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MINFLUX fluorescence microscopy is a recently introduced super-resolution approach for studying
cellular structures and their dynamics with highest detail. MINFLUX (MFX) performs Single Particle
Tracking (SPT) at runtime. The ad hoc signal interpretation necessary to sustain the method relies on
several parameters, which need to be optimized in relation to the sample under study, such as
fluorescent lipid analogs in membranes, to ensure the fidelity of the measurement. We propose a
parameter optimization strategy, give an overview of the most important parameters, present a
theoretical upper limit for trackable diffusion rates, and demonstrate MFX-enabled SPT of fast
DMSD

� � ¼ 2:5μm2=s
� �

lateral Brownian motion of lipids in membranes.

Microscopy-based single-particle tracking (SPT) is a popular method to
investigate the molecular dynamics and interactions in living systems1–3.
SPT is supported by a large variety of microscopy techniques2,4–7, including
recently developed MINFLUX super-resolution microscopy8,9. MINFLUX
microscopy localizes single isolated fluorescent emitters by displacing a
center-symmetric excitation beam with a central intensity minimum (i.e., a
doughnut-beam) once or multiple times in a pre-defined pattern, called the
Target Coordinate Pattern (TCP), around the initial position estimate of the
emitter (hereinafter referred to as a TCP cycle or cycles, see Methods).
Imagining the discrete positionswhere the excitation beam is displaced to as
lyingon acircular path, an importantparameter for further calculation is the
diameter of this circle, L (Fig. 1a, b)8. The commercially available imple-
mentation of MINFLUX microscopy (Abberior Instruments GmbH),
hereinafter referred to asMINFLUX (MFX), runs an iterative single particle
localization routine. First, an initial position estimate is generated by
searching for sources of fluorescent signal across the region of interest
(Fig. 1b), which is then refined by operating successive pattern iterations
around it at increasingly reduced L (Fig. 1c, see Methods). Single particle
trajectories are obtained by continuously reiterating the pattern with the
smallest L, i.e., the last pattern iteration, starting from the previously
obtained position estimate until the signal is lost and the process restarts
(Fig. 1d)9.

In the absence of noise, the lower limit of the localization precision
derived by one pattern iteration, when a doughnut-shaped beam is adopted
for localization, is determined by the Cramer-Rao Lower Bound (CRLB) of

themaximum likelihood estimator used to locate an emitter within theTCP
(see Supplementary Material of ref. 8, p. 8):
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Here, L is the diameter of the TCP, ν is the diameter (or full-width-at-half-
maximum, FWHM) of the excitation beam, N is the number of photons
collected, and x is the distance of the emitter to the center of the TCP.

MFX performs particle position estimation and trajectory link-
age at runtime, i.e., during the experiment itself. Photons collected
during each successful pattern iteration (see Methods) are evaluated
on the fly to produce a particle localization, which is then used as the
initial position for the subsequent iteration, either with a pattern of
the same or decreased TCP diameter. This is in stark contrast to
conventional SPT applications, where analysis of this kind usually
happens in post-processing. Thus, any positional data returned by
the microscope is an interpretation of the signal produced by the
sample based on the given acquisition parameters like L, N , or ν. This
on-the-fly particle localization approach allows for following single
emitters in time over all three dimensions of space with high spa-
tiotemporal resolution8,9, while delivering ready-to-analyze data.
However, unifying the ad- and post hoc stages of data acquisition
leads to a significant increase in process complexity and highlights
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the importance of a priori considerations and choice of the MFX
scanning parameters. In contrast to conventional SPT, maladjusted
acquisition parameters may drastically limit the ability to track
emitters and lead to premature interruptions when tracking a viable,
i.e., not photobleached, target.

Consequently, we in the following present i) the interplay between
scanning parameters (see also Supplementary Note 1) and the implications
of continuous particle movement in the context ofMFX-enabled SPT, ii) a
sequence parameter optimization strategy for high sampling rate tracking
(see also Supplementary Note 2), iii)MFX-enabled SPT experiments of fast
lateral Brownianmotion (Figs. 2 and 3), and iv) a theoretical upper limit for
trackable diffusion rates (Figs. 1 and 3).

Results and discussion
The interplay between MINFLUX scanning parameters in the
context of SPT
TheMFXposition estimation algorithm consists of two stages: (1) the initial
position estimation for a detected emitter using a least mean squares esti-
mator, and (2) the unbiasing step that corrects the initial estimate and relies
on a set of pre-determinednumerical coefficients9. Both steps are performed
on the hardware provided by the manufacturer (Abberior Instruments
GmbH). Details of the algorithm performing these operations are inacces-
sible to the end user. The unbiasing coefficients are provided with the
instrument and are derived from the numerical solution to the problem of
optimally detecting a fluorescent molecule emitting N photons when
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excited by a doughnut-shaped beam scanning a TCP with a certain pattern
(e.g., hexagonal) of size L in a certain amount of time8–11.

While theMFX scanning routines (hereinafter referred to as sequences,
see Methods), which parametrize the behavior of the microscope, contain
descriptions of all pattern iterations of the experiment, we in this work focus
on engineering only the final iteration, i.e., the one with the smallest L. The
final iteration is the most relevant forMFX-enabled SPT, as its continuous
reiteration realizes the tracking of single fluorescent particles. The initial
pattern iterations are executedonlyonceper singleparticle trajectory (unless
otherwise specified by the user) and are used to detect emitters and to refine
an initial target position instituted as a starting point for the tracking pro-
cess. Nevertheless, our method is straightforwardly expanded to the
remaining pattern iterations, as they share the same modus operandi. The
device exports the results of all iterations (e.g., number of detected photons,
timestamp of the localization, emitter coordinates) that produce a locali-
zation in the final dataset.

The goal of any SPT approach is to keep the time between consecutive
localizations to a minimum as the particle is constantly moving, while
maintaining a low level of spatial uncertainty. Between any two localizations
of the particle trajectory, the MFX operates η successive TCP cycles, each
integrating fluorescent signal for a time tdwell (i.e., the dwell time) until a
minimum number of photons, pre-defined in the sequence as the Photon
Limit (PL), is acquired. Consequently, we define the time-to-localization
tloc ¼ η � tdwell þ tηhw as the interval between any two successive localiza-
tions as determined by η, tdwell , and the hardware overhead time tηhw, i.e., the
delay introduced by the hardware response and execution time (e.g., beam
displacement), which scales with η and the TCP geometry (seeMethods). It
is important to note that because η is dependent on the fluorescent target’s
Poisson statistics, tloc is not a single value but a digitized distribution thereof
(see Methods).

