR6high subset of CD4 effector memory correlates with
preserved lung function in emphysema
We next examined whether the relative abundance of any CD4 subset
correlates with disease severity (i.e., %LAA) or lung function measurement
in each cohort. We found that the CD4 T cell effector memory subset
positively correlated with predicted lung function as measured by forced
expiratory volume (FEV1) percent in the E-COPD group but not in NE-
COPD or controls (Supplementary Fig. 8a), and no significant correlations
have been observed in other CD4 subsets (Supplementary Fig. 8b–f).
Because a higher relative abundance of CD4 T cell effector memory was
uniquely linked to preserved lung function in E-COPD, we next explored
the heterogeneity within this population.We found that CXCR6, a receptor
for CXCL16 and IL15, separates the effector memory into CXCR6high and
CXCR6low subpopulations, each showing unique signatures (Fig. 7a–c). This
CXCR6-based classification of effectormemoryCD4 could also be observed

Fig. 3 | Identified CD4 subsets in the human lungs. a UMAP embedding of
identified CD4 subsets in the in-house discovery dataset. b UMAP embedding of
major subset marker expression: Central memory CD4 (TCF7, KLF2), Naïve CD4
(KLF12, BACH2), NR3C1 (NR3C1), Treg (FOXP3), Effector memory (S100A4,
IL32). c Heatmap of gene signature expression in the identified 5 subsets of CD4

T cells in the in-house discovery dataset. d Transcription factor activity was esti-
mated with the univariate linear model using decoupleR for each CD4 subset.
e UMAP embedding of Palantir pseudotime. f Differentiation trajectory of
CD4 subsets estimated by cellrank using Palantir pseudotime. g Violin plots of
palantir pseudotime values for identified CD4 subsets.
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in the validation dataset, with CXCR6High and CXCR6Low subsets showing
similar gene signature expressions and estimated differentiation trajectory
(Supplementary Fig. 9a–g). CXCR6high CD4 effector memory expressed a
higher level of CTLA4, an immune checkpoint molecule, compared to the
CXCR6low subset (Fig. 7c). Further, CXCR6low effector memory showed
higher KLF2 transcription factor activity (Fig. 7d), which has been asso-
ciated with the downregulation of chemokine receptors and the potential
establishment of tissue residence in mice59,60. Unsupervised pseudo-
temporal modeling with CytoTRACE61 suggested that CXCR6low repre-
sents a more differentiated state of CD4 effector memory (Fig. 7e, f).
Consistently, in contrast to CXCR6high, driver genes for CXCR6low CD4
effector memory differentiation were associated with the activation of CD4
T cell receptors (Fig. 7g). Notably, we found that the relative abundance of
CXCR6high effector memory in CD4 T cells positively correlated with lung
function in the E-COPD group (Fig. 7h), mirroring the overall effector
memory CD4 correlation (Supplementary Fig. 8a) and no significant cor-
relations were observed between CXCR6Low CD4 effectormemory and lung
function (Supplementary Fig. 8b).

Together, these results suggest that higher expressions of immune
checkpoints in CXCR6High CD4 Effector memory might contribute to the
preserved lung function in E-COPD.

Increased interactions between migratory DC and CXCR6High

CD4 effector memory via immune checkpoint molecules
Because CXCR6high CD4 effectormemory in CD4 positively correlatedwith
preserved lung function in E-COPD, and immune checkpoint molecules

