
Article https://doi.org/10.1038/s42003-025-08948-2

Large-scale brain mediation network based
on resting-state functional MRI

Bin Wang 1, Xi Zhang1, Tingting Pan1, Ting Li2, Tiantian Liu 3 &
Tianyi Yan 3

Exploring the brain’s complex interaction mechanisms is vital for under-
standing its functions. Traditional network models typically simplify brain
region interactions into pairwise connections. However, such interactionsmay
be significantly modulated by a third brain region. Given the widespread
connections among numerous regions at the whole-brain scale, constructing
an accurate model of brain triple-region interactions is challenging. Here, we
develop an independent component-driven mediation brain network model
that captures triple-region mediation relationships while controlling extra-
neous influences. Our results reveal an inverted U-shaped relationship
betweenmediated strength and degree strength, indicating distinctmediation
patterns in dense and sparse connected regions. Furthermore, the primary
sensory and attention modules exhibit functional hierarchical differentiation:
areas responsible for primary information processing belong to the super
mediation set, while regions involved in higher-order cognitive functions
belong to the super mediated set. These results emphasize the distinct influ-
ences of differentmediation patterns on the cognitive capabilities of the brain.

The brain is not merely a collection of isolated structures, but rather
operates as a complex and highly interconnected network system.
Within this system, specialized brain regions dynamically interact and
collaborate to execute complex cognitive, emotional, and sensor-
imotor tasks1. For example, the visual cortex works in concert with the
temporal lobe to interpret visual information2, whereas the motor
cortex coordinates with the cerebellum to control precise
movements3. Furthermore, the brain undergoes a gradual change from
localized regions to distributed modules during development, ulti-
mately enhancing its capacity for collaboration among diverse
modules4. This intricate network organization underscores the brain’s
ability to integrate information across specialized regions or modules,
enabling efficient and adaptive functioning5. Consequently, under-
standing the brain as an interconnected network system is critical in
unraveling the neural basis of human functions.

With the advancement of modern neuroimaging techniques,
resting-state functional magnetic resonance imaging (fMRI) offers a

comprehensive and non-invasivemeans to explore the organization of
the human brain’s functional network. It enables the measurement of
neural activity interaction between remote brain regions using blood
oxygen level-dependent (BOLD) signals6, thereby allowing for the
examination of functional connectivity (FC) on a whole-brain scale.
Utilizing diverse statistical dependencies, including correlation7,
coherence8, and Granger causality9, of the BOLD time series, a large
number of researchers have computed the pairwise interactions
between brain regions. However, it has been revealed that the brain
exhibits not only binary interactions but also extensive interactions
among multiple brain regions10,11. For example, the parahippocampal
gyrus acts as a bridge connecting the hippocampus and the posterior
cingulate cortex12, while FC within the thalamus-amygdala pathway is
modulated by the prefrontal lobe during fear perception13. These
studies emphasize that the information transfer between two brain
regions may involve the participation or influence of a third brain
region14. Therefore, shifting our focus from pairwise to multivariate
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interactions can provide deeper insights into the complex dynamics of
brain networks.

Various methodologies have been utilized to analyze multivariate
relationships, with mediation analysis emerging as a particularly
effective tool15–18. This technique is indispensable for investigating the
impact of one variable on an outcome, which is partially or fully
mediated by another variable19. Numerous studies have investigated
mediation analysis to assess multivariate relationships in brain
networks20–22. For example, Kim et al. explored the information flow
patterns within the triple network by utilizing the mean BOLD signals
from the default-mode, central executive, and salience networks in
mindfulness23. Chen et al. extended mediation analysis to high-
dimensional levels, treating the entire brain network as a single com-
posite mediator variable to explore the neural characteristics mediat-
ing behavioral symptoms and psychotic episodes24. Nevertheless, the
above studies are limited to analyzing interactions in small-scale sce-
narios involving only three variables. Indeed, the human brain pos-
sesses an extremely complex structure, typically comprising hundreds
of distinct regions25,26. There exists a lack of network models that
measure mediation relationships among large-scale regions. More-
over, the brain regions exchange and transmit informationwith a large
number of others to varying degrees27,28. It is not feasible to simply
assume that the interactions between the currently analyzed three
brain regions are completely independent of the influence exerted by
other brain regions within the network model29. Thus, developing a
networkmodel that can capture themultifaceted relationships among
brain regions and effectively remove potential interference fromother
brain regions remains a significant challenge.

