
communications biology Article
A Nature Portfolio journal

https://doi.org/10.1038/s42003-025-09089-2

Genetic variation and historical breeding
patterns in common bean (Phaseolus
vulgarisL.) affect fermentationpatternsby
the human gut microbiome
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David L. Hyten 2,4, James C. Schnable 2,4, Devin J. Rose 1,2,4 & Andrew K. Benson 1,2

Common beans, which contain diverse bioactive molecules, have not been systematically studied for
their variation in how they affect the human gut microbiome. We measured taxonomic shifts and
metabolite production of three human gut microbiomes cultured with 299 common bean cultivars
under conditions that mimic the nutrient availability of the human colon. Common bean population
structure (landrace andmarket class) had significant effects onmicrobiota diversity, composition, and
metabolite production. Genome-wide association analysis identified seven multiple effect loci (MEL)
where genetic variation in the common bean genome affected the microbiome. One MEL on
chromosome Pv05 had impacts on the abundance of several Lachnospiraceae and
Ruminococcaceae. Molecular complementation experiments suggested that variation in the
biosynthesis of saponins at this MEL was the mechanism driving the variability in microbiota
composition and function. This study provides innovative understanding of how genetics of common
beans affects the human gut microbiome and potentially human health.

Interspecific Indirect Genetic Effects (IIGEs) are a concept in evolutionary
biology and ecology that describe how the genetic traits of one species can
influence the phenotype orfitness of individuals in another species, typically
through ecological interactions1. Examples include plant-herbivore
interactions2, predator-prey interactions3, and even host-microbiome
interactions4. Here, we examine a new example of IIGEs between genetic
variation and historic genetic selection in a food crop (common bean) and
fermentation patterns by the human gut microbiome.

This study was motivated by the economic burden of diet-associated
preventable human disease and the potential to transform our food systems
to promote and enable healthier diets in a sustainable and equitable
manner5. One approach is shifting food crop production toward species
whose consumption is associated with better health outcomes. However,
changing infrastructure to process these new species and the difficulty in
convincing the public to change staple foods in their diets is fundamentally

challenging. Another approach could be to capitalize on the substantial
genetic and phenotypic variation in nutritional and health relevant traits
that exist within currently cultivated crops. This approach requires identi-
fication and selection for crop genotypes that can improve human health
and reduce the incidence of preventable, diet-linked human diseases.

Examples of successful efforts to leverage within-crop genetic diversity
to address human health needs can be seen in biofortification, which
combines cropbreeding andagronomic strategies to enhancemicronutrient
content. Biofortification has successfully increased the content of vitamins
and minerals in various food crops, which are major sources of calories in
different parts of theworld, resulting in improvements indiseases associated
with micronutrient malnutrition6.

Over the past 20 years, microbiome research has shown that, beyond
adequate caloric and micronutrient intake, achieving optimal health also
requires food that properly feeds and supports the dense population of
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microbes inhabiting the human gastrointestinal tract. Indeed, the gut
microbiome is now well-recognized for important contributions to human
health (anatomical development, immune training, pathogen exclusion,
metabolic functions)7,8. Research has also demonstrated the importance of
dietary components in driving favorable (e.g., high-fiber diets) or unfa-
vorable (high-fat diet) taxonomic and functional configurations of the gut
microbiome, the latter of which are associated with a wide range of complex
diseases including obesity, diabetes, metabolic disease, IBD, and colon
cancers9–12.

The critical role dietary components play in controlling the structure
and function of the human gut microbiome and preventing disease13,14

creates an opportunity to capitalize on IIGEs that likely exist between food
crops and the composition and function of the human gut microbiome.
Here, crop breeding and genetics could be employed to produce desirable
effects on the human gut microbiome.

Common bean (Phaseolus vulgaris L.) is an excellent model system for
studying the effects of plant-human gut microbiome IIGEs both because of
the diverse array of bioactive compounds produced by beans and the
widespread direct human consumption of minimally processed beans
around the world. The consumption of many of the compounds in beans,
including polyphenols (cyanidin-3-glucoside, kaempeferol-3-glucoside,
querticin-3-glucoside, genistein), flavonoids, anthocyanins, condensed
tannins, saponins, lectins, and oligosaccharides, have been associated with
benefits to human health15–18. Several of these bioactive compounds have
been studied in conjunction with human cell culture-based models19–23,
animal model systems24–26, prospective human clinical studies feeding spe-
cific substrates27–29 and retrospective epidemiological/dietary studies30–33. In
these studies, bioactive compounds have been shown to have significant
impacts on disease incidence and predisposition, generating tremendous
interest in using common beans as a means for dietary strategies to prevent
disease22,34–36. Yet, no studies have examined how genetic variability that
already exists in common bean genotypes impacts the composition and
function of the human gut microbiome.

Commonbeanvarieties consumed todayexhibit adistinct, hierarchical
population structure resulting from two independent centers of domes-
tication, one in Central America (Mesoamerican gene pool) and a second in
South America (Andean gene pool). Common bean varieties descending
from these two initial gene pools showdistinct ecological characteristics and
geographic ranges, haplotypes, and allele frequencies and are called eco-
geographic landraces37. TheDurango, Jalisco,Mesoamerica, andGuatemala
landraces were domesticated from the Mesoamerican gene pool. While the
Chile, Nueva Granada, and Peru landraces were domesticated from the
Andean gene pool. In this study, we focused on the Middle American
Diversity Panel (MDP), which comprises inbred lines representing genetic
diversity across the Durango and Mesoamerican landraces of the Mesoa-
merican gene pool. The MDP includes six market classes defined by bean
size, shape, and color. Navy and black bean market classes were derived
from theMesoamerican landrace, while the pink, small red, pinto, and great
northern market classes were derived from the Durango landrace. Com-
positional genome analyses suggest only modest levels of introgression and
hybridization between the market classes, which likely reflects the historic
emphasis onmaintaining bean size, shape and color phenotypes within the
market classes38.

We recently reported the use of in vitro fermentation reactions to study
the effects of naturally occurring genetic variation in sorghum39–41 as well as
seed protein composition in maize42 on the human gut microbiome. We
miniaturized and automated the in vitro digestion and microbiome fer-
mentation (Automated in vitro Microbiome Screening—AiMS) used for
phenotyping, which allowed us to conduct genetic analysis using the AiMS
fermentations patterns as traits. In the current study, AiMS phenotyping
was usedwith a comprehensive genome-wide association (GWA) approach
to link genetic variants segregating in common beans to changes in the
structure and function of multiple human gut microbiomes during fer-
mentation. Our results show the population structure of common beans
explains a significant proportion of the variation in microbiome

fermentation patterns. GWAmodels incorporating controls for population
structure further identified Multiple Effect Loci (MEL) that enhance or
suppress the effects of variation associated with population structure. We
validated the allelic effects of a singleMELacross a largerpanel of humangut
microbiomes and further usedmolecular complementation for thisMEL to
demonstrate the observed microbiome phenotypes are likely driven by
variation affecting the biosynthesis of one or more saponins.

Results
Effect of population structure of common bean on human gut
microbiome composition and function
First, we examined whether gut microbiota composition and function in
AiMS fermentations would vary by population structure within the MDP.
Therefore, we selected four bean genotypes that represented the genetic
diversity within each landrace and market class, based on single nucleotide
polymorphism (SNP) marker data (Fig. 1A). The bean genotypes were
milled, steamed, and subjected to in vitro digestion and dialysis before being
used as substrates in an in vitro fermentation study using human fecal
microbiotas from twelve donors.

