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Diffusion Magnetic Resonance Imaging (dMRI) simulations in geometries mimicking the microscopic
complexity of human tissues enable the development of innovative biomarkers with unprecedented
fidelity to histology. Simulation-informed dMRI has traditionally focussed on brain imaging, and it has
neglected other applications, as for example body cancer imaging, where new non-invasive
biomarkers are still sought. This article fills this gap by introducing a Monte Carlo diffusion simulation
framework informed by histology, for enhanced body dMR microstructural imaging: the Histo-μSim
approach. We generate dictionaries of synthetic dMRI signals with coupled tissue properties from
virtual cancer environments, reconstructed from hematoxylin-eosin stains of human liver biopsies.
Theseenable thedata-driven estimation of properties such as the intrinsic extra-cellular diffusivity, cell
size or cell membrane permeability. We compare Histo-μSim to metrics from well-established
analytical multi-compartment models in silico, on fixed mouse tissues scanned ex vivo (kidneys,
spleens, and breast tumours) and in cancer patients in vivo. Results suggest that Histo-μSim is
feasible in clinical settings, and that it delivers metrics that more accurately reflect histology as
compared to analytical models. In conclusion, Histo-μSim offers histologically-meaningful tissue
descriptors that may increase the specificity of dMRI towards cancer, and thus play a crucial role in
precision oncology.

The ultimate aim of diffusion MRI (dMRI) is the estimation of statistics of
the cellular environment, referred to as tissue microstructure, from sets of
diffusion-weighted (DW) signal measurements, by solving an inverse
mathematical problem1,2. Multi-compartment biophysical dMRI models
have gainedmomentum as practical approaches capable of providingmaps
of biologically-meaningful properties, such as cell size (CS) indices. These
have found applications in multiple organs, e.g., brain3, muscles4, breast5,
liver6, prostate7,8 and beyond. Non-invasive CS measurement may be par-
ticularly relevant for disease characterisation and treatment response
assessment in oncology, given the variety of cell types that can coexist within

tumours, each featuring unique, distinctive dimensions (e.g., normal vs
malignant cells, immune cell infiltration, etc)9–12.

However, current biophysical models are often based on idealised
representations of tissue components, such as spheres of fixed radii
to describe cells6,7,11. This implies that they may neglect other,
relevant features of intra-voxel microstructure, e.g., the existence of
distributions of CSs, intra-cellular (IC) kurtosis13,14, or extra-cellular (EC)
diffusion time dependence15,16. Neglecting such characteristics may bias
parameter estimation, andmay also cause clinically relevant information to
be missed.
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Recently, numerical methods based on more realistic tissue repre-
sentations have enabled the development of accurate dMRI signal
models17,18, increasing the biological specificity of parameter estimation19–23.
In particular, Monte Carlo (MC) diffusion simulations within 3D meshes
derived fromhistologyhave enabled the characterisationoffine, sub-cellular
microstructural details, such as axonal beading/undulation24,25, or neural
process complexity20,21. Nevertheless, to date histology-informed dMRI has
focussed heavily on neural tissue, with only a few examples outside the
central nervous system26. More accurate biophysical models are urgently
needed in a variety of other contexts beyond brain dMRI, as in oncological
body imaging of solid tumours27. New dMRI approaches could tackle sev-
eral, unmet clinical needs, such as patient stratification for treatment
selection, response assessment in immunotherapy28, or the determination of
the malignity of lesions that cannot be biopsied29.

This article aims to fill this gap by introducing a histology-informed
MC framework for microstructural diffusion simulations and parameter
mapping, referred to as Histo-μSim. We present a rich database of virtual
cellular environments reconstructed from hematoxylin and eosin (HE)
stains of liver biopsies, and use these to synthesise signals for clinically
feasible dMRI protocols. The database provides the community with
reference values of key cellular properties in cancerous and non-cancerous
tissues, information not easily accessible in the literature, yet essential to
inform the development of the new dMRI techniques of tomorrow. The set
of cellular-level characteristics and corresponding dMRI signals allowed us
to devise a strategy for the numerical estimation of unexplored tissue
properties with clinically feasible acquisitions. In particular, we tested the
estimation of the intrinsic EC diffusivity (referred to as D0∣ex) and of cell
characteristics, as CS statistics and cell membrane permeability κ, which we
showcase in pre-clinical scans of fixedmouse tissues and in cancer patients
in vivo. Results from in silico, ex vivo, and in vivo data suggest that Histo-
μSim enables the computation of microstructural metrics that more accu-
rately reflect the underlying histology than standard analytical signal

models, and that these can be obtained in clinically acceptable times. In
summary, Histo-μSim is a promising new approach for the non-invasive
characterisation of body cancers, andmay play a crucial role in both clinical
practice and research settings, enhancing precision oncology.

Results
The virtual tissue environments enable histologically-realistic
diffusion simulations
We reconstructed 18 virtual tissue environments from regions-of-interest
(ROIs) of HE stains of liver tumour biopsies, which we will refer to as
substrates. The environments enable the generation of synthetic dMRI
signals through MC diffusion simulations, based entirely on open-source
software (Fig. 1). The set of environment properties and paired signals can
be used to inform cancer parameter estimation on a new patient’s dMRI
scan. The substrates include tissue from non-cancerous liver parenchyma,
as well as from primary andmetastatic cancers of the liver, such as: primary
hepatocellular carcinoma (HCC); metastatic colorectal cancer (CRC);
melanoma; breast cancer. The cancer environments encompass a rich
variety of cytoarchitectures, including areas of active tumour with high cell
density; areas rich in desmoplastic stromaorfibrosis; areas of necrosis; amix
of all of those, as well as regions at the tumour-liver interface. High-
resolutions images of the substrates are shown in Supplementary Figs. S2,
S3, and S4. In practice, the virtual tissue environments are represented
through triangular meshes derived from the outline of cellular structures
identified on HE images. As a first demonstration, the environments
effectively consist of 3D structures with cylindrical geometry, obtained by
prolonging 2D segmentations along the third dimension. dMRI signals are
obtained from a substrate through MC simulations, in which water mole-
cules are seeded uniformly within each substrate in both intra-cellular (IC)
and extra-cellular (EC) spaces. Afterwards, molecules experience Brownian
random walks, simulating diffusion, during which they interact with the
boundaries of the cellular structures through elastic reflection or

Fig. 1 | Illustration of our MC simulation framework generating synthetic dMRI
signals from histological images. The framework relies on the following open-
source software packages: QuPath, Inkscape, Blender,MCDC. a Simulation of dMRI

signals from histology, used to build numerical signal models. b Inference of cancer
biological properties on a new patient’s scan based on such numerical models.
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permeation. We simulated 225 realisations of each substrate by varying the
intrinsic IC and EC diffusivities (D0∣in and D0∣ex) and the cell membrane
permeability κ, obtaining a total of 4050 microstructures.

The virtual tissue environments characterise a variety of tissue
microstructures
We characterised the reconstructed tissue environments through several
metrics, related to the cell size (CS), cell density and to other IC and EC
properties. The metrics were:
• the substrate area and cellularity (number of cells per mm2);
• the IC area fraction fin;
• the fraction of the EC space occupied by luminal structures fl;
• the diameters of the lumina dlumen, when these are present;
• the mean of the cell size (CS) distribution mCS;
• the variance of the CS distribution varCS;
• the skewness of the CS distribution skewCS;
• two volume-weighted mean CS (vCS) indices, vCSsph and vCScyl (for a

system with spherical vs cylindrical geometry);
• shape and scale parameters of a gamma-distribution30, which we fitted

to the set of cell diameters {dcell,1, dcell,2, … } (see Supplementary
Methods for details).

vCSsph andvCScylprovide a characteristicCS for the substrate, similarly
to mCS. However, as compared to mCS, they put more emphasis on larger
cells, and are thus more direct counterparts of dMRI-derived cell size sta-
tistics compared tomCS3,14 (note that in dMRI large cells contributemore to
the measured signals than small cells, since they contain more water).

