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Harmonicity is an important feature for auditory perception. However, the neural substrates of
processing inharmonic sounds remain unclear. Here, we systematically manipulated the harmonicity
of sounds by introducing random jittering to their frequencies. Using electroencephalography, we
studied the effect of inharmonicity on markers of auditory prediction errors — mismatch negativity
(MMN) and P3a — in a roving oddball paradigm. Inharmonic sounds with a constant jittering pattern
generated similar MMN and stronger P3a responses than harmonic sounds. In contrast, MMN
responses became undetectable when the jittering pattern changed between consecutive sounds,
suggesting that prediction errors are weighted by sequential but not spectral uncertainty. Interestingly,
inharmonic sounds generated an object-related negativity, a response associated with the
segregation of auditory objects. Our results suggest that inharmonicity induces the segregation of the
auditory scene into different streams, captures attention, and gives rise to specific neural processes
that are independent from the predictive mechanisms underlying sequential deviance detection.

Harmonic sounds consist of acoustic waves containing frequencies that are
integer multiples of a common fundamental (F0). Many ecologically salient
sounds, such as human voices, animal calls or music, are highly harmonic.
Conversely, if the acoustical wave consists of frequencies that are not integer
multiples of a common fundamental, it is said to be inharmonic. These
sounds are often described as noises, sizzles, pops or rattles'. Harmonicity
has been suggested to underlie auditory scene analysis® and help separate the
source of relevant sounds from background noise’, forming a basic orga-
nizational principle of the auditory cortex*. In language, violations of
harmonicity impair the ability to understand concurrent speech and cause
listeners to lose track of target talkers’. In music, inharmonic sounds can
impair pitch-related abilities such as interval detection®. Similarly, inhar-
monicity disrupts the ability to compare pitch across time delays, which
suggests a role in memory encoding’.

Harmonicity can be understood in the light of predictive processing
theories, which posit that perception relies on the brain forming top-
down predictions about the incoming stimuli and their causes'*""”. These
predictive processing accounts assume that predictions stem from an
internal, generative model that is constantly updated by statistical reg-
ularities in the incoming sensory information. An “error” or “surprise”
response (i.e., prediction error) occurs when predictions do not fit the
sensory input, which can be used to update the contents of the generative

model >**. According to this theory, prediction errors are weighted by
uncertainty (or precision) of the context, adjusting the relevance given to
sensory inputs, allowing perceptual inference under uncertainty”™'.
Therefore, if a signal is imprecise or unreliable (as in, for example, seeing
in dark conditions or hearing in noisy environments), any prediction
errors arising from it would be down-weighted and less likely to influence
future predictions. While precision-weighting in the auditory domain has
been explored empirically (see ref. 13 for a comprehensive review), the
details of this process remain unclear.

Here, we hypothesize that harmonicity might be one of the relevant
auditory features (among others, such as duration or intensity) that drive
precision-weighting of prediction errors. Harmonic sounds have lower
information content (lower entropy’”) than inharmonic sounds, as the
spectrum of an ideally harmonic sound will consist only of integer multiples
of FO. Thus, many aspects of the sound can be reliably described using only
one piece of information: the FO. Conversely, inharmonic sounds have
higher information content (higher entropy). Consequently, any prediction
errors produced by inharmonic sounds should have lower precision and
would therefore be less likely to influence future expectations™. In the case of
inharmonic sounds, precision-weighting might affect prediction errors not
only by weakening pitch percepts but, more generally, by down-weighting
sensory evidence about the spectral content of sounds.
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Cortical responses associated with prediction errors can be quantified
in event-related potentials (ERPs) using electroencephalography (EEG).
Mismatch negativity (MMN) is a widely studied response to a deviation in
an otherwise repetitive train of sensory stimuli*’. It is a well-established
electrophysiological trace of neural activity associated with precision-
weighted prediction errors in the cortical auditory system'****". Another
neural response relevant to predictive coding is the P3 component, elicited
when individuals shift attention (i.e., P3a) or consciously detect deviant
stimuli (P3b™). In this study, we hypothesize that if harmonic sounds index
precision as proposed by predictive processing theories, they should pro-
duce larger MMN and P3 responses to pitch deviants in comparison to
inharmonic sounds.

Consistent with this idea, we previously showed that MMN responses
were more prominent in harmonic piano tones than inharmonic hi-hat
cymbal sounds™. However, due to the naturalistic nature of the stimuli, we
could not entirely rule out if other factors, such as the presence of a stable
pitch percept, rise and decay of the sound envelope or other spectral dif-
ferences, played a role in the modulation of mismatch responses. To address
this issue, here we present an EEG experiment using a passive roving oddball
paradigm that carefully controlled the harmonic structure of sounds to
isolate and measure the effect of harmonicity on auditory prediction errors.
We recorded mismatch responses to sounds in three conditions: harmonic,
inharmonic and changing. In the harmonic condition, sounds were regular
harmonic complex tones. In the inharmonic condition, we introduced
inharmonicity by jittering the frequencies above FO and applied the same
pattern of jitters to all tones in the sequence, thereby increasing the spectral
uncertainty of the sounds. Note that the inharmonic condition introduces
the same kind of uncertainty to the spectrum of each sound. However,
MMN responses are also affected by the sequential uncertainty of the sound
stream (i.e, what sound follows next). To investigate whether these two types
of uncertainty interact, we introduced a changing condition in which a
different jitter pattern was assigned to each individual sound. This increased
sequential uncertainty and made predictions of subsequent sounds harder.
We hypothesize here that the amplitudes of MMN and P3a would be
affected by the spectral and sequential uncertainty of the tones. This would
be shown as reduced prediction errors in inharmonic sounds, especially
when the spectral content is repetitively jittered in the sequence.