In this study, we design an ICMN model to characterize multiple
interactions of resting-state brain fMRI data. The model explores how
the interactionbetween any twobrain regions ismodulatedby another
region, while eliminating the influence of the remaining regions across

the whole brain. To further characterize individual brain mediation
network differences, we introduce several mediation parameters,
including the mediation ability (MA) and mediated strength (MS).
Finally, the underlying mechanisms of brain mediation networks are
explored by gradient and cognitive correlation analysis. Our findings
will contribute to a deeper understanding of triple-wise interactions
among brain regions and the higher-order organization of intrinsic
human brain networks.

Results
We constructed whole-brain ICMN from fMRI data through three key
steps (Fig. 1a–c). First, we extracted time series from N brain regions
using a standard template25 (Fig. 1a). The resulting N ×N ×N matrix
quantified mediation effects (M’s influence on X–Y connection) as the
ratio of indirect (a*b) to total effects (c), wherea and b represent X→M
and M→ Y path coefficients, respectively. To control for remaining
regions’ influences, we applied independent component analysis (ICA)
to reduce regional time series to 20 components for mediation cal-
culations in simulated data and real data from Human Connectome
Project (HCP) dataset (Fig. 1b). For the selection of 20 components, we
conducted a systematic quantitative assessment of the range from 5 to
70 components (with a step size of 5) by analyzing the contribution
rate of independent components to the reconstruction of the original
signal. We found that when the number exceeded 20, the growth rate
of the contribution rate slowed significantly. The specific calculation
methods and results are detailed in the Supplementary Methods and
Supplementary Fig. 1. Additionally, the results for 10 and 30 compo-
nents are also presented in the Supplementary Figs. 2–15. The valida-
tion results for the Chinese Human Connectome Project (CHCP)
dataset are presented in the Supplementary Figs. 16–18.

Based on the N ×N ×N-connected mediation network, we further
calculated three metrics, including average mediated matrix (AMM),

Fig. 1 | Schematic diagram for the construction of the brain independent
component mediation network (ICMN). a The fMRI brain data, which was par-
cellated into BOLD signals of N regions. b The fundamental principle guiding the
construction of the brain ICMN. c The formula employed for computing average
mediatedmatrix (AMM),MA, andMS. dA comprehensive analysis of thesemetrics,
including gradient analysis, module analysis, and key node analysis. The gradient

analysis evaluated the gradient of AMMand the functional connectivity (FC)matrix.
Furthermore, correlations between MA/MS and the gradient of the FC matrix are
calculated. The module analysis assessed the average value of the metrics for the
nodes within each module. The key node analysis identified the super mediation
ability set (super-MAs, highlighted in blue) and the supermediated set node (super-
MSs, highlighted in red).
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MA, andMS (Fig. 1c). In the connection level, AMM reflects the average
degreeofmediation in communicationbetweennodepairs by all other
mediator nodes. At the regional level, MA quantifies a node’s average
capacity to facilitate communication as a mediator. MS measures a
node’s average strength of mediation when it communicates with
other nodes through mediator nodes. Subsequently, we conducted
further analyses of these metrics, including gradient analysis, module
analysis, and key node of super mediation ability set (super-MAs) and
super mediated strength set (super-MSs) analysis (Fig. 1d).

Simulation study results
To verify the performance of ICMN in capturing the mediation pat-
terns in modules with different connection strengths, we created a
simulated brain network structure with 400 regions organized into 8
network communities (2 hub and 6 non-hub modules), and generated
simulated BOLD time series. Based on these time series, we con-
structed ICMN and computed mediation metrics, including the AMM,
MA, and MS. Additionally, the simulated FC matrix was estimated to
compare the ICMN with traditional functional connectivity patterns
(Fig. 2a). At the connection level, we found a significant negative cor-
relation between AMM and FC matrix (Spearman correlation,
r = −0.649, p <0.001) (Fig. 2d), indicating less mediation in tightly

functionally connected regions. In the regional level, we found theMA
and MS distributions varied across modules, particularly the hub
module exhibited higher MA (Fig. 2b, c). Furthermore, we investigated
the correlations betweenMA/MS and FC topologymetrics. As shown in
Fig. 2e, f, the degree strength showed positive correlations with MA
(R2 =0.963, p <0.001), while showing inverted U-shaped correlations
with MS (R2 =0.803, p <0.001). At the module level, the MA of each
module showed a significant positive correlationwith degree strength.
The MS and degree strength of two hub modules were significantly
negatively correlated, while four non-hub modules were significantly
positively correlated (Fig. 2g). Detailed statistical values are presented
in the Supplementary Tables 1 and 2.