Since the movement of the target diffusing particles is uninterrupted
during the localization process, the capabilities of MFX to follow single
emitters are intuitively dependent on predefined parameters like PL, tdwell
and the excitation laser power (the latter determines the fluorescence
emission but also photophysics such as dark time populations and
photobleaching of the fluorescent label and thus the frequency of pho-
tons collected, i.e., how fast PL is reached)12, the time overhead tηhw and
sample-dependent variables such as the signal-to-noise ratio of the col-
lected signal. We should point out that during a localization estimation
with η cycles, photons are only integrated for the time window η � tdwell,
while the fluorescent target is moving for the entirety of tloc (compare
Eq. 7). This observation is, of course, valid for any and all SPT experi-
ments; however, it is particularly significant in MFX-enabled SPT, since
tdwell and tηhw are in the same order of magnitude, unlike other
fluorescence-based measurements.

The implications of continuous particle movement on the MIN-
FLUX position estimation
Assuming a Brownian particle with constant non-zero diffusion coefficient
D, we can model the average distance traversed by the particle during a
localization estimation as the standard deviation σdDiffusion ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dDtloc

p
of

the probability distribution of particle localizations13, where d is the number
of spatial dimensions and tloc is the time-to-localization elapsed (Eq. 7).
While the position of the TCP center is updated after each successful
localization, it remains unchanged during the cycles, i.e., during the esti-
mation. Assuming one-dimensional diffusion for the sake of simplicity, we
can estimate the average particle distance x, fromEq. 1 to the TCP center by
the 1D standard deviation σd¼1

Diffusion, i.e., x ¼ σd¼1
Diffusion. Therefore, the CRLB

(Eq. 1) depends on tloc and on the particle diffusion rateD, and is thus larger
for SPT when compared to imaging (i.e., localization of fixed emitters)
(Fig. 1e). This difference increases when, e.g., the diameter of the TCP is
reduced in an attempt to improve the localization precision without con-
sidering the system as a whole. Consequently, experimental parameters
need to be chosen in accordancewith eachother to realize an accurateMFX-
enabled SPT experiment: expectations of the diffusion rate, the photo-
physics of the fluorescent label, and relevant scanning parameters, namely
PL, tdwell , and L, must all be taken into consideration.

In the case of immobile particles (D ¼ 0), this is not as problematic, as
there is enough time to accurately center the TCP over the emitter, and
optimization is required only to match the scanning parameter and the
photophysics of the fluorescent label. This corresponds, in Fig. 1e, to the
values of the CRLB where the distance from the TCP center is zero.

In summary, during position estimation, the excitation beam is suc-
cessively centered on the scouting spots, i.e., the TCP vertices. Here it
remains for a fraction of the dwell time duringwhich the fluorescence signal
is integrated. While this strategy is ideal for an immobile target, it poses a
fundamental issue for SPT experiments. Since anMFX assesses the position
of the tracked particle after each pattern iteration, given sufficient photons
have been collected, it cannot refine the estimate based on the evolution of
the signal during the observation. This is, however, not necessarily desirable,
since such a procedure would further increase the overhead time between
observations.

Optimizing MINFLUX scanning parameters for high sampling
rate SPT
As pointed out, sample-specific optimization of experimental parameters is
essential to enable accurate reporting of the population of diffusing particles
inMFX-enabledSPTmeasurements,which canbe achievedby adjusting the
TCP geometry and diameter L, the excitation laser power, but most
importantly through PL and tdwell . It is evident that minimizing the time
between consecutive localizations, while keeping PL as high as possible, is

Fig. 1 | Principle and theoretical considerations of MFX-enabled single particle
tracking. a An illustration of a singleMFX TCP scanning pattern. The beam is
steered along the marked path of vertices highlighted by green stars. The optional
central scanning spot of the Center-Frequency-Ratio-Check (CFR-Check) is high-
lighted by a purple star. The numbers correspond to the sequence in which the
scanning positions are reached. The EODmovement is represented by black arrows.
The blocks on the bottom illustrate howmuch time it takes to execute each step of the
TCP cycle. We represent the possibility of needing multiple TCP cycles in the same
iteration to obtain a localization by repeating the block diagram along the vertical
axis. In all following panels, the Target Coordinate Pattern (TCP) iterations follow
this same scanning scheme. (Created in BioRender. Vogler, B. (2025) https://
BioRender.com/f7m5i5s). b Illustration of the grid-search process that finds can-
didate emitters in the sample. We highlight how this step is performed using no
beam shaping but scanning a Gaussian beam focus in a hexagonal pattern along pre-
defined positions in the selected Region of Interest (ROI). (Created in BioRender.
Vogler, B. (2025) https://BioRender.com/vu4km6i). c After a candidate emitter is
detected in the search stage, the localization algorithm refines the localization esti-
mate through successive steps in which the diameter of the TCP, L, is progressively
reduced. The capital Roman numbers I-III correspond to the pattern iterations as

shown in Table 1. (Created in BioRender. Vogler, B. (2025) https://BioRender.com/
0ngjdaj). d Exemplification of theMFX-enabled Single Particle Tracking process in
which the last iteration of the sequence (III in panel c) is repeated and the particle is
followed until lost. The lower-case Roman numerals are an aid to highlight the order
in which these steps are executed. In a real MFX experiment, the sequence will be
repeated more frequently, and as such, the final iterationwill not be repositioned by
such large intervals, and this representation serves only as a visual aid. (Created in
BioRender. Vogler, B. (2025) https://BioRender.com/yn314ae). e Theoretical CRLB
(Eq. 1) for MINFLUX measurements executed with a doughnut-shaped beam
against the distance of the localized particle to the center of the TCP for different
photon limits (PL) and TCP diameters L. The vertical linesmark the TCP radius L=2
(solid line for L ¼ 150nm, dashed line for L ¼ 75nm). fThe fraction of a L ¼ 150nm
TCP area explored by a Brownian particle with constant diffusion rate D within
different times-to-localization, i.e., the dwell time, in addition to the hardware
introduced temporal overhead. The colored solid lines correspond to the dwell times
used in this work. The background color corresponds to the respective area inside
(green) and outside (red) of the TCP. This graph considers the time-to-localization,
assuming that localizations are successfully estimated within a single TCP
cycle ( η

� � ¼ 1).
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the fundamental requirement. While this premise is applicable to SPT in
general, unoptimized MFX SPT experiments, in contrast to classical SPT,
due to their ad hoc position estimation, possibly fail to return any data at all,
which is in contrast to classical SPT. Given the theoretical definition of tloc
(Eq. 5), a continuousfluorescent signal and any givenPL and tdwell , the time-
to-localization minimizes exactly when:

1 ¼ η
� � ¼ N

ψMFX � tdwell

� 	

¼ Nh i
ψMFX

� � � tdwell ¼
Nh i

ψMFX � tη¼1
signal

D E ≥
NPL

ψMFX � tη¼1
signal

D E ð2Þ

where ψMFX

� �
is the average photon detection frequency per

localization (sometimes referred to as EFO),

Nh i ¼ ψMFX � tηsignal
D E

¼ ψMFX � η�tdwell
� � ¼ ψMFX

� � � η
� � � tdwell


 �
the

average number of collected photons (sometimes referred to as ECO), tdwell
the dwell time per localization round as put in the sequence, and NPL the
photon limit.

