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ODBAE: a high-performance model
identifying complex phenotypes in
high-dimensional biological datasets
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Identifying complex phenotypes from high-dimensional biological data is challenging due to the
intricate interdependencies among different physiological indicators. Traditional approaches often
focus on detecting outliers in single variables, overlooking the broader network of interactions that
contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced
Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by
capturing latent relationships among multiple physiological parameters. ODBAE’s revised loss
function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt
latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm
but go undetected by traditional autoencoder-based methods. Using data from the International
Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with
complex, multi-indicator phenotypes—normal in individual traits, but abnormal when considered
together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated
abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint
abnormalities and advancing our understanding of homeostatic perturbations in biological systems.

Phenotypes, including symptoms, defined as the observable characteristics
or traits of an organism, are the result of complex interactions between
genotype and environmental factors1,2. These traits are often quantified
using physiological or pathological indicators that serve as proxies for the
underlying biological or pathological processes. Recent advances in phe-
notypic research, particularly through genetic manipulation, have deepen
our understanding of gene function and the mechanisms underlying
pathological conditions across a wide range of organisms, including plants
and animals2. Traditionally, gene-related phenotypic analyses have focused
on identifying abnormalities in individual physiological indicators3–5.
However, findings from the InternationalMouse Phenotyping Consortium
(IMPC) demonstrate strong correlations between physiological indicators,
suggesting that many traits and diseases result not from isolated abnorm-
alities, but from coordinated disruptions across multiple physiological
indicators6.

Our currentunderstandingof phenotypesor diseasesoften emphasizes
the detection of outliers in individual physiological indicators, typically

those outside the normal physiological range. However, the emergence of
disease in an organism is a more complex process. Homeostasis-the
dynamic balance maintained by biological systems-can be perturbed at
multiple levels before a single-indicator deviates outside the normal range7.
This suggests that phenotypic abnormalities may manifest as imbalances
between correlated indicators, even when each individual measure remains
within its expected range. These imbalances may represent early warning
signs of disease or dysfunction that may be missed by traditional univariate
analysis.

We hypothesize that the coordinated perturbation of physiological
indicators reflects an emerging phenotype or disease state, even when
individual measures appear normal. By examining these subtle inter-
dependencies, we can gain insight into how homeostasis is perturbed in
knockout mouse models. Furthermore, for genes whose knockout does not
result in obvious outliers in individual parameters, disruption of homeo-
static balance may still occur through correlated indicators. This approach
challenges the notion that the absence of a detectable abnormal phenotype
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in knockout mice indicates no functional impact, and instead suggests that
our focus on single-indicator abnormalities may obscure more complex
systemic effects.

Existing methods, such as linear regression6,8 and basic bioinformatics
tools9–11, have provided initial insights into these relationships. However,
these techniques struggle to capture non-linear and complex relationships
between multiple physiological indicators, especially in high-dimensional
biological datasets. Machine learning methods, particularly autoencoders,
have emerged as powerful tools for detecting outliers by learning complex,
latent patterns within data12–18. By compressing and reconstructing data,
autoencoders can capture subtle variations and relationships that may
indicate phenotypic abnormalities across multiple indicators. Their ability
to learn from high-dimensional data makes them well suited for analyzing
the intricate dynamics involved in phenotypic expression19,20. In the
regression analysis, all outliers can be categorized as influential points (IP)
and high leverage points (HLP). IP exerts a substantial influence on the
model’s fitting results and HLP deviate from the center of the dataset but
may not necessarily impact the model fit21. Since the reconstruction of any
dataset by the autoencoder can be regarded as a process of regression, IP can
be easily detected when using autoencoders for outlier detection. However,
there are still many uncertainties about the detection effect of HLP.

In this study, we introduce Outlier Detection using Balanced Auto-
encoders (ODBAE), a machine learning method designed to detect outliers
by capturing the relationships between physiological indicators. ODBAE
improves on traditional autoencoder by balancing the reconstruction error
across principal component directions, enhancing its ability to detect both
IP that deviate from the expected relationships between indicators andHLP
that are far from the data center. We apply ODBAE to developmental and
metabolic datasets from IMPC to explore how coordinated perturbations in
physiological parameters can reveal previously unidentified phenotypes,
even in cases where knockout mice show no abnormalities in individual
traits. By using ODBAE, we aim to identify novel gene functions and
phenotypic complexities that have been missed by single-indicator
screening methods. Collectively, these findings establish ODBAE as a
powerful tool for identifying complex anomalies and unknown phenotypes
within biological systems.

Results
Outlier detection in ODBAE
ODBAE takes tabular datasets from various sources as input, such as gene
knockout mouse dataset from IMPC and patient health examination data.
Each row in the data represents a record, and each column represents an
attribute. The goal of ODBAE is to maintain the effectiveness of the auto-
encoder in detecting IP while further improving the detection performance
for HLP. This is a comprehensive approach to outlier detection in high-
dimensional tabular datasets. Furthermore, ODBAE also provides an
anomaly explanation for each outlier, indicating which parameter or
parameters are associated with the anomaly. For gene knockout mouse
datasets, ODBAE can identify genes that, when knocked out, lead to
anomalies, as well as the abnormal parameter pairs associated with the gene
knockout.

Overview of ODBAE
To address the challenge of outlier detection in high-dimensional tabular
datasets, we construct an improved autoencoder model (ODBAE) with
refined training loss function. Our model leverages the strong representa-
tion learning and feature extraction capabilities of traditional autoencoders
for IP, whilemitigating their limitations inHLP detection (“Methods”). The
core principle underlyingODBAE-based outlier detection is that inliers can
be well reconstructed, whereas outliers, including both HLP and IP, may
generate significant reconstruction errors. ODBAE performs unsupervised
outlier detection on the input high-dimensional datasets. During training
process, ODBAE learns as much intrinsic information as possible from
training set and reconstructs the training dataset by minimizing the loss
function. The training dataset selection strategy depends on the initial

outlierprevalencewithin thedataset. For datasetswith fewoutliers presence,
the entire dataset are utilized for both training and testing for outlier
detection, such as data fromwild-typemice in IMPC.However, if the overall
proportion of outliers are not clear, a subset of the data exhibiting fewer
anomalies is chosen for model training. Then, the entire dataset, or other
subset, can be used for outlier detection. Subsequently, the trained model is
applied to the test dataset, generating reconstruction error of all sample
points. Finally, sample points with reconstruction errors greater than the
predefined threshold are considered outliers. As shown in Fig. 1a, outlier
detection frombiological datasets byODBAE include three steps: (1) given a
training dataset as input, the intrinsic information of normal data points are
learned; (2) the trained model is used to reconstruct the test dataset, and
outliers will be identified according to large reconstruction error (“Meth-
ods”); (3) the detected outliers including HLP and IP are explained using
highest reconstruction errors and kernel-SHAP to gain the abnormal
parameters22.

Based on mathematical analysis, ODBAE uses a revised training loss
function incorporating an appropriate penalty term to Mean Square Error
(MSE) to balance the reconstruction by properly suppressing complete
reconstruction of the autoencoder (“Methods”). Specifically, the penalty
term can ensure the equal eigenvalue difference between each principal
component direction of the training and reconstructed dataset. Therefore,
the incorporated penalty term enhance the detection ofHLP,while theMSE
term maintain the identification performance of IP.

To explain each outlier detected by ODBAE, we first identify the top
features that contribute themost to the reconstruction error, and then apply
kernel-SHAP to obtain the features that have the greatest impact on them
(Fig. 1b and “Methods”). Finally, ODBAE outputs instance-based outliers
and their explanations. For outliers in categories, if the anomaly rate for a
category of outliers is greater than the set threshold, then ODBAE provide
anomaly explanation for each category according to their mean values of
each feature.

ODBAE’s comprehensive benefits
The power of ODBAE lies in its ability to efficiently detect bothHLP and IP
in complex, high-dimensional biological data sets. HLP are outliers that
deviate from the central distribution, while IP significantly influence model
results. To evaluate the performance of ODBAE in detecting IP, we com-
pared it to principal component analysist23, a common outlier detection
method. ODBAE demonstrated superior performance, particularly in
identifying IP, due to its enhanced ability to capture nonlinear relationships
between data points (Supplementary Fig. 1a–d).

We then applied ODBAE to phenotypic data from the IMPC to
identify complex phenotypes in knockoutmousemodels. Using a threshold
of the top 2% of absolute z-scores24 for any given physiological parameter,
we flaggedmice as potential outliers (“Methods”).We then appliedODBAE
with a predefined abnormality ratio (Fig. 1c). Ifmore than 50%ofmice from
a single-gene knockout strain were classified as outliers, the corresponding
gene was identified as significant and further analyzed (Fig. 1d). ODBAE
was able to identify key mutant strains with complex phenotypes, even in
cases where individual physiological indicators appeared normal.