Brain mediation network metrics at the whole-brain level
Based on the exploration of mediation patterns in simulated time
series, we further applied ICMN to real BOLD time series. We found
that AMM was highly negatively correlated with FC matrix (Spearman
correlation, r = −0.478, p < 0.001) (Fig. 3a, b). The results of the MA
showed strong values in the primary visual, somatosensory, andmotor
cortex (Fig. 3c). In addition, the results of theMS showed strong values
in the secondary visual, secondary motor, insular, and cingulate cor-
tex (Fig. 3d).

Fig. 2 | Results of ICMNmodeling in simulateddata.The simulated (a) FC and (d)
AMMof 400 brain regions, including 2 hub networks and 6 non-hub networks. The
color bars represent the value of FC and AMM, respectively, with darker colors
indicating greater intensity. The b MA and c MS of each brain module. The error
bars in box plots represent the standard deviation. The black dashed line repre-
sents the mean values of MA/MS for all modules. Red * represents significantly

higher than the mean, and blue * represents significantly lower. The sample size of
virtual subjects is 30. e, f The correlations betweenMA/MSwith FC degree strength
at thewhole-brain level.gThe correlationsofMA/MSwith FCdegree strength at the
module level. Different colors in the diagram correspond to differentmodules. The
correlation analysis is based on data from 400 brain regions averaged from the
subjects. *p <0.05, **p <0.01, and ***p <0.001.

Article https://doi.org/10.1038/s42003-025-08948-2

Communications Biology |          (2025) 8:1577 3

www.nature.com/commsbio


Correlations between MA/MS and FC topological metrics at the
whole-brain level
We also assessed the correlations between MA/MS and FC topological
metrics, including nodal degree strength (Fig. 4a), global efficiency
(Fig. 4b), and local efficiency (Fig. 4c). The AIC assessment revealed
quadratic correlations between these variables (Fig. 4d–f). In parti-
cular, both degree strength (R2 =0.986, p <0.001) and global effi-
ciency (R2 = 0.951, p <0.001) showed positive correlations with MA,
while local efficiency exhibited an inverted U-shaped pattern

(R2 =0.813, p <0.001) with MA. Conversely, both degree strength
(R2 =0.336, p < 0.001) and global efficiency (R2 =0.130, p < 0.001)
showed inverted U-shaped correlations with MS, while local efficiency
demonstrated a positive correlation with MS (R2 =0.083, p <0.001).

Correlations between functional gradients and mediation net-
work metrics at the whole-brain level
In order to analyze the functional organization pattern of brain net-
works, we computed the primary gradient of the group-averaged FC

Fig. 3 | The brainmediation networkmetrics at the whole-brain level. The whole-brain a resting-state FCmatrix and b AMM. The spatial distributionmap of cMA and
d MS. The color bars represent the value of mediation network metrics, with darker colors indicating greater intensity.

Fig. 4 | The FC topological metrics and their correlations with MA/MS at the
whole-brain level. The spatial distribution map of a degree strength, b global
efficiency, and c local efficiency. The color bars represent the value of FC topolo-
gical metrics, with darker colors indicating greater intensity. Correlations between

MA/MS and FC topological properties, including d degree strength, e global effi-
ciency, and f local efficiency. The correlation analysis is based on data from 360
brain regions averaged from the subjects. *p <0.05, **p <0.01, and ***p <0.001.
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matrix (Fig. 5a) and AMM, respectively. Furthermore, we investigated
the relationship between them and found that they were significantly
negatively correlated (Spearman correlation, r = −0.534, p < 0.001)
(Fig. 5b). Additionally, both the MA (Spearman correlation, r = −0.570,
p <0.001) (Fig. 5c) and MS (Spearman correlation, r = −0.862,
p <0.001) (Fig. 5d) demonstrated significant negative correlations
with FC gradient.

Brain mediation network metrics at the module level
We then map the mediation metrics to seven functional modules,
including visual (Vis), somatomotor (SM), dorsal attention (DA), ven-
tral attention (VA), frontoparietal (FP), limbic (Lim), and default mode
(DM)modules. FCmatrix and AMMof these seven functional modules
were calculated (Fig. 6a, b). In the module analysis of MA and MS, we
found that Vis, SM and DA exhibited significantly higher MA than the
average value, while FP, Lim, and DM exhibited significantly lower MA
than the average value (Fig. 6c). However, no significant differences
were found between module MS and the average value (Fig. 6d).
Detailed statistical values are presented in the Supplementary Table 3.

Correlations between MA/MS and FC topological metrics at the
module level
The degree strength, global efficiency, and local efficiency of seven
modules are shown in Fig. 7a–c. We found that the MA exhibited sig-
nificant positive correlations with both degree strength and global
efficiency in all modules. The MS exhibited significant negative cor-
relationswithbothdegree andglobal efficiency inVis andSMmodules,
and significant positive correlations with degree strength in Lim and
DM modules (Fig. 7d, e). For local efficiency, the MA exhibited an
inverted U-shaped relationship with local efficiency in most modules,
except for the Lim module, where they were positively correlated.
Additionally, the MS was positively correlated with local efficiency in

the Vis, SM, and DA modules (Fig. 7f). Detailed statistical values are
presented in the Supplementary Tables 4–7.