Table 1 reports value of themetrics for all substrates. The reconstructed
cancer substrates encompass a rich variety of cytoarchitectures, showing
large between-substrate contrasts in all histologicalmetrics. For example, fin
values as high as 0.868 are seen in areas featuring densely packed cells, as in
thenon-cancerous liver parenchyma,while fin as lowas0.130 in seen inCRC
fibrosis, or as low as 0.024 in necrosis. The table also highlights contrasts in
terms of CS. The largest cells are found in the non-cancerous liver (mCS
around ~ 16 μm), while all cancers feature the presence of smaller cells.
Differences in CS are also seen within the same type of cancer, e.g., mCS of
~13 μm and ~6 μm in two different CRC substrates. Substrates also feature
different skewnesses of the CS distribution, with positive skewCS in most
cancers, and negative skewCS in the non-cancerous liver. Finally, in some
substrates (e.g., CRC) the EC space features the presence of large lumina,
with equivalent diameters as large as ~ 90 μm. Substrates also include areas
of partial volume between non-cancerous hepatocytes and cancer cells
(substrates 10, 11, 12) with different proportions, a fact that is reflected in
different values of skewCS.

Figure 2 illustrates the different cellular structures that have been
identified onHE histology to enable the substrate reconstruction. These are
shown in four representative substrates, namely: non-cancerous liver, CRC,
breast cancer, and melanoma. The figure highlights again the richness of
microstructural characteristics included in our substrates. Tightly packed
cells are seen in both non-cancerous liver and inmelanoma,with the former
showing much larger cells than the latter (mCS of almost 16 μm in non-
cancerous liver, twice as large as the approximately 8μm seen inmelanoma).
A wide range of IC fraction fin is also seen, ranging from 0.076 in the breast
cancer substrate (containing fibrotic areas and extensive necrosis) up to
0.846 for the non-cancerous liver. Finally, large luminal spaces in CRC
substrates occupy a considerable portion of the EC space, with areas
equivalent to the space taken by hundreds of cells.

The simulation of the diffusion random walks on the virtual cancer
substrates corresponding to Table 1 is feasible on standard computational
hardware. We timed the simulation time for a representative substrate
(substrate 4) on a 64-core, 3.169GHz AMD Ryzen ThreadripperTM PRO
5995WXCPU. The simulation of 110ms of diffusion for 20,000 spins, for a
temporal resolutionof 46.4 μs, took45 sona single thread for afixedvalueof
IC/EC diffusivity and permeability κ. The simulation time can be
approximately 10 times longer in some rare cases, when the IC fraction is

very low (e.g., in necrotic substrates), due to internal memory handling in
the MCDC simulator.

Histo-μSim parameter estimation outperforms analytical signal
modelling
We used the set of paired examples made of synthetic dMRI signals from
MC simulations and corresponding histological features to inform tissue
parameter estimationonunseendMRI signals. The approachwas compared
to the fitting of a well-established, multi-exponential analytical dMRI signal
model, which accounts for restricted IC diffusion within impermeable
cylindrical structures (given the cylindrical symmetry of our substrates), as
well as hindered, EC diffusion6,7 (see Methods, Eq. (4)). The experiment,
performed on signals obtained for κ = 0 (impermeable cells, as assumed in
the analytical signal model), unequivocally suggests that our proposed
parameter estimation strategy outperformsmore standard analytical model
fitting, since the former provides tissue parameter estimates that correlate
more strongly to ground truth values than the latter, and which show less
variability. For this experiment, we built an MC-informed forward signal
model (referred to as forward model 1) taking vCScyl, fin, D0∣in and D0∣ex as
input tissue parameters, being these the same tissue parameters of the
analytical model. To build the signal model, we only used signals generated
from impermeable cells (κ = 0), as the analytical model used for bench-
marking does not account for water exchange. For the same reason, we also
tested both Histo-μSim and the analytical model on signals corresponding
to substrates made of impermeable cells.

Figure 3 shows scatter density plots of ground truth versus estimated
tissue parameters in in silico experiments. Thefigure refers to the analysis of
dMRI signals synthesisedwith a pulsed-gradient spin echo (PGSE)protocol
matching that of available in vivo scans, and referred to as protocol PGSE-in
(see Materials and Methods). The protocol includes multiple b-values
(maximum b = 1500 s/mm2) and multiple diffusion times, and results refer
to simulations of impermeable cells (κ = 0). It is apparent that fin and D0∣in
are, respectively, themetrics that are themost/the least accurately predicted.
Correlation coefficients between ground truth and predicted values are
consistently higher for Histo-μSim than for the analytical model. While for
both models a strong correlation between estimated and ground truth is
seen for fin, amoderate correlation is seen for vCScyl forMC-informedfitting
(r = 0.63), and a low correlation for the analytical model (r = 0.14). ForD0∣in
instead, the correlation is weak for both approaches, although considerably
higher forHisto-μSim (r=0.30 against 0.04). Interestingly, we also observe a
moderate correlation between ground truth and predicted D0∣ex for MC-
informed fitting (r = 0.47). Note that the analytical model in Eq. (4) enables
the estimation of the EC apparent diffusion coefficient (ADC) ADCex, and
not of the intrinsic EC diffusivity D0∣ex. The existence of “hot spots” (clus-
tered points) in the scatter density plots in Fig. 3 is a consequence of the
discrete nature of the distribution of the ground truth tissue properties,
given that our data set consists of 18 unique values on IC fraction and
volume-weightedCS (vCS), 5 values ofD0∣in andD0∣ex, and 9 values of κ. For
example, it is apparent that histological vCS tends to cluster around 10 μm
and 18 μm, with fewer values around 14 μm. Clustering in the y-direction
outside the diagonal instead indicates bias in the estimation, as seen clearly,
for example, for D0∣in inference through the analytical signal model.

Histo-μSim enables the data-driven estimation of cell size and
permeability
Motivated by the encouraging results on CS and density mapping obtained
by comparing Histo-μSim to a standard analytical signal model, we also
investigated whether our framework enables the data-driven, equation-free
estimation of additional microstructural properties of cells. To this end, we
investigated the joint estimationof a volume-weightedCS index (vCScyl) and
of a characteristic cellmembrane permeabilitymetric κ, given their potential
relevance as non-invasive biomarkers in cancer31,32.

We testedMC-informed fitting of a second signalmodel, referred to as
forwardmodel 2, with tissueparameters vCScyl, fin,D0∣in,D0∣ex and κ. Figure 4
shows parameter estimation results for the same PGSE-in protocol used
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previously in Fig. 3 as well as for two additional dMRI protocols, namely: a
DW twice-refocussed spin echo (TRSE) acquisition, matching that of
another set of available in vivo dMRI scans (maximum b-value:
1600 s/mm2); a second PGSE acquisition, matching a high-field acquisition
performed on fixed ex vivo mouse tissue (maximum b-value: 4500 s/mm2).
We will refer to the former as protocol TRSE, while to the latter as protocol
PGSE-ex.

Findings from all protocols converge towards the feasibility of esti-
mating jointly vCScyl and κ through simulation-informed fitting, given that
moderate-to-strong correlations are seen between ground truth and esti-
mated parameter values for these metrics. Regarding vCScyl, we observed
moderate and strong correlations between ground truth and estimated
values (minimum r of 0.55 for protocol PGSE-in, maximum r of 0.81 for
protocol PGSE-ex, featuring the shortest diffusion times). As far as κ is

concerned instead,we observe amoderate correlationbetweenground truth
and estimated parameters (maximum r of 0.45 for the TRSE protocol,
featuring instead the longest diffusion times). Results for the estimation of
fin,D0∣in andD0∣exare in linewithwhatwas seen for forwardmodel 1, namely:
goodagreement for fin in all cases,withhighest correlation r = 0.89 forTRSE;
moderate correlations forD0∣ex, with highest correlation r = 0.43 for PGSE-
in; weaker correlations for D0∣in, with highest r = 0.38 for PGSE-ex.