Consequently, to enable reliable position estimation, PL should be
matchedwith the expected average photon count Nh i per unit time tη¼1

signal. It
is even desirable to set the PL to a slightly underestimated value for the
average emission of the target fluorophore. Thiswill ensure that, on average,
each TCP cyclewill lead to a successful localization, therebymaximizing the
sampling efficiency in terms of minimizing the time-to-localization.
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However, if the photon limit is set too low, the localization algorithm does
not take full advantage of the photon budget afforded by the target fluor-
ophore. As pointed out before, while a slightly higher number of detected
photons compared to PL can still prove beneficial, significantly larger
numbers will cause positional offsets during the unbiasing step, which fol-
lows position estimation14. These errors become evenmore severe for larger
L, as the approximation of the centralminimumof the excitation beam (i.e.,
the doughnut-beam) by an ideal parabola (as done in practice) does not hold
in that case, causing a larger bias in the estimator.

Determination of a parametric expression for the upper limit of
trackable diffusion rates in two-dimensional MINFLUX
enabled SPT
Given that emitters are only tracked while inside the TCP, there is a risk for

them to escape should the area π σd¼1
Diffusion


 �2
; which is explored by an

emitter during the time-to-localization tloc, approach theTCP areaπðL=2Þ2.
This solidifies an upper limit for trackable diffusion ratesD given a specific
tloc (Fig. 1f). If a particle moves with a diffusion rate beyond this limit,MFX
will not be able to produce reliable localizations, if any at all. From Eq. 1 it
becomes clear that while the spatial resolution is increased linearly by
reducing L, the risk of losing the emitter rises quadratically.

For simplification, we may set the Brownian diffusing emitters to

exhibit a constant average emission rate θp

D E
during an optimized photon

acquisition η
� � ¼ 1
� �

and assume an approximately constant average

photon detection rate ψMFX

� �
≤ θp

D E
. In this case, we can give an esti-

mation of the upper limit of possibly trackable two-dimensional (2D) dif-
fusion ratesD2D

max under the condition that the particle must remain within
the area of the TCP during the localization process (see Methods).

D2D
max ¼

L2

16
�

θp

D E

NPL þ θp

D E
tη¼1
hw

≤
L2

16
� ψMFX

� �
NPL þ ψMFX

� �
tη¼1
hw

ð3Þ

Experimental observation of the influence of MINFLUX scanning
parameters
From our theoretical considerations, we know that the excitation laser
power, PL, and tdwell are the most impactful parameters to consider when
optimizing theMFX time-to-localization (seeMethods).While the choice of

laser power strongly depends on the sample used (e.g., the brightness or
photobleaching properties of the target fluorophore,) both PL and tdwell can
be chosen arbitrarily before the experiment. Consequently, we experimen-
tally investigated the influence of these two parameters on MFX-enabled
SPT measurements. To this end, we performed SPT of biotinylated lipid
analogs (DSPE-PEG-Biotin, tagged with streptavidin-coated Quantum
Dots (QDs)) embedded in a homogeneous fluid continuous Supported
Lipid Bilayer (SLB, unsaturated 1,2-Dioleoyl-sn-glycero-3-PC (DOPC)
lipid, see Methods)15 (Fig. 2a). We intentionally employed large
(� 15nm� 20nm in diameter16) and bright metallic core QDs as lumi-
nescent tags to slow down the diffusion of the target biotinylated lipid
analogs while preserving their characteristic free diffusion17–20. The
employed SLBs were generated either by lipid depositions in enclosed flow-
chamber systems or by Giant Unilamellar Vesicle (GUV) patching. We
performed the main part of our experiments on GUV patches, as they offer
an easy and well-explored model system.

Table 1 lists all relevant experimental MFX sequence parameters as
implemented in MINFLUX-IMSPECTOR (commercial version-
16.3.15645-m2205).WithL ¼ 150nm; Stickiness ¼ 4 andMaxOffTime ¼
3ms (see Supplementary Note 1, Parameter Overview), in our experiments,
we chose to stay lenient during tracking to catch as many datapoints as
possible, which gave us more freedom in data analysis but required post hoc
artifact removal.

In our analysis, we split trajectories whenever the number of cycles η
between consecutive localizations exceeded δ ¼ η

� �þ std η
� �

, which
effectively removed large time gaps, mid-trace particle-swap events, and
jitter. Further, using our previous SPT analysis pipeline, we eliminated
artifacts due to, e.g., label-induced cross-linking of various lipids21. We
then finally extracted the lateral diffusion coefficient DMSD and the
dynamic localization uncertainty σMSD from a custom Mean Squared
Displacement (MSD) implementation suited for inhomogeneous time-
lags using Optimal Least Squares Fitting (OLSF)22. As a reference for the
obtained values of DMSD, we performed SPT on the same QD-labeled
lipids in a similar SLB using a custom-built microscope with Total-
Internal-Reflection Fluorescence (TIRF) excitation and camera-based
detection23, and analyzed the data using the same pipeline (Fig. 2c
right side).

Before detailing any biasing influence of PL and tdwell on the experi-
mental diffusion data, we first inspected another experimentalMFX para-
meter, the galvo damping DMP (see Supplementary Note 1, Parameter
Overview).Wereviewedvalues ofDMSD obtained fordifferentDMP (Fig. 2c,
left side, PL set to 10). Since DMP > 0 led to an underestimation of particle

Fig. 2 | Experimental MFX-enabled single particle tracking (SPT) of QD-labeled
lipid on a supported lipid bilayer (SLB)—dependencies on hardware parameters.
a Biotinylated lipid analogs (DSPE-PEG-biotin, see Methods) tagged with
streptavidin-coated metallic core quantum dots (QDs) were incorporated in
homogeneous DOPC SLBs and diffused freely in the membrane. (Created in
BioRender. Vogler, B. (2025) https://BioRender.com/vh9i314). b Spline interpolated
distribution of turning angles between successive displacement vectors of different
ensembles of lipid trajectories, detected usingMFX-SPTwith different photon limits
(PL) and the same TCP diameter (L = 150 nm). As a reference, we reported the same
distribution obtained using SPT experiments performed on a custom TIRF setup.
c Comparison of the measured diffusion coefficients across different sequence
configurations tested on SLBs generated usingGUVpatches (green) orflow chamber
lipid deposition (blue): different damping parameter DMP (with PL ¼ 10 and
dT ¼ 100μs), photon limit PL (with dT ¼ 100μs and DMP ¼ 0), and dwell time
tdwell(with PL ¼ 50 and DMP ¼ 0) settings. Each boxplot (center line, median; red
diamond, mean; box limits, first to third quartile; whiskers, 1.5x interquartile range;
notch, height proportionally to interquartile range) corresponds to the distribution
of diffusion coefficients extracted from the detected trajectories using the OLSF
routine on theUpper Lag Regime of theMSD curves. We highlight the time-average
(red diamond) and ensemble-average (black cross) diffusion coefficients for each
dataset. As a reference, we provide the distribution of diffusion coefficients (average
diffusion coefficient (purple line) and standard deviation (lilac-shaded area)