Correlations between functional gradients and mediation net-
work metrics at the module level
We thenmap the gradient of FC andAMMto seven functionalmodules
(Fig. 8a, b). We found significant negative correlations between the FC
and AMM gradient scores in the Vis, SM, DA, and DM modules. Addi-
tionally, a significant negative correlation was found between the MA
of the DA module and FC gradient, and significant negative correla-
tions were found between the FC gradient and MS in the DA, VA, FP,
Lim, and DM modules (Fig. 8c). Detailed statistical values are pre-
sented in Supplementary Tables 8 and 9.

The distribution of super-MAs and super-MSs
Using k-means clustering, we categorized MA and MS into three clus-
ters, respectively, identifying super-MAs and super-MSs with the
highest values. We found the super-MAs were mainly located in the
primary visual cortex of Vis, the central anterior and posterior gyrus of
SM, and the inferior parietal lobular portion of VA. Additionally, the
superior parietal lobule and temporo-parieto-occipital junction cortex
belonging to the DA were also identified as super-MAs (Fig. 9a). The
super-MSs were located mainly in the secondary visual area of Vis,
posterior insular cortex, and paracentral lobule of SM, posterior
inferotemporal gyrus of DA, as well as the part of VA including anterior
insular cortex and mid cingulate gyrus. The hippocampal para-
hippocampal gyrus, which ispart of the Limmodule, was also classified
as the super-MSs (Fig. 9b). Then, the correlations between the values of
super-MAs/super-MSs and cognitive functions were established. Sig-
nificant correlations found: super-MAs values with self-regulation
(Spearman correlation, r =0.175, p = 0.018) (Fig. 9c), and super-MSs
values with episodic memory (Spearman correlation, r =0.152,

Fig. 5 | Correlations between functional gradients and mediation network
metrics at thewhole-brain level.Theprimarygradient of the agroup-averaged FC
matrix andbAMM.The color bars represent gradient values fromnegative (blue) to
positive (red), withwhite corresponding to zero. c,dThe correlations betweenMA/

MS with the primary gradient of the FC matrix, respectively. The correlation ana-
lysis is based on data from 360 brain regions averaged from the subjects. *p <0.05,
**p <0.01, and ***p <0.001.
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p =0.040) (Fig. 9d). The results regarding the associations between
super-MAs/super-MSs and additional cognitive tasks are available in
the Supplementary Tables 10 and 11.

Cognition prediction capability by super-MAs and super-
MSs values
We utilized an advanced connectome-based predictive modeling
(CPM) approach to assess the predictive capability of super-MAs and
super-MSs values for cognitive functions, respectively. Model perfor-
mance was evaluated using Spearman correlation on predicted and
actual behavior scores. As shown in Table 1, the prediction model
based on super-MAs and super-MSs values can well predict cognitive
scales.

Discussion
We developed a network model, named the brain independent com-
ponent mediation network (ICMN), to quantify the multivariate rela-
tionships of large-scale fMRI time series data. This mediation network
is capable ofmeasuring the information transmission among any three
regions, while eliminating the influence of other brain regions. These
preliminary discoveries emphasize the significance of multivariate
interactions within brain networks and further propel our under-
standing of human brain functions.

Applying ICMN to both simulated and real fMRI data, we quanti-
fied mediation network metrics, including AMM at the connection
level and MA/MS at the regional level, followed by an investigation of
their associations with conventional FC measures. Specifically, AMM
reflected the average mediated influence between regions, showing
weakerwithin-module than between-modulemediation and a negative
correlation with the FC matrix. This suggests that strongly connected
regions rely less on indirect mediation for information transfer30. MA

represented a region’s capacity to facilitate communication as a
mediator, was higher in hub modules and positively correlated with
degree strength at both whole-brain and module levels, reinforcing
their role in network-wide integration31. Conversely, MS, which cap-
tures a region’s dependence on mediated pathways, exhibited an
inverted U-shaped relationship with degree strength at the whole-
brain level. In the further module-level analyses, we observed densely
connected hub modules of simulated data (Vis and SM of real fMRI
data) displayed a negative correlation with degree strength, which was
consistent with the negative correlation between AMM and FC matrix
in dense connected hub modules. However, sparsely connected non-
hubs modules of simulated data (Lim and DM of real fMRI data) tren-
ded toward increased MS with higher degree strength, suggesting
greater reliance on indirect mediation when direct connections are
insufficient. We speculate that, in the sparsely connected module,
when the direct connection between two regions is not strong enough
tomaintain the normal communication requirements, the information
transfer mediated by other regions may be performed more often32.
Therefore, increased MS offers numerous opportunities for commu-
nication, thereby increasing the degree strength33.