Results

Paradigm outline

We used a version of the roving oddball paradigm to generate mismatch
responses’ . In a typical roving paradigm, several sounds are presented at a
specific frequency, followed by a set of sounds at a different, randomly
chosen frequency, which in turn is followed by another set, and so on. The
sound immediately after the frequency shift is the deviant sound, but it
eventually becomes the standard after a few repetitions. The participant
listens to the sounds passively while watching a silent movie. In this study,
instead of pure tones, we used (in)harmonic complex tones with the roving
reflected in changes to the fundamental frequency of the complex. We used
the roving paradigm because it ensures that the standards and deviants have
the same physical properties (i.e., deviance is induced by the context of the
sequence). It also allows for systematic investigation of the effect of the
amount of frequency change on the mismatch response by taking advantage
of the random changes to frequencies. Finally, the roving paradigm allows
for investigating if mismatch responses are sustained after the first deviant in
the sequence by analyzing the second and third-order deviants (shades of
red in Fig. 1A, D, G).

In order to investigate the effect of harmonicity on mismatch
responses, we presented sounds in three conditions. In the harmonic con-
dition, all sounds were harmonic complex tones (consisting of FO and its
integer multiples, Fig. 1A-C. In the inharmonic condition, we introduced a
random jittering pattern to each frequency above the FO (Fig. ID-F). Here,
the same jittering pattern was applied to each sound within a set (Fig. 1D). In
the changing condition, a different jittering pattern was applied to each
sound. Crucially, in each of the conditions, the FO remained unchanged by

the jittering. We assumed that keeping the lowest frequency constant would
induce the perception of a fundamental (F0) pitch strong enough to form a
predictive model based on this percept. Approximate entropy, a measure of
the amount of information contained in a time series, was on average lower
for harmonic (M = 0.02, SD = 0.01) than for inharmonic sounds (M = 0.19,
SD=0.01), and this difference was consistent irrespective of the
FO (Fig. 1H).

Presence of MMN and P3

First, we investigated if the three conditions produced significant mismatch
responses by testing the differences between standard and deviant responses
using a mass-univariate approach. This allows for comparing ERPs without
assumptions about spatio-temporal “windows” of activity”. We used
cluster-based permutations, a non-parametric technique that tests for dif-
ferences between conditions while controlling for multiple comparisons™.
In the harmonic condition (Fig. 2A), we found differences between stan-
dards and deviants corresponding to a cluster at 87-219 ms (26/30 sensors,
P =0.0002). Topographically, this mismatch response started as a fronto-
central negativity at 120-180ms, typical of an MMN. A cluster at
216-286 ms, reflecting a frontocentral positivity typical of a P3a response,
was marginally significant (16/30 sensors, p = 0.076). We also found an
additional negative cluster at 329-450 ms (21/30 sensors, p = 0.002). In the
inharmonic condition (Fig. 2B), we found differences between conditions
corresponding to clusters in the data at 95-199 ms (23/30 sensors, p = 0.002)
as well as at 198-359 ms (23/30 sensors, p =0.0001). These overlapping
clusters formed around typical latencies for MMN and P3a and had typical
topographies. However, we found no differences between standards and
deviants in the changing condition (p > 0.05 for all detected clusters), indi-
cating that this condition did not produce any clear MMN or P3a responses
(Fig. 2C and Table S1).

Mass-univariate analysis of group differences

To investigate the differences between the three conditions, we used a
cluster-based permutations approach, this time with an F-test. The test
revealed differences between the conditions corresponding to clusters at
72-193 ms (25/30 sensors, p =0.016) and at 211-345 ms (21/30 sensors,
P =0.008), indicating a main effect of condition (Fig. 3A). Next, we ran post-
hoc pairwise comparisons between conditions using cluster-based ¢-tests
(Fig. 3B). To account for multiple comparisons, we assumed a Bonferroni-
corrected alpha level of p=0.05/3=0.0166. We found significant differ-
ences between harmonic and inharmonic conditions in the P3a latency
range (190-353 ms, a cluster comprising 22 sensors, p = 0.010) but not in the
MMN range. Additionally, we found differences between harmonic and
changing conditions for both MMN and P3a latency ranges (77-254 ms, 24/
30 sensors, p = 0.002). A later cluster (363-450 ms) was not significant after
multiple comparisons correction (20/30 sensors, p =0.033). Finally, we
found differences between inharmonic and changing conditions in the P3a
range (200-358 ms, 24/30 sensors, p=0.001). An earlier cluster
(98-198 ms) corresponding to the MMN latencies was marginally sig-
nificant (21/30 sensors, p = 0.025).

Mean amplitude and peak latency

Next, in order to investigate the effect of harmonicity on the amplitudes and
latencies of mismatch responses, we calculated participant-wise mean
amplitudes and peak latencies in the latency ranges for both MMN and P3a
(Fig. 4). For each of these measures we constructed linear mixed models with
intercept and condition (harmonic, inharmonic, changing) as fixed effects
and a random intercept for each participant (m1). We compared these
models against null models that contained only the fixed intercept and a
random intercept for each participant (m0).