Figure 5 reports Bland-Altman plots corresponding to the estimation
of tissue parameters from forward model 2. The panels report plots for all
metrics and protocols, and include bias and limit-of-agreement (LOA)
figures. While no systematic biases in the estimation are seen for any
metrics, the figure highlights that the estimates ofD0∣in,D0∣ex, and, to a lesser
extent, κ are considerably more variable than those of fin and vCScyl. The
plots clearly highlight the challenge of resolving jointlyD0∣in and a CS index

Fig. 2 | Visualisation of four illustrative substrates used for MC diffusion
simulations. a, d, g, jHE histological images. b, e, h, k SVG files reconstructed with
the Blender software package, showing different substrate features (e.g., cells and
debris in green, vessels in red, lumina in dark blue). c, f, i, lHistograms depicting the

CS (i.e., cell diameter) distribution for each substrate, with summary statistics and
with a Gamma distribution fit superimposed onto it (black solid line). From top to
bottom: non-cancerous liver (substrate 4), colorectal cancer (substrate 8), breast
cancer (substrate 17), melanoma (substrate 18).
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from compact protocols that are feasible in the clinic. It also demonstrates
that the protocols that include short diffusion times allow for higher pre-
cision in the inference of this metric (compare protocol PGSE-ex, featuring
short diffusion times, against the clinical TRSE protocol, featuring much
longer diffusion times).

Histo-μSim microstructural parameters correlate with their his-
tological counterparts in fixed mouse tissue
We tested Histo-μSim fitting on pre-clinical PGSE scans, acquired at 9.4T
on 8 formalin-fixed ex vivo mouse tissue specimens, for which HE sections
were also available. These were: a non-cancerous breast and 3 breast
tumours from the mouse mammary tumour virus (MMTV) polyomavirus
middle T antigen (PyMT) transgenicmousemodel33,34, obtained at weeks 9,

11 and 14; a normal spleen and a spleen suffering from splenomegaly from
theMMTVmice; two kidneys from C57BL/6WTmale mice (9 weeks old),
one normal and one featuring folic acid-induced injury35. Quantitative
analyses also show that key Histo-μSim metrics correlate with their direct
histological counterparts, as illustrated by the correlation matrix in Fig. 6.
For example, we observe a statistically significant, positive, strong correla-
tion between Histo-μSim fin and vCS with histological fin and vCS (r = 0.68
between fin∣MC and fin∣histo, p = 0.002; r = 0.74 between vCScyl∣MC and
vCScyl∣histo, p = 0.001) These correlations are systematically stronger than
those obtained for the analytical signal model, demonstrating the potential
of Histo-μSim for increasing dMRI biological specificity (Fig. 6: r= 0.63, p=
0.005 between fin∣AN and fin∣histo; r = 0.37, p = 0.125 between vCSAN and
vCSsph∣histo). Histo-μSim permeability κ also correlates moderately with the

Fig. 3 | Scatter density plots between ground truth and estimated tissue para-
meters and Bland-Altman plots comparing the performances of MC-informed
forward model 1 with a standard analytical signal model. First row, (a–d): scatter
density plots and correlation between ground truth and estimated parameters for
forwardmodel 1 (from left to right: fin, vCScyl,D0∣in,D0∣ex). Second row, (e–g): scatter
density plots and correlation between ground truth and estimated parameters for the
analytical signal model (from left to right: fin, vCScyl,D0∣in). Third row, (h–k): Bland-
Altman plots for forward model 1 (from left to right: fin, vCScyl, D0∣in, D0∣ex). Fourth

row, (l–n): Bland-Altman plots for the analytical signal model (from left to right: fin,
vCScyl,D0∣in). Scatter density plots also include the identity line for reference, and the
Pearson’s correlation coefficient between ground truth and estimated parameter
values (n=4050 unique data points from 18 independently-simulated substrates per
subplot). Bland-Altman plots relate the average values between estimated/ground
truth parameters (x-axis) to their difference (y-axis), and include the bias and upper/
lower limit-of-agreement (LOA). The figure refers to the estimation for protocol
PGSE-in.
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histologicalmetrics. For example, positive correlations between κ and fin∣histo
and with all histological CS indices are seen (e.g., r = 0.56, p = 0.015 with
fin∣histo; r = 0.63, p = 0.006 with mCShisto). Figure 6 also reports Bland-
Altman plots relating MRI metrics to their histological counterparts. Both
Histo-μSim and the analytical signal model underestimate the IC fraction
and overestimate CS compared to histology, to a similar extent. However,
Histo-μSim estimates show less variability than those from the analytical
model, given the narrower range between the upper/lower LOA.

Tables 2 and 3 list dMRI and histological metrics within all ROIs. The
values in the tables were used to generate Fig. 6. Contrasts in histological
metrics agreewith dMRI in several cases. For example, histologicalmCSand
vCS, as well as permeability κ are lower in necrotic compared to non-
necrotic areas in the week 14 breast tumour (ROI 2 vs 1), or in the normal
spleen compared to the normal kidney (ROI 17 compared to ROI 16).
Histological fin is higher in the week 9 breast tumour than in the non-
cancerous breast (ROI 1 vs 5), and very low in necrosis (ROI 2). κ is lower in
the non-cancerous breast, compared to the breast tumours. In some cases,
differences between dMRI and corresponding histology metrics are also
seen, e.g., the low dMRI fin seen in the healthy kidney underestimates
considerably the corresponding fin values from histology (ROI 16).

Figure 7 shows examples of dMRI and co-localised HE images in the
four breast specimens. These contain a variety of cytoarchitectural envir-
onments, with higher inter-sample and intra-sample heterogeneity. For
example, the non-cancerous breast features areas rich in stroma. Con-
versely, higher cell densities are observed in the three MMTV-PyM
tumours. At late stages (week 14 tumour), widespread necrosis is also seen.

Figure 7 also shows parametric maps from forward model 2 in the same
breast specimens, namely: fin, D0∣in, vCScyl, D0∣ex and κ.

The variability of cellular microarchitectures seen in Fig. 7 is reflected
in theparametricmaps. Reduced fin is seen in areas compatiblewithnecrosis
within the week 14 tumour (ROI 2, Fig. 7). Additionally, higher fin is seen in
the week 11 tumour, compared to the non-cancerous breast. On histology,
this contrast corresponds to presence of areas featuring high cellularity
(Fig. 7, ROI 4), compared to stroma in the non-cancerous breast (Fig. 7, ROI
5).Changes inCSwith respect to thenon-cancerous breast are also seen, e.g.,
reduced vCS in areas compatible with the presence of cell debris in necrosis
(ROI 2, Fig. 7). Local variations of IC and EC diffusivitiesD0∣in andD0∣ex are
also seen. For instance,D0∣in is lower in areas with high fin (e.g., in ROI 4 in
the week 14 tumour), and D0∣ex is the highest at the interface between
specimens and the agarose. Within- and between-sample variations in cell
membrane permeability κ are observed, such as lower κ in the week 9
tumour, compared to week 14.

Supplementary Fig. S5 reports maps of microstructural parameters
from analytical signal model fitting in the mouse breast specimens. Map
contrasts generally match those from Histo-μSim fitting, and highlight
similar microstructural characteristics (e.g., necrosis in the week 14MMTV
breast tumour). Overall, the presence of luminal spaces in breast tissue
appears underestimated in the finmap fromboth the analytical signalmodel
and from Histo-μSim. We speculate that this may result, at least in part,
from partial volume effects with highly cellular areas, which is likely more
intense in MRI (slice thickness: 570 μm) than on histology (section thick-
ness: 3 μm).

Fig. 4 | Scatter density plots between ground truth and estimated tissue para-
meters for MC-informed parameter estimation (forward model 2) and for the
three MRI protocols considered in this study. Each plot corresponds to a metric
and protocol. Top row (a–e): PGSE-in protocol; mid row (f–j): TRSE protocol;
bottom row (k–o): PGSE-ex protocol. First column form left (a, f, k): IC fraction fin;
second column form left (b, g, l): CS index vCScyl; third column form left (c, h,m):

intrinsic IC diffusivityD0∣in; fourth column form left (d, i, n): intrinsic EC diffusivity
D0∣ex; fifth column form left (e, j, o): cell membrane permeability parameter κ.
Pearson’s correlation coefficients between ground truth and estimated parameters
are included in each plot (n = 4050 unique data points from 18 independently-
simulated substrates per subplot).
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Supplementary Figs. S6 and S7 showHisto-μSimmaps andHEdata in a
normal spleen and in splenomegaly secondary to late-stage MMTV tumour
growth. The spleens exhibit a patchy structure in most dMRI metrics. The
same pattern is seen on HE histology, where an alternation of white and red
pulps is seen (white pulps are known to containhigherT-cell density than red
pulps, which are instead rich in blood and iron). Supplementary
Figs. S6 and S8 show results from the two kidney samples: one normal, and
one following folic acid-induced injury. On histology, the former shows
normal representation of all kidney structures, while the injured case shows
proximal tubule alteration and extensive inflammation. In terms of dMRI
metrics, the injured kidney shows increased fin and reducedD0∣in andD0∣ex as
compared to the normal case. Higher fin is also seen in the injured kidney
cortex as compared to its medulla, a finding that corresponds to higher cell
density on visual inspection of histology stains. Higher permeability κ is
observed in the injured kidney, compared to the control organ.