These findings were further supported by real brain network
efficiency analyses. MA correlated positively with global efficiency at
both whole-brain and module levels. Global efficiency is calculated as
the inverse average of the shortest path lengths in the network. High
global efficiencymeans that information can be transmitted efficiently
through shorter paths in the network34,35. This suggests that regions
with high MA possess robust information processing capabilities,
pivotal for brain-wide information integration. While MS exhibited an
inverted U-shaped association with global efficiency, with dense
modules (including Vis and SM) showing reduced efficiency at highMS
and sparse modules (including Lim and DM) increased efficiency at

Fig. 6 | The brain mediation network metrics at the module level. The a FC
matrix and b AMM in seven functional modules. The color bars represent the value
of FC and AMM, respectively, with darker colors indicating greater intensity. The
c MA and d MS of seven functional modules. The black line in the violin diagram

represents the mean values of MA/MS for all modules. The error bars in box plots
represent the standard deviation. Red * represents significantly higher than the
mean, and blue * represents significantly lower. The sample size of subjects is 200.
* < 0.05, **p <0.01, and ***p <0.001.
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high MS. In densely connected modules, nodes preferentially form
direct connections, resulting in lower MS values, shorter path lengths,
and faster transmission efficiency36. In contrast, sparsely connected
modules exhibited longer path lengths, suggestingmediatedpathways
may partially compensate for weaker direct connectivity by facilitating
alternative information routes. Furthermore, we observed an inverted
U-shaped correlation between MA and local efficiency, indicating that
local efficiency peaks at an optimal MA level. Local efficiency reflects
the brain’s capacity for localized information processing and resilience
to small-scale disruptions34,35. WhenMA exceeds a threshold, excessive
coordination may lead to information overload, reducing the brain’s
resilience. Additionally, MS and local efficiency showed a positive
correlation. This implies that more indirect connectivity pathways
mediated by other nodes may facilitate decentralized storage and
processing of information10,37. This enhances the brain’s fault-tolerance
and adaptability, resulting in higher local efficiency.

To investigate the patterns of brain organization reflected by the
mediation network, we utilized the diffusion mapping to explore the
gradient of AMM. Gradients help reduce dimensionality of brain con-
nectivity data and capture continuous changes in brain spatial dis-
tribution structure38,39. Prior FC gradients showed direct connectivity
strength changes, revealing specific functional separations formed by
the spatial structural arrangement of different brain regions40,41. The
AMM measures the degree to which communication between two
brain regions ismediatedby other nodes, reflecting to some extent the
indirect connectivity strength between these two brain regions. Thus,

we calculated the AMM gradient to reflect continuous changes in
indirect pathway connectivity. The principal gradient of AMM
decreases from unimodal sensorimotor to transmodal association
areas, aligning with the FC gradient. This suggests the topography of
indirect connections is also not randomly distributed, but rather spa-
tially organized along the gradient axis from unimodal to transmodal
areas. Compared with the primary sensory modules, higher-order
cognitive modules exhibit the most different patterns of indirect
connectivity42. These findings provide complementary insights into
the hierarchical organization of brain networks beyond direct con-
nectivity measures.

To reveal the mediation network patterns of different modules,
we computed the MA and MS of each module separately. The results
showed that higher MA was found in the Vis, SM, and DAmodules. MA
represents the strength of a node’s role in controlling the connectivity
pathways within a brain network. A higher MA in a brain regionmeans
stronger connections to other regions. The result validated the con-
clusion that the primary sensory modules exhibit more direct and
short-range connections37,43–45. In contrast, the FP, Lim, and DM mod-
ules show limitedMA. The connections of these higher-order cognitive
modules to other brain regions are relatively sparse or indirect,
allowing the brain to integrate information in a more flexible
manner37,43–45. For example, upon receiving preliminary sensory sti-
muli, the DA module selectively adjusts the intensity and direction of
attention46,47. This feedback can directly act on primary perception
modules to rapidly optimize the capture and processing of critical

Fig. 7 | The FC topological metrics and their correlations with MA/MS at the
module level. The FC topological properties, including a degree strength, b global
efficiency, and c local efficiency of seven functional modules. The black line in the
violin diagram represents the mean values of FC topological metrics for all mod-
ules. Red * represents significantly higher than the mean, and blue * represents

significantly lower. The sample sizeof subjects is 200.d–fThe relationshipbetween
MA/MS and FC topological properties of seven functional modules, respectively.
The correlation analysis is based ondata fromdistinct functionalmodules averaged
from the subjects. *p <0.05, **p <0.01, and ***p <0.001.
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information48 or involve advanced cognitive modules to complete
more complex responses or decision-making processes49. This
mechanism significantly enhances the efficiency of the interaction
between the primary sensory module and the DA module50, both of
which play an indispensable mediation role in the information pro-
cessing process. However, the mediation role played by higher-order

cognitive modules in transmitting sensory information to higher-level
cognitive processing stages is more indirect and complex51.