The fecal donors consisted of seven males and five females ranging in
age from 28-41 years (median: 28.5 years). These donors reported a wide
range of legume and macronutrient intakes based on food frequency
questionnaire responses (Fig. 1B). The donors clustered into three groups,
where S770 was in a group by themselves with very high sugar intake, and
S766, S769, S774, and S768 had generally higher legume intake and plant
protein intake comparedwith the othermicrobiomes. The fecalmicrobiotas
from these fecal donors also clustered into three groups (Fig. 1C, D): S770
was alone,with oneASVcorresponding to Succinivibrio (Pseudomonadota)
contributing to the location of this outgroup. S768, S771, and S772 had high
abundances of Prevotella, while seven other microbiomes had higher
abundances of Bacteroides.

Both landrace andmarket class had significant effects onmicrobiome-
wide ecological diversity metrics after in vitro fermentation across all
12 subjects (Fig. 2A; Supplementary Table S1). β-diversity metrics of indi-
vidual microbiomes showed significant microbiome-wide differences dri-
ven by landrace in six microbiomes while market class drove significant
differences in seven microbiomes (Supplementary Table S1). Specifically,
lines from the Mesoamerica landrace—particularly from the black bean
market class—shifted the microbiota composition to a greater degree than
Durango lines relative to a blank (Fig. 2B; Supplementary Table S2).
Landrace and market class also drove significant differences in α-diversity,
with lines from theDurango class resulting inhigherShannondiversity after
fermentation than those from Mesoamerica (Fig. 2C; Supplementary
Table S2). Great northern and pinto bean market classes maintained par-
ticularly high diversity relative to other market classes across all micro-
biomes (Fig. 2C; Supplementary Table S3).

At the taxonomic level, 23 genera showed significant differences
among landrace or market class (Fig. 2D, Supplementary
Tables S4 and S5). Most of the responsive genera belonged to two
butyrate-producing families: Lachnospiraceae (Anaerostipes, Blautia,
Coprococcus 3, Dorea, Fusicatenibacter, Lachnoclostridium, Roseburia,
and [Eubacterium] eligens group) and Ruminococcaceae (Faecalibacter-
ium, Ruminococcaceae NK4A214 group, Ruminococcaceae UCG-002,
Ruminococcaceae UCG-003, Ruminococcaceae UCG-005, and Rumino-
coccus 2). A single genus of the Ruminococcaceae family, Faecalibacter-
ium, accounted for the greatest microbiome-wide effects between
landraces and amongmarket classes, with higher abundances in Durango
lines—particularly pink and pinto—compared with Mesoamerica lines.

AiMS phenotyping of the common bean MDP
Next, we used the AiMS platform to phenotype 299 bean genotypes across
the entireMDP panel. In this experiment, using all 12microbiomes was not
feasible; therefore, S768, S770, and S776 were selected to cover the com-
positional diversity as well as the fecal donor dietary diversity across the 12
microbiomes (Fig. 1B–D). The effects of landrace and market class across
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the entireMDPpanel using the three selectedmicrobiomes showedmanyof
the same effects that were observed with selected bean genotypes across all
12 microbiomes. For example, lines from the Mesoamerica landrace,
especially black beans, shifted the microbiota composition to a greater
degree than Durango lines relative to a blank (Fig. 3; Supplementary
Tables S6–S8). Durango lines also resulted in higher Shannon diversity after
fermentation than those from Mesoamerica. At the taxonomic level, Pre-
votella 9 and Lachnoclostridium, were more abundant when treated with
Mesoamerica lines across the whole MDP, whereas Faecalibacterium,
Blautia, Anaerostipes, Ruminococcaceae UCG-002, Coprococcus 3, and
Dorea, where elevated in reactions with lines from the Durango landrace
(Fig. 3; SupplementaryTable S9).Faecalibacteriumwas again the genuswith
the greatest differences among market classes, with higher abundances
when microbiomes were treated with pink, pinto, or small red beans from
the Durango market class (Fig. 3; Supplementary Table S10).

Some taxa showed remarkable consistency across microbiomes. For
example, Faecalibacterium and Blautia showed higher abundances after
treatmentwithDurango lines comparedwithMesoamerica lines in all three
microbiomes, while Prevotella 9 and Lachnoclostridium showed higher
abundances after treatment with Mesoamerica lines (Fig. 3). Many other
genera showed consistent effects across two out of the three microbiomes.

Short and branched chain fatty acids were also quantified after fer-
mentation across theMDP panel. Acetate and butyrate showed the greatest
differences across landrace and market class, with acetate concentrations

elevated inmicrobiomes treatedwithMesoamerica lines, drivenmoreby the
navy bean lines than the black bean lines, while butyrate concentrations
were elevated in microbiomes treated with Durango lines, primarily due to
the pink colored bean lines (Fig. 3, Supplementary Tables S11 and S12).

Surprisingly interesting observationsweremadewhen examining the
variation in taxon abundances after treatment of microbiomes with dif-
ferent bean lines belonging to the samemarket class. Effects of thiswithin-
market class genetic diversity are illustrated in Fig. 4 on selected micro-
biome traits. These traits were selected to represent each of the major
groups of variables examined [diversity, composition (one genus from
each phylum), andmetabolites] that showed significant differences across
market classes. For some traits, including Shannon diversity, Bifido-
bacterium, Faecalibacterium, acetate, and butyrate, substantial variability
existed within market class—almost encompassing the entire range of
responses observed—with significant differences detected primarily
because of the large number of lines examined within market class. In
contrast, representative genera from Bacteroidota and Pseudomonadota,
Prevotella 9 and Sutterella, respectively, showed almost no variability
across or within market class and significant differences were primarily
driven by lines at the extremes of each market class. Thus, even with the
strong historical selection for seed size, shape, and color within a market
class, there is still tremendous biochemical and compositional variation
within market classes that can drive distinct patterns of fermentation by
the microbiome.

Fig. 1 | Genetic variability in common bean genotypes in the Middle America
Diversity (MDP) panel, dietary intake of fecal donors, and composition of the
fecal microbiota used in this study. A Principle component (PC) analysis biplot of
the single nucleotide polymorphism (SNP) marker data from the MDP by landrace
andmarket class with genotypes selected in the population structure study indicated;
B habitual legume and macronutrient intake of fecal donors as reported in the

Dietary History Questionnaire III; C principal coordinates (PCo) analysis biplot of
fecal microbiotas based on Bray-Curtis distance with vectors for the top 100 most
abundant amplicon sequence variants plotted; D α-diversity and abundance of
dominant genera in baseline fecal samples. In panels B and D, clustering was done
using Ward’s method based on Euclidean distance.
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Identifying heritable microbiota-active traits among common
bean genotypes
Next, we used AiMS based phenotypes to localize genetic variation in the
MDP that can affect microbiome phenotypes beyond the population
structure. Initially, 312 featureswere identifiedacross the threemicrobiomes
(148 bacterial ASVs, 92 genera, 45 families, 18 diversity metrics, and 9
SCFAs). In addition to these traits, we also generated “polymicrobial traits,”
which represented collective changes in abundances of more than one trait
(regardless of taxonomic relationships) during the fermentation of the
common bean genotypes (see Supplemental Methods, Supplementary
Table S13). The polymicrobial traits included 16 features generated from
Principal Component Analysis (PCA) of the covariance/correlation
matrices and eight features fromCanonicalDiscriminantAnalysis (CDA)of
raw and standardized coefficients.