Supplementary Table S8 reports the coefficient of determination (R2)
for Histo-μSim as obtained in all mouse tissue ROIs. Histo-μSim explains
most of the signal variability in almost all ROIs, with R2 as high as 0.99 in
various breast and kidney ROIs. However, between-ROI differences in R2

values exist, with lower R2 seen, for example, in necrotic ROIs (R2 of around
0.68) or, evenmore, in theROIdrawn in the enlarged spleen (splenomegaly;
R2 of around 0.05). The lowerR2 values in theseROIs likely result fromnoise
effects, since (i) the DW signal decay is stronger in necrosis than in highly
cellular areas, (ii) the enlarged spleen has a short T2 (see b = 0 image in
Supplementary Fig. S6). The average R2 across all ROIs is just below 0.88.
This finding demonstrates that Histo-μSim captures the salient character-
istics of the dMRI signal, and is therefore a valid representation to explain its
variability across b-values and diffusion times.

Histo-μSim is feasible in cancer patients in vivo and reveals
meaningful inter- and intra-tumoural contrasts
Lastly, we tested Histo-μSim for tumour characterisation in cancer patients
in vivo. In this demonstration, we included scans from 27 patients suffering
fromadvanced solid tumours, primary ormetastatic. Thesewere scanned at

abdominal or pelvic level, on either a clinical 1.5T or 3TMRI scanner, with a
15-minute dMRI protocol, maximum b-value of 1600 s/mm2 on the 1.5T
system(mean signal-to-noise ratio (SNR)of 36.4 atb=0andminimumTE),
and of 1500 s/mm2 on the 3T system (mean SNR of 77.3 at b = 0 and
minimum TE; per-patient SNR statistics reported in Supplementary
Table S2). Moreover, we also included HE-stained histological material
from a biopsy, which was collected from one of the patient’s tumours,
approximately one week after MRI. The analysis of the dMRI scans shows
that Histo-μSim is feasible in vivo within clinically acceptable scan times,
and that it providesmetricswhose intra-tumour and inter-tumour contrasts
are compatible with the cellular environments seen on the biopsies. Fur-
thermore, despite the inherent challenge of comparingdMRImapsobtained
over large tumoural areas with histological metrics obtained from a tiny
sliver of biopsied tissue, MRI-histology correlations show that Histo-μSim
IC fraction fin∣MC and vCScyl∣MC are positively correlated with their histo-
logical counterparts from the HE images, albeit weakly (Fig. 8: r = 0.32 and
p = 0.102 between fin∣MC and fin∣histo; r = 0.29 and p = 0.148 between
vCScyl∣MC and vCScyl∣MC). These correlations are stronger than those of a
standard analytical signal model (r = 0.25, p = 0.203 between fin∣AN and
fin∣histo; r = 0.014, p = 0.943 between vCSAN and vCSsph∣histo). Notably, cell
membrane permeability κ shows negative correlations with all histological
indices. However, the correlation strength is much weaker than what was
observed in mice (e.g., r =−0.136, p = 0.500 with fin∣histo; r =−0.248,
p = 0.213 with mCShisto). While these correlations are not significant, they
feature opposite sign compared to the same correlations seen betweenMRI/
histology inmouse tissue scanned ex vivo.We speculate that this difference
may arise, at least partially, from the fact that mouse specimens were fixed.
As a consequence, cells do not exhibit active functions, a fact that may alter
water exchange considerably compared to a living organism. All in all, these
findings show that Histo-μSim has clinical potential, as it may serve as a
useful tool for enhanced non-invasive tumour biology characterisation
through dMRI in real-world clinical settings.

Figure 8 also visualises the agreement in IC fraction and CS estimation
of Histo−μSim and of the analytical signal model with respect to histology,

Fig. 5 | Bland-Altman plots relating ground truth and estimated parameters for
all tested dMRI protocols. The plots relate the average values between estimated/
ground truth parameters (x-axis) to their difference (y-axis), and include the bias
and upper/lower limit-of-agreement (LOA) (n = 4050 unique data points from 18
independently-simulated substrates per subplot). Top row (a–e): PGSE-in protocol;

mid row (f–j): TRSE protocol; bottom row (k–o): PGSE-ex protocol. First column
form left (a, f, k): IC fraction fin; second column form left (b, g, l): CS index vCScyl;
third column form left (c,h,m): intrinsic IC diffusivityD0∣in; fourth column form left
(d, i, n): intrinsic EC diffusivity D0∣ex; fifth column form left (e, j, o): cell membrane
permeability parameter κ.
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through Bland-Altman plots. Similarly to what was observed for themouse
data, both Histo−μSim and the analytical signal model underestimate fin
compared to histology, to similar extents. Conversely, in this case bothMRI
approaches underestimate CS compared to histology. This result does not
match what was observed in the mouse data, where MRI CS was system-
atically higher than histological CS. This discrepancy likely results from the
fact that biopsiesmay have shrunk less than the whole-tumour HE sections

obtained inmice. Other effects may also have played a role, e.g., mechanical
compression of the cells in situ due tomass effects, which affected the in vivo
dMRI acquisition, but that was not present once tissue was extracted from
the body.

Tables 4 and 5 summarises dMRI and histological metrics within all
biopsied tumours. Both dMRI and histology reveal inter-tumour hetero-
geneity. dMRI-derived values of IC fraction fin are consistently lower than
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reference histological fin∣histo, and so is MRI vCScyl∣MC, compared to both
vCScyl∣histo and vCSsph∣histo. Between-tumour contrast in terms of diffusion
metrics is also seen, as for the permeability κ. For example, the lowest κ
values are observed in two melanoma cases.

Supplementary Table S7 investigates differences across the two most
frequent primary tumour types in our in vivoMRI cohort, namely CRC and
melanoma. This experiment is motivated by the fact that distinguishing
cellular phenotypes non-invasively through imaging has potential applica-
tion for differential diagnosis or for patient stratification in the clinic. These
two cancers are characterised by distinct cellular phenotypes, with the for-
mer exhibiting the presence of large luminal spaces unlike the latter, and
hence lower cell density (Table 1). As expected, CRC exhibits lower fin∣histo
than melanoma (mean/standard deviation: 0.498/0.139 in CRC and 0.685/
0.073 in melanoma, with t-test p = 0.0173), a finding compatible with the
presence of luminal spaces in the former type of cancer. Such a between-
cancer cytoarchitectural difference seen on histology is replicated in MRI.
Comparing CRC against melanoma, we observe a trend towards lower
fin∣MC in the former compared to the latter for Histo-μSim (mean/standard
deviation of fin∣MC: 0.219/0.0486 in CRC, while to 0.277/0.0556 in mela-
noma, t-test p = 0.0789), and lower fin∣AN for the analytical signal model
(mean/standard deviation of fin∣AN: 0.193/0.035 in CRC, while to 0.273/
0.060 in melanoma, t-test p = 0.0132). No differences between these two
types of cancer are seen on cell size indices for any of histology, Histo-μSim
and the analytical model.

Examples of parametric maps from Histo-μSim forward model 2
obtained in vivo are shown in Fig. 9 in two patients (ovarian cancer liver
metastases, scanned at 1.5T; endometrial cancer, scanned at 3T), alongside
clinical ADC. Maps show intra-tumour variability. For example, in the
ovarian cancer case, the largest livermetastasis features reduced fin andmCS
and increasedD0∣ex in thenecrotic core compared to the tumourouter ring, a
fact that corresponds to hyperintense clinical ADC. Conversely, no within-
tumour contrast is seen for other diffusionmetrics, as for exampleD0∣in and
cell membrane permeability κ. For the endometrial cancer case,maps reveal
different microstructural environments within the tumour, i.e., areas with
higher/lower fin, matching areas with lower/higher vCS. Inspection of his-
tological images confirms the existence of heterogeneous cellular char-
acteristics in both cases (Fig. 9), i.e., presence of active cancer and necrosis in
the ovarian cancer case, and presence of necrotic areas with abundance of
cell debris adjacent to areas with high cellularity in the endometrial tumour.
Fitting of a standard analytical model provides metrics that show similar
trends, highlighting again, for example, the necrotic core in the ovarian
cancer metastasis (Supplementary Figs. S9 and S10).