To illustrate, we analyzed eight developmental parameters: Body
length (BL), Body weight (BW), Bone Area (BA), Bone Mineral Density
(excluding skull), Distance travelled total, Forelimb and hindlimb grip
strengthmeasurement mean, heart rate, and Heart weight. Using wild-type
mice as the training set and knockoutmice as the test set, we evaluated 1904
single-gene knockout mouse strains (“Methods”). Given the prevalence of
sexual dimorphism in disease phenotypes3,25, males and females were ana-
lyzed separately (SupplementaryData 1a–d). In the female dataset, ODBAE
identifiedCkbnullmice as outliers despite their individual parameter values
being within the normal range. These mice had normal BL and BW, but
their body mass index (BMI) was abnormally low. Specifically, four of the
eightCkb null mice had extremely low BMI values, calculated as BMI = BW
(g)/BL2 (cm)26–28. Analysis revealed that while BL and BW were within the
expected ranges, their relationship was abnormal, leading to the

https://doi.org/10.1038/s42003-025-08817-y Article

Communications Biology |          (2025) 8:1415 2

www.nature.com/commsbio


Fig. 1 | ODBAE is an approach for identifying and explaining outliers in tabular
datasets, it can discover complex phenotypes and identify novel genes when
applied to knockout mouse datasets. a Process for discovering complex pheno-
types. ODBAE first detect outliers based on a balanced autoencoder, which can
balance the reconstruction of the training dataset to detect both HLP and IP, then
perform anomaly explanation to gain abnormal parameters. Finally, some outliers
are identified due to joint anomalies of multiple parameters. bAnomaly explanation
of ODBAE. The detected outliers are explained in terms of SHAP values. c For both

males and females, abnormal mice are first identified according to the presence of
metabolic parameters that deviated too far from the mean, and then the same
abnormal proportion is set to identify abnormal mice with ODBAE. Finally, some
important genes will only be obtained by ODBAE. d Genes with an abnormal
proportion of more than 50% of the corresponding single-gene knockout mouse
strains are considered important genes by ODBAE. If an important gene has no
known metabolic links in the MGI database, it will be considered a novel gene and
further validated by SNP analysis of human orthologues.
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identification of these mice as outliers (Fig. 2a). The average BMI of these
Ckb-deficient mice was lower than 97.14% of other mice (Fig. 2b),
demonstrating the sensitivity of ODBAE to complex, multivariate outliers.
In addition,Ckb has previously been implicated in developmental processes
and obesity, further strengthening the biological significance of these
findings29.

ODBAE also identified previously unknown phenotypes, highlighting
itspotential to uncovernovel gene functions. In termsof the identificationof
HLP, most studies choose MSE as the training loss function and force the
autoencoder to completely reconstruct the training dataset, which brings
two major limitations: (1) only HLP along principal component directions
with poor reconstruction can be detected; (2) in the process of anomaly
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detection, each dimension of the dataset is independently detected. To
evaluate the performance difference betweenourmodified loss function and
MSE in HLP detection, we used these two trained autoencoder to detect
outliers for several datasets following multi-dimensional Gaussian dis-
tributions. For example, data in Fig. 2c–e were three 2-dimensional Gaus-
sian distribution datasets and data in Fig. 2i was 3-dimensional dataset
whose intrinsic dimension was two, the data points followed a
2-dimensional Gaussian distribution with respect to Parameter1 and
Parameter3 (“Methods”). The detection result in Fig. 2c shows that most of
the detected HLP lie in the direction of the principal components indicated
by the blue line, but few lie in the other direction. In Fig. 2d, HLP in two
dimensions of the dataset are independently detected, making outliers that
are anomalous in multiple dimensions (outliers at the four corners) unde-
tectable. Fig. 2i demonstrates the same issue in three-dimensional space.
Moreover, these issues persisted when the activation function was replaced
with another function (Supplementary Figs. 2a–d and 3a–d). This is because
the saturating nature of the non-linear activation function causes the
autoencoder to have different reconstruction capabilities for data points
located at the boundaries of the dataset compared to those located in the
interior (Supplementary Fig. 4a, c and Supplementary Note 1). Usually, the
distribution of a dataset along various principal component directions may
not be balanced, and the number of data points falling into unrecon-
structable regions may also be uneven (“Methods”). This leads to different
detection performances for HLP along different principal component
directions. Besides, the distribution of reconstructed dataset is independent
across all dimensions (Supplementary Fig. 4a, c). Therefore, the new loss
function in ODBAE is designed to ensure that the reconstructed dataset
follows a balanced joint distribution (Supplementary Fig. 4b, d). Then, we
usedODBAE todetectoutliers in these datasets and found thatmost outliers
were identified (Fig. 2f–h, j).

We further evaluated ODBAE’s detection of both IP and HLP
using a synthetic 3-dimensional dataset (Supplementary Fig. 5a).
Area Under Curve (AUC) and Average Precision (AP) scores were
used to evaluate the accuracy of outlier detection results (“Methods”).
The generated 3-dimensional training dataset formed a
2-dimensional manifold, where the subspace represented by Para-
meter1 and Parameter3 followed a 2-dimensional Gaussian dis-
tribution (“Methods”, Supplementary Fig. 5a). Here, we assumed that
the ratio of HLP and the ratio of IP were equal. During the anomaly
detection, we used the training dataset as the test dataset. Then, we
considered the top ⌊δn⌋ data points in the subspace represented by
Parameter1 and Parameter3, ranked by Mahalanobis distance, as
HLP, where δ was the outlier ratio, and n was the number of the data
points in the training dataset. Besides, we additionally generated ⌊δn⌋
points that were not on the manifold of the training dataset and
treated them as IP (Supplementary Fig. 5b). The results showed that
ODBAE worked better than other anomaly detection methods
(Supplementary Fig. 5c, d).

In summary, ODBAE is a powerful tool for detecting complex phe-
notypes inhigh-dimensional biological datasets, capturing both isolated and
coordinated abnormalities. This capability allows the identification of novel
gene functions and previously undetected phenotypes, particularly in cases
where traditionalmethods fail to detect subtle perturbations inphysiological
homeostasis.

ODBAE outperforms other methods by a large margin
To evaluate the strengths of ODBAE, we performed outlier detection of
ODBAEon low-dimensional synthetic datasets, high-dimensional synthetic
datasets, and two benchmark datasets. ODBAE was compared with the
autoencoder with MSE loss function (MSE-AE), autoencoder with Mean
Absolute Error loss function (MAE-AE), andDeepAutoencodingGaussian
Mixture Model (DAGMM)30. The comparison results were presented
through AUC and AP scores.

We generated three datasets with 2-dimensional Gaussian dis-
tribution, and their intrinsic dimension were also 2. In one of the
datasets, the correlation between the two dimensions was small
(Fig. 3a); the correlation between the two dimensions in another
dataset was relatively large (Fig. 3b); in the last dataset, the correla-
tion between the two dimensions was also small and non-Gaussian
distributed noise existed (Fig. 3c). Therefore, the outliers in these
three datasets were all HLP. Then we set different outlier ratios and
calculated the corresponding AUC and AP scores of the outlier
detection results. To be specific, if the outlier ratio is δ and the
number of sample points is n, then the input data is sorted according
to their Mahalanobis distance, and the first ⌊δn⌋ sample points are
regarded as positive. For each fixed anomaly ratio δ, outlier detection
was repeated 10 times on the dataset, and the average accuracy scores
for each method were recorded. Fig. 3d–f show the AUC scores of
test results on these three datasets, and Fig. 3g–i are corresponding
AP scores, respectively. ODBAE outperformed other schemes in
detecting HLP in all three datasets at any outlier ratio (Supplemen-
tary Data 2a–c).

Since autoencoders are often used for outlier detection in high-
dimensional datasets, we also analyzed the outlier detection results of
ODBAEon twohigh-dimensional synthetic datasets. Bothdatasets followed
multi-dimensional Gaussian distribution and their covariance matrices
werebothdiagonalmatrices. So the intrinsic dimensionof these twodatasets
were equal to their actual dimension. One of the datasets was 50-
dimensional and the other dataset was 100-dimensional. Finally, ODBAE
still performed best in HLP detection on high-dimensional datasets (Sup-
plementary Fig. 6a–d).

To further evaluate the robustness of ODBAE under more realistic
conditionswhere data distributions deviate fromGaussian assumptions, we
applied themethod to two additional synthetic datasets: one sampled froma
two-dimensional Laplace distribution and the other from a two-
dimensional uniform distribution. In both scenarios, ODBAE again
exhibited superior outlier detection performance (Supplementary
Fig. 7a–d).

Additionally, we tested ODBAE on two benchmark datasets: Dry
Bean Dataset and Breast Cancer Dataset. Dry Bean Dataset contained
13611 instances and 17 attributes, and there were 7 classes in the
original dataset. In each experiment, the inliers were 2000 data points
from a certain class and δ × 2000 data points were randomly selected
from the remaining 6 classes of data points as outliers, where δ was
the outlier ratio and δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. For this dataset, we
set the dimension of the hidden layer of the autoencoder to 8 during
the experiment. Breast Cancer Dataset contained 569 instances and
31 attributes. All data points fell into two categories: benign and
malignant. We randomly selected 300 data points from the data

Fig. 2 | ODBAE accurately identify outliers with multi-dimensional joint
anomalies. a Scatter plot of parameters BL and BW for mouse developmental
dataset, the data points corresponding to mice with the gene Ckb knockout deviate
significantly from most of the data points, but their values of both BL and BW are
within the normal range. The BL or BW values of the data points in the shaded part
are ranked in the top 2%based on the absolute value of the z-score. bThe distribution
of standardized BMI of all knockoutmice inmouse developmental dataset, themean
BMI of Ckb knockout mice is significantly smaller. c–hOutlier detection results for
3 synthetic 2-dimensional Gaussian distribution datasets when the outlier ratio is

0.05, including detection results of MSE-trained autoencoder and ODBAE for
2-dimensional Gaussian distribution dataset with diagonal covariance matrix and
non-Gaussian distributed noise (c, f), 2-dimensional Gaussian distribution dataset
with diagonal covariance matrix (d, g) and 2-dimensional Gaussian distribution
dataset with non-diagonal covariance matrix (e, h). The orange line and grey line in
(c) represent two principal directions. i, j Outlier detection results of MSE-trained
autoencoder (i) and ODBAE (j) for 3-dimensional dataset with an intrinsic
dimension of 2 when the outlier ratio is 0.05, and the data points follow a
2-dimensional Gaussian distribution with respect to Parameter1 and Parameter3.
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points labeled benign as inliers and δ × 300 data points from the
other categories as outliers. For this dataset, the outlier ratio
δ ∈ {0.02, 0.04, 0.06, 0.08, 0.1} and the dimension of the hidden layer
of the autoencoder was 15. Overall, due to the improvement in HLP
detection, ODBAE worked best on both benchmark datasets
(Fig. 3j–m and Supplementary Data 2d, e).