For MMN mean amplitudes, m1 performed significantly better than
m0 (AICo = 3364, AIC,,; = 325.7, Chi*(2) = 14.71, p = 0.0006). Post-hoc
comparisons of estimated marginal means revealed a significant difference
between harmonic and changing conditions (contrast estimate = —1.03,
SE =0.27, t(67.8) = —3.84, p=0.0008). Similarly, there was a significant
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Fig. 1 | Paradigm outline and stimulus characteristics. A provides a symbolic
representation of a roving sequence in the harmonic condition. The fundamental
frequency is shown in blue or red, while the upper harmonics are shown in gray.
Shades of red represent theoretical deviants, which progressively become standards
(blue). B presents the waveform and C presents the spectrum of an example har-
monic sound (FO = 500 Hz). Similarly, D-F show sequence representation, wave-
form and spectrum for the inharmonic condition. Notice that while the distribution
of the partials becomes uneven in the inharmonic condition, the pattern of jittering is

carried through from one fundamental frequency to the next. Conversely, G shows
the sequence representation for the changing condition, where a different jittering
pattern is applied to each sound. H shows entropy calculations for harmonic
(dashes) and inharmonic (violin plot distributions) sounds for each FO. Note that
while we calculated entropies for 1000 different inharmonic sounds present in our
sound pool, there was only one harmonic sound for each frequency (thus producing
a single entropy value instead of a distribution).

difference between inharmonic and changing conditions (contrast esti-
mate = —0.70, SE=0.27, #67.8) = —2.57, p=0.033). The
harmonic-inharmonic contrast was not statistically significant (contrast
estimate = —0.34, SE=0.27, #(67.8) = —1.24, p=043). Taken together,
these results suggest that there are no substantial differences in the MMN
amplitude between harmonic and inharmonic sounds. However, the MMN
is stronger (more negative) for both harmonic and inharmonic than for
changing sounds.

For P3a mean amplitudes, m1 also performed significantly better than
m0 (AIC 0 = 458.8, AIC,,,, = 444.0, Chi%(2) = 18.80, p < 0.0001). Post-hoc
comparisons revealed significant differences between harmonic and
inharmonic conditions (contrast estimate = -1.37, SE = 0.36, t(68) = -3.85,
p=0.0007) as well as between inharmonic and changing conditions (con-
trast estimate =1.45, SE=0.36, #(68) =4.07, p=0.0003). No significant
differences were found for the harmonic-changing contrast (contrast esti-
mate = 0.08, SE =0.36, t(68) =0.23, p =0.97). These results suggest a sig-
nificant effect of harmonicity on P3a amplitude, such that the P3a for
inharmonic sounds is greater than for both harmonic and changing sounds.

For MMN peak latency measures, m1 did not perform significantly
better than m0 (AIC,=—3904, AIC,,;=—388.0, Chi*(2)=1.59,
P =0.45). The same was also the case for P3 peak latency (AIC,,o = —331.7,

AIC,,, = —330.2 Chi*(2) = 2.49, p = 0.29). This indicates that harmonicity
does not substantially influence the latency of MMN and P3a mismatch
responses.

Object-related negativity
Beyond mismatch responses, the N1-P2 complex patterns in the inhar-
monic and changing condition differed noticeably from the harmonic
condition (Fig. 2). A possible candidate for this type of response is the object-
related negativity (ORN), an ERP component associated with a separation
of concurrently presented sounds into distinct auditory objects™ . Here, we
investigated the possibility that inharmonic sounds gave rise to the ORN by
contrasting the responses to harmonic vs. inharmonic and harmonic vs.
changing sounds, for both standards and deviants. To this end, we per-
formed cluster-based permutations with a t-test of differences between
conditions (Fig. 5 and Table 1). We found differences corresponding to
negative clusters in the data at latencies consistent with the ORN in har-
monic vs. inharmonic contrasts (both for standards and for deviants) and in
harmonic vs. changing contrasts (only for standards) (see Table S2 for a
complete list of clusters detected in this analysis).

To investigate the relationship between the ORN and the deviance
detection processes related to MMN and P3a, we extracted the P2 mean
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Fig. 2 | Event-related potentials and their topographies. Panels show responses in
harmonic (A), inharmonic (B), and changing (C) conditions. Traces on the left show
grand-average responses to standards (blue) and deviants (red), and the difference
waves (green) for frontocentral channels (F3, Fz, F4, FC1, FC2). Color-shaded areas
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represent 95% confidence intervals, and gray shades represent significant clusters in
the mass-univariate analysis. Scalp topographies present the difference wave signal
strengths at chosen latencies.

amplitudes of both standards and deviants in each condition, averaged in a
window around a global grand-average P2 peak latency (141 ms).
We constructed a linear mixed model to predict P2 mean amplitude
with condition, deviance (standard/deviant) and condition-by-deviance
interaction as fixed effects and participant-wise random intercepts (m2).
We compared this model with models that contained only an intercept
as a predictor (m0) and an intercept and condition (mI) as predictors,
besides the participant-wise random intercepts. The model m2 performed
significantly better than both m0O (Chi’(2)=81.28, p<0.0001) and
ml  (Chi’(2)=41.76, p<0.0001); AICyo=707.1, AICy, =6716,
AIC,,,=635.8. ANOVA on m2 revealed significant effects of condition
(F(2,170) = 31.38, p < 0.0001), deviance (F(1,170) = 37.15, p < 0.0001) and a
significant condition-by-deviance interaction (F(2,170) =7.38, p =0.001).
Post-hoc contrasts revealed that P2 amplitudes were significantly higher for
standards than for deviants in the harmonic (contrast estimate = —1.12,
SE=0.19, t(170) = —5.79, p<0.0001) and inharmonic (contrast esti-
mate = -.83, SE=0.19, #(170) = —4.262, p = 0.0005) conditions, but not in
the changing condition (contrast estimate=—0.01, SE=0.19,
#(170) = —0.51, p = 0.99) (Table S5).