(CTLA4, PDCD1, LAG3, and CD96) were among the signature genes
expressed in this subset, we next performed interactome analyses to identify
potential mechanisms for their function in E-COPD. Global interactome
analyses suggested that migratory DCmight be a major interaction partner
with CXCR6High CD4 effector memory in all three groups (Supplementary
Fig. 5a–c & Fig. 8a–c). In the E-COPD group, we found a shifting pattern
between CXCR6high effector memory T cells and migratory DCs that
exhibited increased interactions via CTLA4-CD80/CD86 (Fig. 8c).We next
used pairwise comparisons of ligand-receptor activities to identify potential
differentially regulated ligand-receptor pairs between migratory DCs and
CXCR6high across three disease groups. Comparing NE-COPD to controls
(Fig. 8d), we found that in NE-COPD, activities of TGFβ-TGFβR2, TGFβ-
ITGB1, IL1β-IL12RB2, and IL15-IL2RB ligand-receptor pairs were down-
regulated in CXCR6High CD4 subsets whereas activities ofMIF-CD74,MIF-
CD44, CCL5-CCR5, CCL4L2-CCR5, and CCL4-CCR5 ligand-receptor
pairs were upregulated (Fig. 8d).

Comparing E-COPD to NE-COPD, we found that activities of MIF-
CXCR4,MIF-CD74,MIF-CD44, andCXCL11-CCR5 ligand-receptor pairs
were upregulated in E-COPD, whereas IL7-IL2RG, IL1β-IL12RB2, IL18-
IL18RAP and ICAM1-IL2RG ligand-receptor pairs were upregulated in
NE-COPD (Fig. 8e).Notably, interaction via the immune checkpoint LAG3
through the LGALS3-LAG3 ligand-receptor pair was upregulated in
E-COPD compared to NE-COPD.When comparing E-COPD to controls,
we found that CXCL10-mediated interactions (e.g., SDC4, DPP4, CXCR3),
and ligand-receptor pairs associated with immune checkpoint molecules
(CD48-PDCD1, PVR-CD96, CD274-PDCD1) were upregulated in
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Fig. 4 | Reduced NR3C1 CD4 T cells and increased myeloid cell-NR3C1 CD4
interactions in Emphysematous COPD (E-COPD) compared to none-
mphysematous COPD (NE-COPD). a Percentages of NR3C1 in CD4 T cells in the
in-house discovery dataset. b Percentages of NR3C1 in CD4 T cells across 3 disease
groups stratified by steroids usage. c Percentages of NR3C1 in CD4 T cells across 3
disease groups stratified by types of steroids used. d Top downstream targets of
NR3C1 genesmapped using theOmnipath database, blue arrows indicate inhibition
by NR3C1, and red arrows indicate induction by NR3C1. e EnrichR analyses results
of NR3C1 CD4 subset signature genes using BioPlanet 2019 andWikiPathway 2019
Human gene sets. Interactions via CXCL signaling between identified major cell

types and CD4 subsets in Control (f), NE-COPD (g), and E-COPD (h). Horizontal
bar plots represent incoming signal strength estimated by Cellchat. A vertical bar
plot represents outgoing signal strength. Tiles in the heatmap represent the sum-
mation of incoming and outgoing signal strengths. Statistical significance between
the three groups was determined using the Kruskal–Wallis test. Pairwise compar-
isons were performed using the Wilcoxon rank-sum test with Holm’s correction.
Significance code: p < 0.05(*), p < 0.01(**), p < 0.001 (***). Artwork was generated
from Bioicons (https://bioicons.com/) and NIH NIAID BioArt Source (https://
bioart.niaid.nih.gov/). Modifications of the artwork were performed in Inkscape
(https://inkscape.org/).
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E-COPD (Fig. 8f). These findings were specific to E-COPD because the
interactions via immune checkpoint molecules were not observed in NE-
COPD or control (Fig. 8d).

Together, these findings suggest that while pro-inflammatory inter-
actions were likely to be upregulated in both NE-COPD and E-COPD;
however, CXCR6High CD4 effector memory upregulated interactions via
immune checkpoint in E-COPD but not NE-COPD. These findings might
be indicative ofT cell exhaustionbut also control ofT cell activation through
immune checkpoints contributing to a lower inflammatory state of
CXCR6High CD4 effector memory may partially explain the preserved lung
function in E-COPD. Consistently, CD4 CXCR6high effector memory dis-
play the highest expression of the immune checkpointmolecule CTLA-4 in
E-COPD (Fig. 8g, h). Furthermore, in E-COPD, migratory DCs exhibit a
signature consistent with heightened oxidative phosphorylation and DNA
damage responses (Supplemental Fig. 10), which have been associated with
defective DC migration and activation62.