Histo-μSim fits dMRI signal measurements in mouse tissue and
in humans in vivo
Lastly, we studied the quality of Histo-μSim signal fitting against that of
other popular dMRI signal models, which are being increasingly used in
cancer applications. In more detail, we compared the fitting mean squared

Table 2 |Mean values ofmetrics fromHisto-μSim forwardmodel 2 and fromhistologywithin different ROIs drawnon the breast,
kidney and spleen tissue scanned ex vivo on a pre-clinical 9.4T MRI system

Description fin∣histo fin∣MC vCSsph∣histo vCScyl∣histo mCShisto vCScyl∣MC κ

[μm] [μm] [μm] [μm] [μm/s]

ROI 1: Breast tumour - Week 9 (cellular area) 0.70 0.56 8.6 8.4 7.5 12.5 21.7

ROI 2: Breast tumour - Week 14 (necrosis) 0.03 0.08 4.5 4.4 4.0 10.0 4.1

ROI 3: Breast tumour - Week 14 (cellular area) 0.72 0.48 10.4 10.1 9.0 12.0 24.8

ROI 4: Breast tumour - Week 11 (cellular area) 0.64 0.61 8.7 8.4 7.2 12.7 23.7

ROI 5: Non-cancerous breast 0.11 0.04 7.7 7.4 6.3 8.7 0.20

ROI 6: Breast tumour - Week 9 (cellular area) 0.68 0.75 5.7 5.6 5.2 8.0 3.3

ROI 7: Breast tumour - Week 9 (cellular area) 0.55 0.77 8.0 7.7 6.8 12.7 4.5

ROI 8: Breast tumour - Week 9 (cellular area) 0.76 0.70 8.8 8.6 7.6 12.4 6.3

ROI 9: Breast tumour - Week 11 (cellular area) 0.81 0.53 9.6 9.4 8.7 12.1 11.3

ROI 10: Breast tumour - Week 11 (cellular area) 0.84 0.60 11.0 10.8 9.9 13.2 28.3

ROI 11: Breast tumour - Week 11 (cellular area) 0.77 0.52 9.1 8.9 8.1 12.4 25.3

ROI 12: Breast tumour - Week 14 (necrosis) 0.01 0.03 2.0 1.9 1.7 9.4 4.4

ROI 13: Breast tumour - Week 14 (cellular area) 0.74 0.60 9.7 9.5 8.5 12.9 25.0

ROI 14: Breast tumour - Week 14 (cellular area) 0.77 0.54 9.8 9.5 8.8 12.9 21.1

ROI 15: Injured kidney 0.66 0.48 6.0 5.8 5.0 11.8 26.7

ROI 16: Healthy kidney 0.82 0.10 11.8 11.6 10.1 11.6 17.3

ROI 17: Healthy spleen 0.75 0.44 5.2 5.1 4.4 8.9 8.6

ROI 18: Splenomegaly 0.64 0.41 4.7 4.6 4.0 8.3 0.50

Histological metrics are indicated with subscript histo, while Histo-μSim metrics withMC, for Monte Carlo simulation-informed estimation.

Fig. 6 | Relationship between allMRImetrics and histological indices as obtained
on fixed mouse tissue ex vivo.Metrics from Histo-μSim are indicated by subscript
MC, for “Monte Carlo simulation-informed''; metrics from the analytical signal
models are indicated by subscript AN, for “analytical''; metrics from histology are
indicated by subscript histo. MRI metrics are: IC fraction fin; volume-weighted
characteristic CS indices (vCS); intrinsic IC and EC diffusivities (D0∣in andD0∣ex); EC
ADC (ADCex); cell membrane permeability κ. Panels to the left: results for Histo-
μSim; panels to the right: results for the analytical two-compartment model. Top
row: correlation matrices (a) for Histo-μSim; (b) for the analytical model. p < 0.05 is
flagged by yellow squares (sample size n = 18 ROIs). Histological metrics were

obtained through manual segmentation of cells on HE data. Middle row: Bland-
Altman plots, with biases and upper/lower limit-of-agreement (LOA) comparing
MRI and histological fin ((c) for Histo-μSim; (d) for the analytical model). Bottom
row: Bland-Altman plots, with biases and LOAs comparing MRI and histological
vCS ((e): vCScyl for Histo-μSim; (f) vCSsph for the analytical model). To aid the visual
comparison of the results of each model, the same limits have been used for the axes
related to fin and related to vCS in both models. This leads to an abrupt cut-off of the
contours, and to the presence of empty white space, since the twomodels provide fin
and vCS estimates in slightly different numerical ranges.
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error (MSE) and the Bayesian Information Criterion (BIC)36,37 of Histo-
μSim against that of the other models. Lower values of both MSE and BIC
are indicative of betterfitting performances.WhileMSEprovides ameasure
of the overall discrepancy between measured dMRI signals and model
predictions, BIC also accounts for model complexity, penalising models
with more parameters, compared to those with fewer. For this experiment,
we comparedHisto-μSim forwardmodel 2 (themodel accounting for water
exchange) against the two-compartment analytical model described above.
Additionally, we also compared it to popular Diffusion Kurtosis Imaging
(DKI)38 and to Restriction Spectrum Imaging (RSI)39. Tables S3 and S5
report MSE rankings performed on the mouse and in vivo human data,
while Tables S4 and S6 report BIC figures. When looking at MSE, Histo-
μSim is the signal model that provides the best quality of fit in the highest
number ofmouse specimens (3 out of 8), as well as in the highest number of
human scans in vivo (15 out of 27). However, when considering the BIC
index, the performances ofHisto-μSimdrop, since themodel containsmore
parameters than compact techniques such as as RSI andDKI (5 against 2 of
RSI and DKI). In this case, RSI surpasses Histo-μSim in model rankings
obtained on both mouse and human data. However, despite the better
performances in terms on fitting quality, RSI only captures salient char-
acteristics of the dMRI signal (i.e., the IC signal fraction), and fails to provide
estimates of specific characteristics of the cellular compartment (CS and cell
membrane permeability), which could become per se biologically-specific
biomarkers in cancer.

Discussion
Summary and key findings
This article presents Histo-μSim, a newdMRI approach formicrostructural
parameter estimation informed byMCdiffusion simulationswithin cellular
environments reconstructed from histology. Our article has three main
contributions. Firstly, it describes a practical step-by-step procedure, based
entirely on freely available software, to reconstruct meshed cellular envir-
onments from histological images. These can be used to generate large
dictionaries of realistic dMRI signals, coupled with histological properties.
Secondly, it provides the scientific community with unique reference values

of histology-derived cell size and density in non-cancerous and cancerous
human liver tissues, information not easily found in the literature, yet
essential to design the next-generation of cancer imaging techniques in
radiology. Lastly, our paper showcases a numerical approach for dMRI
parameter estimation informed directly by the simulated MC diffusion
signals. The approach, feasible in cancer patients in vivo, is shown to out-
perform classical fitting of analytical signal models. As compared to the
latter, Histo-μSim enhances parameter estimation on in silico data, and
delivers metrics that correlate more strongly with co-localised histology.

Simulation framework
Our simulation framework combines freely available software tools (i.e.,
QuPath40, Inkscape and Blender) to reconstruct meshed cellular environ-
ments from 2D histological images. These are stored as sets of ASCII PLY
files, a common file format for meshed geometrical models, being accepted
by popular open-source MC diffusion simulators such as MCDC41 or
Camino42. The procedure to convert histological data intoPLYfiles has been
described in detail in this article, and practical examples as well as tutorials
for would-be users are provided in our freely accessible online repository, at
the permanent address https://github.com/radiomicsgroup/dMRIMC. Our
detailed guidelines equip the communitywith a practical tool to increase the
realism of dMRI simulations, narrowing the gap between radiology and
histology in cancer applications.