Taken together, these results suggest the presence of a frontocentral
negativity in the harmonic vs. inharmonic/changing difference waves within
alatency range of 100-200 ms (Fig. 5). This pattern was found for all studied
comparisons except for the harmonic vs. changing deviants, likely due to the
absence of a mismatch response in the latter (Fig. 5D). Note that the

inharmonic deviant had a more negative amplitude than the harmonic
standard (contrast estimate = —2.06, SE = 0.19, t(170) = —10.61, p < 0.0001,
see Table 1), suggesting the presence of inharmonicity effects in the absence
of deviance effects.

Behavioral experiment

To investigate if the observed responses were related to perceiving multiple
auditory objects in both inharmonic conditions, we ran a follow-up beha-
vioral study. The participants were asked to listen to short sequences of
either harmonic, inharmonic or changing sounds and judge if they heard
one, two or three or more sounds at once. Results revealed that listeners were
over sixteen times more likely to judge sounds as consisting of many dif-
ferent objects in the inharmonic condition (OR =16.44, Est.=2.80, SE =
0.57, p <0.0001) and over 62 times more likely in the changing condition
(OR =62.80, Est. =4.14, SE=0.64, p <.0001) in comparison to the har-
monic condition (Fig. 6A).

In the behavioral experiment, we also took the opportunity to examine
if the participants were able to consciously perceive the FO deviants in the
changing condition. To this end, we exposed the participants to sequences of
20 sounds with roving FO (following the same rules as in the EEG experi-
ment) and asked them to count the number of deviants. For each sequence,
we calculated a counting error metric. We constructed a linear mixed model
to predict these errors in this task with intercept and condition as fixed
effects and per-participant random intercepts (m1). This model performed
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Fig. 3 | Event-related potentials in the harmonic, inharmonic and changing
conditions. Traces show grand-average mismatch waves (deviant—standard, cor-
responding to green mismatch traces in Fig. 2) for the frontal channel activity
(electrodes Fz, F3, F4, FC1, FC2). A compares responses between the three condi-
tions, while B-D show post-hoc pairwise comparisons. Colored bands around the

traces represent 95% confidence intervals around the mean. Gray rectangles indicate
statistically significant clusters in the mass-univariate analysis. Topographies show
F-maps (A) or t-maps for post-hoc comparisons (B-D) for each significant cluster,
with the temporal extent of the clusters indicated below each topography. White
markers represent channels that comprise the cluster.

significantly better than a null model (m0) that contained only intercept as
predictor and per-participant random effect (Chi*(2) = 69.12, p <.0001);
AIC,, =1203.3, AIC,,; = 1138.2. Estimated marginal means for the abso-
lute errors in the harmonic (M = 0.31, SE = 0.40) and inharmonic (M = 0.62,
SE=0.41) condition were not significantly different (#(206)=—0.630,
p =0.80). However, the absolute error in the changing condition (M = 4.25,

SE =0.41) was significantly higher than in both harmonic (t(206) = 8.08,
P <.0001) and inharmonic (206) = 7.42, p <.0001) conditions. There was
no significant difference between harmonic and inharmonic conditions.
These results suggest that while participants were able to generate a pre-
dictive model and consciously perceive deviations from it in both harmonic
and inharmonic conditions, this may not have been the case in the changing
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Fig. 4 | Peak measures differences in harmonic,

inharmonic and changing conditions. Panels show
MMN mean amplitude (A), P3a mean amplitude (B),
MMN peak latency (C), and P3a peak latency (D).
Violin plots show distributions of obtained results.
White dots represent the median, narrow rectangles
represent quartile 2 and 3 ranges, and vertical lines
represent minima and maxima. Gray lines connect
observations from the same participant. Stars (***)
and red bars represent statistically significant post-hoc
comparisons (all p-values < 0.001).
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condition, where a predictive model did not seem to be formed, and many
sounds were considered deviants.

Second- and third-order deviants

Next, we took advantage of the roving paradigm to examine whether the
effects of harmonicity continue for sounds after the first deviant. To this end,
we analyzed mismatch responses to second and third sounds after the
frequency change (the second- and third-order deviants in each “rove”). We
applied the same logic as in the main analysis, first using a mass-univariate
approach and then focusing on peak measures. In the mass-univariate
comparison of standard and deviant responses, we only found significant
differences for the second-order deviant in the inharmonic condition at the
latency range of P3a at 215-450 ms (19/30 sensors, p = 0.0042), but nothing
at the latency range of MMN. No statistically significant differences were
found in the harmonic and changing conditions. Similarly, no significant
differences appeared for the third-order deviant in any condition (p > 0.05
for all clusters). This indicates that the P3a response for inharmonic sounds
continued to be detectable in the second-order (but not third-order) devi-
ants, while there was no detectable MMN for these extra deviants. However,
when we compared the three conditions using a cluster-based permutations
F-test, we found no significant differences for second- as well as third-order
deviants (p > 0.05 for all clusters, Table S3).