determined from theTIRF experimental data on aQD labeledGUV-patch SLBusing
the same analysis routine. The respective distribution of diffusion coefficients can be
found as a boxplot (center line, median; red diamond, mean; box limits, first to third
quartile; whiskers, 1.5x interquartile range; notch, height proportionally to inter-
quartile range) to the right. Given the equality of time-average and ensemble-average
diffusion coefficient for this dataset, we chose to display only one line. Each triplet of
datasets focusing on a specific parameter, e.g., PL, has been taken on separate
samples, with the exception of the GUV Patch DMP and PL sets, which share the
sample. Two datasets have been taken on the same sample with the same sequence
(PL ¼ 10, DMP ¼ 0, dT ¼ 100μs; black triangle), while three other sets have been
taken on different samples with the same parameters (PL ¼ 50, DMP ¼ 0,
dT ¼ 100μs; black star). d Illustration of how different values of PL contribute to
generating the two Lag Regimes observed in our SPT experiments using the
ensemble average MSD curves calculated from our GUV-patch SLB experiments.
The shading highlights the two regimes (Lower Lag Regime: olive, Upper Lag
Regime: light-green). We use an arbitrary threshold of 9 lags (� 1190μs) to separate
the regimes. e Comparison boxplot (center line, median; red diamond, mean; box
limits, first to third quartile; whiskers, 1.5x interquartile range; notch, height pro-
portionally to interquartile range; points,fliers) of the extracted diffusion coefficients
(as in (c)) for the GUV-patch SLB experiments between the Lower and Upper Lag
Regimes, together with the reference values from the TIRF experiments (as in (c)).
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motility, we generally kept the galvo damping off (DMP ¼ 0) in our
experiments.

Turning now to PL and tdwell , we first tested possible bias in theMFX
data by checking whether the tracks showed an isotropic progression as
expected for Brownian diffusion. The Turning Angle Distribution (TAD)
demonstrates an additional geometric bias in that a set of directions is
preferred with decreasing PL (Fig. 2b, dT ¼ 100μs), digitizing the direction
of positional updates, i.e., too low values of PL resulted in a biased detection
of diffusion. This is a direct result of the hexagonal TCP geometry in
combination with the reduced number of acquired photons and the thus
reduced size of the statistical data sample available for analysis (compareFig.
2b–d in ref. 9).

As mentioned above, our isotropic progression analysis highlighted a
favorable use of larger PL values. Unfortunately, we had to reduce PL to
avoid missing faster diffusion events, i.e., to sample a higher bandwidth of

particle diffusion rates, highlighted by an artefactual dependency of the
extracted values of DMSD on PL (Fig. 2c). While higher PL entail a smaller
localization uncertainty σMSD, i.e., an in principle higher spatial precision
(Table 2), the determination of values of DMSD became biased towards
slower moving emitters, i.e., emitters moving too fast were lost and the
reported values of DMSD appeared to underestimate the reference value of
the TIRF-SPT experiments (Fig. 2c and Table 2). We observed the same
characteristics for both kinds of SLB sample preparation. The coinciding
change of σMSD,DMSD, andPL can be traced back to theCRLB’s dependence
on the number of photons acquired and the aforementioned increased
possibility of losing particlesmoving too fast for too long times (tloc), i.e., the
time required in total for a localization (Fig. 1e, f).

We next investigated the effect of different tdwell on the experimentally
detected diffusion rates, while maintaining PL ¼ 50 (Fig. 2c). Confirming
Eq. 5, we revealed larger average values of DMSD for smaller tdwell , reaching

Fig. 3 | Theoretical and experimental considerations reveal the upper limit of
trackable diffusion rates. aFluorescent lipid analogs (DPPE-PEG2000-STARRED)
tagged with Abberior STARREDwere incorporated in homogeneous DOPC:CHOL
7:3 bilayers. (Created in BioRender. Vogler, B. (2025) https://BioRender.com/
tmaaqpx). b Single-molecule MSD curves (gray lines), and the ensemble average
MSD curve (black line) calculated for trajectories of the fluorescent lipid analogs
diffusing in the SLB illustrated in (a). The shading corresponds to the Lower (orange-
red) and Upper (orange) Lag Regimes, with an arbitrary threshold set at 5 lags
(� 670μs). The corresponding distribution of diffusion coefficients (time-average
(red diamond) and ensemble-average (black cross)) extracted for the Upper Lag
Regime of the MSD can be found as a boxplot (center line, median; red diamond,
mean; box limits, first to third quartile; whiskers, 1.5x interquartile range; notch,
height proportionally to interquartile range; points, fliers) to the right. The

horizontal purple line marks a system-specific reference value taken from
literature27. cUpper theoretical limit of trackable diffusion coefficientsD against the
average photon detection rate of the particle within one pattern iteration as calcu-
lated from Eq. 3, in the absence of noise. Different line styles and colors represent
unique TCP diameters L and photon limits PL as labeled. d Zoom-in of the graph in
c) for values ofD and average photon detection rate more common in experimental
practice. The black horizontal line indicates the ensemble (and time) average dif-
fusion coefficient D for the dataset in panel b), while the vertical one represents the
average frequency of photon detection ψiMFX

� �
. The shaded dark orange area

represents the standard deviation of the distribution ofD from panel b), whereas the
lighter orange represents the full extent of the distribution. The vertical dashed lines
represent the standard deviation of the photon detection rate.
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the reference value of the TIRF-SPT experiments only for very small
dT ≤ 50μs. Yet, it must be kept inmind that due to the additional hardware-
induced overhead time tηhw, which is in the same order of magnitude as the
dwell time tdwell , the time-to-localization tloc has a lower limit. Given that
photon emission follows Poisson statistics and assuming a fixed average
emission rate θp

D E
, the average number of detected photons per cycle Nη

p

� �
is linearly dependent on the time window of signal integration
(tηsignal ¼ η�tdwell). Therefore, for lower tdwell a larger average number ofTCP
cycles η

� �
is required to collect enough photons (PL) per successful locali-

zation (compare Table 2). This again results in a larger or equal tloc (com-
pare Eq. 4) given that each TCP cycle causes additional hardware overhead.
As a reminder, tloc is determined by the number of TCP cycles η times the
dwell time tdwell plus the overhead time tηhw (Eq. 7).

In a nutshell, for a given θP
� �

, fewer and shorter cycles per localization
mean a higher frequency of position updates, which permits following faster
particles at a reduced distance from the TCP center, minimizing the loca-
lization error induced by the particle movement, i.e., the offset between the
actual (and unknown) particle position and the estimation produced. This
strategy effectively improves the overall spatio-temporal resolution.