Due to the large numbers of microbiome traits, we calculated broad-
sense heritability (H2) and excluded traits with H2 < 0.1. This resulted in 63
traits fromS768 (H2 0.42-0.1), 87 traits fromS770 (H2 0.56-0.1), and64 traits
from S776 (H2 0.69-0.1) (Supplementary Tables S14 and S15). Members of
Ruminococcaceae had the highest H2 values in the microbiome from S776
(genus Faecalibacterium 0.56, ASV6_Faecalibacterium 0.56, and
ASV246_Faecalibacterium 0.49) while members of the Prevotella and
Phascolarctobacterium were the most heritable in the microbiome from
S768 (ASV217_Prevotella 0.424, ASV1_Phascolarctobacterium 0.374, and

genus Phascolarctobacterium 0.369). The microbiome from S770 was
intermediate with members of Ruminococcaceae, Lachnospiraceae, and
Prevotellaceae, all having H2 values in the range of 0.40–0.56 (ASV5_Pre-
votella 0.56, genus Blautia 0.51, and genus Lachnospira 0.48). Importantly,
many of these highly heritable taxawere the same as or highly related to taxa
that showed significant effects of population structure within the MDP
panel (Fig. 2).

Lastly, the heritability of an important bacterial fermentation product,
butyrate, varied substantially among the three microbiomes, with values
ranging from 0.44 in S776, 0.26 in S770, and 0.10 in S768 (Supplementary
Table S14). The relatively higher H2 level in the S776 microbiome was
consistent with the high degree of heritability of butyrate-producing Fae-
calibacterium in this microbiome (highest H2 value of 0.56) and the high
degree of correlation between the abundance of this butyrate-producing
organism and butyrate levels in the fermentations (R = 0.93, p < 0.001).

Architecture of significant genetic associations identifies Multi-
ple Effect Loci
GWAS revealed at least one significant trait association marker for all but
one of themicrobiome traits with H2 ≥ 0.1 (n = 213 out of 214) (Bonferroni
adjusted p value < 0.05; LOD> 6.5; Supplementary Table S16). Several
locations in the genomecontainedclusters of proximal SNPsassociatedwith
>15 combined microbiome features from at least two subjects (Fig. 5A;

Fig. 2 | Diversity and abundance of bacterial genera after in vitro fermentation of
selected genotypes from the Middle American diversity panel with 12 human
microbiomes. A Principle coordinates (PCo) biplot based on Bray-Curtis distance
among samples; B Bray-Curtis distance from the blank after fermentation by
landrace andmarket class;C Shannon diversity of the microbiota after fermentation
by landrace and market class; D heatmap of differential genera by landrace and
market class; *p < 0.05, **p < 0.01, ***p < 0.001 indicate significant differences
between landraces (Kruskal-Wallis test with Benjamini-Hochberg-adjusted
p values); the boxplots span the 25th to the 75th percentile of the data with the center

line representing the 50th percentile (median) and whiskers showing extreme data
that are up to 1.5*the range of the box; no points were beyond this and therefore no
extreme outliers are plotted; in the heatmap, the asterisks are placed in the cell
corresponding to the landrace with the higher abundance; abcd boxplots or heatmap
cellsmarkedwith different letters are significantly different (Kruskal-Wallis test with
Benjamini-Hochberg-adjusted p values followed by Dunn’s test to identify sig-
nificant differences amongmarket classes, p < 0.05);N = 900 (12microbiomes X (24
bean genotypes + 1 control) X 3 replicates).
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Supplementary Table S17). TheseMELwere located on chromosomesPv01
(MEL-A), Pv03 (MEL-B), Pv05 (MEL-C), Pv06 (MEL-D), Pv07 (MEL-E
and MEL-F), and Pv08 (MEL-G) and are likely to have more globalized
effects on the microbiome than to loci associated with fewer microbiome
features. The sizes of the MEL were defined by linkage disequilibrium
analysis and ranged in length from 371 kb forMEL-G to 5.7Mb forMEL-F
(Fig. 5B). In most cases, a single SNP or a small number of adjacent SNPs
accounted formost GWAS signals within a givenMEL. For example,MEL-
C was largely defined by three SNPs within a 100-basepair region
(9,615,001 bp, 9,615,026 bp, and 9,614,950 bp) and accounted for 32/34 of
the significant associations in thisMEL. Inparticular, 21 different traitswere
associated with a single SNP at position 9,615,026 bp on Pv05 in MEL-C.

Metrics of α-diversity had significant associations to multiple MEL.
Shannon diversity was significantly associated with four MEL (MEL-B,
MEL-D,MEL-F,MEL-G; Supplementary Table S17). Pielou’s evenness had
the next highest significant associations at three to MEL-B, MEL-F, and
MEL-G. MEL-G had significant associations with three metrics of α-
diversity and twoMEL (MEL-D, MEL-F) had significant associations to α-
diversity in two microbiomes. Therefore, these may be locations of interest
for genetic variation in common bean that affects the microbiome at a

community level. Within individual MEL, variation in the MEL affected
groups of taxonomically related organisms in at least two microbiomes,
implying similar physiological effects ondistinctmicrobiomes. For example,
MEL-C affected different ASVs of the butyrate-producing families of
Lachnospiraceae and Ruminococcaceae in the microbiomes of S770 and
S776 (Supplementary Table S17). This similar taxonomic feature was also
shared byMEL-D, which also affectedmembers of these same families in all
threemicrobiomes. In fact,MEL-A,MEL-B,MEL-C, andMEL-Deachwere
associated with changes in the abundance of multiple members of the
butyrate-producing family,Lachnospiraceae, in themicrobiomes of all three
donors. Similarly, MEL-C, MEL-D, MEL-E, and MEL-F had shared effects
on multiple members of the butyrate-producing Ruminococcaceae in all
three donors.

Each MEL included significant associations with one or more poly-
microbial traits (Supplementary Table S17). As expected, within a given
microbiome, there were many overlapping associations where the same
SNPwas significantly associated with the individual taxon that was also the
main driver of the significant polymicrobial trait. For example, overlapping
associations of individual and polymicrobial traits from S776 to MEL-C
showed hits of the polymicrobial trait HypCorrPC2 (driven largely by

Fig. 3 | Diversity and abundance of bacterial genera andmetabolites after in vitro
fermentation of 299 genotypes from the Middle American diversity panel with
three human microbiomes. Bray-Curtis distance from the blank indicates the
distance from the blank after fermentation; for microbiota composition, all 23
genera that were significant in the population structure study (Fig. 2) are shown (56
other genera showed significant differences and can be found in Supplementary
Tables S9 and S10); “All” panels refer to the average across individual microbiotas
(S768, S770, and S776); heatmap cells marked with asterisks indicate this landrace

was significantly higher than the other landrace within panel and row (Kruskal-
Wallis test with Benjamini-Hochberg-adjusted *p < 0.05, **p < 0.01, ***p < 0.001);
abcd heatmap cellsmarkedwith different letters are significantly different within panel
and row (Kruskal-Wallis test with Benjamini-Hochberg-adjusted p values followed
by Dunn’s test to identify significant differences among market classes, p < 0.05);
N = 3204 (n = 1056 per microbiome with 36 genotypes replicated seven times and
the remainder plus fecal and fermented blanks replicated three times).
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Fig. 4 | Genetic variation between and within market classes for selected
microbiome variables. Average Shannon diversity, log2 rarefied abundances, and
concentrations of selected variables from fermentations of common bean lines
across the entire MDP; bean genotypes from each market class resulting in the

highest and lowest value and the value closest to the market class mean for each
variable are labeled; the horizontal lines withinmarket class indicate themean across
the whole market class; significant differences among market classes are shown in
the “All” columns in Fig. 3.

https://doi.org/10.1038/s42003-025-09089-2 Article

Communications Biology |          (2025) 8:1690 6

www.nature.com/commsbio


Faecalibacterium, Coprococcus 3, LachnospiraceaeUCG-004) as well as the
individual taxonomic traits of multiple ASVs of Faecalibacterium and
Lachnospiraceae. The same pattern was also present in MEL-D, where a
SNP at position 1,531,686 bp on chromosome Pv06 had significant asso-
ciations with 17 different microbiome traits. These traits included Faecali-
bacterium (in S770 and S776microbiomes) and several polymicrobial traits,
including PCs (GenCovPC1, HypCorrPC1, HypCovPC1) and CDs,
(StdCD2, StdCD4) that each included Faecalibacterium as one of the
organisms comprising a substantial proportion of the variance. In contrast,
associations of polymicrobial traits to genetic regions outside MEL con-
tained none or only a small number of individual trait associations.