We investigated this result further using linear mixed modeling for
mean amplitude and peak latency, with participant-wise random intercepts.
For the second-order deviant, we found that the model m1, which predicted
P3a mean amplitude with condition, performed significantly better than the
null model m0 (AIC,0 = 344.6, AIC,,; = 3404, Chi%(2) =8.21, p = 0.016).
Post-hoc comparisons revealed significant differences between harmonic
and changing (contrast estimate = 0.67, SE = 0.26, #(66) = 2.55, p = 0.035),
as well as inharmonic and changing conditions (contrast estimate = 0.081,
SE =0.26, t(66) = 3.07, p = 0.009). No significant differences were found for
the harmonic-inharmonic contrast. In the case of third-order deviants, the
condition did not improve model performance for any of the studied peak
measures (p > 0.05 for all model comparisons). These results suggest that the
P3a response gets carried over to the second-order deviant and is stronger
for both harmonic and inharmonic sounds than for changing sounds.

Frequency shifts
Finally, we investigated whether the effects that have been observed thus far
are moderated by the amount of change (deviance) of the F0. In the roving

paradigm, the FO changes randomly in 50 Hz increments from 50 Hz to
300 Hz, both up and down. We extracted the amount of FO change asso-
ciated with each first-order deviant and entered it as a fixed effect into the
linear mixed models that were analyzed previously. Models containing the
main effects of condition and frequency shift (m2) performed significantly
better than models that included just the condition (1) for MMN mean
amplitude (AIC,,, = 3470, AIC,, = 3467, Chi’(2) = 5.15, p = 0.023) and P3
mean amplitude (AIC,,, = 3712, AIC,,, = 3703, Chi*(2) = 11.33, p = 0.001).
However, models containing the interaction of condition and frequency
shift (m3) did not perform significantly better than m2 for all studied
measures (all p-values > .05, see Supplementary Table 4 and Supplementary
Fig. 2). These results indicate that the effects of harmonicity established in
the previous analyses are not moderated by the amount of shift in the
fundamental frequency.

Discussion

In this study, we showed that harmonicity influences the brain’s mismatch
responses to both expected and unexpected sounds. Contrary to our
hypothesis, inharmonic sounds with a constant jittering pattern (the
inharmonic condition) generate MMN responses comparable to those of
harmonic sounds, and elicit P3a responses that are stronger than in the other
two conditions (despite the passive listening nature of the task). In contrast,
MMN responses become undetectable when the jittering changes between
sounds (the changing condition), suggesting that sequential, but not spectral
uncertainty, induces the precision-weighting effect. Interestingly, the ERPs
to both standards and deviants differed between harmonic and inharmonic
sounds, suggesting that inharmonicity elicits an ORN response. This result
can be further explained by behavioral data, suggesting that for inharmonic
sounds, listeners are more likely to perceive more than one auditory object at
the same time. Overall, our results suggest that inharmonicity does not act as
a source of uncertainty as conceived by classic predictive processing the-
ories. Instead, inharmonicity seems to induce the segregation of the auditory
scene into different streams, capturing attention (as reflected in the P3a) and
giving rise to specific neural processes that are independent from the pre-
dictive mechanisms underlying sequential deviance detection and
the MMN.

The MMN in the inharmonic condition did not differ significantly
from the harmonic condition. This result is not consistent with the
precision-weighting hypothesis, as inharmonic sounds carry more infor-
mation and should theoretically yield predictions of lower precision™.
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Fig. 5 | Event-related potentials comparison for object-related negativity (ORN)
analysis. Traces show grand-average responses for harmonic, inharmonic and
changing standards or deviants. Green trace shows the difference wave corre-
sponding to the ORN. A compares harmonic and inharmonic standards,

B compares harmonic and inharmonic deviants, C compares harmonic and chan-
ging standards, while D compares harmonic and changing deviants. Traces

represent averaged frontal channel activity (electrodes Fz, F3, F4, FC1, FC2).
Colored bands around the traces represent 95% confidence intervals around the
mean. Gray rectangles indicate statistically significant clusters in the mass-univariate
analysis. Topographies show t-maps for each significant cluster. White markers
represent channels that comprise the cluster.

Instead, it suggests that the MMN is sensitive to the uncertainty present in
the sequence of consecutive stimuli. This is evidenced by the fact that the
MMN was undetectable in the changing condition, where spectral uncer-
tainty introduced by inharmonicity was coupled with sequential uncertainty
introduced by random jittering of consecutive sounds. In the inharmonic
condition, all partials in the complex tone changed with every deviation;
however, the relationship between the frequencies remained the same. This
would mean that the MMN is sensitive to more global (context-dependent)
uncertainty and not to the uncertainty generated by the introduction of
inharmonicity.

This result relates to a larger issue of how precision-weighting is related
to MMN, an ERP that is thought to reflect prediction error responses™

(Garrido et al,, 2009). In general, precision-modulated evoked responses to
unexpected stimuli could theoretically exhibit both larger and smaller
amplitudes. A smaller ERP amplitude could result from a smaller predicted
difference between the standard and a deviant (smaller prediction error).
However, it could also result from a larger predicted difference that is down-
weighted by precision'*”’. Recent simulation work has shown that these two
cases could in practice be disassociated, because any change to precision-
weighting would necessarily be accompanied by a change in the latency of
the ERP peaks”’. We have not found any evidence of latency effects on any of
the studied components.