Substrates
To demonstrate our framework, we segmented 18 cellular environments
from HE-stained liver tumour biopsies, referred to as substrates. These
included tissues of different kinds, e.g., non-cancerous liver parenchyma as
well as primary cancers of the liver and liver metastases, which were char-
acterised in terms of cell density, IC area fraction, presence andmorphology
of EC luminal spaces, and CS distribution characteristics. We compiled a
table reporting this information in a systematic manner, providing the
community with reference histological values for cancer applications. To
our knowledge, histology-derived cell morphometry literature has tradi-
tionally focussed on the study of neuroanatomy43,44, and limited quantitative

Table 3 | Mean values of metrics from the analytical signal model and from histology within different ROIs drawn on the breast,
kidney, and spleen tissue scanned ex vivo on a pre-clinical 9.4T MRI system

Description fin∣histo fin∣AN vCSsph∣histo vCScyl∣histo mCShisto vCSsph∣AN

[μm] [μm] [μm] [μm]

ROI 1: Breast tumour - Week 9 (cellular area) 0.70 0.76 8.6 8.4 7.5 16.9

ROI 2: Breast tumour - Week 14 (necrosis) 0.03 0.17 4.5 4.4 4.0 15.6

ROI 3: Breast tumour - Week 14 (cellular area) 0.72 0.65 10.4 10.1 9.0 16.5

ROI 4: Breast tumour - Week 11 (cellular area) 0.64 0.64 8.7 8.4 7.2 14.3

ROI 5: Non-cancerous breast 0.11 0.06 7.7 7.4 6.3 13.9

ROI 6: Breast tumour - Week 9 (cellular area) 0.68 0.61 5.7 5.6 5.2 8.4

ROI 7: Breast tumour - Week 9 (cellular area) 0.55 0.80 8.0 7.7 6.8 13.1

ROI 8: Breast tumour - Week 9 (cellular area) 0.76 0.69 8.8 8.6 7.6 13.5

ROI 9: Breast tumour - Week 11 (cellular area) 0.81 0.80 9.6 9.4 8.7 17.0

ROI 10: Breast tumour - Week 11 (cellular area) 0.84 0.59 11.0 10.8 9.9 15.3

ROI 11: Breast tumour - Week 11 (cellular area) 0.77 0.57 9.1 8.9 8.1 15.0

ROI 12: Breast tumour - Week 14 (necrosis) 0.01 0.06 2.0 1.9 1.7 15.1

ROI 13: Breast tumour - Week 14 (cellular area) 0.74 0.63 9.7 9.5 8.5 15.8

ROI 14: Breast tumour - Week 14 (cellular area) 0.77 0.55 9.8 9.5 8.8 14.4

ROI 15: Injured kidney 0.66 0.63 6.0 5.8 5.0 17.0

ROI 16: Healthy kidney 0.82 0.05 11.8 11.6 10.1 15.0

ROI 17: Healthy spleen 0.75 0.39 5.2 5.1 4.4 10.7

ROI 18: Splenomegaly 0.64 0.32 4.7 4.6 4.0 11.2

Histological metrics are indicated with subscript histo, while metrics from the analytical signal model with AN, for analytical modelling.
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Fig. 7 | Images from the breast tissue samples that were scanned ex vivo at 9.4T,
and Histo-μSim parametric maps. Panel (a) on top: b = 0 image and HE sections.
Moving clock-wise: week 9 MMTV-PyM breast tumour (top left), non-cancerous
breast (top right), week 11 MMTV-PyM breast tumour (bottom right), week 14
MMTV-PyM breast tumour (bottom left). Second row (b–d): IC fraction fin (b);
volume-weighted cell size index vCScyl∣MC (c); intrinsic IC diffusivityD0∣in (d). Third
row (e, f): intrinsic EC diffusivity D0∣ex (e); cell membrane permeability κ (f). For
each metric, we show results on the four breast specimens. Examples of histological

tiles in different ROIs are also included, alongside with corresponding quantitative
histological indices and mean MRI metrics for each ROIs. The coefficient of
determination R2 between measured dMRI signals and signals predicted through
Histo-μSimmodel fitting is reported for the shown ROIs, alongside Histo-μSim and
histological metrics. Areas with high concentration of fat (resulting in very low
b = 0 signal due to fat suppression) were not included in the parametric map
computation.
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data are available in body tissues or cancer, especially in relation to CS.
Information on the expected CS and cell density of a tissue is essential to
optimise dMRI acquisition protocols, e.g., to design b-values or diffusion
times. Therefore, delivering such a data base is a major contribution of our
work, as it may be used to devise innovative dMRI acquisition protocols
tailored for body imaging.

Simulation-informed parameter inference in silico
We investigated whether synthetic dMRI signals generated through our
histology-informed framework can be used to devise new strategies for
microstructure parametermapping, urgently sought in applications such as
cell population profiling in oncology10,11. To this end, we interpolated the
discrete dictionary of paired examples of tissue parameters and synthetic
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Communications Biology |          (2025) 8:1695 13

www.nature.com/commsbio


dMRI signals using Radial Basis Function (RBF) regressors. This provided
numerical forward models that do not rely on approximated analytical
functional forms for the IC/EC signal, e.g., restricted diffusionwithin cells of
regular shape andequal size6,7, orGaussianECdiffusion.Ournewnumerical
forward models can be easily embedded into routine non-linear least
squares (NNLS) fitting, based on likelihood maximisation45.

We compared the performance of our approach in predicting a single
CS (effective cell diameter) statistic3 against standard analytical approaches
based on restricted diffusion within cylinders, in a scenario in which cell
membrane permeability is negligible. Results not only point towards the
superiority of our approach in CS estimation, but also show benefit in the
estimation of other diffusion properties, such as the intrinsic cytosolic dif-
fusivity or the IC fraction. We also studied the feasibility of estimating the
intrinsic ECdiffusion coefficient and a volume-weightedCS (vCS) statistics,
jointly with the cell membrane permeability κ, without imposing any ana-
lytical functional form to the signal (forward model 2). Results in scatter
density and Bland-Altman plots show that Histo-μSim enables the suc-
cessful estimation of thesemetrics.We observe an accurate estimation of IC
fraction and of the vCS, for a variety of acquisition protocols, with estimates
that are moderately to strongly correlated to the ground truth. Satisfactory
performances (i.e., moderate correlations with ground truth values) are also
seen for the estimation of the intrinsic EC diffusivity D0∣ex and the cell
membrane permeability κ. These aremicrostructural properties that are still
unexplored in cancer, and the satisfactory estimation in silico observed here
motivates their investigation on actual preclinical and clinical MRI scans.
These new indices may play a role in characterising the tumour micro-
environment non-invasively, i.e., to describe properties of the stromal
compartment, or the aggressiveness of tumours. Lastly, our in silico results
confirm that the estimation of the intrinsic IC diffusivity D0∣in is an extre-
mely complex task46–48 on clinically feasible protocols as those considered
here. As a note, we point out that owing to the discrete nature of the input
parameter space of the simulations, both density and Bland-Altman plots
show a preference for areas corresponding to the input values inputs, a fact
that is most apparent for metrics D0∣in, D0∣ex and κ.

Simulation-informed parameter inference in fixed ex vivo
mouse tissue
After demonstrating CS and permeability mapping in silico, we tested its
feasibility on actual MRI scans. For this experiment, we analysed both pre-
clinical ex vivo data from 8 mouse tissue samples, as well as in vivo scans
acquired on cancer patients with two clinical MRI systems. Notably, the
tissue scanned on the pre-clinical system was considerably different from
that used to build the numerical signal models (e.g., mouse breast tumours,
kidneys, and spleens, versus human liver parenchyma and liver tumours),
and thus served as a useful out-of-distribution test bed for generalisation.On
these ex vivo mouse data, Histo-μSim captures most of the variability
exhibited by themeasured dMRI signal across diffusion times and b-values,
with an average R2 or around 0.88. Additionally, its parametricmaps show a
number of interesting and potentially relevant inter-sample and intra-
sample contrasts, which are in most cases confirmed by histology both
qualitatively and quantitatively. The co-localised MRI and histology data
acquired in mice enabled a detailed MRI-correlation analysis, which
essentially confirms findings from in silico experiments. Specifically, we
observed moderate-to-strong correlations between dMRI and histological

fin and vCS. TheMRI-histology correlation analysis also reveals that despite
the good correlation between MRI and histological values of fin and vCS,
some differences between MRI and histological estimates of IC fraction fin
and CS exist. This is apparent, for example, in the Bland-Altman plots in
Fig. 6, where an ellipsoidal clustering of the points is seen, pointing towards
the fact that similar values of histological fin (or vCS) can be mapped to
different values of fin (or vCS) inMRI.On theonehand, this canbea result of
the known degeneracy of parameter estimation in dMRI46–48. On the other
hand, inaccuracies in histological metric computation may also have con-
tributed, since histology is not free from artifacts (see detailed methodolo-
gical discussion in section 3.8 below on this point).