In summary, ODBAEoutperforms several existing autoencoder-based
methods in detecting anomalies frombothhuman-induced andbenchmark
datasets, indicating that ODBAE can more comprehensively identify
anomalous situations. Therefore, ODBAE provides strong support for
findingunknownanomalies and exploringunknownphenotypes in existing
biological data.

ODBAE MAE-AE MSE-AE DAGMM ODBAE MAE-AE MSE-AE DAGMM ODBAE MAE-AE MSE-AE DAGMM

ODBAE MAE-AE MSE-AE DAGMM ODBAE MAE-AE MSE-AE DAGMM ODBAE MAE-AE MSE-AE DAGMM

ODBAE MAE-AE MSE-AE DAGMM ODBAE MAE-AE MSE-AE DAGMM ODBAE MAE-AE MSE-AE DAGMM ODBAE MAE-AE MSE-AE DAGMM

a b c

d e f

g h i

j k l m

Fig. 3 | Outlier detection effect of ODBAE is generally better than other schemes.
a–c Data point distribution plot for 3 synthetic dataset, including 2-dimensional
Gaussian distribution dataset with diagonal covariance matrix (a), 2-dimensional
Gaussian distribution dataset with non-diagonal covariance matrix (b) and
2-dimensional Gaussian distribution dataset with diagonal covariance matrix and
non-Gaussian distributed noise (c). d–fAUC scores of comparison results of dataset

in this figure (a, d), (b, e), and (c, f). g–iAP scores of comparison results of dataset in
this figure (a, g), (b, h), and (c, i). j, k Comparison results for Dry Bean Dataset.
l,m Comparison results for Breast Cancer Dataset. In (d–m), all methods were run
10 times under different outlier ratios, and error bars indicate
mean ± standard error.
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ODBAE exhibits a certain degree of robustness
The performance of ODBAE, like any machine learning framework, is
influenced by several hyperparameters and data conditions. We evaluated
the impactof dataset dimensionality, noise levels, andmodel architecture on
the outlier detection performance of ODBAE.

We generated Gaussian-distributed datasets of varying dimensionality
to train ODBAE, and evaluated its outlier detection performance by mea-
suring the AUC scores when the outlier ratio was set to 0.1. As illustrated in
Fig. 4a, the anomaly detection performance of ODBAE remains largely
stable as the dimensionality of the dataset increases. This observation

Fig. 4 | ODBAE exhibits a certain degree of
robustness. a Outlier detection performance of
ODBAE across datasets with varying dimensional-
ities (Supplementary Data 2f). For each fixed-
dimensional dataset, themodel was trained 10 times,
and the AUC score for outlier detection was recor-
ded after each training run. b Impact of varying
noise intensities on the performance of ODBAE
(Supplementary Data 2g). Laplace-distributed noise
L(0, s) was added to the dataset to simulate different
noise levels. For each fixed value of s, the model was
trained 10 times on the noise-augmented data, and
the AUC score for outlier detection was recorded
after each training run. cOutlier detection accuracy
of ODBAE with architecture (L, C) on the Dry Bean
Dataset (Supplementary Data 2h). For each fixed
architecture (L, C), the model was trained 10 times,
and the average AUC score across the 10 runs was
recorded to evaluate performance. Error bars indi-
cate mean ± standard error.

L=1 L=2 L=3

a

b

c
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highlights the potential applicability of ODBAE to outlier detection tasks in
high-dimensional datasets.

Considering that real-world datasets frequently contain noise,
we further evaluated the impact of data perturbations on the anomaly
detection performance of ODBAE. A two-dimensional Gaussian-dis-
tributed dataset V containing 10,000 samples was generated. To simulate
varying noise intensities, we added perturbation ϵ to each data point, where
ϵ was drawn from a Laplace distribution L(0, s), with larger s values
representing higher noise levels. We then evaluated the performance of
ODBAE trained on the noisy datasets in detecting outliers within the ori-
ginal datasetV, with the outlier ratio set to 0.1. As shown in Fig. 4b, ODBAE
maintained high outlier detection accuracy under moderate noise levels
(s ≤ 0.1), highlighting its robustness in the presence of noise typically
observed in real-world data.

In addition, we investigated the influence of model architecture on the
performance of ODBAE. We similarly employed the Dry Bean dataset,
randomly selecting 2000 samples from a single class to form the training
dataset. Additionally, 200 outlier samples were randomly drawn from the
remaining 6 classes. We then evaluated the outlier detection accuracy of
ODBAE with varying model architectures denoted as (L, C), where the
model consists of 2L+ 1 hidden layers, with all layers except the bottleneck
layer having dimensionality C. The results demonstrate that both the
number of layers L and the dimensionality of each layer C significantly
influence the performance of ODBAE (Fig. 4c). Therefore, in practical
applications, tuning these architectural parameters—specifically, the num-
ber of layers and the dimensionality of each layer—can help optimize the
outlier detection performance of ODBAE.

In summary, ODBAE maintains high outlier detection accuracy in
high-dimensional datasets and exhibits robustness to moderate levels of
noise. Furthermore, its performance can be further optimized in practical
applications by tuning the number of layers and the dimensionality of each
layer in the model architecture.

ODBAE identifies new metabolic genes
We applied ODBAE tometabolism-related datasets from IMPC to uncover
genetic elements involved in metabolic regulation. Fourteen key metabolic
parameters were selected for analysis, including: Alanine aminotransferase
(ALA), Albumin (Alb), Alkaline phosphatase, Aspartate aminotransferase
(ASA), Calcium (Ca), Creatinine (Cre), Glucose (Glu), HDL-cholesterol
(HDLC), Phosphorus (Ph), Total bilirubin (TB), Total cholesterol (TC),
Total protein (TP), Triglycerides (TG), and Urea. In total, we analyzed
45922mice from 3064 single-gene knockout strains, including 23024males
and 22898 females.

ODBAE was used to detect outliers in both male and female data sets.
Initially, mice with absolute z-scores in the top 1.2% for at least one meta-
bolic parameter were flagged as outliers. Of the 23024malemice, 2672 were
flagged as abnormal, and of the 22898 femalemice, 2553 abnormalitieswere
identified. To ensure robust detection, we adjusted the proportion of
anomalies and identified the top 10% of mice with the highest reconstruc-
tion errors as outliers.Geneswere considered significant ifmore than50%of
mice from a given knockout strain were identified as outliers, suggesting a
strong association between these genes and metabolism. In total, ODBAE
identified 128 significant genes inmales (9.5%) and 111 significant genes in
females (8.08%), for a total of 203 genes (Fig. 5a, b and Supplementary
Data 1e–h)

Moreover, we observed that the metabolism-associated genes identi-
fiedbyODBAEexhibitedpronounced sex-specificdifferences betweenmale
and female mice (Fig. 5b). To evaluate the biological significance of this
sexual dimorphism, we focused on metabolism-related genes exhibiting
pronounced sexual dimorphism. Specifically, we selected genes for which
bothmale and femalemouse strains included at least seven individuals, and
for which the proportion of knockout strains displaying abnormal pheno-
types exceeded 50% in only one sex (eithermale or female), while remaining
at 0% in the other. In total, 18 genes were identified as showing significant
sexual dimorphism, 10 of which had been previously reported as sex-

dimorphic in earlier studies (Fig. 5c, “Methods” and Supplementary
Data 3i). These findings confirm the sexually dimorphic nature of these
genes and underscore the utility of ODBAE as a robust tool for uncovering
metabolism-associated genetic mechanisms.

Notably, 91of these 203 genes couldnot bedetectedusing traditional z-
score based methods. This indicates that the metabolic abnormalities
associated with these genes involve complex, multi-parameter phenotypes.
ODBAE’s anomaly detection includes a detailed explanation of outliers
based on the highest reconstruction error and kernel-SHAP analysis, which
allows us to identify the specific metabolic parameters driving the anoma-
lies. For example, knockoutof theCrabp1gene resulted inabnormal levels of
Alb and HDLC, even though the individual z-scores for these parameters
were within normal ranges. Visualization of these data (Fig. 5d) shows that
while the z-scores for Alb and HDLC appeared normal, the knockout mice
deviated significantly from the central distribution of all data points, high-
lighting the complex metabolic perturbation caused by Crabp1 knockout.
More examples are shown in Supplementary Fig. 8a–d.

Further investigation using the Mouse Genome Informatics (MGI)
database revealed that 43 of the 203 genes (21.18%) identified by ODBAE
had no previously known association with metabolic phenotypes (Fig. 5e
and Supplementary Data 3a). To explore the potential relevance of these
newly identified genes, we analyzed their human orthologues (Supple-
mentary Data 3b). Single-nucleotide polymorphisms (SNPs) within
a ± 1 kb region of these orthologues were extracted from GWAS Central31,
resulting in a total of 804 SNPs (Supplementary Data 3c). We then inves-
tigated their associationwithmetabolic diseases, focusing on type 2 diabetes
(T2D). Specifically, for each SNP, we evaluated the extent of association
across T2D-related traits on data from theDIAGRAM,GIANT, andGLGC
consortia32–34. Cross-phenotypemeta-analysis (CPMA)35 identified SNPs in
four gene regions—TWF2, TMED10, HOXA10, and NBAS—that were
strongly linked to T2D-related traits (CPMA p < 0.05) (Supplementary
Data 3d). Visualization of the corresponding outliers confirmed that these
genes exhibited distinct patterns of deviation across key metabolic dimen-
sions (Supplementary Fig. 9a–d). In addition to T2D, many of these novel
genes may be associated with other metabolic disorders. KEGG pathway
analysis (via KOBAS) formouse datasets revealed significant enrichment in
metabolic pathways36, including glycolysis, propanoate metabolism, and
pyruvate metabolism (Fig. 5f and Supplementary Data 3e). These results
suggest that ODBAE not only identifies genes involved in complex meta-
bolic phenotypes but also pinpoints pathways that are disrupted by genetic
perturbations.