The results of this study show that inharmonic sounds with changing
jitter patterns produce weaker mismatch responses than harmonic sounds.
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Table 1 | Cluster-based permutations on harmonic vs. inharmonic and harmonic vs. changing contrasts

Contrast Latency (ms) Polarity Sensors p-value
Harmonic vs. inharmonic standards 100-336 Negative 28/30 0.0003
Harmonic vs. inharmonic deviants 50-120 Positive 23/30 0.021
104-204 Negative 23/30 0.008
223-342 Positive 15/30 0.025
Harmonic vs. changing standards 53-101 Positive 29/30 0.023
103-179 Negative 26/30 0.001
208-396 Positive 29/30 0.001
Harmonic vs. changing deviants 48-140 Positive 27/30 0.013
169-450 Positive 26/30 0.002

Latencies indicate the temporal span of detected clusters, while Sensors indicate how many channels contributed to each cluster. Note that only clusters with p < 0.05 are shown here. For acomplete list of

clusters detected in this analysis, see Table S2.

Fig. 6 | Behavioral experiment results. A shows the

number of responses of each category between the
three conditions. B shows the mean errors in the
three conditions. These errors were calculated as the
absolute value of the difference between participant-
reported and ground truth number of deviants
(lower values = more correct answers). Ground
truth values ranged from 1to 5 (M = 2.8, SD = 0.72).
Dots represent single observations. Horizontal lines
represent the median, boxes represent quartile 2 and
3 ranges, whiskers represent minima and maxima.
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This is consistent with the precision-weighting hypothesis, as the changing
condition has higher sequential uncertainty, making the inference about the
pitch of each consecutive sound more uncertain (however, see P3a, ORN
and multiple auditory objects section for an alternative explanation). This is
also in line with previous research suggesting a role of harmonicity in
precision-weighting for auditory features such as timbre, intensity and
location™. However, the stimuli used in that study were sounds of musical
instruments (piano and hi-hat) that differed in other acoustical properties
apart from harmonicity (e.g., there were substantial differences in the
spectra and in the amplitude envelopes). Furthermore, that study could not
investigate pitch differences per se, due to the pitch percept being imper-
ceivable for the hi-hat sound. Here, we provide a systematic manipulation of
harmonicity using synthetic sounds, ensuring that all other acoustic para-
meters apart from harmonicity of the stimuli remain the same between the
conditions. The robustness of these results is further reinforced by the lack of
any interaction between frequency shift and condition, which indicates that
the observed effects are not frequency-dependent.

Surprisingly, we found that P3a amplitude was higher for inharmonic
than for harmonic sounds. Following the conventional interpretation of
the P3a”, this result may indicate that inharmonic sounds capture
attention more than harmonic sounds. A possible explanation might be
that the auditory system treats inharmonic sounds as multiple, different
auditory objects, while it collapses harmonic sounds into a single pre-
diction about the F0. The FO change associated with the deviant in the
inharmonic condition would then require an update to not one but many
different predictive models, resulting in overall stronger prediction error
responses. In contrast, in the case of the changing condition where sounds
constantly shift, the auditory system attempts (and fails) to track changes
in too many partials at once, because the only stationary frequency
component is the FO. This logic could explain the P3a results in the present
study, as well as the absence of both P3a and MMN components in the
changing condition.

An unexpected result came from direct comparisons between
responses to harmonic and inharmonic sounds (both standard or deviant).

The introduction of inharmonicity produced a response pattern char-
acterized by a more negative P2 peak. We interpret this as an ORN, an ERP
related to the separation of concurrently presented sounds into distinct
auditory objects™ . The ORN is thought to reflect the auditory system
performing concurrent sound segregation. Conventionally, it is elicited in
paradigms with complex tones that include one mistuned harmonic or a
harmonic with an asynchronous onset™". Other ORN-eliciting cues
include dichotic pitch*, simulated echo®, differences or discontinuities in
location®, and onset asynchrony*. Importantly, the ORN is not a mismatch
response, i.e., it does not arise in response to a violation of any global rule
established with an oddball paradigm. This fact enabled us to evaluate the
ORN using standard vs. standard and deviant vs. deviant comparisons.
Importantly, the ORN is thought to arise from different neural sources than
the MMN*; however, we did not see topographic differences in our data (see
Supplementary Fig. 3). We found that it was elicited by both inharmonic
standards and inharmonic deviants. One explanation of this result is that the
auditory system interprets the inharmonic sound as multiple different
sound sources and performs auditory object segregation. This is indepen-
dent of pitch deviance detection indexed by the MMN. This conclusion is
also reinforced by the presence of ORN in the harmonic standard vs. the
changing standard comparison. Finally, the P3a results discussed above also
support this conclusion.

When synthesizing sounds for this experiment, we used every fre-
quency in the harmonic series up to the Nyquist limit at 24 kHz. This
approach was motivated by the need to ensure that the harmonicity
manipulation is applied equally throughout the frequency spectrum and
that the FO remains clearly audible throughout the sequence. We rejected
frequency-jittering patterns that could produce beating artifacts arising
from two harmonics being too close to each other in frequency. Thus, our
stimuli were broadband, spanning a large portion of the human hearing
range. However, in psychophysical studies on pitch perception, the stimuli
are often high-pass or band-pass filtered specifically to reduce the ampli-
tudes of the low frequency harmonics*. This procedure makes the pitch
perception system focus on the so-called “temporal fine structure” (the
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high-frequency content) of the sound and does not rely on the resolvability
of the lower harmonics®. This issue can be addressed in the future by
experimentally varying the amount of low-frequency information available.