Lastly, the short chain fatty acids acetate, propionate, andbutyratewere
shown tobe significant inmultipleMEL.Acetatewas significant infiveMEL
(MEL-B, MEL-C, MEL-D, MEL-E, MEL-F) and propionate (MEL-C) and
butyrate (MEL-E) were significant in oneMEL each. Not surprisingly, these
SCFA had overlapping hits within MEL to SCFA-producing taxa. For
example,MEL-C, which was significant for propionate, was also significant
for the propionate-producing genera, Bacteroides and Prevotella, while
MEL-E, which was significant for butyrate, had several genera and ASVs of
butyrate-producing bacteria significant such as Faecalibacterium, Rumi-
nococcaceae spp., and Lachnospiraceae spp. (Supplementary Table S17).
Altogether, these microbiome features show that genetic variation in

common bean can broadly influence a microbiome and may, therefore,
represent unique opportunities for the discovery of novel microbiome-
active traits.

Genetic variation in MEL-C on Pv05 drives convergent micro-
biome responses
To further examine relationships between genetic variation in a MEL and
the microbiome phenotypes, we focused on the 933 kb region of MEL-C
(Fig. 6A). Three SNPs accounted for 32 of the 34 significant associations
within MEL-C, with a single SNP at Pv05:9,615,026 bp accounting for
21 significant associations alone, themost associationsof anySNPacross the
genome (Supplementary Table S17). The minor G allele at
Pv05:9,615,026 bp varied in frequency across the different market classes,
being absent in great northern and low frequency in pinto, small red, and
black bean classes (Fig. 6B). Allelic effects of the associated taxa from
S770 showed that beans homozygous for the minor G allele at
Pv05:9,615,026 bp exhibited an increased abundance of Prevotella, Blautia
(Lachnospiraceae), Anaerostipes (Lachnospiraceae), and Faecalibacterium
(Lachnospiraceae), and corresponding decreases in abundances of Bacter-
oides andCoprococcus (Fig. 6A). Themicrobiome fromS776 showed similar
responses, with taxa from Ruminococcaceae and Lachnospiraceae having
higher abundances associated with the minor G allele along with the

Fig. 5 | Localization ofMEL on the common bean genome. ACircular stacked bar
plot of the number of microbiome traits that were significantly associated with SNPs
in the common bean genome (Bonferroni adjusted p value < 0.05; LOD > 6.5; SNPs
were binned into 0.1 Mbbin size).MEL aremarked across the genome as (A–G). The
inner rings show the SNP density in each bin and the pericentromeric regions.

B Linkage disequilibrium heatmaps surrounding the seven highly pleiotropic loci
and defining boundaries of the MEL (A–G). Stacked bar plots represent the number
of significant traits from each microbiome and are centered over their respective
significant SNPs. The dashed boxes show the boundaries that comprise the MEL.
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polymicrobial trait GenCov.1 (which was driven largely by [Eubacterium]
hallii group) (Fig. 6A). Notably, the shared allelic effects of the G allele at
Pv05:9,615,026 bp on members of Ruminococcaceae from microbiomes of
S770 and S776, increased abundances of Faecalibacterium (S770), and
increased abundances of the Ruminococcaceae (S776, particularly Rumi-
nococcaceae UCG-002) illustrate convergent allelic effects at this locus
across diverse microbiomes (Fig. 6A). Additionally, the overlapping taxo-
nomic associations between [Eubacterium] hallii group and the poly-
microbial trait GenCov.1 (driven by [Eubacterium] hallii group) further
strengthen the significance of MEL-C.

The overall allelic effect of Pv05:9,615,026 bp on the individual
microbiome traits was generally shared across market classes (as would be
expected from inclusion of common bean population structure in the
GWAS model) but in some instances the allelic effects were muted within
one or two market classes. This combination of effects from population
structure and genetic variation at a significant SNP is depicted with selected
traits from each microbiome in Fig. 6C, where allelic effects for the SNP at
Pv05:9,615,026 bp are plotted for the entireMDPandbymarket class. Thus,
the overall effects of variationwithin aMELon a givenmicrobiome trait is a
culmination of effects from population structure and allelic variation.

Validation of allelic effects at MEL-C across 12 microbiomes
Common bean lines representing each market class were pooled within
market class based on their genotype the SNPmarker at Pv05:9,615,026 bp
and fermented with the original 12 microbiomes to test whether the allelic
effects of MEL-C in three microbiomes would persist in additional human
microbiomes. Thirty-twoof the 34microbiome traits thatwere significant at
MEL-C in the GWAS were analyzed (i.e., all traits except SCFA).
Remarkably, when averaged across the 12 microbiomes, 25/32 of the traits
showed allelic responses in the same direction as the MDP panel (Fig. 7A).
The similarity was also apparent in the correlation between the average log2
fold change observed for each taxon between beans carrying different alleles

of MEL-C in the original MDP data (averaged for lines having each geno-
type at Pv05:9,615,026 bp) and the lines pooled by genotype at
Pv05:9,615,026 bp across the 12 microbiomes (Fig. 7B). Thus, the effects of
allelic variation Pv05:9,615,026 bp that were initially detected with three
diverse microbiomes also translated across additional microbiomes in lines
pooled by genotype, illustrating the repeatability of the effects of genetic
variation at this locus on diverse microbiomes.

Molecular complementation of allelic effects at MEL-C
The SNP at Pv05:9,615,026 bp that accounted for most of the signal at
MEL-C was located against the common bean reference genome, P.
vulgaris G19833 (v2.1)43. This SNP was within a tandem array of seven
genes encoding homologs of 11-oxo-β-amyrin-30-oxidase (amyrin
oxidase) (Fig. 6A), a cytochrome P450-type oxidase that is involved in
the biosynthesis of saponins44. Thus, we tested the hypothesis that var-
iation in saponin synthesis could explain the broad effects of MEL-C on
the human gut microbiome using molecular complementation with the
saponin precursor, glycyrrhetinic acid (GlycA), and its glycosylated
derivative, glycyrrhizin (GlyzN). GlycA or GlyzN were spiked into bean
lines carrying the major genotype (AA) at 1% and subjected to in vitro
fermentation to determine if these lines would mimic the effects of the
minor genotype lines. Only microbiomes S770 and S776 were assayed
because microbiome S768 only had two significant marker-trait asso-
ciations at Pv05:9,615,026 bp. After fermentation, the effects of GlycA
mimicked the directionality of the allelic effects of the minor allele at
Pv05:9,615,026 bp, albeit in many cases highly amplified, for 8/11 traits
that were significant in microbiome S770 and 14/20 traits that were
significant in microbiome S776 (Fig. 8A). GlyzN showed some of the
same allelic effects of the minor allele at Pv05:9,615,026 bp, but not
nearly as many as GlycA. Correlation analysis corroborated the similar
allelic effect in the MDP versus the complementation study with GlycA
and not GlyzN (Fig. 8B).

Fig. 6 | MEL-C. AHeatmap showing the LOD scores for microbiome features with
significant marker-trait associations within MEL-C across all three subjects; red
indicates that the effect of the minor allele on that trait (feature) is higher than the
major allele; blue indicates that the effect on that trait is lower in lines with theminor
allele than the major allele. The bottom of the heatmap shows the genomic region of
Pv05 corresponding to genomic positions 9,400,000-10,000,000 bp in the reference

genome P. vulgarisG19833 (v2.1). B Beans depicting the proportion of lines in each
market class of the MDP carrying genotypes associated with the major and minor
GWAS alleles; each bean represents 10% of the lines of that market class. C Allelic
effects of major and minor alleles for three strongly affected traits at MEL-C SNP
position 9,615,026 bp plotted by genotype and by genotype X market class.
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Discussion
Historical breeding and contemporary economic pressure to produce
common beans with defined size, shape, color and organoleptic properties
has led to distinctive biochemical composition across and within different
populations and market classes of this crop45–47. Our study highlights how
these efforts inadvertently converged to create IIGEs affecting the human
gut microbiome and likely the gut ecosystem.