Overall, ODBAE provides a powerful tool for uncovering novel
metabolic genes and phenotypes that are undetectable using traditional z-
score-based methods. It successfully identifies genes associated with com-
plex, multi-parameter metabolic abnormalities and reveals novel genetic
contributors to metabolic diseases, many of which were previously unan-
notated in the MGI database.

ODBAE integrates novel metabolic phenotypes
ODBAE’s ability to detect outliers based on joint abnormalities, beyond
traditional z-score methods, highlights its strength in integrating complex
metabolic phenotypes. Here, we demonstrate how ODBAE can detect
metabolic abnormalities in gene knockout mice by identifying abnormal
relationships between multiple metabolic parameters, rather than focusing
on single-parameter outliers. Our analysis of metabolism-related datasets
from IMPC reveals that a large proportion of outliers (89.14% of male and
92.75% of female mice) exhibit abnormalities in multiple metabolic para-
meters simultaneously. These findings suggest that joint abnormalities, or
perturbations in the correlations between parameters, are important for
detecting phenotypic changes in knockout mice. For example, knockout of
the Ckb gene disrupts the relationship between BW and BL, resulting in an
abnormal BMI, even though BW and BL are individually within normal
ranges. This highlights how gene knockouts often disrupt intrinsic corre-
lations between physiological parameters, resulting in complex metabolic
phenotypes.
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Fig. 5 | ODBAE identifies new metabolic genes from a metabolism-related
dataset of knockout mice. a The proportion of important genes identified in the
male and female datasets. b ODBAE identified 128 important genes in the male
dataset and 111 important genes in the female dataset, for a total of 203 important
genes. c Sexually dimorphic genes identified by ODBAE, with previously reported
sexually dimorphic genes highlighted in red. d Visualization results of outliers
corresponding to geneCrabp1 in the subspace formed by abnormal parameters. The

absolute z-score values of Alb or HDLC of the data points in the shaded part are
ranked in the top 1.2%. eValidation results of important genes in theMGI database.
78.8% of the genes are associated withmetabolism, and 21.2% are newly identified by
ODBAE. Besides, 51.2% and 44.2% newmetabolic genes are identified in themale or
female datasets, respectively, and 4.7% are detected in bothmale and female datasets.
f Histogram of KEGG pathway enrichment for 43 novel genes in mice obtained
through KOBAS.
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To further explore these correlations, we identified parameter pairs
most likely to show joint abnormalities in both male and female mice. In
males, 36 different abnormal parameter pairs were observed, with the most
common being (Alb, Ph), (Alb, HDLC), and (ALA, HDLC) (Fig. 6a, c). In
females, 40 different abnormal parameter pairs were identified, with the
most commonbeing (ASA, TP), (Alb, ASA), and (TB, TP) (Fig. 6b, c). Their
corresponding knockout genes are shown in Fig. 6d, e. Notably, 22 abnor-
mal parameter pairs were found in both males and females, with the most
common pairs being (ALA, ASA), (ALA, HDLC), and (Alb, ASA). These
common abnormalities suggest conserved metabolic pathways that are
affected by specific gene knockouts in both sexes.

We then investigated the biological significance of the three most
frequently perturbed parameter pairs. Previous studies have shown that the
ALA/HDLC ratio is associated with the risk of non-alcoholic fatty liver
disease (NAFLD) and diabetes37–39. ODBAE identified Lepr as one of the
genes causing abnormalities in this pair (Fig. 7a).When the ratio of ALA to
HDLC was analyzed across all mice, the outliers corresponding to the Lepr
knockout had a significantly lower ratio compared to the general population
(Fig. 7b), consistent with previous findings linking Leprmutations to T2D
and NAFLD40,41. KEGG pathway analysis of genes associated with (ALA,
HDLC) revealed enrichment in pathways related to NAFLD andmetabolic
processes, including glycolysis (Fig. 7c and Supplementary Data 3f). For the
(Alb, ASA) pair, studies suggest that the ASA/Alb ratio correlates with
tumor progression and prognosis in hepatocellular carcinoma (HCC)42,43.
ODBAE identified Ap4m1 as a gene causing abnormalities in this pair
(Fig. 7d). The average ratio of ASA to Alb in Ap4m1 knockout mice was
significantly larger than in other mice (Fig. 7e), consistent with the role of
Ap4m1 in HCC44. KEGG pathway enrichment further linked (Alb, ASA)
disruptions to pathways involved in pyruvate metabolism, glycolysis, and
proximal tubule bicarbonate reclamation (Fig. 7f and Supplementary
Data 3g). Finally, for genes corresponding to parameter pair (ALA, ASA),
the pathway enrichment analysis revealed significant enrichment in Gly-
cosaminoglycan biosynthesis, Starch and sucrose metabolism, and Type I
diabetes mellitus (Supplementary Fig. 10a and Supplementary Data 3h),
consistent with the previously reported association of parameters ASA to
ALA ratio with prediabetes45. In addition to these well-characterized para-
meter pairs, ODBAE also identified novel correlations worth exploring
further. For instance, Taf8 was highlighted as a gene causing abnormalities
in the parameter pair (HDLC, TP), though little is known about the specific
relationship between these two parameters (Supplementary Fig. 10b).
Supplementary Fig. 10c shows that there is a linear relationship between
these two parameters, and the knockout of the gene Taf8 disrupts this
relationship. ODBAE’s ability to uncover such relationships without prior
biological inference makes it a powerful tool for discovering previously
unknown metabolic interactions.

Overall, ODBAE systematically identifies and explains complex phe-
notypes by revealing intrinsic relationships between multiple metabolic
parameters, including both linear and non-linear associations. These
insights can serve as new indicators for biomedical research and provide a
more holistic view of metabolic dysfunction in knockout mice. In addition,
the ODBAE framework can be adapted to other datasets to uncover com-
plex phenotypes in different biological systems.

Discussion
In this study, we present ODBAE, amachine learning approach designed to
detect and explain complex phenotypes by identifying outliers in high-
dimensional biological datasets. The key advantage of ODBAE is its ability
to detect two types of outliers: IP, which deviate significantly from expected
relationships between variables, and HLP, which are far from the data
center. Unlike traditional outlier detection methods that often focus on
single abnormal indicators, ODBAE identifies multi-dimensional joint
abnormalities, providing a more holistic view of phenotypic disruptions.
This approach is particularly powerful when applied to data from knockout
mouse models, where phenotypic changes are often subtle or involve
complex interactions between physiological parameters.

One of the most significant contributions of ODBAE is its potential to
identify unexpected phenotypes that may not be apparent when analyzing
individual physiological indicators. Traditional methods of phenotype
analysis often focus on abnormalities in a single trait3–5, potentially over-
looking the coordinated disruptions across multiple parameters that signal
underlying biological imbalances. As our understanding of disease and
homeostasis evolves, it is increasingly clear that pathological processes often
involve system-wide disturbances rather than isolated dysfunctions6.
ODBAE leverages these insights by integrating correlations between phy-
siological indicators, evenwhen individual indicators remainwithin normal
ranges.This capability allows researchers and clinicians tobetterunderstand
the interplay of homeostatic mechanisms and how they are disrupted in
disease states. For example, when applied to metabolism-related datasets
from IMPC, ODBAE successfully identified novel metabolic genes,
including those associated with complex, multi-parameter phenotypes.
These phenotypes would have been difficult to detect using conventional
approaches that focus on single-parameter abnormalities. Moreover,
ODBAE successfully identified sex-dimorphic genes, underscoring its utility
in advancing the study of sexual dimorphism. ODBAE also uncovered new
parameter pairs that tend to exhibit abnormalities together, providing
insights into the intrinsic relationships between metabolic pathways. This
type of discovery is essential for advancing our understanding of gene
function and the pathophysiology of metabolic diseases. Notably, the utility
of ODBAE extends beyond knockout mouse models. It can be broadly
applied to diverse tabular biological datasets—including disease cohorts,
clinical health examination records, and single-cell datasets—to identify
complex phenotypes and subtle, multidimensional anomalies.

Importantly, ODBAE offers not just detection, but also anomaly
explanation through the use of kernel-SHAP. This feature allows
researchers to pinpoint the exact physiological indicators driving the
detected abnormalities, facilitating deeper insights into the biological pro-
cesses involved. By identifying the most significant reconstruction errors
and the features contributing to them, ODBAE enables a clearer inter-
pretation of complex phenotypic data. This is particularly relevant in clinical
settings, where understanding the root cause of a phenotype can guide
diagnosis and treatment decisions.

AlthoughODBAEdemonstrates considerable potential, there are areas
that warrant further exploration. First, the current framework assumes a
Gaussian distribution in the training data, which may limit its effectiveness
in datasets that do not follow this distribution. As shown in Fig. 4b, ODBAE
maintains robust performance under moderate levels of noise in Gaussian-
distributed datasets. However, its anomaly detection capability progres-
sively declines with increasing noise intensity. Future work should focus on
optimizing the model to handle non-Gaussian data and improving the
accuracy of anomaly explanations, particularly in cases involving highly
complex or subtle phenotypes. Second, although ODBAE could potentially
be extended to other data types, such as time-series or imaging data, the
current manuscript focuses exclusively on tabular datasets. The model’s
performance in analyzing other types of data, such as longitudinal time-
series or medical imaging, has not yet been empirically tested. Further
exploration and validation in these areas are warranted to assess ODBAE’s
broader applicability. Third, the performance of ODBAE is influenced by
both the number of layers and the dimensionality of each layer, suggesting
that its architecture can be tuned to further enhance performance in prac-
tical applications. However, determining the optimal model configuration
remains a challenging task. Moreover, since ODBAE identifies anomalies
based on the reconstruction error of individual data points, the choice of
threshold for this error is critical to the accuracy of outlier detection. Further
optimization of threshold selection is therefore warranted. Finally,
ODBAE’s use in identifying phenotypes has primarily focused onmetabolic
parameters. Its performance in detecting phenotypes related to other phy-
siological systems, such as neurological, cardiovascular, or developmental
traits, remains unexplored. Broader testing across a range of physiological
categories would demonstrate the model’s versatility and help identify any
system-specific limitations.
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Fig. 6 | ODBAE integrates metabolic parameter pairs tend to simultaneous
abnormalities. a, b Chord diagram plotting the inter-connectivity of metabolic
parameters for males (a) and females (b). The outer segments represent the meta-
bolic parameters, the size of the arcs connecting the perameters is proportional to the

number of outliers associated. c Abnormal parameter pairs observed in males and
females. d, e Links between genes and simultaneous abnormal metabolic parameters
in males (d) and females (e).
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Fig. 7 | Validation of the top three abnormal parameter pairs that occur in both
males and females and have the highest overall frequency. a Visualization of
outliers corresponding to gene Lepr based on abnormal parameter pairs in the male
dataset. b The distribution of the standardized ratio of ALA to HDLC in mouse
metabolism-related dataset, the average ratio of Lepr knockout mice is significantly
smaller. c Histogram of KEGG pathway enrichment for genes corresponding to