A related issue is the fact that the lack of a significant MMN in the
changing condition can be (at least in part) explained by the amount of
jittering applied to the harmonics. We used jittering rates sampled from a
uniform distribution in the range between -0.5 and 0.5, which corresponds
to up to 50% change in the frequency. This change is quite salient percep-
tually and leads to a situation where the frequency deviants in the changing
condition were not discernible from the continuously changing standards,
as evidenced by the behavioral results. This value was chosen because it was
used in a series of behavioral studies that established effects of harmonicity
on pitch-related and memory tasks*”*. However, it is possible that with
lower jitter values, the MMN and P3a components would be apparent in the
changing condition as well. Thus, the relationship between the strength of
mismatch responses and jitter rate should be thoroughly addressed in future
research. Relatedly, more research is needed to establish the behavioral
thresholds of pitch detection as a function of jitter rate.

It is important to note that any precision-weighting mechanisms in the
brain can only make use of information that is already encoded by the
peripheral sensory system. In this sense, a more valid metric of precision
would be the entropy associated with the output from the cochlea. While
any cochlear transformation would necessarily retain many aspects of the
harmonic structure of sound, we acknowledge that the correlation between
the entropy of the acoustical wave and the entropy of its neural repre-
sentation is not perfect. Future research should address this issue, perhaps by
using computational models of the cochlea and the auditory nerve.

In sum, this work suggests that inharmonicity does not serve as an
index of precision-weighting for low-level, short-timescale auditory pre-
dictions, as evidenced by the MMN results. Instead, it encourages the
auditory system to perform object segregation, as evidenced by the ORN
results. The tracking of multiple objects (or multiple predictions) engages
attention and leads to larger P3a responses to unexpected changes as long as
multiple objects are trackable within a sequence (as in the inharmonic
condition). This work offers a new perspective on the neural mechanisms
underlying the auditory processing of low-level acoustic features, as well as
expanding previously established behavioral effects of inharmonicity on
pitch perception and memory.

Methods

Participants

We recruited 37 participants for the EEG experiment. One participant
completed the study but was removed from analysis due to audio equipment
failure during the procedure. Another participant was removed from ana-
lysis because of high levels of noise present in the data (over 60% of epochs
excluded in the autoreject procedure, see below). The final sample size was
35 participants (median age 27 years, 18 female). We included participants
with no reported neurological or psychiatric illness, aged between 18 and 45
years old, with normal hearing, normal sight or corrected normal sight (e.g.,
contact lenses) and no use of medication that affects the central nervous
system (e.g., opioids, pain medications). All participants received monetary
compensation for their participation and signed an informed consent form.
The study was approved by the department's Institutional Review Board at
Aarhus University (reference number DNC-IRB-2022-009) and followed
the Declaration of Helsinki. All ethical regulations relevant to human
research participants were followed.

The number of participants was calculated with power analysis before
the experiment. We used linear mixed models on a simulated dataset with
the hypothetical differences between harmonic and inharmonic conditions
(see Stimuli and procedure) set at 1 uV. This choice was informed by the
results of a previous study where the difference in peak amplitude between
harmonic piano and inharmonic hi-hat tones was around 1pV™". Here, we
aimed to be able to detect a similar difference between harmonic and
inharmonic conditions, with an assumption that changing would not differ
significantly from the inharmonic condition (see Procedure for the

descriptions of the conditions). We ran this simulation 10,000 times for each
Nvalue in the range between 25 and 40. The analysis showed that in order to
achieve a statistical power of 0.8, at least N = 33 participants were required.

For the behavioral study, 15 participants were recruited (median age 20
years, 13 female). Inclusion criteria were identical to the ones used in the
EEG experiment. In this case, the participants did not receive monetary
compensation.

Stimuli and procedure

The stimuli consisted of complex tones made by adding sine waves of
varying fundamental and harmonic frequencies up to the Nyquist limit
(24 kHz). Harmonics were added with equal amplitudes, in sine phase. Each
tone had a duration of 70 ms and was amplitude modulated with 5 ms onset
and offset ramps. To synthesize inharmonic stimuli, a procedure was
adapted from McPherson and McDermott (2018). Each frequency in the
harmonic series above FO was jittered by a random value to introduce
inharmonicity. The jitter value was calculated by multiplying the original
frequency by a number drawn from a uniform distribution U(—0.5, 0.5). In
order to avoid beating artifacts, rejection sampling was used in cases where
two frequencies would be spaced closer than 30 Hz apart. In the inharmonic
condition, the same jitter pattern was applied to all sounds in the stimulus
block. In the inharmonic-changing condition, each stimulus train had a
new, randomly generated jitter pattern (Fig. 1). A sound pool of one har-
monic and one thousand inharmonic sounds for each FO was generated
offline before the study as 16-bit .wav files with a sample rate of 48 kHz. All
sounds were loudness-normalized to —12 LUFS using pyloudnorm.

Tones were presented using an oddball roving paradigm with an inter-
stimulus interval of 600 ms. Within each stimulus train, all standard tones
had the same FO and were followed by a train of stimuli with different FO
(chosen randomly from a 500 -800 Hz range in 50 Hz intervals). In this
paradigm, the first tone of a new stimulus train serves as the deviant stimulus
and a potential source of mismatch negativity in the context of prior stimuli.
After a few repetitions, this deviant tone is established as the new standard
until the next stimulus train is presented. The number of stimuli in a given
train varied pseudo-randomly from 3 to 11, with 3 to 7 repetitions being four
times more probable than 8 to 11. The entire procedure was divided into six
blocks (two for each harmonicity condition), each 6 min long. Each block
consisted of 600 sounds, with 98 deviants on average. The participants were
asked not to move during the auditory stimulation; however, there were
short breaks between the blocks to provide rest and relaxation. All stimuli
were administered passively, and participants were watching a silent movie
throughout the procedure. The stimuli were randomized and played back
using PsychoPy (version 2022.1.3). Headphones (Beyerdynamic DT 770
PRO) were used for binaural sound presentation. The entire experiment
lasted 80-90 minutes on average, including participant preparation and
debriefing.