We further identified brain regionswith the highestMA/MSvalues
as super-MAs/super-MSs to examine their roles in information pro-
cessing. Notably, the Vis, SM, DA, and VA modules exhibited the
existence of both super-MAs and super-MSs, in which the distribution

Fig. 8 | Correlations between functional gradients and mediation network
metrics at the module level. The primary gradient scores of the a FC matrix
b AMM of seven functional modules. c The relationship between MA/MS with the

primary gradient of the FC matrix of seven functional modules. The correlation
analysis is based on data from distinct functional modules averaged from the
subjects. *p <0.05, **p <0.01, and ***p <0.001.

Fig. 9 | The super-MAs/super-MSs and their correlations with cognitive ability. The spatial distribution map of a super-MAs and b super-MSs. The cognitive ability
related to c super-MAs value and d super-MSs value is significant. The sample size of subjects is 200. *p <0.05.
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of super-MAs is very similar to the hub nodes in FC networks31,44,52. We
speculate that the existence of both super-MAs and super-MSswithin a
module reflects the collaboration and balance of brain function in
hierarchical information processing. For instance, in the Vis module,
the super-MAs areprimarily distributed in the primary visual cortex. As
a hub node, it exhibits extensive connections both within and outside
the module, responsible for the rapid and efficient transmission and
integration of visual information53,54. In contrast, the super-MS is
located in the secondary visual cortex. These regions may engage in
higher-order visual processing, such as shape recognition, through
interactionsmediated by the primary cortex, contributing to balanced
information transmission55–57. Similarly, in the SM module, the motor
and somatosensory cortices serve as super-MAs, directly participating
in motor command output and sensory feedback58. Meanwhile, the
posterior insular cortex and paracentral lobule function as super-MSs,
achieving complex motor sequence planning and fine tactile infor-
mation processing through interactions mediated by the primary
cortex59. The DA and VA modules also exhibit similar differentiation:
the super-MAs (including parietal cortex, temporo-parieto-occipital
junction) are responsible for spatial attention orientation and visual
guidance46,60. The super-MSs (including fusiform gyrus, anterior insu-
lar cortex, and mid-cingulate cortex) may accomplish spatial rela-
tionship representation and emotional stimulus attention regulation
through interactions with mediator nodes61,62. In contrast, advanced
cognitive modules (including FP, Lim, DM), which rely on distributed,
non-hierarchical information integration, show weaker differentiation
between mediation and mediated roles among their nodes, reflecting
the complex nature of advanced cognitive functions45.

Our analysis revealed significant relationships between brain
mediation patterns and cognitive functions, with super-MA values
showing positive correlation with self-regulation and super-MS values
correlating with episodic memory performance. The self-regulation
association primarily involves perceptual and attentional regions,
where perceptual areas provide essential external information input63

while attentional modules guide focus and behavioral adjustment64,
working synergistically to maintain adaptive responses to environ-
mental demands65. For episodicmemory, the super-MS related regions
included the hippocampus for memory consolidation66, cingulate
gyrus supporting retrieval processes67, and insula integrating emo-
tional components66 - together enabling the formation of rich, con-
textual memories68,69. Importantly, both super-MA and super-MS
measures demonstrated predictive value for higher cognitive func-
tions, including emotion regulation and fluid intelligence, establishing
brain mediation networks as an effective framework for investigating

how indirect neural interactions support diverse cognitive processes.
These findings collectively highlight the functional significance of
mediated information transfer pathways in cognition, with distinct
mediation patterns contributing differentially to self-regulatory and
memory systems while both serving as reliable markers of cognitive
information processing capacity.