Improving the localization precision by collectingmore photons over a
longer integration time (tηsignal)maynot always be viable, since increasing tloc
in turn increases the deviation between estimation and actual particle
position or renders the position estimation impossible altogether. This is
due to an increase in the area explored by the diffusing particle during the
photon collection (compare Fig. 1f). To counteract this effect, it may appear
reasonable to adopt TCP scanning patterns with fewer positions to increase
the sampling rate. This has already been employed in the past8,9, and it does
marginally increase the temporal resolution, since fewerpositions have to be
scanned during one TCP, thus shortening tηhw. However, reducing the
number of vertices in the position estimator also results in an undesirable
increased angular bias, which is especially true for low numbers of photons
(Fig. 2b). While in principle, any TCP with a finite number of vertices (i.e.,
not an ideal circle) will result in some degree of angular bias, the hexagonal
geometry has proven to be a suitable compromise between temporal effi-
ciency and angular resolution (compare Fig. 2b–d in 9). Therefore, adopting
a hexagonal TCP is preferable, at least when probing diffusivemotionwith a
high degree of randomness8.

While calculating the ensemble-MSD from our experiments, we
noticed that they expressed two discontinuous linear regimes, most pro-
minently for low values of PL, i.e., high temporal resolutions (Fig. 2d).
Though varying in severity, we found the kink-like shape in all of our fastest
datasets, i.e., the datasets of highest temporal resolution. Consequently, for
the entirety of this work, we distinguish between the Lower Regime MSD,
meaning thepartwith or prior to thekink-like shape, and theUpperRegime,
referring to the continuous linear part beyond that. Here, the words Lower
andUpper refer to the interval of time lags τ in which discontinuity appears.
We noticed a correlation between the severity of the kink and the employed
PL (Fig. 2d).Given that a lowerPL enables faster sampling (seeMethods and
Table 2), we further noted a correlation between the sampling frequency of
MFX (� 1= η

� �
) and the severity of the discontinuity of theMSDcurve. The

samewas true for the dynamic localization error σMSD, which gotworse (i.e.,
increased) with increased sampling frequency (Table 2).

We excluded the possibility of strong confined or compartmenta-
lized diffusion causing these two-regime characteristics in our experi-
mental MSD, since our membrane bilayers were very fluid and
homogeneous, consisting of one type of unsaturated lipid (see Methods).
Therefore, and according to previous work24, it is most probable that the
Lower Regime MSD did not result from the diffusive motion of the lipid
but was rather due to the wiggling motion of the QDs (� 15nm� 20nm
in diameter16) attached to the PEG(2000) linkers (� 3nm in diameter25)
on top of the particle (compare Fig. 5 in ref. 24). This became apparent
when comparing the extracted values of DMSD for both Lower and Upper
Regime (Fig. 2e). On one hand, the Upper Regime exhibited diffusional
rates that were close to those of our TIRF microscopy reference experi-
ments and marginally dependent on PL, highlighting the true mobility of
the lipid. On the other hand, DMSD values of the Lower Regime were far
above those of the references (Fig. 2e). Therefore, we considered the
Upper Regime as our region of interest. Throughout this work, except for
Fig. 2e, we list only the diffusion rates extracted from the Upper MSD
Regime (Figs. 2c and 3b; Table 2). Further investigations into the cause of
the MSD discontinuity in general were beyond the scope of this work.
Nevertheless, we should point out that this phenomenon must be taken
into consideration in the larger context of SPT, given that a significant
quantity of analysis approaches in the literature merely consider the first
few points in the MSD curves to estimate the diffusion rate of the targets
of interest26.

Given that Brownian motion is a homogeneous, isotropic, and mem-
oryless process, particle systems exhibiting Brownian motion are expected
to be ergodic, i.e., to have an ergodic ratio εBrownian ¼ 1. Therefore, it is
important to point out that allMINFLUXdatasets,which reporteddiffusion
coefficients close to the values of the TIRF microscopy reference, were
characterizedbyanergodic ratio of about εQD � 0:8 as compared to εTIRF �
1:0 for TIRF. Following the above discussion, the observed ergodicity break
was most likely due to the superposition of the wiggling motion of the QDs
and the particle diffusion in the SLB.

Accurate tracking of fast fluorescent lipid analogs on model
membranes with optimized MINFLUX enabled SPT
Next, we conducted MFX-enabled SPT experiments on fluorescent lipid
analogs (Dipalmitoylphosphatidylcholine tagged with Abberior STAR-Red
via a PEG-linker, DPPE-PEG) embedded within a GUV-patch derived SLB
(70% DOPC and 30% cholesterol (CHOL), see Methods; Fig. 3a). Com-
pared to QDot-labeled lipids, these fluorescent lipid analogs have much
higher diffusion rates and should approach the limit of what is feasibly
trackable by the device. The addition of cholesterol was made to marginally
slow down the diffusion (to ensure staying withinD2D

max) while maintaining
its characteristic isotropic and unconfined movement. Following the same
routine as before (withPL ¼ 10, dT ¼ 100μs,DMP ¼ 0),we calculated the
MSD. From its Upper Regime, we obtained an ensemble and time-average
diffusion coefficient DDye � 2:5μm2=s and an ergodicity coefficient of
εDye � 0:98, i.e., close to perfect homogeneous diffusion (Fig. 3b and
Table 2).

Table 1 | Experimental MINFLUX sequence parameters for 2D
single particle tracking of fluorescent dye or QDot-labeled
lipid analogs in the SLB

2D Tracking Pinhole
orbit [I]

1st Pattern
iteration [II]

2nd Pattern
iteration [III]

L (nm) 284 302 150

Pattern shape Hexagon Hexagon Hexagon

Photon limit (counts) 40 20 50 (*)

Laser power
factor (times)

1.0 1.5 2.0 (*)

Pattern dwell time (µs) 500 100 200 (*)

Pattern repeat (times) 1 1 1

CFR threshold −1.0 0.5 −1.0

Background
threshold (kHz)

15 30 30 (*)

MaxOffTime
(control param.)

3 ms 3ms 3ms

Damping
(control param.)

0 0 0

Headstart
(control param.)

−1 −1 −1

Stickiness
(control param.)

4 4 4

(*) marks the parameters that were adjusted during the experiments.
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In comparison to theQD-tagged samples, we noticed that the kink-like
shape of the ensemble-MSD, though retained, was significantlymore subtle.
This implies reducedwobbling of the PEG-linker taggedwith the dye rather
than with the QDs, which was reflected in the contrast of ergodicity coef-
ficients εQD � 0:8 and εDye � 1:0 for the same sequence parameters (i.e.,
PL ¼ 10, dT ¼ 100μs, DMP ¼ 0). Consequently, MFX successfully
observed the expected isotropic BrownianMotionwith a diffusion rate close
to values reported in relevant literature27.