However, all in all, the MRI-histology correlation study demonstrates
the potential of Histo-μSim to boost the biological specificity of dMRI
towards cancer, and are encouraging, given i) the relatively small size of our
sample; ii) the inherent difficulty of ensuring accurate co-localisation
betweendMRI andhistology; iii) the differencesbetween the substrates used
tobuild themodels and the tissue imagedex vivo; iv) the fact that theseMRI-
histology correlations were stronger than those from standard analytical
signal model. Globally, the ex vivo experiments suggest that Histo-μSim,
beyond being a useful representation that captures most of the observed
signal variability, may also provide new biomarkers of tissuemicrostructure
to shed new light onto the presence of different cell populations in a voxel,
through CS morphology and permeability mapping.

Simulation-informed parameter inference in cancer patients
in vivo
Following extensive comparison to histology on preclinical MRI data, we
also demonstrated Histo-μSim in a pilot cohort of patients in vivo, and
compared Histo-μSim metrics to histological indices from HE biopsies
collected from one of the imaged tumours. This demonstration shows that
Histo-μSim maps can be obtained with dMRI scans that are feasible in the
clinic, i.e., not exceeding 15 minutes, with moderate maximum b-values
(around 1500 s/mm2), and based on vendor-provided sequences. The
inspection of parametric maps reveals key inter-tumour and intra-tumour
contrasts, which are plausible given the high microstructural heterogenity
seen in the HE-stained biopsied tissue. For example, areas lying within
tumour necrotic cores show reduced fin and vCS, compatible with necrosis
and presence of cell debris. Histologically-meaningful contrasts in MRI
metrics are also seen, for example, when comparing tumour types, as CRC
and melanoma malignancies. These are the two most common cancers in
our pilot cohort, and are known to feature notably different architectures at
the cellular level. We observed lower IC fraction in CRC than melanoma
tumours in histology, a finding compatible with the presence of large, fluid-
filled luminal structures in the former. This contrast was replicated in MRI
metrics obtained from both Histo-μSim and, even more clearly, for the
analytical signal model, highlighting the utility of dMRI signal models in
enhancing the biological specificity of imaging towards cancer.

The collection of biopsy data enabled a second MRI-histology corre-
lation study. Despite the inherent challenge of relating a small sliver of
biopsied tissue to MRI metrics evaluated over large tumours, the new
biopsy-MRI comparison confirms that Histo-μSim provides metrics that
correlate more strongly to their histological counterparts than standard
analytical signal models. This result suggests, again, that Histo-μSim may
contribute to increasing the biological specificity of dMRI, compared to

Fig. 8 | Relationship between allMRImetrics and histological indices obtained in
cancer patients scanned in vivo. Metrics from Histo-μSim are indicated by sub-
script MC, for “Monte Carlo simulation-informed''; metrics from the analytical
signal models are indicated by subscript AN, for “analytical''; metrics from histology
are indicated by subscript histo. MRI metrics are: IC fraction fin; volume-weighted
characteristic CS indices (vCS); intrinsic IC and EC diffusivities (D0∣in andD0∣ex); EC
ADC (ADCex); cell membrane permeability κ. Panels to the left: results for Histo-
μSim; panels to the right: results for the analytical two-compartment model. Top
row: correlation matrices ((a) for Histo-μSim; (b) for the analytical model). p < 0.05
is flagged by yellow squares (sample size n = 26 biopsies). Histological metrics were

obtained by automatic image processing in QuPath. Middle row: Bland-Altman
plots, with biases and upper/lower limit-of-agreement (LOA) comparing MRI and
histological fin ((c) for Histo-μSim; (d) for the analytical model). Bottom row: Bland-
Altman plots, with biases and LOAs comparingMRI and histological vCS ((e): vCScyl
for Histo-μSim; (f) vCSsph for the analytical model). To aid the visual comparison of
the results of eachmodel, the same limits have been used for the axes related to fin and
related to vCS in both models. This leads to an abrupt cut-off of the contours, and to
the presence of empty white space, since the two models provide fin and vCS esti-
mates in slightly different numerical ranges.
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current state-of-the-art multi-exponential approaches. Nevertheless, we
acknowledge that in this case correlations between dMRI and histology are
weaker. The observed correlation levels are not surprising given that we
could not locate the exact tumour location where the needle was inserted.
Because of this, we included allMRI voxels within the tumour to obtain per-
tumour MRI metrics in our MRI-histology comparison, a fact that has
reduced the accuracy of the co-localisation between the two modalities.
Nevertheless, we also acknowledge that other factors may have contributed
to explaining the difference in correlation seen on in vivo human data,
compared to ex vivo mouse tissue. A possible explanation could be, for
example, that tumours in mice are more homogeneous than in humans,

given that human data was acquired in advanced, heavily pre-treated
patients. This might have caused histological sampling bias to be less pro-
blematic in mice than in patients, leading to higher MRI-histology corre-
lations. Other aspects potentially contributing to the discrepancy between
histological andMRI estimates of IC fraction fin and CS are similar to those
discussed for the ex vivo data above, namely: degeneracy inMRI parameter
estimation46–48; inaccuracies in histological metric computation.

All in all, our pilot in vivo demonstration in cancer patients demon-
strates the potential of microstructural imaging to provide phenotypical
characterisationsof tumours at the cellular level, and thus complement gross
information on tumour size provided by standard-of-care radiology.

Fig. 9 | Parametric maps from Histo-μSim forward model 2 as obtained on two
representative patients in vivo, scanned on two different MRI scanners. Top:
maps on ovarian cancer liver metastases (3T system); bottom: endometrial cancer
(1.5T MRI system). From left to right, each panel reports a b = 0 image with the
tumour outline ((a) and (l)) and then metrics fin ((b) and (m)), vCScyl ((c) and (n)),

D0∣in ((d) and (o)), D0∣ex ((e) and (p)) and κ ((f) and (q)). Below the metrics, details
from a biopsy taken from one of the imaged tumours are also included (HE-stained
biopsy in (h) and (s); necrosis in (i) and (t); active tumour in (j) and (u)). Below the
b = 0 image, the standard Apparent Diffusion Coefficient (ADC) map is also shown
((g) and (r)).

https://doi.org/10.1038/s42003-025-09096-3 Article

Communications Biology |          (2025) 8:1695 17

www.nature.com/commsbio


Histo-μSim fitting quality in mouse and human scans
Lastly, we studied the quality of Histo-μSim model fitting, comparing its
fitting performances to those of other popular diffusion techniques, as for
exampleDKI38 andRSI39, bymeans of the fittingMSE and the BIC36 indices.
Lower values of bothmetrics point towards betterfittingperformances,with
BIC essentially correcting MSE to penalise model complexity. Results on
bothfixedmouse tissue and in cancer patients in vivo show thatHisto-μSim
provides the best performances in terms of MSE, being the top-ranking
model in most mouse and human scans. This finding demonstrates the
excellent capabilities of Histo-μSim to describe dMRI contrasts across a
variety of b-value ranges, diffusion times, and acquisition schemes. How-
ever, detailed analyses of BIC show that simpler models, containing fewer
parameters than Histo-μSim, surpass the performances of the proposed
approachwhenmodel complexity is penalised. This is the case, for example,
for RSI, a model which, in our custom implementation, features only 2 free
parameters, against 5 of Histo-μSim. Despite the drop in performances,
Histo-μSim still ranks either first or second in BIC in themajority of in vivo
cases, i.e., even after being penalised for model complexity.