The current study has several limitations that warrant considera-
tion. First, although the cognitive prediction model based on brain
super-mediation and mediated sets demonstrates statistical sig-
nificance, the results are limited to resting-state data and underlying
neuralmechanisms need further validation. Subsequent investigations
should incorporate task-based fMRI to systematically compare the
similarities and differences in network characteristics between resting
and task states, as well as their associations with cognitive functions.
Second, while the linear mediation framework employed in the ICMN
model aligns with currentmainstream brain network analysismethods
and offers computational efficiency advantages20,21,23,24, it may not fully
capture the nonlinear dynamic properties of the brain. Future work
should focus on developing nonlinear mediation analysis algorithms
that better reflect neurobiological characteristics70–72. Finally, the cur-
rent model only examines mediation relationships among three brain
regions, without addressing more complex higher-order network
interactions. Subsequent research should extend the analytical scope
to multi-region systems and conduct systematic comparisons with
advanced methods such as hypergraph models73,74 and partial corre-
lation networks29 to verify the robustness of the findings.

Methods
Data acquisition and preprocessing
The fMRIdataset used is from theHumanConnectomeProject (HCP)75.
We considered the 200 unrelated subjects as provided from the HCP
1200 subjects data release (108 females and 92 males, mean age =
29.2 ± 3.6 years). Human participants were recruited from Washing-
ton University (St. Louis, MO) and surrounding areas. All participants
gave informed consent in accordance with policies approved by the
University of Washington Institutional Review Board76. All ethical reg-
ulations relevant to human research participants were followed. Par-
ticipants in the HCP sample underwent various behavioral tests that
were part of the NIH Toolbox battery, as well as several non-NIH
Toolbox behavioral assessments. We primarily focused on 6 cognitive
factors highlighted in the HCP data dictionary. The assessments of
these cognitive factors include: self-regulation, episodic memory,
vocabulary comprehension, emotion recognition, fluid cognition, and
crystallized cognition.

The open-source HCP minimal preprocessing pipeline77, version
3.5.0, was applied to all neuroimaging data. This included: anatomic
reconstruction and segmentation; EPI reconstruction, segmentation,
and spatial normalization to a standard template; intensity normal-
ization; and motion correction. The resulting data were in CIFTI 64k-
vertex grayordinate space, and all subsequent analyses were per-
formed inMATLABR2014b. Followingminimal preprocessing, vertices
were parcellated into 360 cortical regions per the atlas25. To parcellate
each of these regions, we calculated the average time series of
enclosed vertices. According to Yeo’s previous work, all regions were
assigned to seven modules, namely Visual (Vis), Somatomotor (SM),
Dorsal Attention (DA), Ventral Attention (VA), Frontoparietal (FP),
Limbic (Lim), and Default mode (DM)78.

We also used the CHCP dataset as a validation dataset. Details on
data acquisition and preprocessing are provided in the Supplementary
Methods.

Simulation computational modeling
We developed a large-scale neural network model comprising 400
brain regions organized into 8 functional modules (six non-hub and
two hub modules) with specified intra-module (40–70%) and inter-

Table 1 | Prediction results from super-MAs and super-MSs
values

Super-MAs Super-
MSs

Self regulation r 0.316 0.358

p <0.001 <0.001

Episodic memory r 0.160 0.233

p <0.001 <0.001

Vocabulary comprehension r 0.303 0.298

p <0.001 <0.001

Emotion regulation r 0.193 0.396

p 0.009 <0.001

Fluid intelligence r 0.285 0.474

p <0.001 <0.001

Crystallized cognition r 0.441 0.279

p <0.001 <0.001

Bold values indicate significant correlations between predicted and actual scores on the cog-
nitive scale, with statistical significance set at p<0.001.
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module (10–25%) connection probabilities weighted by Gaussian dis-
tributions. Neural dynamics were simulated using a standard neural
mass model with hyperbolic tangent transfer functions79, where node
activity was governed by coupled differential equations with local and
global coupling parameters set to unity and a time constant of 10ms.
Spontaneous activity was generated through Gaussian noise inputs
(mean 0, SD 1), and the system was numerically integrated for 1200 s
using a second-order Runge-Kutta method (10ms time step). The
resulting signals were convolved with a hemodynamic response
function, standardized, and downsampled to 1-s temporal resolution
to generate synthetic fMRI data for 30 virtual subjects (details are
provided in Supplementary Methods).