(ALA, HDLC) in humans. dVisualization of outliers corresponding to gene Ap4m1
based on abnormal parameter pairs in the female dataset. e The distribution of the
standardized ratio of ASA to Alb in mouse metabolism-related dataset, the average
ratio ofAp4m1 knockout mice is significantly larger. fHistogram of KEGG pathway
enrichment for genes corresponding to (Alb, ASA) in humans.
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Despite these challenges, ODBAE represents a powerful tool for the
analysis of high-dimensional biomedical datasets. Its ability to detectmulti-
dimensional outliers, explain anomalies, and integrate correlated physio-
logical indicators offers a new way to approach phenotypic screening,
particularly in gene knockoutmodels.Webelieve thatODBAEwill facilitate
the discovery of previously unrecognized phenotypes, enhancing our
understanding of homeostasis and disease processes. Bymoving beyond the
limitations of single-indicator analysis, ODBAE opens up new possibilities
for both basic research and clinical diagnostics, allowing for a more com-
prehensive understanding of complex biological systems.

Methods
Datasets
To demonstrate the comprehensive benefits of ODBAE, we first performed
outlier detection on developmental datasets obtained from the IMPC.
Subsequently, we assessed ODBAE’s ability to identify HLP using 3 syn-
thetic two-dimensional Gaussian-distributed datasets (Fig. 2c–e) and one
three-dimensional dataset (Fig. 2i). Finally, we evaluated themodel’s overall
detection accuracy for both IP and HLP using an additional three-
dimensional dataset (Supplementary Fig. 5a). For outlier detection on the
IMPC developmental dataset, data from wild-type mice were used as the
training dataset, while data from knockout mice served as the test dataset.
The training dataset comprised 8327 wild-type samples (4126 males and
4201 females), and the test dataset included26706knockout samples (13297
males and 13409 females). To evaluate the accuracy of ODBAE in detecting
HLP, as well as its overall detection performance for both IP and HLP, all
synthetic datasets consisted of 20000 samples each.

To evaluate the advantages of ODBAE over existing methods, we
conducted outlier detection using multiple approaches across five low-
dimensional synthetic datasets, two high-dimensional synthetic datasets,
and two benchmark datasets (the Dry Bean dataset and the Breast Cancer
dataset). In the low-dimensional synthetic dataset experiments, we gener-
ated three two-dimensional datasets drawn from Gaussian distributions,
one from a two-dimensional Laplace distribution, and one from a two-
dimensional uniform distribution, each comprising 20000 samples. For the
high-dimensional synthetic datasets, we constructed one 50-dimensional
and one 100-dimensional Gaussian-distributed dataset, each also consisting
of 20000 samples. The Dry Bean dataset contains 13611 samples across
seven distinct categories; we randomly selected 2000 samples from a single
class as the training dataset, with samples from the remaining six classes
designated as outliers. The Breast Cancer dataset comprises 569 samples,
categorized as benign or malignant. We randomly selected 300 benign
samples as the training data, while malignant samples were treated as
outliers.

Themetabolism-related dataset used to identify novel metabolic genes
andphenotypes included 21234wild-typemouse samples (10585males and
10649 females) and 45922 knockout mouse samples (23024 males and
22898 females). Wild-type samples were employed for training, while
knockout samples served as the test dataset.

Dataset preprocessing
We used developmental and metabolism-related datasets from IMPC to
discover complex phenotypes and identify new genes. The developmental
dataset we used was integrated from 8 phenotyping centers (BCM,HMGU,
ICS, JAX, MRC Harwell, RBRC, TCP, and UC Davis), while the
metabolism-related dataset was from 11 phenotyping centers (BCM, CCP-
IMG,HMGU, ICS, KMPC,MARC,MRCHarwell, RBRC, TCP, UCDavis,
and WTSI). To eliminate experiment-specific variations, we standardized
each phenotyping center for each dataset to have unit variance and zero
mean. Then, Min-Max normalization was applied to normalize each phy-
siological parameter within each dataset, mitigating dimensional effects
across different physiological parameters. SNPs within a ± 1 kb region of
orthologues for the 41 newly identified metabolic genes were downloaded
from GWAS Central on September 23, 2023 and filtered based
on � logðpÞ≥ 2.

Definition of HLP and IP
Since the reconstruction of any dataset by the autoencoder can be
regarded as a complex regression process, we can divide the outliers in
each dataset into HLP and IP46. For a certain dataset, we divide the
dimension index into two disjoint setsV1 andV2.Without loss of generality,
we assume that V1 = {1, 2, …, p} and V2 = {p + 1, p + 2, …, m}. For
i, j ∈ V1, i ≠ j, there is no correlation between variables Xi and Xj, while for
each k∈V2, there is a map ϕk such that variable Xk ¼ ϕkðX1;X2; . . . ;XpÞ.
Xi(i∈V1) is called factor andXk(k∈V2) is called response variable. Thenwe
define matrix Q,

Q ¼

1 x11 . . . x1p
1 x21 . . . x2p

..

. ..
. . .

. ..
.

1 xn1 . . . xnp

2
666664

3
777775
:

Besides, if we let Qi ¼ ð1; xi1; . . . ; xipÞ, the leverage value of the iih sample
point is

hi ¼ Qi Q
>Q

� ��1
Q>

i ; i ¼ 1; 2; . . . ; n:

If we represent the mean of variable Xk(k ∈ V1) as μk, and define the mean
vector ~μ ¼ ðμ1; μ2; . . . ; μpÞ, we have

Q>Q ¼

1 1 . . . 1

x11 x21 . . . xn1

..

. ..
. . .

. ..
.

x1p x2p . . . xnp

2
666664

3
777775

1 x11 . . . x1p
1 x21 . . . x2p

..

. ..
. . .

. ..
.

1 xn1 . . . xnp

2
666664

3
777775
¼ n

1 ~μ

~μ> C

� �
;

ð1Þ

where Cjk ¼ 1
n

Pn
i¼1

xijxik. Thus, we can obtain the inverse of Q⊤Q

Q>Q
� ��1 ¼ 1

n

1þ ~μ C � ~μ>~μ
� ��1

~μ> �~μ C � ~μ>~μ
� ��1

� C � ~μ>~μ
� ��1

~μ> C � ~μ>~μ
� ��1

" #
: ð2Þ

Therefore, if we let ~xi ¼ ðxi1; . . . ; xipÞ, the leverage value of the ith sample
point can also be formulated as

hi ¼
1
n
Qi

1þ ~μ C � ~μ>~μ
� ��1

~μ> �~μ C � ~μ>~μ
� ��1

� C � ~μ>~μ
� ��1

~μ> C � ~μ>~μ
� ��1

" #
Q>

i

¼ 1
n

1þ ~μ� ~xi
� �

C � ~μ>~μ
� ��1

~μ>; ~xi � ~μ
� �
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� �
Q>

i

¼ 1
n

1þ ~μ� ~xi
� �

C � ~μ>~μ
� ��1

~μ> þ ~xi � ~μ
� �
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~x>i
� �

¼ 1
n
þ 1

n
~xi � ~μ
� �

C � ~μ>~μ
� ��1

~xi � ~μ
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:

ð3Þ

If we define A ¼ C � ~μ>~μ, then

Ajk ¼
1
n

Xn
i¼1

xijxik � μjμk

¼ 1
n

Xn
i¼1

ðxij � μjÞ xik � μk
� �

¼ n� 1
n

COVðXj;XkÞ; j; k 2 V1:

ð4Þ
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Furthermore, we have A ¼ n�1
n Σf and A�1 ¼ n

n�1Σ
�1
f , where Σf is the

covariance matrix of the factor space. Then, based on Eq. (3), we get

hi ¼
1
n
þ 1

n� 1
~xi � ~μ
� �

Σ�1
f ~xi � ~μ
� �>

: ð5Þ

Obviously, for each sample point, its leverage value is proportional to its
Mahalanobis distance in the factor space. In addition, the Cook distance of
the ith sample point based on the kth(k ∈ V2) dimension is

Cik ¼
ðn� pÞ xik � x̂ik

� �2
hi

p
Pn

i¼1 xik � x̂ik
� �2

1� hi
� �2 ; i ¼ 1; 2; . . . ; n: ð6Þ

For each dataset, HLP are sample points with high leverage value and
IP refer to sample points with high Cook distance. The leverage value of the
ith samplepoint is alsoproportional to theMahalanobis distanceof the factor
space. Therefore, HLP can also be identified by theMahalanobis distance in
the factor space. It is noteworthy that for certain datasets, like those con-
forming to amultivariateGaussian distribution, the setV2may be empty. In
such instances, all outliers in the dataset are identified as HLP.