We then compared our experimental results to theory. Figure 3c plots
diffusion rate limits D2D

max (Eq. 3) for different values of L, PL and ψMFX

� �
,

highlighting the best chances to track fast-moving emitters for large L (e.g.,
150nm) and ψMFX

� �
and low PL (e.g., 10). With photon emission fre-

quencies in the range of 125kHz � 300kHz (as in our experiments),MFX
should then be able to track emitters moving as fast as D2D

max � 10μm2=s�
11μm2=s with optimized parameters (Fig. 3d). Our experimental data of
Fig. 3b (DDye � 2:5μm2=s, taken with PL ¼ 10 and tdwell ¼ 100μs) was
thus well within these theoretical boundaries (Fig. 3d). With these experi-
mental settings, slightly more than N ¼ 20 photons were detected on
average per localization and cycle (PL ¼ 10, first row in Table 2), which
resulted in an average photon detection frequency per localiza-
tion ψMFX

� � ¼ N=ηtdwell
� �

of around 213 kHz ( tloc
� � ¼ 150μs, Table 2

and Eq. 3). One might argue that increasing the PL to 20 could prove
beneficial in terms of localization precision while maintaining an accurate
value for the average diffusion rate. Further increase of the PL or tdwell , or
decreasing L for that matter, would, however, result in an underestimation
of the particle motility. It is important to note that we always assume
η
� � ¼ 1, which implies tdwell � 1= ψMFX

� �
and NPL � ψMFX

� �
(com-

pare Eq. 3).

Conclusions
We theoretically and experimentally demonstrated the implications of the
iterative localization procedure of MFX-enabled SPT and highlighted the
resulting critical dependence on pre-defined acquisition parameters such as
L, PL, and tdwell . We deducted an upper limit of reliably trackable diffusion
rates, introduced a parameter optimization scheme (SupplementaryNote 2,
MINFLUX Sequence Optimization Guide for 2D SPT Experiments) to allow
for the capture of a broader bandwidth of fast diffusion events, andprovided
an overview of the most relevant MFX sequence parameters

(Supplementary Note 1, Overview of the Most Influential Sequence Para-
meters in MINFLUX enabled Single Particle Tracking) alongside practical
tips and warnings for MFX sequence manipulation. Finally, we experi-
mentally demonstrated the possibility of reliableMFX-enabled SPT of fast
DMSD

� � ¼ 2:5μm2=s
� �

lateral Brownian diffusion of fluorescent lipid
analogs in model membranes.

So far, we have restricted ourselves to two-dimensional experiments.
However, our discussion and findings can be easily extended to the three-
dimensional case, given that they share the samemodus operandi.We stress
that all the considerations for Brownian diffusing particles in this text also
apply to cases of directed or processive motion, such as those considered in
refs. 28,29, since the instrument adopts the same detection strategy irre-
spective of the experiment.

Methods
Continuous supported lipid bilayer composition and formation
The continuous supported lipid bilayer (SLB) used as a target sample was
composed of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine, Avanti
Polar Lipids, Inc.) with the addition of 0:01Mol% of the fluorescent lipid
analog DOPE-ATTO488 (ATTO-TEC GmbH) for ease of identification
under confocal fluorescence imaging. The targets of SPT were DSPE (1,2-
distearoyl-sn-glycero-3-phosphoethanolamine) lipid analogs with a
PEG(2000)-Biotin linker (Avanti Polar Lipids, Inc.), added in 0:15 �
10�3Mol% to the lipid solution above. The SPT targets were labeled with
streptavidin-coated metallic core QDs, whose fluorescence emission spec-
trum manifests as a symmetric peak centered around 655 nm (QDs 605,
ThermoFisher, Inc.).

The continuous SLB production was based on a previously reported
solvent-assisted lipid bilayer (SALB) formation method15. Lipids were first
dissolved in chloroform upon arrival and kept as stock solutions at−20 °C.
Before use, the desired amount of lipid stock solution was blow dried by a
gentle stream of nitrogen gas and the lipid film was resuspended in iso-
propanol (IPA) at a concentration of 0:5mg=ml. Glass coverslips (Epredia,
0:16� 0:19mm, 26 × 76mm) were rinsed sequentially with ethanol, ultra-
pure water and cleaned with detergent, they were treated with a plasma
cleaner (Zepto One from Diener Electronic GmbH, Plasma-Surface-
Technology) for 1min before the assembly of the microfluidic flow chan-
nel with Ibidi GmbH sticky-Slide I Luer (0:1mm channel height), the flow

Table 2 | Experimental results reveal an optimization tradeoff between trackable diffusion rates and localization error for MFX-
enabled single particle tracking

S PL DMP tdwell DeMSD ½μm2=s� σeMSD nm½ � σCRLB ½nm� η
� �

tloc
� � ½μs� Nh i

ηh iNPL

n

I 10 0 100 2.46 30.30 20.03 1 150 2.13 855

II 10 5 100 0.07 16.52 20.03 1 150 4.10 924

II 10 2 100 0.49 15.53 20.03 1 150 4.49 988

II 10 0 100 0.63 28.02 20.03 1 150 3.36 1075

II 10 0 100 0.63 27.96 20.03 1 150 3.36 1061

II 20 0 100 0.52 22.78 14.35 1 151 2.27 841

II 50 0 100 0.48 14.05 9.08 2 282 0.71 534

III 10 0 100 0.46 30.37 20.03 1 150 1.53 576

III 20 0 100 0.36 23.51 14.35 2 281 0.67 325

III 50 0 100 0.23 13.46 9.08 5 676 0.22 323

II 50 0 50 0.28 4.67 9.08 5 437 0.23 779

II 50 0 100 0.28 5.50 9.08 3 414 0.42 763

II 50 0 200 0.21 10.91 9.08 2 483 0.82 564

II TIRF SPT 0.64 39.86 - 1 14925 - 1810

In addition to the ideal CRLB σCRLB �r ¼ �0
� �

(seeSupplementaryMaterial of ref. 8, p. 11)we list the lateral diffusion coefficientDeMSD aswell as the lateral localization error σeMSD extracted from the ensemble-

averageMean-Squared-Displacement (eMSD) usingOptimal Least Squares Fitting (OLSF) assumingmomentary Brownianmotion. Here η refers to the number of cycles, tloc is the time-to-localization,N is
thenumberof photons,NPL is thePL, and . . .h i the scale-appropriateaveragevalue.We indicate the sample sizen, i.e., thenumberof tracksper set, in the last column.The first columnS indicates the sample
in reference: Dye on GUV-patch SLB (I), QDs on GUV-patch SLB (II), QDs on Lipid-Deposition-SLB (III).
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channel was later connected to a Hamilton, Inc. gas tight glass syringe
(2:5ml) via appropriate connectors and tubing. A high-precision syringe
pump(CETONIGmbHNemesys S)wasused to control the liquid exchange.
The flow channel was initially filled with PBS buffer, then the buffer was
replaced with IPA at a flow rate of 50μl=min for 5min, target lipid/lipid
mixtures in IPA was then introduced into the channel at 50μl=min for
2min and with incubation on the coverslip for another 5� 10min, finally
PBS buffer was again introduced into the flow channel at 50μl=min for
2min for complete formation of continuous SLB, and with a subsequent
increasedflow rate at 100μl=min for 1min to rinse off loosely attached lipid
structures.