Discussion
We performed scRNA transcriptome profiling of human lung tissue from a
cohort of well-characterized patients with different stages of lung disease.
Consortium datasets that include large sample sizes and profile pulmonary
cellular landscapes, such as the human lung cell atlas (HLCA) project63,
often combine amultitude of lung diseases. TheHLCAproject combined 49
datasets of the human respiratory system (upper and lower airways) from
486 human subjects spanning over ten lung diseases. The HLCA has

provided a consensus of major cell lineages in the lungs but lacks granular
examination of immune cell types and how they are altered in specific
conditions. Here, we leveraged our large sample size and detailed disease
phenotype information for each subject to identify how the immune system
could be specifically altered in human emphysema.

Themost informative approach to examining tissue cellular landscapes
in smoke-induced lung diseases (e.g., COPD with or without emphysema
variant) requires access to surgical lung resections combined with high-
throughput transcriptomic analysis. We provide objective evidence that
CD4 T cells in the lungs of E-COPD are distinct from NE-COPD and
controls. Although smokers can present with heterogeneous respiratory
insufficiency, emphysema often goes undetected in the early stages of the
disease. Pulmonary function testing (PFT) identifies airflowobstruction and
has been widely used to assess disease severity in smokers. However,
emphysematous tissuedestruction canbe found in some smokerswith chest
computed tomography (CT) in the absence of any detectable PFT
abnormalities64,65. Although such discordance between anatomical tissue
destruction and pulmonary function is frequently seen in clinical settings66,
CT-based quantification of emphysema is rarely used in clinical or pre-
clinical studies. Accurate phenotyping of COPD requires thorough diag-
nostic approaches that include not only physiological measurements of
respiratory mechanics but also imaging studies that measure the degree of
pulmonary parenchymal degeneration.

Several lines of evidence corroborate our current findings that αβ T
lymphocytes are increased in the lungs of smokers with emphysema. First,

Fig. 5 | Reduced tissue resident macrophages in emphysematous COPD (E-
COPD) compared to nonemphysematous COPD (NE-COPD). a UMAP
embedding of identified pulmonary macrophage subsets. b UMAP embedding of
major lineage markers’ expressions for identified macrophage subsets. PPARG
ITGB8macrophage (PPARG), C1Qmacrophages (C1QB, HLA-DQB1), Monocytic
macrophages (CD14, TREM2) and proliferative macrophages (MKI67). cHeatmap
of gene signature expression of identified macrophage subsets. d Heatmap of

DecoupleR estimation of transcription factor activity in identified macrophage
subsets. e Percentage of PPARG ITGB8 macrophages in pulmonary macrophages.
Statistical significance between the 3 groups was determined using the
Kruskal–Wallis test. Pairwise comparisons were performed using the Wilcoxon
rank-sum test with Holm’s correction. Significance code: p < 0.05(*),
p < 0.01(**), p < 0.001 (***).
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the presence of aggregates of T and B lymphocytes in the lung parenchyma
of smokers that correlatewith disease severity indirectly supports the role of
the adaptive immune system in disease progression67,68. IFN-γ and IL-17A
expressing T helper cells have been shown to play a pathogenic role in
smoke-induced emphysema in humans and animal models of
emphysema42. The mechanism for IFN-γ- and IL-17-associated disease
pathogenesis includes their downstream effector chemokines, such as IFN-
γ-inducible protein of 10 kDa (IP-10 or CXCL10) and monokine-induced
by IFN-γ (MIG or CXCL9) that upregulate matrix metalloproteinases
(MMP)12 andMMP969. These findings support a role for CD4 subsets (i.e.,
Th1 and Th17) in the induction of proteinases that cause lung parenchyma
destruction in progressive emphysema.