The behavioral experiment consisted of two parts. In the first part,
participants listened to a sequence of 8 sounds at a stationary FO and were
asked if they perceived “one”, “two”, or “three or more” sounds “at the same
time, at any given moment”. Depending on the condition, the sequences
could be either harmonic, inharmonic or changing, following the principles
from the EEG experiment and using the exact same sound pool. Three
sequences were presented for each condition for a total of nine trials per
participant.

In the second part of the behavioral task, participants listened to a
sequence of 20 sounds with varying fundamental frequencies (FOs) that
followed the rules of the EEG experiment. The task was to silently count the
number of deviants (“please count, how many times the sounds change their
pitch”) and report the number after each sequence. This was preceded by a
demo trial that included a harmonic sequence and informed the participant
about the number of deviants in that sequence. The participants could
repeat the demo trial multiple times until they became familiar with the task.
Overall, five sequences were presented for each condition (harmonic,
inharmonic or changing) for a total of 15 trials per participant. The entire
experiment lasted about 5-7 minutes on average and was performed on a
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laptop running PsychoPy in a quiet room. The sounds were presented
binaurally using Beyerdynamic DT 770 PRO headphones.

Statistics and reproducibility

Scalp EEG potentials were recorded with a 32-channel active system
(BrainProducts GMBH) at a sampling rate of 1000 Hz. All EEG signal pro-
cessing was performed in Python v.3.11 using MNE v.1.5°"*, Numpy v.1.24™
and Pandas v.2.1**. Matplotlib v.3.7 was used for plotting™. Horizontal and
vertical eye movements (EOG) as well as heart rate (ECG) were recorded with
additional electrodes. Raw EEG data were high-pass filtered at 0.2 Hz, divided
into epochs (from -100 ms to 450 ms) and entered into the autoreject algo-
rithm v.0.4.2°° for automatic bad channel and bad epoch selection. This
method uses cross-validation and a robust evaluation metric to estimate
optimal peak-to-peak thresholds for each EEG sensor. This thresholding is
applied epoch-wise, and the signals are either interpolated or (in case of many
bad sensors) rejected. Afterwards, an independent components analysis
(ICA) was performed in order to remove eye movement and heart-related
artifacts. ICA components were marked for removal using an automated
procedure based on data from EOG and ECG channels (the functions
find_bads_eog() and find_bads_ecg() from the MNE package). However,
these automatic choices were inspected visually. A maximum of four ICA
components were removed from any participant. The ICA solution was
applied to the data before artifact rejection, and autoreject was performed
once more, as suggested by Jas et al. **. Overall, 6.9% of epochs were rejected.
Finally, the epoched data were low-pass filtered at 30 Hz, re-referenced to the
mastoids and baseline-corrected with a baseline of 100 ms pre-stimulus.

We treated the sound as a deviant if it was the first, second or third
sound after the change of F0 in the roving paradigm. All non-deviant sounds
were treated as standard, apart from the first five sounds at the start of each
experimental block. ERPs were estimated by averaging the responses to
standard and deviant sounds across participants and across conditions.
Difference waves were calculated by subtracting the standard from the
deviant ERP, for each deviant type (first, second or third), each participant
and condition. For ORN analysis, differences between harmonic and
inharmonic or changing ERPs were calculated, separately for standards and
(first-order) deviants. In the mass-univariate approach, entire ERPs were
subject to cluster-based permutation analyses. In peak-based analyses, we
extracted participant-wise latencies for MMN and P3 peaks in the fronto-
central EEG channels. For MMN, we extracted the latency of the most
negative peak between 70 ms and 250 ms. For P3a, we found the latency of
the most positive peak between 150 and 400 ms. The mean amplitude of
each component was calculated as the average signal amplitude in the 50-ms
window centered at the peak.

Cluster-based permutations were performed using MNE’s built-in
functions. Thresholds were chosen automatically based on the number of
valid observations and assuming a p-value of .05. For each test, 1024 per-
mutations were performed. Linear mixed models were fitted in R v.4.4.17
using Ime4 v.1.1**. Model comparison was performed with a likelihood ratio
Chi® test. Post-hoc comparisons were performed by comparing the esti-
mated marginal means calculated with emmeans v.1.10”. p-values were
corrected for multiple comparisons using the Tukey HSD method.
Approximate entropies were calculated with AntroPy v.0.1.6%. Entropy was
estimated and averaged for all inharmonic sounds within the sound pool.

The behavioral experiment was performed on a laptop computer
running PsychoPy. The sounds were presented binaurally using Beyerdy-
namic DT 770 PRO headphones. Participants gave their responses by
pressing the keyboard. Count error metrics were calculated by taking the
absolute value of the difference between participant-reported and ground
truth number of deviants. A cumulative link mixed model regression with
participant-wise random intercepts was used to estimate odds ratios in the
first task. A linear mixed model was fit in the second task.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The raw data from this experiment were stored in a Zenodo repository and is
freely available at https://doi.org/10.5281/zenodo.13939896.

Code availability
The code that was used to perform this experiment and analyze the results is
freely available at https://doi.org/10.5281/zenodo.15236581.
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