Giant unilamellar vesicle patch SLB composition and formation
The lipids used for these samples are DOPC (1,2-dioleoyl-sn-glycero-3-
phosphocholine, Avanti Polar Lipids, Inc.), Cholesterol (Ovine, cholest-5-
en-3β-ol, Avanti Polar lipids, Inc.), Atto 488-DOPE (1,2-Dioleoyl-sn-gly-
cero-3-phosphoethanolamine, Atto-Tec), DSPE-peg2000-biotin (1,2-dis-
tearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylenegly-
col)-2000] (ammoniumsalt),Avanti Polar Lipids, Inc.) andDPPE-peg2000-
STAR RED (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[azi-
do(polyethyleneglycol)-2000, Abberior).

We prepared Giant Unilamellar Vesicles (GUVs) through elec-
troformation similar to refs. 23,30 in sucrose solution (300mM),
using a solution of DOPC and DOPC:CHOL 7:3, depending on the
experiment shown. In both cases, we added DOPE Atto 488
(0:01Mol%). In the experiments in which QDs are used, we added to
the lipid solution also DSPE-PEG2000-Biotin (0:01Mol%). We
plasma cleaned the coverslip to rupture the GUVs and create GUV
patches, and we used, as buffer, phosphate buffer saline (PBS,
137mM NaCl, 10mM phosphate, 2:7mM KCl) to keep the supported
lipid bilayer (SLB) hydrated. We then labeled the biotinylated lipids
with streptavidin conjugated 655 QDs (1μM concentration, Invitro-
gen by Thermo Fisher Scientific) at a concentration of 50pM for
MINFLUX SPT, while we used streptavidin conjugated 605 QDs
(1μM concentration, Invitrogen by Thermo Fisher Scientific) at a
concentration of 1pM for TIRF single particle tracking. In the
experiments in which we track the lipid analog DPPE-peg2000-STAR
RED, we labeled the SLB with a concentration of 50pM.

TIRF data acquisition
The TIRF single particle tracking data are acquired on a custom-made
iSCAT-TIRF microscope as described in ref. 23. We excited the 605 QDs
with a 488 nm diode laser and, to efficiently detect the fluorescence signal,
thefilters in theTIRF’s imaging channel havebeen changedaccordingly.We
acquired 3000 frames for eachmeasurement with an exposure time of 10ms
that led to an effective frame time of 67ms.

MINFLUX single particle tracking
The SPT experiments were performed on a commercial MINFLUX
microscope setup (Abberior Instruments GmbH), which is based on an
iterative localization approach9. For this study, we restricted our investiga-
tion to 2D tracking, although the setup is capable of 3D tracking. The device
was provided with a set of default localization routines for different pur-
poses, from SPT to imaging, for 2D and 3D experiments, where a large
number of parameters can be arbitrarilymodified and adjusted by the users,
within limits and a procedure specified by the manufacturer. The scanning
parameters relevant for our experiments are reported in Table 1. We note
that the pattern dwell time (tdwell), i.e., the total time that the MINFLUX
setup spends collecting photons during one TCP cycle, could be altered
without much consequence. On the other hand, the photon limit (PL) and
TCP diameter (L) required additional changes to the parameters provided
for the localization correction, as the CRLB (Eq. 1) is dependent on both.
They are available at “…/seq/containers/*.json”. We highlight that another
variable that changed between pattern iterations was the excitation laser
power. We express this by listing amongst the parameters a laser power

multiplier, which refers to a starting excitation power of 10μW at the
sample plane.

MINFLUX localization estimation
MINFLUX realizes processive particle localization by employing a chain of
successive pattern iterations. Behavior during these is governedby theMFX-
sequence parameters (Supplementary Note 1, Parameter Overview). Each
iteration follows the same core principles (Fig. 1a).

Around an initial assumed particle localization, the scanning beam is
steeredalong apre-definedpath called theTargetCoordinatePattern (TCP)
with its vertices on a virtual circle of diameter L using Electro Optical
Deflectors (EODs). At each vertex, the signal is integrated for a time
(tintegration) equal to tintegration ¼ tdwell= Nvertices � NTCP

� �
, where tdwell is the

Dwell Time (tdwell),Nvertices thenumber of vertices on theTCP, andNTCP the
number of TCP Pattern Repetitions (patRepeat). Additionally, a photonic
signal can be integrated at a central spot to calculate the Center-Frequency-
Ratio. After completing the TCP, including the optional center spot, the
beam is placed back in the initial position. Given its quantized and repetitive
nature, we call the entire completed procession of signal integration a TCP
cycle or round-trip.

After completing a TCP, the Effective Frequency at Offset (EFO) is
calculated by dividing the number of detected photons (ECO) by the tdwell . It
is important to point out that the current version of themicroscope does not
report the raw photon counts recorded on the vertices of the TCP, which
sensitively limits the scope of post-processing. Both ECO and EFO refer to
the overall photons collected during position estimation.

If the Automatic Background Estimation (bgcSense) has been enabled,
the local estimated background signal is subtracted from the EFO. The EFO
is then compared against the Background Threshold (bgcThreshold) to
determine if the integrated signal can be considered valid.

If the EFO is below the Background Threshold, another round trip is
kicked off, and the collected photons are discarded.

If the EFO surpasses the Background Threshold, the collected photons
are counted against the Photon Limit (PL), i.e., the minimal number of
photons requested to be used for a localization estimation.

Should the number of detected photons above the background
threshold collected be less than the PL, anotherTCP cycle is started, and the
photons retained.

Should the number of valid photons collected be equal or surpass the
PL, the MINFLUX microscope will start to calculate a next localization
estimate, which after being corrected in a second step using the Estimation
Coefficients (estCoefficients) is used as the initial particle position for the next
run. A Galvanometric Scanner is used to re-center the virtual circle around
that position, and the routine is re-engaged (Fig. 1d).

Should the number of valid photons remain insufficient for a number
of cyclesdeterminedby theSingle Interval LingerTime (maxOffTime) andby
the number of Permitted Localization Attempts (stickiness), the particle is
considered lost and the SPT routine restarted (Fig. 1b, c, d).

The employed parameter controlled MFX-enabled SPT routine as
provided by themanufacturer (Abberior InstrumentsGmbH.) is reported in
ref. 9 and used in refs. 28,29. Adetailed overviewof the sequenceparameters
is found in Supplementary Note 1 and the GitHub repository provided (see
Data availability).