By stratifying COPD with %LAA-defined emphysema in the COPD
cohort, we isolated the differences between emphysematous and none-
mphysematous COPD phenotypes. Globally, we discovered positive
enrichment of αβ T lymphocytes and monocytes in E-COPD and positive
enrichment of macrophages in NE-COPD. Gene sets enrichment analyses
suggested that T cells in E-COPDexhibit distinct functional characteristics
compared toNE-COPD, emphasizing the importance of stratifyingCOPD
by %LAA-defined pulmonary emphysema in addition to airflow
obstruction. We found that CD4 T cells in emphysema exhibited an
activated transcriptomic profile indicative of heightened metabolism,
augmented cytokine signaling, and enhanced inflammatory response.

Interactome inference suggested that CD4 effector memory might be
sendingmore signals to various immune cells and could be independent of
cDC in self-maintenance. InE-COPD,more interactions betweendifferent
subsets of T cells via CCL signaling suggest that emphysema-associated
CD4 T cells might be more autonomous and possess autoreactive prop-
erties. In addition, our findings suggest a decrease in NR3C1+ CD4 T cells
in E-COPD, which was independent of the usage of corticosteroids. In
silico, we also detected increased interactions between macrophages and
NR3C1+ CD4 T cells via CXCL signaling in E-COPD but not in the other
two groups. ExpressionofNR3C1hasbeendocumented in bothCD870 and
CD471 T cells. Glucocorticoid responses in T cells not only suppress
inflammation70 but also upregulate IL-7 receptor expression72 that pro-
motes tissue accumulation of T cells in anti-microbial responses71.
Monocytes and macrophages produce glucocorticoids, which are ligands
for NR3C1 and have been shown to maintain the endogenous expression
of NR3C1 in T cells70. In the present dataset, the relative reduction of
NR3C1+ CD4 T cells in E-COPD mirrored the reduction of PPARG
macrophages inE-COPD, suggesting a possiblemutual regulation between
these cell populations in the lungs. Indeed, interactome modeling sug-
gested an emergence of NR3C1+ CD4 T cells and macrophages interac-
tions via CXCL signaling in E-COPD, which was absent in controls and
NE-COPD.Higher expressionofNR3C1 inCD4Tcells has beenpositively
correlated with expiratory reserve volume in obese pediatric asthma73,
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Fig. 6 | Correlation of NR3C1 CD4 subset and inflammation. a Spearman cor-
relations of deconvoluted relative abundances were performed for NE-COPD and
E-COPD groups. b Spearman correlation of the relative abundance for CD4 subsets

and plasma cytokine/chemokine levels in NE-COPD and E-COPD. Significance
code: *p < 0.05; **p < 0.01; ***p < 0.001.
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suggesting their potential protective role in the lung. In NE-COPD, data
analysis predicted increased interactions between PPARγ macrophages
and NR3C1+ CD4 T cells through SIGLEC1-CD43. Prior studies have
shown that SIGLEC1 interacts with CD43 in CD4 T cells, thereby sup-
pressing pro-inflammatory cytokine production74. Together, increased
interaction via CD43 might explain the parallel increase of PPARγ mac-
rophages and NR3C1+ CD4 T cells in NE-COPD and suggest that these
macrophages could promote the trafficking/expansion of NR3C1+ CD4
Tcells in the lung.However,whetherNR3C1+CD4Tcells are protective or
pathogenic in human emphysema and COPDmerits further investigation
in experimental and clinical studies (Graphic Abstract).