Within the context of the MDP population structure, the landraces,
Durango and Mesoamerica, as well as the individual market classes within
each of these landraces, induced differential effects on the AiMS fermen-
tation patterns across diverse human microbiomes. Two abundant gut
microbiota families, Ruminococcaceae and Lachnospiraceae, which contain
many organisms that have been associated with positive human health
outcomes48, were particularly affected by landrace and market class. Typi-
cally, both familiesweremore abundant following the fermentationof beans
frommarket classes of the Durango landrace comparedwithMesoamerica.

Importantly, we also detected substantial variation in microbiome
fermentation patterns across and within market classes. For example, on
average, pink beans, led to the highest abundance of Faecalibacterium, a
genus that contains beneficial species with desirable immunomodulatory
characteristics that reduce susceptibility to inflammatory bowel disease49

and susceptibility to tumors inmousemodels50, relative to the other market
classes tested. However, even within pink beans, substantial variation was
noted. For example, the pink bean cultivar (cv.) ‘Yolano’ drove high
abundances of Faecalibacterium, while cv. ‘6R-42-3’ led to only moderate
abundances of this beneficial genus, even compared with other market
classes. Thus, these cultivars would be good candidates for clinical studies to
determine the differential effects of pink bean consumption on the abun-
dance of Faecalibacterium, especially if this leads to distinctive health out-
comes. If so, there could be added commercial value and health benefits in
production of cv. ‘Yolano’. It is also worth noting that this microbiome trait
could be introgressed into other market classes, such as navy beans, which
generally supported far lower levels ofFaecalibacterium, to enhance the gut-
health-promoting activity of navy beans.

Because ourGWASmodel incorporated population structure,wewere
able to identify loci where genetic variation affected themicrobiome beyond
the context of population structure. Across the common bean genome, we
identified seven MEL that led to significant variation in multiple microbial
taxa or metabolites across two or three human gut microbiomes. These

regions are most likely to contain genes involved in the production of
microbiota-active biochemical components within the beans.

To demonstrate how our genetic approach may be used to identify
which components of common beansmay cause significant impacts on the
microbiome, we further examined one MEL, MEL-C. The allelic effects of
this MEL on microbiome traits were validated in multiple additional
microbiomes using common bean lines pooled by allele. MEL-C contained
one SNP, Pv05:9,615,026 bp, with the most marker-trait associations. The
SNPwas adjacent to a tandem array of seven genes encoding a key enzyme
in saponin biosynthesis. Saponins are triterpenoid plant metabolites that
have awide range of biological activities51.As adietary component, saponins
are noted for their beneficial effects of enhancing immunity, decreasing
blood lipids, reducing cancer risks, and reducing blood glucose responses18.
Saponins have also been reported to have inhibitory effects on bacterial
species, most often noted for pathogenic microbes such as Staphylococcus
aureus and pathogenic lineages of Escherichia coli52.

Variation in the type and abundance of saponins has not been sys-
tematically studied in P. vulgaris L., but these molecules are known to be
most concentrated in the seed coat, and in small-scale studies, substantial
variation in saponin concentration has been reported between lines53,54. For
example, saponin characterization from different lines of black beans have
shown a similar array of group A and group B saponins in the seed coat,
primarily soyasaponinAf, soyasaponin ag, and soyasaponin bg, whereas the
profile from a single line of pinto beans showed soyasaponin A2, soyasa-
ponin I, soyasaponin V, soyasaponin bg, and soyasaponin gg55.

Although we did not know the saponin concentration or composition
of the common beans in our study, we were able to demonstrate the
importance of saponins on the gut microbiome response at MEL-C using a
molecular complementation approach. We showed that genotypes homo-
zygous for themajor allele at Pv05:9,615,026 bpmimicked the directionality
of the allelic effects of the minor allele after spiking with a model sapogenin
(GlycA). In contrast, spikingwith themodel saponin, GlyzN, did notmimic
the directionality of the allelic effects of the minor allele. Although spiking
genotypes homozygous for themajor allele atPv05:9,615,026 bpwithGlycA
didmimic the directionality of the allelic effects of theminor allele, inmany
cases the effects were highly amplified, suggesting that we may have spiked
with excessive GlycA.We spiked the genotypes with the GlycA at 1% of the
beanweight, whichwas based on Shimelis andRakshit56, who reported total
saponin concentrations of 0.1–1% in processed beans. However, other

Fig. 7 | Validation of allelic effects at MEL-C.
A Heatmap of the log2 fold change in relative
abundance of significant microbiota traits from
MEL-C from GG (minor) versus AA (major) gen-
otypes in the Middle American Diversity Panel
(MDP) and in pools of GG versus AA genotypes
fermented using microbiotas from 12 subjects
(Validation); “All” refers to the average across all
microbiotas in the validation study; B scatter plot of
the MDP and All columns in the heatmap in panel
A; Spearman correlation coefficient and p value are
indicated; shaded region represents the 95% con-
fidence interval of the regression line.
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reports show values ranging from 0.02 to 4%57. Thus, our approachmakes a
strong case for examining the effects of saponin concentration and com-
position on the response of the gut microbiome to beans, with the con-
centration of the core sapogeninmost likely responsible for themicrobiome
effects rather than the attached sugar moieties.

Importantly, our approach incorporated milling and cooking
(steaming) steps before in vitro fermentation of the bean genotypes.
Cooking beans is critical to remove antinutritional factors, such as trypsin
inhibitors and phytic acid, and increase digestibility of protein and starch,
prior to digestion and dialysis. However, themilling and cooking procedure
that we employed was somewhat different from how beans are normally
prepared. The steps of soaking and boiling in excess water, which are more
typical, have been shown to have negative impacts on the concentrations of
saponins andmanyother biochemical compounds that likely impact the gut
microbiota58. For example, in a review of more than 15 studies on the effect
of processing on saponin concentrations in beans, the soaking step was
reported to reduce saponin concentrations by about 5-20%, depending on
soaking time and water hardness, and then boiling the beans further
decreased the saponin concentration by an additional 15-25%57. Most stu-
dies attribute these losses to the heat lability of saponins30,57,59; however,
processing methods such as extrusion and baking, which involve extensive
heating, result in little to no saponin degradation60. Therefore, the losses
experienced during soaking and boiling aremore likely due to leaching into
the soaking or boiling water rather than true degradation. In our study, the
cookingmethodemployeddidnot involvefilteringor removing any soaking
water; however, after the digestion protocol there was a dialysis step that
could have resulted in loss of saponins. Nevertheless, despite any losses
experienced during dialysis, presumably enough saponins were maintained
in the bean digesta for us to detect the strongmicrobiome signal at MEL-C.

While saponins may be more heat stable than many reports indicate,
heating can change the saponin composition. For example, one class of
saponins contain 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one
(DDMP) ether-linked to a sapogenol B backbone. Heating can remove the
DDMP moiety through an elimination reaction, leading to a decrease in
DDMP saponins and an increase in type B saponins61, which would likely
affect the types of microorganisms that can metabolize this compound.

More importantly for our study, saponins can also lose their sugar
moieties during cooking62. This structural changewould likely have a strong
effect on microbiome traits that were associated with MEL-C, since we
found that our model sapogenin mimicked allelic effects at this MEL while
the model saponin did not. This emphasizes the importance of cooking on
the microbiome response to beans. Future studies examining the influence

of processing on saponin composition in beans and how this affects the gut
microbiota composition would be appropriate.