Our experimental hardware highlights that moving the doughnut-
beam center between vertices takes about tEOD � 5:3μs, while the locali-
zation estimation and TCP repositioning take about tREP � 20μs. This
enables us to write down an ideal time-to-localization t2Dloc for a singleMFX
determined particle localization in 2D:

t2Dloc ðηÞ ¼ η � tdwell � 1þ δCFR � γCFR
� �þ NTCP � tEOD

�
� Nvertices þ δCFR
� ��þ tREP

ð4Þ

t2Dloc η
� � ¼ η � χ tdwell

� �þ tREP ð5Þ

https://doi.org/10.1038/s42003-025-09060-1 Article

Communications Biology |          (2025) 8:1573 9

www.nature.com/commsbio


Where η 2 1;1½ Þ is the number of roundtrips completed, δCFR is a delta-
function that returns δCFR ¼ 1 if the CFR-Check is enabled, and γCFR is a
factor that determines the amountof time spent integrating the signal for the
CFR-Check (ctrDwellFactor). We summarize the constant part of Eq. 4 into
χ tdwell
� �

in Eq. 5.
To display the split between signal integration tηsignal and hardware

overhead tηhw, we can express Eq. 4 in the following way:

t2Dloc η
� � ¼ η � tdwell þ η � tdwell � δCFR � γCFR þ NTCP � tEOD

��
� Nvertices þ δCFR
� ��þ tREP

� ð6Þ

t2Dloc ðηÞ ¼ tηsignal þ tηhw ð7Þ

Temporal optimization
Considering linear Eq. 5, we determine two angles of minimization, the
number of TCP round trips η and the slope χ tdwell

� �
.Whileminimizing the

latter is trivial considering Eq. 4, we must understand η as a function of the
laser power,PL, and tdwell thatminimizes exactlywhen at leastPLnumber of
photons arrive at the detector within tdwell seconds. Providing a complete
mathematical model of this behavior is beyond the scope of this work, but
for our purposes, it is sufficient to understand that these three factors, i.e.,
laser power, PL, and tdwell , play an essential role when trying to optimize
MFX-enabled SPT experiments.

Turning angle distribution
Turning angles are defined as the angle between the displacement vectors~a
and~b, which describe the particle motion along three consecutive positions
A;B;C. It is calculated as follows:

cos ϕ
� � ¼ ~a �~b

~aj j � j~bj
ð8Þ

The turning angle distribution (TAD) can be used to investigate
directionality between successive datapoints, thereby posing as a tool to
describe single-particle motion across time.

Extracting the number of TCP cycles per localization
Assuming a steady fluorescent signal, we can straightforwardly extract the
number of cycles η required for each localization in MFX from the data
provided as follows:

η ¼ N
ψMFX � tdwell

¼ N
N

η�tdwell � tdwell
¼ ECO

EFO � tdwell
¼ η ð9Þ

Where N (ECO) is the number of photons acquired at the TCP during
position estimation, ψMFX (EFO) is the photon detection frequency at the
TCP and tdwell is the dwell time as put in the sequence.

Ergodic hypothesis
The ergodic hypothesis, the only fundamental assumption in equilibrium
statistical physics31, implies that the average of aprocess parameter over time
would equate the average over the complete statistical ensemble. In the case
of particle diffusion, this relates to:

ε ¼ DeMSD

DtMSD
ð10Þ

Where DtMSD is the time-average diffusion coefficient and DeMSD is the
ensemble-average diffusion coefficient.

Defining an upper limit for trackable diffusion rates
AssumingBrownianparticles to exhibit a constant average photon emission
rate θp

D E
and the average photon detection rate ψMFX

� �
≤ θp

D E
, we can

give an estimation of the upper limit of possibly trackable diffusion rates in
2DD2D

max given σ
d¼2
Diffusion and that the particle needs to remainwithin the area

of the TCP during the localization process.

ðL=2Þ2π ¼ π σd¼2
Diffusion

� �2 ð11Þ

L2 ¼ 16 � tlocminD
2D
maxjmin t2Dloc η

� �� � ¼ t2Dloc η ¼ 1
� � ð12Þ

D2D
max ¼

L2

16
� 1

tη¼1
idealsignal þ tη¼1

hw

jtη¼1
idealsignal ¼

NPL

θp

D E ð13Þ

D2D
max ¼

L2

16
�

θp

D E

NPL þ θp

D E
tη¼1
hw

ð14Þ

D2D
max ≤

L2

16
� ψMFX

� �
NPL þ ψMFX

� �
tη¼1
hw

ð15Þ

D2D
max ≤

L2
16 �

ψMFXh i
NPLþ ψMFXh i�52μs j for hexagonal TCP ð16Þ

D2D
max ≤

L2
16 �

ψMFXh i
NPLþ ψMFXh i�36μs j for triangular TCP ð17Þ

Statistics and reproducibility
All values inTable 2 andSupplementaryTable 1 areprovidedasdescribed in
the respective captions. Ensemble-average MSD curves were calculated
across the entire dataset as the mean MSD value per time lag. The turning
angle distributions were calculated as the bin-average of all turning angles
between [0°,180°]with a bin sizeof 5°.All boxplots displayedwere generated
using the matplotlib (v3.9.2)32 Python library. Their configurations are
found in the respective captions. Tracking and linkage ofTIRFSPTdatawas
performed using the trackpy (v0.6.4)33 Python library. The sample sizes n
found in Table 2 refer to the number of individual tracks per dataset. All
MINFLUX datasets corresponding to a single parameter investigation, i.e.,
where only one parameter is changed between experiments, are taken on the
same sample. If not stated otherwise in the caption, all single-parameter
investigations were performed on biologically independent samples. The
TIRF SPT reference data was taken on a single sample.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Code availability
Due to its high relevance to ongoing projects, we decided to postpone
releasing our custom code onGitHub to a later date. Until then, parts of the
code can be made available upon specific request. Please, contact B.T.L.V.
(bela.vogler@uni-jena.de).

Data availability
All data and sequences used in themanuscript aremade available within the
Parameter-Optimization-for-MINFLUX-Microscopy repository on
GitHub. The provided data includes the raw information extracted from the
proprietary file structure (Abberior Instruments GmbH) returned by the
MINFLUX in a streamlined format, the raw TIRF SPT trajectories, the
processed MINFLUX and TIRF SPT trajectories including MSD and
metadata, as well as the numerical source data for all graphs and charts
found in this work. Files are named based on their respective experimental
parameters. We include a toolbox to conveniently access and format the
data. The rawMINFLUXfiles inNPY-format, as exported fromMINFLUX-
IMSPECTOR (commercial version-16.3.15645-m2205), as well as the raw
TIRF image stacks, are made available within a Zenodo repository (Data
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Single Particle Tracking; https://doi.org/10.5281/zenodo.1715352534).
Access to the relevant MINFLUX-IMSPECTOR MSR files can be made
available upon specific request. Please, contact B.T.L.V. (bela.vogler@uni-
jena.de).
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