Increased airflow obstruction with escalated pulmonary tissue
destructionpredicts theworst prognosis inCOPD75. In thepresent study,we
found that the relative abundance of CXCR6High effector memory CD4
T cells positively correlates with a higher predicted %FEV1 in the emphy-
sema cohort. CXCR6High CD4 effectormemory represents the recent lymph

node emigrants and exhibits a lower level of differentiation compared to
CXCR6Low CD4 effector memory in the lung. We also found that CTLA-4
was expressed at a higher level in CXCR6High than in CXCR6Low CD4
effectors. In E-COPD, migratory dendritic cells showed the potential to
interact more with CXCR6High through CD80/CD86-CTLA4 signaling.
These interactions likely result in checkpoint-mediated immune suppres-
sion, providing a new mechanistic insight into the increased CXCR6High

association with preserved lung function in emphysema. CXCR6High CD4
effectormemory also expresses higher levels of IFN-γ. Paradoxically, IFN-γ-
expressing CD4 T cells are protective in acute traumatic injury-associated
inflammation in the central nervous system (CNS), most likely through the
regulation of myeloid cells in the CNS76. Whether such observations are
translatable in pulmonary emphysema-associated inflammation requires
further investigations. Furthermore, driver genes of CXCR6Low CD4 effec-
tors map to pathways associated with activating T cell receptor signaling.
These observations suggest that CXCR6Low CD4 effectors might be the
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Fig. 7 | CXCR6High effector CD4 positively correlates with %FEV1 in E-COPD.
a UMAP embedding of CD4 effector memory subsets in the in-house discovery
dataset. b Violin plot of CXCR6 expression in CD4 effector memory subsets.
c Heatmaps of gene signature expression and (d) decoupleR estimation of tran-
scriptional factor activities in CXCR6High and CXCR6Low CD4 effector memory
subsets. e UMAP embedding of CytoTRACE pseudotime in CD4 effector memory.
f Cellrank estimation of differentiation trajectory in CD4 effector memory subsets.

Higher values of cytoTRACE pseudotime indicate a higher level of differentiation.
gDriver genes for CXCR6Low CD4 effector memory differentiation from CXCR6High

CD4 effector memory. Expressions of driver genes (y-axis) were plotted against
CytoTRACE pseudotime (x-axis), the shadow of the curve denotes 95% confidence
intervals.h Spearman correlation of CXCR6High CD4 effectormemory percentages in
CD4 and %FEV1 in 3 disease groups.
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culprit in propagating the inflammation in E-COPD and the consequent
decline of pulmonary function.

Limitations of the study include the lack of in vivo data that could
validate the predicted cell differentiation trajectories using lineage tracing
transgenic animal models. While these studies are beyond the scope of
current study, our findings provide a strong rationale for opening new
investigations using animal models of cigarette-smoke-induced emphysema.
Although we used the NicheNet77 algorithm to estimate and predict com-
munications between cells in a pairwise fashion across COPD groups with
and without emphysema, these findings should be followed up with human
lung tissues collected from well-characterized smokers in future studies.

Future studies should opt for multi-omics approaches (protein,
mRNA, DNA, and chromosomal accessibility) of single-cell sequencing.
There is also a strong interest in identifying early immune activation mar-
kers in emphysema. Notably, a recent publication showed that CD8 T cells
were increased in the early stages of COPD31. As such, future longitudinal
cohort studies that include PFTs and emphysema quantification should be
used to find immune signatures that could predict emphysema develop-
ment. Moreover, with existing large-scale genetic studies of emphysema,
single-cell DNA-level profiling will enable GWAS to assess the risk of
emphysema development in smokers at unprecedented comprehensiveness
and resolution. Indeed, large-scale GWAS-based discovery of single-
nucleotide polymorphisms (SNPs) has identified threenew loci (SOWAHB,
TRAPPC9, and KIAA1462) associated with emphysema78. Future studies

should also include clonotype analyses of T cell receptors to examine in
depth the expansion and evolution of T cell clonotypes and the antigen
responsible for such expansion during emphysema pathogenesis.