Although our study identified several genetic regions in the common
bean genome that likely affect the gut microbiome and provided one
example of how our genetic approach may be used to identify specific
chemical compounds of beans that may cause significant impacts on the
microbiome, our study is not without limitations. First, our study used an
in vitro approach to examine the effects of bean genotypes on the gut
microbiome. In vitro tests lackmany processes that are present in vivo, such
as nutrient absorption offer an affordable way for scalability of hypothesis
testing and studying the direct effects of dietary components without con-
founding effects of other dietary components63. Future studies should
examine the effects identified in this study in in vivo models and in human
feeding trials.

Our in vitro test also used a single timepoint after fermentation for
phenotypic analysis. The use of multiple timepoints throughout fermenta-
tion may help confirm or describe new MEL. Moreover, to validate these
microbiome-trait associations and obtain a more complete picture of the
genetic architecture in common bean, follow up studies using specialized
common bean populations and in vivo feeding studies need to be done.

Apart from the limitations to the in vitro methodology, we also used
relative abundance data for our phenotyping. The nature of relative abun-
dance microbiome data generated from our AiMS phenotyping precludes
us from determining whether significant allelic effects are a consequence of
growth stimulation of certain microbes or inhibition of other microbes.
Quantitative techniques such as plating and qPCR will be needed in the
future to identify absolute abundances of target microbes of interest in
response to the bean genotypes.

Finally, there were clear differences in the GWAS association patterns
acrossmicrobiomes.While thiswasnot unexpected, it illustrates that noone
microbiome is likely to be an effective proxy for identifying all genomic
intervals in food plant genomes. However, using the threshold of multiple
effects (multiple microbes) on two or three microbiome donors for the
definitionofMEL, led to identificationof lociwhere variationhaspotentially
broad effects across diverse human microbiomes.

This demonstration of localizing genetic variation in common bean
that has significant effects on the human gut microbiome creates a new
strategy to capitalize on IIGEs and enhance humanhealth through breeding
of common beans. We showed not only that population structure has a
strong influence on how the gut microbiome responds to beans, but sub-
stantial variation could be identified within landrace or evenmarket class of
beans. Thus, certain cultivars identified as having desirable effects on the gut

Fig. 8 | Molecular complementation with glycyr-
rhetinic acid (GlycA) and glycyrrhizin (GlyzN).
A Log2 fold change in relative abundance of sig-
nificant microbiota traits from MEL-C for micro-
biotas from subjects 770 and 776 (S770, S776) from
GG (minor) versus AA (major) genotypes in the
Middle American Diversity Panel (MDP) and in
pools of seed from AA genotypes with the addition
of GlycA or GlyzN (1% weight/weight of seed
powder) relative to the AA genotype pools alone;
B scatter plots of the data shown in the heatmap in
panel (A) comparing the MDP data versus the
GlycA and GlyzN-spiked samples; Spearman cor-
relation coefficient and p-value are indicated; shaded
region represents the 95% confidence interval of the
regression line.
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microbiota could be used in breeding programs to improve the impact of
poorer, but agronomically adapted, lines on the gut microbiota. In this
study,we also identified saponins as apotential class of compounds that vary
in beans and have strong impacts on gut microbes that have been identified
as being beneficial to human health. Future studies should examine the
effects of varying concentration and composition of these compounds
impacts the human gut microbiota with consequences for human health.

Materials and methods
Middle American diversity panel
Common beans were grown at the University of Nebraska Panhandle
Research and Extension Center in Scottsbluff, NE, at the Mitchell Ag Lab
(41° 56.6′N, 103° 41.9′W, 1240m elevation). A total of 299 common bean
genotypes representing the Middle American gene pool64 were obtained
from a single growing season (Middle American Diversity Panel; MDP;
Supplementary Table S18). The MDP cultivars comprised 198 genotypes
from the Durango gene pool and 101 genotypes from the Mesoamerican
gene pool. Each plot consisted of two 7.6m rows spaced 0.60m apart. The
plots received 390mm of water (irrigation+ precipitation). Genotype data
for the MDP was generated from genotyping by sequencing using single
reads mapped against the G19883 reference genome65.

Selection of human microbiomes
Fecal sampleswere collected from 12 adult participants whowere at least 19
years old with no known gastrointestinal disease, had not taken antibiotics
in the last six months, and were not routine users of probiotic or prebiotic
supplements. Collection of fecal samples from participants followed
approved study protocols by the University of Nebraska-Lincoln’s Institu-
tional Review Board (Approval Number: 20160816311EP). Each partici-
pant provided written informed consent before performing any study
protocols. Additionally, all participants completed the online Diet History
Questionnaire III (DHQ III) with questions about dietary recall in the past
year with portion size66.

One fecal sample was collected from each subject using a commode
specimen collection device (Fisher Scientific, Waltham, MA) and was
processed under anaerobic conditions (5%H2, 5%CO2, and 90%N2) in the
laboratory within two hours of collection. Samples were first diluted in
phosphate-buffered saline containing 10% glycerol and homogenized using
the BagMixer® 400 CC® and FILTRA-BAG® blender bags to remove large
particulates. Filtered fecal homogenates were aliquoted and immediately
preserved at−80 °C until the time of fermentation.

Automated in vitro microbiome screening for microbiome
phenotyping
To simulate human digestion and study genetic variation that impacts
fermentation patterns by the human colonic microbiome, all common
beans were subjected to the miniaturized, high-throughput Automated
in vitro Microbiome Screening (AiMS) platform developed in our labora-
tory and previously described39. Importantly, each common bean genotype
by donor microbiome fermentation reaction was performed in three tech-
nical replicates.

Briefly, each common bean genotype was milled using the Geno/
Grinder 2025 (SPEX SamplePrep, Metuchen, NJ) integrated with Thermo
Scientific VALet robotic arm, and 20mg flour from each common bean
genotype was dispensed into 1mL 96-well plates using the Chemspeed Flex
PowderDose (ChemspeedTechnologies, Füllinsdorf, Switzerland). Samples
were hydrated with 425 μL molecular biology grade water for 15min.
Samples containingnobean sampleswere alsoprepared asblanks.Then, the
plates were immediately placed on a rack situated 5 cm above boiling water
inside of a closed cooking pot and steamed for 20min.

After cooking and cooling, the gastric phase was initiated by adding
45 μL of 500mMHCl+ 10% pepsin (w/v) (Sigma-Aldrich, St. Louis, MO)
and incubated at 37 °C for one hour. The small intestine digestionphasewas
initiatedby adding25 μl of 0.5Msodiummaleate buffer (pH = 6, containing
1mMCaCl2) and 40 μl of 0.5MNaHCO3 to bring the pH to 6.0-6.5. Forty

microliters of 12.5% (w/v) pancreatin (Sigma-Aldrich, St. Louis, MO) in
water and 4 μl amyloglucosidase (3260U/mL; Megazyme, Bray, Ireland)
was added. The plates were incubated at 37 °C for six hours.

Digested samples were transferred to a 96-well DispoDialyzer plate
(MWCO 1,000; Harvard Apparatus; Holliston, MA) containing magnetic
stirring discs. The plates were dialyzed in five gallons of distilled waterwhile
stirring on a stir plate (220 rpm) along with a magnetic tumble stirrer
positioned vertically next to the bucket (100 rpm) so stirring would also
occur in the wells. Dialysis proceeded for 72 h at 4 °C, and dH2O was
changed every 12 h. Following dialysis, samples were transferred to a 1mL
96-well plate containing stainless steel stirring discs.