Outlier detection of ODBAE
The autoencodermodel inODBAE is formed of an encoder f and a decoder
g. If we denote the input data point and the output data point as variable X
and X̂, respectively, where X ¼ X1;X2; . . . ;Xm

� �>
and

X̂ ¼ X̂1; X̂2; . . . ; X̂m

� �>
, and the number of sample points is n, then we

have X̂ ¼ g � f ðXÞ. Besides, X represents the whole input dataset and
X 2 X . xi represents the ith sample point of the input dataset and its cor-
responding reconstruction result is x̂i, xi ¼ xi1; xi2; . . . ; xim

� �>
and

x̂i ¼ x̂i1; x̂i2; . . . ; x̂im
� �>

. Ideally, we would like to train the autoencoder
with the trainingdataset tominimize the training loss function, the generally
used training loss function is MSE which can be represented as

LMSEðω; bÞ ¼
1
n

Xn
i¼1

ðxi � x̂iÞ>ðxi � x̂iÞ ¼
1
n

Xn
i¼1

Xm
j¼1

ðxij � x̂ijÞ2:

Where ω represents the weight between the input layer and the
output layer and b is the bias value. The purpose of training process
is to guarantee that the intrinsic information of the training dataset
can be learned and most of the normal sample points can be well
reconstructed. It is important to note that MSE-trained autoencoders
are insufficient in outlier detection. Through rigorous theoretical
analysis, we demonstrated how this limitation can be addressed. The
analysis process is based on the following assumption.

Assumption 1.We assume that the input variableX followsm-dimensional
Gaussian distribution.

As we know, autoencoders will mainly focus on recovering the prin-
cipal components of a dataset eventually47,48, it is necessary to use the unit
orthogonal eigenvectors as the basis vectors to further study the influence of
the loss function on the outlier detection results of the autoencoder. Under
Assumption 1, we represent the mean vector of the variable X as
μ ¼ μ1; μ2; . . . ; μm

� �>
. If the eigenvalues of the covariancematrixΣx areλ1,

λ2, …, λm, the corresponding unit orthogonal eigenvectors (i.e., principal
directions) are η1, η2, …, ηm, and the new coordinate of the variable X is
Y ¼ Y1;Y2; . . . ;Ym

� �>
when the unit orthogonal eigenvectors are the

basis vectors, then we can denote an orthogonal matrix P, where the ith

column of P is unit eigenvector ηi. It’s obvious that Y = P−1X = P⊤X and
Yk ¼ η>k X, k = 1, 2,…,m. Thus, in the new coordinate system, the variable
of input dataX is converted to variableY. Let ν ¼ ν1; ν2; . . . ; νm

� �>
andΣY

represent themean vector and covariancematrix of variable Y, respectively,
we have ν = P⊤μ and νk ¼ EðYkÞ ¼ η>k μ, k = 1, 2,…, m. Furthermore, we

can gain the variance of the kth element of variable Y is

DðYkÞ ¼ COV Yk;Yk

� �
¼ E Yk � νk

� �
Yk � νk
� �� �

¼ E η>k X � EðXÞð Þη>k X � EðXÞð Þ� �
¼ η>k E X � EðXÞð Þ X � EðXÞð Þ>� �

ηk

¼ η>k Σxηk

¼ η>k λkηk
¼ λk;

ð7Þ

and the covariance of Yi and Yj (i ≠ j) is

COVðYi;YjÞ ¼ E Yi � EðYiÞ
� �

Yj � EðYjÞ
� �� �

¼ E η>i X � EðXÞð Þη>j X � EðXÞð Þ
� �

¼ η>i E X � EðXÞð Þ X � EðXÞð Þ>� �
ηj

¼ η>i Σxηj

¼ η>i λjηj
¼ 0:

ð8Þ

Thus, the covariance matrix of variable Y is ΣY = diag(λ1, λ2,…, λm).

Proposition 1. The covariance matrix of variable Y can be derived as

ΣY ¼ diagðλ1; λ2; . . . ; λmÞ

If we denote ν ¼ ðν1; ν2; . . . ; νmÞ> as the mean vector of variable Y,
sinceX followsm-dimensional Gaussian distribution, we can conclude that
Y also follows m-dimensional Gaussian distribution, i.e., Y � N ðν;ΣY Þ.
What’s more, it’s easy to get that Yk � N ðνk; λkÞ, k = 1, 2,…,m. Then, we
denote Ŷ as the output variable of Y and its mean vector and eigenvalues of
the covariance matrix are ν̂ ¼ ν̂1; ν̂2; . . . ; ν̂m

� �>
and λ̂k, k = 1, 2, …, m,

respectively. As is mentioned above, autoencoders will mainly recover the
principal components of any datasets, it’s reasonable for us to make the
following assumption.

Assumption 2. For each element Ŷk of the output variable Ŷ , its data
distribution is the same as the corresponding input element Yk. Since
Yk � N ðνk; λkÞ, then Ŷk � N ðν̂k; λ̂kÞ, k = 1, 2, …, m. Besides, whether
each eigenvalue after reconstruction is close to 0 is the same as its corre-
sponding original eigenvalue.

In the following, wewill theoretically analyze the restrictions ofMSE in
detecting HLP. First, we can get the relationship between the difference
between the reconstructed data and itsmean and the difference between the
original data and its mean in each principal component direction.

As we know, the loss function of MSE can be formulated as

LMSEðω; bÞ ¼
1
n

Xn
i¼1

ðyi � ŷiÞ>ðyi � ŷiÞ

¼ E Y>Y � 2Y>Ŷ þ Ŷ
>
Ŷ

� �

¼ E Y>Y
� �� 2E Y>Ŷ

� �þ E Ŷ
>
Ŷ

� �

¼
Xm
i¼1

E Y2
i

� �� 2
Xm
i¼1

E YiŶi

� �þXm
i¼1

E Ŷ
2
i

� �
;

ð9Þ

where yi and ŷi represent the ith samplepoint of the input andoutputdataset
in the new coordinate system, respectively.

First, if the autoencoder can properly reconstruct the input dataset, we
will analyse themean vector of the output variable Ŷ . Based onAssumption
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2 and Eq. (9), we have

LMSEðω; bÞ ¼
Xm
i¼1

λi þ
Xm
i¼1

λ̂i þ
Xm
i¼1

ν2i þ
Xm
i¼1

ν̂2i � 2
Xm
i¼1

νiν̂i

� 2
Xm
i¼1

COV Yi; Ŷ i

� �
≥
Xm
i¼1

νi � ν̂i
� �2 þXm

i¼1

ffiffiffiffi
λi

p
�

ffiffiffiffi
λ̂i

q	 
2

:

ð10Þ

In order to reach the minima of LMSE(ω, b), the mean vector of output
variable ν̂must satisfy ν̂k ¼ νk, k = 1, 2,…,m. That is to say, themeanvector
of output data is the same as input data.

Next, we will specifically analyze the reconstruction error of each data
point. According to Assumptions 1 and 2, the input and output variable

satisfyYk � N ðνk; λkÞ and Ŷk � N ðνk; λ̂kÞ, k = 1, 2,…,m. DenoteRðYÞ ¼
R1ðYÞ;R2ðYÞ; . . . ;RmðYÞ
� �>

(R̂ðYÞ ¼ R̂1ðYÞ; R̂2ðYÞ; . . . ; R̂mðYÞ
� �>

) as

the difference between variable Y (Ŷ) and its mean vector ν, i.e., R(Y) =Y–ν
and R̂ðYÞ ¼ Ŷ � ν. It’s easy to see that RkðYÞ � N ð0; λkÞ and

R̂kðYÞ � N ð0; λ̂kÞ. Then the following equation can be obtained.

LMSEðω; bÞ ¼ E Y � Ŷ
� �>

Y � Ŷ
� �� �

¼ E RðYÞ � R̂ðYÞ� �>
RðYÞ � R̂ðYÞ� �� �

¼ E R>ðYÞRðYÞ� �� 2E R>ðYÞR̂ðYÞ� �þ E R̂
>ðYÞR̂ðYÞ

� �

¼
Xm
i¼1

E R2
i ðYÞ

� �þXm
i¼1

E R̂
2
i ðYÞ

� �
� 2

Xm
i¼1

E RiðYÞ
� �

E R̂iðYÞ
� �

� 2
Xm
i¼1

COV RiðYÞ; R̂iðYÞ
� �

¼
Xm
i¼1

λi þ
Xm
i¼1

λ̂i � 2
Xm
i¼1

ρi
ffiffiffiffi
λi

p ffiffiffiffi
λ̂i

q
;

ð11Þ

where ρk represents the correlation coefficient of Rk(Y) and R̂kðYÞ, and
−1 ≤ ρk ≤ 1, k = 1, 2, …, m. In Eq. (11), only when ρk = 1, can LMSE(ω, b)
reach its minima. In this case, there is a positive linear correlation
between Rk(Y) and R̂kðYÞ, specifically, there exist constants ak and ck
such that R̂kðYÞ ¼ akRkðYÞ þ ck, then E R̂kðYÞ

� � ¼ akE RkðYÞ
� �þ ck

and D R̂kðYÞ
� � ¼ a2kD RkðYÞ

� �
. Since E R̂kðYÞ

� � ¼ E RkðYÞ
� � ¼ 0,

D RkðYÞ
� � ¼ λk and D R̂kðYÞ

� � ¼ λ̂k, we can obtain ck = 0 and ak ¼
ffiffiffiffi
λ̂k

pffiffiffiffi
λk

p .

Therefore, we can obtain the following proposition.

Proposition 2. Under Assumptions 1 and 2, the difference between the
reconstructed data and its mean is proportional to the difference between
the original data and its mean in each principal component direction. The
specific relationship is

R̂kðYÞ ¼

ffiffiffiffiffi
λ̂k

q
ffiffiffiffiffi
λk

p RkðYÞ: ð12Þ

WhereRk(Y) =Yk–νk and R̂kðYÞ ¼ Ŷk � ν̂k. BasedonEq. (12), we can
further determine the specific reconstruction error of each input data point.