Materials and methods
In-house dataset one
Control lungs were acquired from medically necessary surgical explants.
COPD lungs and plasma were obtained from lung volume reduction or
transplant surgeries as we have described42. Fresh human lung tissues and
plasma were processed within 1 h post surgery. Measurement of Low
Attenuation Areas below 950 Hounsfield Units threshold (%LAA) by chest
computed tomography was performed as previously described68. Post-
surgical lung tissues were assessed by a pathologist to identify cancer mar-
gins, and tissues were resected at least 10 cm away from macroscopically
distinguishablemalignant tissue if cancerwas present. Lung tissueswere cut
into small pieces and then transferred to 10mL RMPI 1640 media con-
taining 0.5 mg/mL collagenase P (SKU11213857001, Millipore Sigma,
USA) and 0.1mg/mL of DNase I (SKU11284932001, Millipore Sigma,
USA) before mechanical dissociation with gentleMACS (Miltenyi Biotech,
USA) “m_lung_01_02” program. After completion of the “m_lung_01_02”
program, tissue homogenates were incubated on a shaker at 37 °C for
30min. Tissues were then mechanically dissociated with the gentleMACS
(Miltenyi Biotech, USA) “Multi_B_01” program. Following completion of
the program, single-cell suspension was passed through first a 100mm cell
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Fig. 8 | CXCR6High CD4T cells exhibit increased interactions withmigratoryDCs
via immune checkpoints. a–c Interaction patterns between migratory DC and
CXCR6High CD4 effector memory estimated by CellChat. Chord plots depict signals
sent from migratory dendritic cells and received by CXCR6High CD4 effector
memory. The width of the chord indicates the strength of the interaction via the

indicated ligand-receptor pairs. Interactions with CTLA4 were highlighted in blue
(CD86) and green (CD80). d–f Pairwise comparison results of differentially regu-
lated ligand-receptor pairs estimated by Multinichenetr between migratory DC and
CXCR6High CD4 effector memory. g, h Expression of CTLA4, LAG3, TOX and
PDCD1 across 3 groups in the in-house discovery dataset.
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strainer and then a 40mm cell strainer. Red blood cells were lysed using
10mL 1X ACK Lysing Buffer (Catalog# A1049201, ThermoFisher, USA).
Cells were then cryopreserved in freezing media (50% complete RPMI
(Corning, USA) with 40% heat-inactivated FBS and 10%DMSO (Millipore
Sigma, USA)) until single-cell library preparations.

Study cohort and sample preparations
CTquantification of humanemphysema. Emphysema characterization
and definition have been published previously79. Briefly, clinical CT scans
were assessedusing theChest ImagingPlatform software. Emphysemawas
quantified using the percentage of low-attenuation areas below the −950
Hounsfield units (HU) threshold (%LAA-950) in the specific lobes that
were used for spatial transcriptomic analyses. Emphysema was defined as
%LAA-950 > 5%

32. Patients were classified as Control (No Emphysema),
COPD with No Emphysema, and COPD with Emphysema.

Lung spatial transcriptomics and cell type deconvolution using
CIBERSORTx
Transcript abundances ofmicroscopic regions of interest on Formalin-fixed
paraffin-embedded (FFPE) lung sections were measured using NanoString
Digital Spatial Transcriptomics GeoMx technology according to the man-
ufacturer’s instructions. Cell deconvolution of GeoMx bulk gene expression
data was performed with CIBERSORTx80 (https://cibersortx.stanford.edu/)
as previously described79,81. Briefly, count data from 50 replicates of 34 cell
types in the in-house single cell RNA sequencing dataset from NE-COPD
and E-COPD samples were uploaded to CIBERSORTx to construct a
custom cell type signature matrix. Cell replicates were chosen only from
patients used with both single-cell RNA sequencing data and GeoMx
transcriptomic data.Default valueswere used for parameters such asG.min,
G.max, q.value, filter, k.max, and sampling. The fraction option was set to
0.50. The fractions module of CIBERSORTx was subsequently used to
determine ROI cell proportions using normalized and batch-corrected
GeoMx ROI expression data along with the previously constructed custom
cell type signaturematrix. The number of permutations was set to 100, with
quantile normalization set to TRUE. Batch correction was incorporated
using the S-mode option to correct for platform differences between the
custom signature matrix constructed from the in-house single-cell RNA
sequencing dataset and the GeoMx bulk RNA sequencing.