In vitro batch fermentations were performed inside an anaerobic
chamber (containing 5% H2, 5% CO2, 90% N2). Digested plates were
thawed, and 65 μL of 10X fermentation media39 and 35 μL Oxyrase (Oxy-
rase, Inc, Mansfield, OH) was added to each well. After one hour to reduce
the oxygen concentration, samples were inoculated with 65 μL of 1:10
diluted fecal slurry and incubated anaerobically at 37 °C for 16 h. After
fermentation, plates were centrifuged at 4000 x g for 10min at 4 °C to
separate bacterial pellets (for microbiome analysis) and supernatants (for
SCFA analysis). Plates were stored at –80 °C until processing. Raw fecal
slurrieswere also saved fromeach subject formeasurements of baseline (0-h
fermentation).

Microbiome compositional and functional analysis
DNAwas extracted to assess themicrobiota’s taxonomic composition. PCR
products from the V4 region of the 16S rRNA gene from each sample were
subjected to 2 × 250 bp sequencing on the Illumina MiSeq platform and
analyzed. Using DADA267, sequences were dereplicated into amplicon
sequence variants (ASV), and taxonomy was assigned based on the
SILVA132 database68. Samples were rarefied to a sampling depth of
7,197 sequences. QIIME2 and Phyloseq69 were used to generate tables for
taxonomic rankings, including phylum, family, genus, ASV, and diversity
estimates (α and β). Taxa present in less than 10% of the samples were
removed.

To determine themetabolic responses of themicrobiomes to common
beans, SCFA (acetate, butyrate, propionate) and BCFA (iso-butyrate, iso-
propionate, iso-valerate) were extracted into diethyl ether from the fer-
mentation supernatants and analyzed by gas chromatography70. Briefly,
0.1mL internal standard (22 μL of 7mM 2-ethylbutyric in 2M potassium
hydroxide) was added to each sample in the 96-well plate. Then, 0.2mL of
the spiked fermentation supernatant was transferred to a 2mL screw cap
tube, and 0.1 mL of 9M sulfuric acid and 0.16 g of sodium chloride was
added.After vortexing, 0.2mLof diethyl etherwas added, and samples were
shaken and centrifuged at 10,000 × g for 5min to help separate the aqueous
layer. Lastly, 1 μL of the diethyl ether phase was injected into a gas chro-
matography system (Clarus 580; PerkinElmer, Waltham, MA) equipped
with a fused silica capillary column (Nukol 30m x 0.25mm inner diameter
x 0.25 µm film thickness; Sigma-Aldrich, St. Louis, MO). Quantification of
S/BCFAwas done by calculating response factors for each analyte relative to
2-ethylbutyric acid using injections of pure standards. Results were
expressed as mmol/g undigested bean.

MDP population structure and effects on microbiomes
To test the variability inmicrobiota responses toMDPpopulation structure,
four genotypes from each of the six major market classes of the MDP
(Durango Landrace: great northern, pinto, pink, small red; Mesoamerican
Landrace: black, navy) were selected for in vitro fermentations (n = 24)
using themicrobiomes collected from all 12 human subjects. The genotypes
were selected to represent variation in single nucleotide polymorphism
(SNP) marker data within and between landraces and market classes.
TASSEL71 was used to generate principal components of the MDP from
SNPgenotype data, andpopulation structurewas visualized using ggplot272.
The selected genotypes also had variations in origin and date of release
(Supplementary Table S18). Additionally, control wells that did not contain
any common bean flour but were inoculated with fecal slurries and
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underwent the in vitro fermentation process were included in each plate.
Thus, this experiment generated 900 total samples (12 microbiomes X (24
bean genotypes + 1 control) X 3 replicates). All genotypes and technical
replicates per microbiomes were randomized across the wells of one indi-
vidual 96-well plates (one microbiome/plate).

GWAS experimental design
Threemicrobiomeswere selected based on their diverse baseline taxonomic
composition and differential fermentation patterns across the subset of the
MDP described above. These three microbiomes were then used in AiMS
fermentations to test the effects of all 299 common bean genotypes of the
MDP, with each bean line x microbiome reaction being done in triplicate.
The common bean genotypes were randomized in an augmented partially
replicated (p-rep) design. Overall, all genotypes were randomized to wells
across 4 × 96-well plates/design replicate in an incomplete block design and
replicated a minimum of three times for each microbiome used in the
GWAS (12 plates/microbiome). Each block of four plates contained fer-
mentations from one microbiome. Twelve genotypes were randomly
selected (without replacement) andpartially replicated for eachof thedesign
replicates. Selected genotypes were assigned to wells within a plate using a
partially replicatedα-lattice design, arranged in a 3 × 4 rectangle across rows
and columns within and across plates, within a block of four plates73. Out of
the total 299 genotypes, across the three microbiomes, 36 were replicated
seven times and the remaining 263 were replicated 3 times. Control wells
that did not contain any common bean flour but were inoculatedwith stool
microbiomes and underwent the in vitro process were included in
each plate.

Phenotypic analysis of microbiome traits
Microbiome phenotypes were defined from the taxonomic and metabolic-
based output from theAiMSplatformandwere treated as “traits” associated
with the common bean genotypes. To prioritize those individual taxa that
would yield reproducible results, we filtered and used taxonomic traits
(ASVs, genera, families) that were set to a threshold of a 0.15% relative
abundance across all samples by subject and then normalized by log2
transformations. The transformed abundances of the individual taxa were
used directly as traits in the GWAS.

Alpha-diversity metrics (Chao1, Faith’s Phylogenetic Diversity,
Observed ASVs, Pielou’s Evenness, Shannon, Simpson) were calculated for
each fermentation reaction using the QIIME2 platform as described above.
Individual SCFA concentrations (acetate, butyrate, propionate; mmol/g
bean sample) from each sample were used directly as traits in the GWAS
analysis.

Polymicrobial traitswere created for each subject to be used in addition
to univariate taxon abundances in the GWAS. For each microbiome, only
the most abundant genera that had an average sum abundance accounting
for at least 90% of the overall abundance across all fermentations was used.
Therewereninegenera inS768, 17genera inS770and15genera inS776 that
were used to define the polymicrobial traits. The relative abundances of each
genus were transformed using a centered log-ratio (CLR) transformation.
MANOVA was performed on the transformed variables to evaluate the
variability between the genera and the fixed effects of common bean gen-
otype, in vitro digestion batch, and the plate (within each of the three
digestion batches). The analysis was fit using the PROC GLM procedure
within SAS 9.4 (SAS Institute Inc., 2015).

Output from the MANOVA included: (1) the genotype hypothesis
sums of squares and cross-products (SSCP) matrix, (2) the error SSCP
describing the variance in the genus abundances after accounting for the
fixed effects and (3) a canonical discriminant analysis (CDA). Briefly, the
purpose of CDA is to find a few linear combinations across the taxa
(canonical components) that separate the genotypes bymaximizing among
genetic sums of squares of the components to the within sums of squares of
the components74. The genotypic (hypothesis) covariance matrices were
calculated by taking the SSCPmatrices and dividing by their corresponding
degrees of freedom and correlation matrices were calculated directly from

their corresponding covariancematrices. In addition, the genetic covariance
matrix, which is the multivariate analogy to the univariate broad sense
genetic variance, was computed by substituting the observed genotype
hypothesis covariance matrix for the expected mean squares and cross
products matrix for genotype hypothesis covariance matrix and solving for
the genetic covariance matrix.