Proposition3. The reconstruction error of each inputdatapointmeasured
by MSE can be formulated as

WðYÞ ¼ Y � Ŷ
� �>

Y � Ŷ
� �

¼
Xm
i¼1

ffiffiffiffi
λi

p
�

ffiffiffiffi
λ̂i

q	 
2 R2
i ðYÞ
λi

:
ð13Þ

Ideally, we hope each principal component contributes equally to the
reconstruction errorof any inputdatapoint.Recall thedefinitionofR(Y), it’s

easy to know that RkðYÞ
λk

� N ð0; 1Þ, so Eq. (13) indicates that the recon-

struction degree of each principal component by the autoencoder will affect
the proportion of this principal component in the reconstruction error. This
brings a lot of uncertainty for HLP detection.

Proposition4. HLP are difficult to identify as outliers if the input dataset is
completely reconstructed.

When the input dataset is well reconstructed, in Eq. (13), it means thatffiffiffiffiffi
λk

p
�

ffiffiffiffiffi
λ̂k

q
¼ 0, k = 1, 2, …, m. Then, the reconstruction error of each

data point in training dataset is 0. As the result, each data point in the
training dataset is considered normal. However, HLP exist in any dataset
follows m-dimensional Gaussian distribution. Generally, the larger the
Mahalanobis distance is, the more abnormal the data point is. Therefore,
although completely reconstructing the training dataset is beneficial for IP
detection, it ignores the detection of HLP.

Proposition5.HLPwhose values in eachdimension arewithin thenormal
range can not be identified as outliers. Besides, most HLPwill be detected in
the direction corresponding to the worst-recovered principal component,
but in the direction of the well-recovered principal components, the
anomalies are often ignored.

FromEq. (13), we know
ffiffiffiffiffi
λk

p
�

ffiffiffiffiffi
λ̂k

q
is equivalent to the weight of the

reconstruction error of the kth principal component direction of each data
point to the total reconstruction error. Therefore, if the data reconstruction
in the ith principal component direction is better than that in the jth

principal component direction, then
ffiffiffiffi
λi

p
�

ffiffiffiffi
λ̂i

q
<

ffiffiffiffi
λj

q
�

ffiffiffiffi
λ̂j

q
, i≠ j. As the

result, the detected outliers are more distributed in the jth principal com-
ponent direction.

Proposition 6. If we ensure the differences between the eigenvalues of the
covariance matrix of the original dataset and their corresponding recon-
structed results in the direction of each principal component are equal, the
value of the reconstruction error for each data point will be proportional to
its Mahalanobis distance.

If we suppress complete reconstruction of the autoencoder, thenffiffiffiffiffi
λk

p
�

ffiffiffiffiffi
λ̂k

q
> 0, k = 1, 2,…,m. Based on Eq. (12), we can obtain

ðYk � ŶkÞ
2 ¼

ffiffiffiffiffi
λk

p
�

ffiffiffiffiffi
λ̂k

q	 
2

λk
ðYk � νkÞ2:

ð14Þ

Itmeans that for eachprincipal component direction of the input data, there
is a reconstruction error. Specifically, the further away the values are from
the mean, the larger the reconstruction error. Therefore, in each principal
component direction, the outliers detected by the reconstruction error are
the same as the outliers defined by the Gaussian distributed data. Besides, if

ffiffiffiffiffi
λk

p �
ffiffiffiffiffi
λ̂k

q
¼ β > 0, k = 1, 2, …, m, according to Eq. (13), the
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reconstruction error of each input data point is

WðYÞ ¼ Y � Ŷ
� �>

Y � Ŷ
� � ¼ β2

Xm
i¼1

R2
i ðYÞ
λi

: ð15Þ

SinceΣY = diag(λ1, λ2,…, λm), it’s easy to obtainΣ�1
Y ¼ diagð 1λ1 ;

1
λ2
; . . . ; 1

λm
Þ.

So the Mahalanobis distance of the input variable Y is

MðYÞ ¼ Y � νð Þ>Σ�1
Y Y � νð Þ ¼

Xm
i¼1

R2
i ðYÞ
λi

: ð16Þ

It indicates that the reconstruction error of each data point is pro-
portional to its Mahalanobis distance. Therefore, if we controlffiffiffiffiffi
λk

p �
ffiffiffiffiffi
λ̂k

q
¼ β > 0, k = 1, 2,…,m, almost all HLPwill be converted to IP

and cannot bewell reconstructed.As the result, the detectedHLPwill evenly
distributed in each principal component direction.

Based on the above discussion, wewill propose a new loss function that
adds an appropriate penalty term based on MSE to balance the recon-
struction of the autoencoder.

In fact, if the intrinsic dimension of the dataset is l, then there will be l
eigenvalues that are not close to 0. We denote the l eigenvalues that are not

close to 0 as λ0k and their corresponding reconstruction results are λ̂
0
k,

k = 1, 2,…, l. According to Assumption 2, λ̂
0
k is also not close to 0. Then, we

consider two losses in our training loss function. One of them is LMSE(ω, b),
which aims to reconstruct the input dataset well. In addition, we define the

other loss LEIGðω; bÞ ¼
Pl

i¼1 ð
ffiffiffiffi
λ0i

p
�

ffiffiffiffi
λ̂
0
i

q
� βÞ

2

which can avoid the

autoencoder from completely reconstructing the input dataset. β > 0 is a
hyperparameter that can adjust the degree of data reconstruction. The final
training loss function is a combination of the two:

Lðω; bÞ ¼ θ1LMSEðω; bÞ þ θ2LEIGðω; bÞ: ð17Þ
Here, θ1, θ2 > 0 are hyperparameters that need to be predetermined. In
practice, desirable results are usually obtained if we set θ1 = 0.008 and θ2 = 1.

Specification of outlier ratio
ODBAE identifies outliers based on reconstruction error, with larger
reconstruction errors indicating greater abnormality. In the implementation
of ODBAE, we provide two strategies for determining the reconstruction
error threshold. Given a dataset of N samples, when a user-defined outlier
proportion δ is specified, themodel classifies the topN × δ samples with the
highest reconstruction errors as outliers.Alternatively,when the threshold is
determined automatically, the model assesses the distribution of recon-
struction errors. If the errors approximately follow a Gaussian distribution,
outliers are identified based on the 3σ rule. Otherwise, kernel density esti-
mation is employed to derive the probability density function of the
reconstruction errors, and data points with reconstruction errors exceeding
the 95th percentile are considered anomalous.

Anomaly explanation of ODBAE
For each outlier detected by ODBAE, it’s necessary for us to find its
abnormal parameters. ForODBAE, it obtained abnormal parameters based
on the highest reconstruction errors and SHAP values. Specifically, for each
outlier, we first sorted its parameters in descending order based on the
reconstruction errors. Then, if the sum of the reconstruction errors of the
first n parameters was greater than 50% of the total reconstruction error for
the outlier, these n parameters were considered potentially anomalous. If
n = 1, we used SHAP values to identify additional parameter that have the
greatest impact on this anomalousparameter. If the SHAPvalueof these two
parameters exceeded the set threshold, they would be considered abnormal
parameters; otherwise, only the parameter with the highest reconstruction
error was considered an abnormal parameter. However, if n > 1, we would
use SHAP values to obtain additional parameter that have the greatest

impact on the parameter with the highest reconstruction error. If the SHAP
value of these two parameters exceed the set threshold, they would be
considered abnormal parameters; otherwise, the top 2 parameters with the
highest reconstruction errorwere considered anomalous parameters. In our
work, the threshold for SHAPvalueswas set to themeanof the SHAPvalues
during the process of anomaly explanation for all outliers.

Identification of outliers using z-score method
In developmental and metabolism-related datasets, we first identified mice
with anomalies using the z-score method. For example, there were 14
metabolic parameters in metabolism-related datasets. Then, the z-score
value of each mouse for each metabolic parameter was calculated as
Zij ¼

Xij�μi
σ i

, where Zij represented the z-score of the jth mouse for the ith
metabolic parameter,Xijwas the value of the ithmetabolic parameter for the
jth mouse, μi and σi were the mean and standard deviation of the ith
metabolic parameter, respectively. The larger the absolute value of Zij, the
more the ith metabolic parameter value of the jth mouse deviates from the
mean. Therefore, for each metabolic parameter, mice with large absolute
z-score values were labeled as outliers.

Identification of mice with low BMI values
We calculated the BMI values for all knockout mice, and the mean BMI of
the abnormalmice afterCkb knockout in femalemicewas lower than that of
97.14% of the mice. Therefore, there were still a small number of mice with
lower BMIs from a total of 264 single-gene knockout mouse strains, and
only 13 (4.92%) single-gene knockout mouse strains hadmore than 50% of
micewithBMI values lower than themeanBMIof geneCkb knockoutmice.
Among these 13 genes, 7 genes were identified as important genes by
ODBAE, and for the remaining 6 genes, a portion of mice from each cor-
responding gene knockout strain were detected as outliers.

Validation of sexually dimorphic genes
When applied to the IMPC metabolic dataset, ODBAE identified a total of
203 metabolism-associated genes, with a marked divergence observed
between male- and female-specific genes (Fig. 5b). To further validate the
biological relevance of these findings, we first screened for genes exhibiting
significant sexual dimorphism. In our framework, a gene was considered
significant if the proportion of outliers among its corresponding knockout
strains exceeded 50%. To ensure that the observed abnormalities were
indeed attributable to the gene and not random fluctuations, we initially
restricted our analysis to genes with sufficient sample sizes in both sexes.
Given that themajority of knockout strains in bothmale and female datasets
comprised seven individuals (Supplementary Fig. 11a, b), we retained genes
with at least seven samples per sex. Subsequently, to identify genes with
pronounced sexual dimorphism, we focused on genes for which the outlier
ratio exceeded 50% in only one sex and was zero in the other. This yielded a
final set of 18 genes showing strong evidence of sex-specific metabolic
effects.