LegendPlex multiplex cytokine assays
Peripheral blood was collected into EDTA-coated BDVacutainers (Becton,
Dickinson and Company, USA). Plasma samples were acquired by cen-
trifugation of whole blood at 2000 × g for 15min at room temperature and
cryopreserved for multiplexed cytokine measurement. Multiplex cytokine
assays were performed at UT Southwestern (UTSW) Microarray Core
Facility using the ProcartaPlex™ Human Immune Response Panel, 80plex
panel (Catalog EPX800-10080-901, Invitrogen, MA, USA) and detected
using the Luminex xMAP technology platform according to the manu-
facturer’s instructions.

Generation of single-cell RNA sequencing data
In-house dataset one. Cryopreserved single-cell suspensions from the
lung were thawed at 37 °C water baths and resuspended in 0.04% BSA
containing 1X PBS. Viability was determined by Trypan Blue exclusion
assays. Single-cell libraries were prepared using Chromium Next GEM
Single Cell 5′ Reagent Kits v2, R2-only (10X Genomics, USA). Libraries
were sequenced using the NovaSeq6000 platform (Illumina, USA).
Libraries were prepared and sequenced at the University of Southern
California Sequencing Core facility. Raw sequencing Fastq files were
mapped to the human reference genome GRCh38-2020-A (compiled by
10XGenomics) and count matrixes were generated using the Cell Ranger
v8.0 software (10XGenomics, USA).

Validationdataset two. Detailed patient information can be found in the
original publication34. Control lung tissue were obtained from rejected

donor lungs. Emphysematous lung samples were from explants of end-
stage COPD patients who underwent lung transplantation. Cryopre-
served single-cell suspensions were used for single-cell RNA sequencing
library preparation.H5 format countmatriceswere downloaded from the
National Center of Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) database (GEO Accession: GSE136831).

Pre-processing and quality control of single-cell data
Count matrices from both datasets were preprocessed using the SCANPY
package version1.11.182.Cellswith fewer than500genesandgenes thatwere
present in less than 10 cells were removed. Further quality control was
performed by automatic thresholding using the Median absolute
deviation83. Cells were considered outliers if they differed by 4 median
absolute deviations in log1p_total_counts, log1p_n_genes_by_counts,
pct_counts_in_top_20_genes, and pct_counts_mt. The mitochondrial
transcript count percentage was further filtered at less than the 10%
threshold84. Cells with high-complexity transcriptomes (>6500 genes) were
removed47. Nuisance transcripts (mitochondrial, ribosomal, long noncod-
ing transcripts) were removed before doublet estimation and doublet
removal85.

Doublet removal
Doublet probability was estimated for each sample individually using
DoubletDetection Version 4.285. Estimated doublets were removed before
the concatenation of all samples for each dataset.

Batch-effect correction
Count matrixes are normalized and natural log-transformed using
SCANPY’s built-in functions pp.normalize_total and pp.log1p. Before data
integration, highly variable genes were determined for each batch in each
dataset using the following 3 thresholds: min_mean=0.0125, max_mean=3,
and min_disp=0.5. Batch correction and integration were performed with
Harmony86.

Cell-type identification markers
Cell type prediction was first performed with decoupleR Python imple-
mentation version 1.9.187 using the PanglaoDB cell marker database88.
Predicted cell types are further examinedwith amanually curated canonical
cell type marker dictionary (Table 3).