ICMN modeling
The mediation analysis decomposes the total effect that an initial/
independent variable (node X) has on a target/dependent variable
(node Y) into an indirect effect that is transferred via a mediator (node
M) and a conditional direct effect. Further, in addition to the three
nodes above-mentioned, we considered the effects of other nodes in
the brain on the mediation effect. We employed whole-brain time-
series ICA results to replace the ICA results derived from the remaining
brain nodes, based on the following rationale: First, calculating the
mediation effects for any three brain regions while performing ICA
separately on the remaining regions would impose an excessive
computational burden. Second, systematic validation confirmed that
the differences between the two approaches were negligible, both
statistically and practically. We set 20 components (10 and 30 com-
ponents as repeatability verification) for the whole brain. The single
mediator model consists of three regression equations as follows:

Y t = i1 + γ0Xt + δ1Ot + e1 ð1Þ

Mt = i2 +αXt + δ2Ot + e2 ð2Þ

Y t = i3 + γXt +βMt + δ3Ot + e3 ð3Þ

where Xt is the time series of the initial variable (node X),Mt is the
time series of themediator (nodeM), Y t is the time series of the target
variable (node Y),Ot is the independent components of the time series
in whole brain nodes, and e1, e2, e3 are the residuals. In this model,
γ0 represents the total effect between node X and node Y, γ quantifies
the direct effect from node X to Y, the product of α and β (α*β)
quantifies the indirect effect of node X on Y through M, and δ1, δ2,δ3

represent the whole brain effect in the mediation networkmodel. The
experiment required that statistical significance be tested in each of
the three tests that comprise the path model (testing α, β and α*β),
where the significance of the product of paths α and βwas assessed by
Sobel’s test80 to test for indirect effects. The standard process is as
follows81:

(i) Sequential inspection coefficient α and β. If both are significant,
proceed with step (ii), with at least one significant retest α*β. If not
significant, the indirect effect does not exist, otherwise, execute
step (ii);

(ii) Inspection coefficient γ. If significant, there is a partial med-
iating effect. If not significant, it represents complete mediation.

In the entire brain mediation network, the Em
xy (N×N×N con-

nectivity matrices) was used to represent the entire mediation effects
between node X, node Y, and node M, whose value range within the
rangeof [0,1]. If it is partialmediation, the indirect effect is represented
by calculating the proportionof the total effects to the indirect effects:

AMt
Xt ,Y t

� �
=
αβ
γ0

ð4Þ

If it is complete mediation, the value of the mediation effect is 1,
while if there does not exist a mediation effect, the value is 0.

The brain mediation network metrics
AMM. AMM is calculated as follows:

AMMxy =
1
N

XN

m= 1

Em
xy ð5Þ

whereEm
xy refers to the strength of the connectionbetweennode X

and node Ymediated by nodeM. N represents the number of nodes in
the whole brain.

MA. MA is defined as follows:

MAm =
1

N ×N

XN,N

x = 1, y= 1

Em
xy ð6Þ

Nodes with high mediation ability have higher information dis-
semination capability, which act as a bridge to other regions in their
exchanges.

MS. MS is defined as follows:

MSx =
1
2N

XN

y= 1

ðAMMxy +AMMyxÞ ð7Þ

where AMMxy represents the size of the mediated information
transfer from node X to node Y. Nodes with high MS indicate their
information transmission with other regions passes through a third
region more often than reaching directly.

The network analysis and cognition prediction
We used the Brain Connectivity Toolbox to calculate degree strength,
global efficiency, and local efficiency of FC matrix. We also analyzed
AMM and FC gradients using the BrainSpace toolbox82. The primary
gradient, representing dominant cortical organization, was examined.
We employed CPM83 with leave-one-subject cross-validation. Super-
MA/MS values and cognitive scoreswereused to train linear regression
models onnodes showing significant Spearman correlations (p <0.05).
Predictive performance was evaluated by correlating predicted and
actual cognitive scores. See Supplementary Methods for more details.

Statistics and reproducibility
The simulation experiment included 30 participants, while the real
fMRI experiment involved 200 participants. For brain regional
analyses, we utilized averaged subject data derived from 400-
region and 360-region brain parcellations, respectively. A one-
sample t-test tested the significance of module MA/MS relative to
the mean. The relationship between MA/MS and topological
properties was evaluated using linear and quadratic regression
models. The Akaike information criterion (AIC) compared the fit of
these models. Spearman correlation was employed to assess cor-
relations between FC and AMM, and their gradient correlations. All
statistical tests involving module analysis were corrected for mul-
tiple comparisons using the Bonferroni method. The relationship
between super-MAs/super-MSs and cognitive performance is also
through Spearman correlation. Gender, age, and years were con-
sidered irrelevant variables and were regressed out. A significance
threshold of p < 0.05 was applied to all tests, to determine statis-
tical relevance. This study employed a cross-sectional design
without repeated experiments or measurements.
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Data availability
The MRI dataset used in this paper is available in the Human Con-
nectome Project (https://www.humanconnectome.org) and the CHCP
(https://doi.org/10.11922/sciencedb.01374). The source data used for
generating Figs. 2–9 are provided in Supplementary Data 1.

Code availability
The codes used in this paper are available on GitHub (https://github.
com/WANG-BIN-LAB/Brain_Mediation_Network).
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