Principal component analyses (PCA) for the polymicrobial traits were
conducted in R Statistical Software75 for each of the genotype and genetic
covariancematrices and their respective correlationmatrices. CDA and the
canonical scores were based on both the genetic hypothesis covariance and
correlation matrices. The loadings from all models (both PCA/CDA load-
ings) were then used as weights in linear combinations of genera, creating
the corresponding scores for each observation in the data set. Scores were
calculated by multiplying the vector of loadings (components) by the cen-
tered (or centered and scaled) CLR abundance values. Centered data was
used to calculate scores for the covariances, and the centered and scaled
CLR-abundances were used for the correlations. Canonical discriminant
loadings (raw and standardized canonical coefficients) came directly out of
theMANOVA, and score variableswere directly calculated from these. Both
PCA and CDA resulted in total loading and score vectors, where is the total
number of taxa included in the initial MANOVA. The first vector in each is
the linear combination of taxa that accounts for the most variability overall
in the input data.Only the top four componentswere used to calculate score
variables for each of the analysis types and data combinations. There was a
total of 24 polymicrobial microbiome score variables with values for each
observation coming from the 16 total PCA components (4 components for
each of 4 covariance/correlation data sets) and 8 total CDA components (4
components from each of the raw and standardized coefficients) as
described above. The six polymicrobial methods used in the GWAS were
termed: hypothesis covariance, hypothesis correlation, genetic covariance,
genetic correlation, raw CDA, and standardized CDA.

GWAS of phenotypes from AiMS
Principle components (PCs) and the centered kinship matrix were calcu-
lated in TASSEL v5.2.69 for use in GWAS71. Best linear unbiased predictors
(BLUPs) were calculated for each microbiome trait using mixed model
equations in R Statistical Software within the sommer package v4.1.176. The
first three PCs of the SNP data were used as fixed effects, the kinshipmatrix
as a covariate, and the random effects, whichwere common bean genotype,
in vitro digestion batch, plate, row within the plate and column within
the plate.

For the genetic associations, SNP data for the commonbean genotypes
of the MDP was obtained from previously published data65. GWAS was
performed using SNPs withminor allele frequency >0.05, which resulted in
132,314 SNPs beingused. For eachmicrobiome trait, GWASwas conducted
by subject using the BLUPs for each phenotype.

A conservative estimate of broad sense heritability (H2) was calculated
by dividing the variance explained by common bean genotype by the var-
iance explained by genotype+ all other effects, including the residual error.
Separate GWAS analyses were conducted for each microbiome feature
passing a heritability filter of H2 > 0.1 threshold. Based on this cutoff, 170
traits were removed, leaving 215 total microbiome traits. GWAS was per-
formed using the iterating Fixed and Random Model Circulating Prob-
ability Unification (FarmCPU) algorithm77 as implemented within the
rMVP package (v1.0.4)78; in R using the first five PCs calculated from the
genetic marker data as covariates. Association results for SNPs from each
GWAS were compiled, and Manhattan plots were generated for each trait
using ggplot2 in R72. The significance threshold for SNPs from the Farm-
CPU output was set using a strict Bonferroni correction (p
value < 3.7 × 10–7).

Defining the borders of multiple effect loci
MEL were initially defined using a binning approach where each bin
comprised 0.1Mb. Bins having significant SNPs for at least 5 AiMS traits
from at least two of the donor microbiomes were of interest. To further
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define boundaries of the MEL, linkage disequilibrium (LD) was calculated
(as R2) in regions encompassing multiple significant SNPs identified in the
GWAS. LDwas used to determine the strength of LD surrounding binswith
high pleiotropy to define MEL. MEL boundaries were defined as having
R2 ≥ 0.75 regardless of the distances between SNPs.

Validation of allelic effects at MEL-C
Due to a single SNP in MEL-C having the most significant marker-trait
associations among all the SNPs studied and all three subjects having
microbiome traits significantly associated in this region, this MEL was
chosen for further experimental validation studies. Common bean geno-
types were grouped by market class and then by the SNP marker
Pv05:9,615,026 bp (AA genotype/major or GG genotype/minor) at the
GWAS peak for MEL-C. The market class by SNP pools were created by
mixing one gram of milled powder of each line into the pool (Black AA: 31
lines; Black GG: 10 lines; Navy AA: 23 lines; Navy GG: 19 lines; Pink AA: 5
lines; Pink GG: 6 lines; Pinto AA: 67 lines; Pinto GG: 15 lines) (Supple-
mentary Table S19). Pools were not created for great northern or small red
beans due to the lack of cultivars carrying the minor allele. After mixing
thoroughly, a 2.5-gram sample of powder from each of the pools was
digested and dialyzed as previously described40. After dialysis and lyophi-
lization, the remaining solids were resuspended in 30mL of water, and
0.25mL of each resuspended pool was used as substrate for in vitro fer-
mentations across the same12humanmicrobiomes in triplicate (threewells
for each pool X subject combination). Thirty-two (out of 34) traits that were
significant atMEL-Cwere quantified in theAAandGGgenotype pools and
compared with the unpooled genotypes from the MDP data. Two traits,
corresponding to SCFA, were not quantified in the validation study.

Jbrowse on Phytozome v1379 was used to gain insights into candidate
genes and pathways associated with significant SNPs underlying the MEL
using the common bean reference genome P. vulgaris G19833 (v2.143).
Genes were considered candidates if they contained a significant SNP or if
therewas a significant SNPwithin the immediate genomic region (upstream
or downstream 50 kb).

Molecular complementation with GlycA and GlyzN saponins
Pure glycyrrhetinic acid (GlycA) (18-beta-glycyrrhetinic acid; CAS: 471-53-
4) or glycyrrhizin (GlyzN) (CAS: 1405-86-3) were introduced at 1%weight/
weight of seed powder into the fermentation reactions (after digestion and
dialysis) of each market class pool made with AA genotype. The amount of
GlycA and GlyzN were determined based on reported levels of saponin
found in beans56. AiMS reactions containing the AA genotype pools alone
and AA genotype pools supplemented with GlycA or GlyzN at different
levels were each inoculated individually with fecal microbiomes from S770
andS776andused in invitro fermentationswith three replicatesof genotype
pool X microbiome as described above. The log2 fold-change in each sig-
nificant trait (excluding SCFA, which were not quantified in the com-
plementation study)withGlycAorGlyzNspiked intoAAgenotypes relative
to AA genotypes alone was calculated. These data were compared with the
log2 fold-changes between GG and AA genotypes in the MDP.

Statistics and reproducibility
All statistical analyses of the 16S rRNA sequencing and S/BCFA were
performed in R (v4.3.075;) and R-Studio (2023.09.0 Build 463). To
compare β-Diversity after in vitro fermentation, permutational multi-
variate analysis of variance (Adonis PERMANOVA; 999 permutations)
based on Bray-Curtis distance was conducted using the vegan package
(v2.6.880). Differences among landrace and market class for α-diversity,
microbiome taxonomic abundances, and SCFA concentrations were
analyzed using Kruskal-Wallis tests with p-values adjusted using the
Benjamini-Hochberg procedure using the ‘rstatix’ R-package81. For
variables that showed a significant Kruskal-Wallis test for market class,
Dunn’s test was used to determine differences amongmarket classes, also
using ‘rstatix’. For plots, data were ranked by subject (data for each
subject were ranked independently) to reflect statistical comparisons.

Spearman correlations were used to determine correlations between
bacterial taxa and metabolites using the ‘Hmisc’ package in R82. Linkage
disequilibrium was calculated using the ‘genetics’ package83. Plots were
constructed using 70the following R-packages: ‘ggplot2’72, ‘ggh4x’84,
‘ggrepel’85, ‘ggtext’86, ‘multcompView’87, ‘ComplexHeatmap’88, and
‘circlize’89.

Ethics statement
The studies involving humans were approved by the University of
Nebraska-Lincoln Institutional Review Board (approval number
20160816311EP). The studies were conducted in accordance with the local
legislation and institutional requirements. The participants provided their
written informed consent to participate in this study.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
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processed datasets generated during the current study are available in the
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The source data used to generate thefigures can also be found in thefigshare
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