Compositional and differential abundance analyses
Cell type enrichment was determined by scCODAcompositional analysis33.
scCODA was implemented through Pertpy (https://github.com/theislab/
pertpy). For compositional analyses, proportions of each cell type for each
sample were determined using scCODA and plotted using the pertpy.pl.-
coda.boxplots function. Collective proportions for each cell type between
conditions (COPD with or without emphysema vs control) were plotted
using the pertpy.pl.coda.stacked_barplot function. The reference cell type
was selected based on abundance and dispersion in relative abundance.
Abundance and dispersion were calculated and plotted using the pert-
py.pl.coda.rel_abundance_dispersion_plot function for the identification of
reference cell type. The cell type with the lowest total dispersion and pre-
sence passing the 0.9 threshold was selected as the reference cell type. The
false discovery rate threshold for scCODA was set at 0.25.

Subset determination and re-clustering of T cells and
macrophages
Following canonical cell type annotation, major cell types of interest were
further extracted. Continuous covariates such as ‘pct_counts_mt’, ‘total_-
counts’, and ‘pct_counts_ribo’ that were generated during quality control
preprocessing were regressed out using the scanpy.pp.regress_out function.
UMAPcoordinates andLeiden clusterswere then recalculated for clustersof
interest, respectively. Leiden clusters were determined at 1 resolution.
Marker genes for each cluster are then determined using Scanpy’s
tl.rank_genes_groups function with the t-test_overestim_var method.
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Pathway enrichment analysis
Pathway analyses were performed using gene set enrichment analyses
(GSEA)89,90 and gene set variation analysis (GSVA)91. Hallmark, Gene
OntologyBiological Process (GOBP), andKyotoEncyclopedia ofGenes and
Genomes (KEGG) gene sets from MSigDB92 were used for mapping dif-
ferentially expressed genes. GSEA was implemented through the Python-
based decoupleR method.

Interactome prediction using MultiNicheNet and CellChat
CellChat v2 was used to identify cellular interactions for each cohort, and the
algorithmwas runusingdefault parameters93.MultiNicheNetwasused for the
pairwise comparisons of estimated cellular interactions94. Cell-cell commu-
nications were estimated in a pairwise fashion across disease groups (e.g.,
E-COPD vs control, E-COPD vs NE-COPD, NE-COPD vs control) using
differentially expressed genes with a minimal logFC_threshold of 0.05, the
maximumadjusted false discovery rate of 0.25, and aminimumfractionof 5%
expression. The top 250 targets per ligand were considered for ligand activity
analysis. Ligand-receptor interactions were prioritized based on three para-
meters using recommended configurations (https://github.com/saeyslab/
multinichenetr/blob/main/vignettes/pairwise_analysis_MISC.md): (1) differ-
ential ligand-receptor expression, (2)Nichenet77 estimation of ligand-receptor
activity, and (3) cellular fraction of ligand-receptor expression.

Statistical analyses
For statistical comparisons of continuous variables between more than two
independent samples, a one-way analysis of variance was performed with

the nonparametric Kruskal–Wallis’s rank sum test. For comparisons
between two independent samples, null hypotheses were tested using the
nonparametric Wilcoxon rank sum test. Pearson’s Chi-squared test was
used for the test of independence of categorical variables. In cases where the
sample size count was less than 5, Fisher’s exact test was used instead of
Pearson’sChi-squared test to compare 2ormoreproportions. The statistical
significance threshold for the p-value was set at 0.05.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Raw fastq sequences are uploaded to NCBI Sequence Read Archive (SRA)
and can be accessed with the BioProject accession: PRJNA1282758. Cell-
ranger processed count matrices are uploaded to NCBI Gene Expression
Omnibus (GEO) and can be accessed with the GEO accession: GSE302339.
GeoMx datasets used in this study can be accessed with GEO accessions
GSE237120 andGSE292993.Codefiles used for the analysis can be accessed
through Zenodo DOI 10.5281/zenodo.16341197.

Code availability
Raw fastq sequences are uploaded to NCBI Sequence Read Archive (SRA)
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