To further evaluate whether the sexual dimorphism observed in these
18 genes had been previously reported, we conducted a literature search in
PubMed using each gene name in combination with the keywords “sexual
dimorphism”, “sexual”, “sex”, “male”, or “female”. This search revealed that
10 of the 18 genes had been previously documented as exhibiting sexual
dimorphism.

Comprehensive performance evaluation
We compared ODBAE with MSE-AE, MAE-AE, and DAGMM for the
detection results of IP andHLP, and computed their AUCandAP scores by
regarding the IP and HLP as positive.

We implementedDAGMMwithminimalmodification so that it adapt
to our datasets. Besides, for DAGMM, we kept its number of layers and the
dimensions of each layer consistent with ODBAE,MSE-AE, andMAE-AE.

For each experiment, the structure of the autoencoder was as follows.
The dimension of the hidden layer was the intrinsic dimension of the input
dataset, and its activation function was ReLU. Besides, the activation
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function of the output layer was sigmoid. All datasets were normalized
before outlier detection. During the autoencoder training process, Adam49

was used to optimize the loss function and the learning rate was 10−3.
To evaluate the performance of various outlier detection methods

across a range of predefined outlier ratios, each method was executed 10
times per ratio. For each run,we recorded theAUCandAPscores. The final
comparisonwas basedon themeanAUCandAP scores averaged across the
ten replicates for each method.

Selection of hyperparameters θ1, θ2 in training loss function
Our new training loss function is formulated as
L(ω, b) = θ1LMSE(ω, b)+ θ2LEIG(ω, b). It can be seen that our loss function
contains two loss terms. The function of LMSE(ω, b) is to drive the auto-
encoder to reconstruct the input dataset as well as possible, while LEIG(ω, b)
aims at suppressing complete reconstruction of the dataset by the auto-
encoder and balance the degree of reconstruction in the direction of each
principal component of the input dataset. Obviously, when the value of
θ1: θ2 is large, the autoencoder can reconstruct the input dataset perfectly
andwill adversely affect the detection ofHLP. However, if the value of θ1: θ2
is very small, the autoencoder will have a poor reconstruction effect on the
input dataset, whichwill bring disadvantages to IP detection. Therefore, it is
very necessary for us to ensure that the value of θ1: θ2 is reasonable, so that
the autoencoder can have a good detection effect for HLP and IP at the
same time.

In our work, we found that when θ1: θ2 = 0.008: 1, most experiments
could obtain the desired results. In order to study the sensitivity of this ratio,
we changed its base to see how different base affects the accuracy of outlier
detection. To be specific, if the value of basewas c, we set the values of θ1 and
θ2 to 0.008c and c, respectively.We conducted experiments on theDry Bean
dataset. For a fixed base c, we assessed the outier detection performance of
ODBAE across different outlier ratios δ (δ∈ {0.05, 0.1, 0.15, 0.2, 0.25}), and
subsequently computed the average score across all ratios. The results show
that the AUC and AP scores obtained by ODBAE varied only marginally
with changes in the base value (Supplementary Table 1), indicating that θ1
and θ2 are insensitive to the change of the base.

Determination of hyperparameter β
Although hyperparameter β > 0 in Eq. (17) is beneficial for HLP detection,
as the value of β increases, the data reconstruction ability of the autoencoder
will become worse and worse, which is similar to the model not being well
fitted during regression analysis. This adversely affects the detection of IP.
Therefore, in the following, it’s important for us to determine how to choose
the appropriate value of β.

If the intrinsic and actual dimensions of the dataset are equal, i.e., l =m,
thenmost of the outliers in the dataset areHLP. In this case, considering thatffiffiffiffiffi
λk

p
�

ffiffiffiffiffi
λ̂k

q
> 0 and λ̂k > 0, k = 1, 2,…,m, the value of the hyperparameter

β should satisfy 0 < β <min1≤ i ≤mð
ffiffiffiffi
λi

p Þ. According to theprevious analysis,
as long as β > 0, the detection effect of HLP can be improved.Meanwhile, in
order to maintain the detection effect of IP, the value of β must be small
enough.

According to Eq. (12), if β = 0, then R̂kðYÞ ¼ RkðYÞ, i.e., Ŷk ¼ Yk,
k = 1, 2,…, m. However, we usually add nonlinear activation functions to
the autoencoder to learn nonlinear features in the input dataset. For
example, in our work, we added sigmoid activation function to the output
layer. Since commonly used nonlinear activation functions are saturated,
when the input values are very large or very small, the corresponding output
values hardly change with the change of the input values. As the result, for
each dimension of the input data, when the values are very large or very
small, their reconstruction results are poor. Otherwise, the values can be
reconstructed well. Then, most HLP detected by the autoencoder are
anomalous in one dimension, but HLPwhose values in each dimension are
within the normal range are ignored. It can be seen from this that when β is
small enough, it not only adversely affects the detection effect of HLP, but
also rarely improves the detection effect of IP. That is to say, there exists

ξ > 0, when β < ξ, there is not much improvement in the detection
effect of IP.

If we determine the value of ξ and let β = ξ, on the one hand, the
detection effect of the autoencoder for IP can be maintained. On the other
hand, we can balance the reconstruction of the autoencoder and avoid the
influence of the saturation of the activation function on the data recon-
struction at the same time, which can improve the detection effect for HLP.

In our work, the structure of the autoencoder and the setting of
hyperparameters are described above. For each dimension of any dataset,
input values between 0.15 and 0.85 are hardly affected by the saturation of
the nonlinear activation function. Therefore, we hope that the value of β
selected can make the output value of each dimension between 0.15 and
0.85.As the result, for eachdimension, the interval lengthof theoutput value
is 0.7 times the interval lengthof the input value. Before outlierdetection, the
input dataset is normalized, so the input value of each dimension is between

0 and 1. Recall thatYk � N ðνk; λkÞ and Ŷk � N ðνk; λ̂kÞ, k = 1, 2,…,m, the
probability that Yk is distributed in ðνk � 3

ffiffiffiffiffi
λk

p
; νk þ 3

ffiffiffiffiffi
λk

p
Þ is 0.9974, so

its distribution interval length is approximately 6
ffiffiffiffiffi
λk

p
. Similarly, the dis-

tribution interval length of Ŷk is approximately 6
ffiffiffiffiffi
λ̂k

q
. So we can controlffiffiffiffiffi

λ̂k

q
¼ 0:7

ffiffiffiffiffi
λk

p
, then

ffiffiffiffiffi
λk

p
�

ffiffiffiffiffi
λ̂k

q
¼ 0:3

ffiffiffiffiffi
λk

p
, k = 1, 2,…,m.

Based on the above discussion, we can summarize how to
determine the value of the hyperparameter β when l =m.
If max1≤ i ≤mð0:3

ffiffiffiffi
λi

p
Þ≤min1≤ i≤mð

ffiffiffiffi
λi

p
Þ, we can set β ¼

max1≤ i≤mð0:3
ffiffiffiffi
λi

p
Þ. Otherwise, we set β ¼ min1≤ i≤mð

ffiffiffiffi
λi

p
Þ.

In practical applications, we usually encounter this type of dataset
whose intrinsic dimension l is smaller than the actual dimension m. In
this case, there are only l eigenvalues of the covariancematrix of the dataset
that are not close to 0, we denote them as λ0k, k = 1, 2,…, l. In the training
process, we only need to control such l eigenvalues and makeffiffiffiffiffi
λ0k

p
�

ffiffiffiffiffi
λ̂
0
k

q
¼ 0:3

ffiffiffiffiffi
λ0k

p
, k = 1, 2,…, l. Besides, since λ0k > 0, β should satisfy

0≤ β≤min1≤ i ≤ lð
ffiffiffiffi
λ0i

p
Þ. Actually, if l <m, therewill be somedata points that

have a large impact on the reconstruction ability of the autoencoder (i.e., IP),
it is very important to not only improve the detection effect ofHLP, but also
maintain the detection effect of IP. Therefore, we have tomake sure that the
value of β is small enough but not equal to 0. For convenience, we also set
0 < β <min1≤ i ≤mð

ffiffiffiffi
λi

p Þ in this case. Finally, the determination scheme for
the value of β is the same as when l =m.

Statistics and reproducibility
All data analysiswere performedusingPython3.7.7 andR3.4.3 software.To
ensure the reproducibility of our findings, we provide detailed descriptions
of the data generation process, including sample sizes used in the synthetic
data experiments. For experiments involving real-world datasets, we report
the sources of the data, the preprocessing procedures, and all relevant
analysis details. When comparing the outlier detection performance of
ODBAE against other models, we ran each model 10 times under fixed
outlier ratios and recorded the AUC scores from each run. The final per-
formance comparisons are based on the average AUC scores across runs to
ensure robustness and reproducibility. Similarly, to assess the impact of
dataset dimensionality, noise level, and model architecture on ODBAE’s
performance, we report the average AUC scores obtained from 10 inde-
pendent runs under each condition.

Ethics statement
The gene knockout mouse data used in this study were obtained from the
International Mouse Phenotyping Consortium (IMPC), and no experi-
ments were conducted here. All IMPC research centersmake every effort to
minimize animal suffering through careful housing and husbandry, with
detailed information available at the IMPC portal: https://www.
mousephenotype.org/about-impc/arrive-guidelines. Ethics statements
from individual research centers are provided in Supplementary Data 4.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The raw data from IMPC was downloaded from https://ftp.ebi.ac.uk/pub/
databases/impc/all-data-releases/release-13.0/cores/statistical-raw-data_
20201217_163937.tar. TheDry BeanDataset was downloaded fromhttps://
archive.ics.uci.edu/ml/datasets/Dry+Bean+Dataset. The Breast Cancer
Dataset was downloaded from https://www.kaggle.com/datasets/uciml/
breast-cancer-wisconsin-data. Additionally, all source data are provided in
the Supplementary Data or are available at https://github.com/
YafeiShen2022/ODBAE.

Code availability
The implementation of ODBAE, along with the main analysis code, is
available at https://github.com/YafeiShen2022/ODBAE.
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