Overall, these results suggest that the good fitting performances of
Histo-μSim, jointly with its histology-informed design, make it a pro-
mising new tool to characterise dMRI contrasts with biologically
meaningful metrics. Nonetheless, the results also highlight that simple
approaches may still suffice to deliver compact representations of the
dMRI signal, especially in those applicationswhere biomarker sensitivity,
rather than biological specificity, is of interest. This is the case, for
example, also for well-established clinical ADC measurement. We point
out that Histo-μSim aims to tell apart the different biological sources
underlying contrasts in simple metrics such as ADC, e.g., by distin-
guishing between areas featuring different cell sizes, for a fixed cell
density. In other words, with Histo-μSim we aim to provide com-
plementary information to standard diffusion imaging, boosting the
biological specificity of standard-of-care radiology. Nevertheless, it
should be remembered that in contexts where only an ADC map is
sufficient to solve a clinical task, there would be no need to acquire longer
scans for Histo-μSim computation, as short protocols (e.g., featuring as
few as two-b-value) and simple processing pipelines could suffice.

Methodological considerations and limitations
We acknowledge some potential limitations of our approach. The first one
relates to the manual reconstruction of virtual tissue environments from
histology. Despite some remaining inaccuracies, the manual outlining has
enabled the segmentation of cell boundaries, difficult to achieve with high
accuracy and high precision through automatic cell segmentation software
such as QuPath40 (Supplementary Table S1). Nevertheless, we acknowledge
that the approach is inherently slow and difficult to scale up to create larger
dictionaries of synthetic signals and histological properties, essential to
support more advanced parameter estimation techniques (e.g., through
deep learning). In future, we plan to expand our tissue environment data
bases through automatic histological image processing, and explore more
sophisticated parameter estimation methods as those used in the first
demonstration of Histo-μSim.

Secondly, we built virtual tissue environments effectively characterised
by cylindrical geometries, and then focussed on the analysis of 2D diffusion.
This was due to the availability of a large data set of HE-stained sections in
human and mouse tissue (inherently 2D). From the 2D segmentations, we
essentially had two options to build 3Dmeshes forMonteCarlo simulation,
namely: (i) inferring somehow the 3D shape of the cells from the 2D out-
lines, or (ii) focussing on diffusion random walks in the cut plane, dis-
regarding completely the third dimension.Wepreferred the latter option, as
the former would have required strong assumptions on the 3D shape of the
cells, a fact that couldhave equally led tobiases. In future,weplan toperform
simulations that capture the full 3D complexity of the tissue substrates,
reconstructing these, for example, from 3D micrographs24 or from 3D
confocal microscopy49 data.

To give an intuition of the effect of our 2D modelling strategy on the
diffusion signal decay, we compared the diffusion signal from a cell cylin-
droid derived from a 2D cell segmentation against that of a 3D spheroid
derived from the same outline (effective cell radius: 7.5 μm). The spheroid
was derived by shrinking the 2D outline of the cell isotropically, along the
through-plane direction, on both sides of the 2Dcut plane. The comparison,
reported in Supplementary Fig. S11, shows the instantaneous, radial IC
diffusion coefficientDin(t) as a function of the diffusion time t, as well as the
signal e�bDinðtÞ for various b-values (D0∣in=2μm

2/ms). Thefigure shows that
Din(t) from the cylindroid is always higher than that of the spheroid, leading
to stronger signal decay for any t. This difference ismore apparent at shorter
t, and at higher b. In practice, this implies that if actual dMRI signal mea-
surements arise from roughly spherical cells, the proposed cylindroidmodel
likely underestimates histological cell size, compared to a spheroid model.
This is due to the fact that for a fixed diffusion time and intrinsic IC
diffusivity, the cylindroid model always provides higher IC ADC than the
spheroid model. Hence, the CS that best explains any measured IC ADC is
going to be smaller for the cylindroidmodel, compared to the spheroid one.
This potential source of bias should be accounted for when interpreting
results from Histo-μSim.

Another consequence of relating 2D histological information to 3D
MRI data is that the co-localisation between the two is only approximate.
The twomodalities feature not only different in-plane resolutions (0.45 μm
histology, 200 μm dMRI), but also different thicknesses (3 μm in histology,
570 μm in MRI). To minimise effects coming from the first resolution
discrepancy, we extracted histological ROIs over large patches of size
comparable to that of a dMRI voxel (i.e., between approximately 50 to 100
μm; Supplementary Fig. S13). However, the wild difference in terms of
thickness implies that tissue that contributed to the dMRI signal was not
captured in the histological assessment. We speculate that this may have
impoverished the correlation between MRI and histology indices, and we
acknowledge that this is a severe limitationof anyMRI-histology correlation
study that does not rely on full, 3D histology. Aware of this intrinsic
shortcoming of our approach, we obtained different HE sections for each
mouse specimen, at differentmicrotomedepths, across thewhole organ.On
visual inspection, the best match between MRI and histology was obtained
when bothMRI and histology images were derived roughly in themiddle of
the specimen. However, we remark once more that the correspondence
betweenMR andHE images in ourmouse data set is only approximate, and
that full 3Dhistology (e.g., through confocalmicroscopy)would be required
to enhance MRI-histology co-localisation.

Regarding the set-up of a dictionary of virtual cancer environments to
inform dMRI model fitting, we stress that in this first demonstration of
Histo-μSimweonly used 18 histology-derived tissue reconstructions.While
we effectively created a rich dictionary of signals and coupled tissue para-
meters by varying the IC/EC diffusivities and the cell membrane perme-
ability, we point out that such a limited set-up does not suffice to deliver a
comprehensive dictionary that can be deployed in all applications. For
example, our virtual tissue dictionarydidnot include examples of large areas
featuring tightly packed lymphocytes, which are seen, for examples, in
lymphomas, where malignant lymphocytes can invade the liver par-
enchyma. This implies that care is needed when interpreting current Histo-
μSim maps in contexts such as lymphoma imaging, or for immune cell
infiltration detection, as in immunotherapy. In future work we aim to
expand the data base of virtual cancer environments considerably by virtue
of automated histological image processing, and thus broaden the range of
applicability of the proposed technique.

Related to the tissue parameters used to build tissue-signal dictionaries,
wewould like to remark that oneof the keyparameters studied in this article,
cell membrane permeability κ, is difficult to determine accurately, given the
challenge in independently measuring it from other parameters (Eq. (1)
and Eq. (2)). Future experiments in vitro are warranted to further validate
Histo-μSim cell permeability estimates. These could include cell pellets or
suspensions with controlled permeability levels50, and comparisons of
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Histo-μSim κ values to those from other MR contrasts, e.g., T1 mapping
from inversion recovery imaging51.

Moreover, in this study we illustrated the benefits of relaxing some of
the constraints and hypotheses underlying standard analytical diffusion
models throughnumerical simulations.However, we point out that thisfirst
demonstration is not free from assumptions, since Histo-μSim tissue
parameter estimates inherit the hypotheses made to conduct the MC
simulations themselves. It is possible that some of the discrepancies
observed between dMRI and histology may have been exacerbated by
important microstructural properties that were not accounted for in our
simulated randomwalks, as for example: variability in intrinsic diffusivity or
permeability among cells or between lumina and EC space; differences in
intra-compartament relaxation properties8,12,52; additional sources of diffu-
sionhindrance or restrictions, like intra-cellular organelles, the presence of a
dense nucleus, or extra-cellular collagen depositions. Related to this point,
we remind the readers that our signal models do not account for con-
tributions coming from intra-voxel incoherent flow within capillaries53,
which we did not simulate. For this reason, we took care to exclude b < 100
s/mm2 measurements in vivo, where vascular signals are not negligible54. In
future, we aim to increase the realismof our simulations by including a third
compartment of capillary perfusion, alongside IC and EC diffusion.

Importantly, in this first demonstration of Histo-μSim we deployed
numerical signal models developed from human cancers of the liver on a
variety of conditions, including even, for example, fixed mouse tumours of
the breast. Such an “out-of-distribution” deployment test gives confidence
on the generalisability of the approach.However, this also implies that better
performances could have been obtained had a more representative set of
virtual tissue substrates been used to build signal models tailored for these
cases (e.g., meshed mouse breast tumours for the 9.4T ex vivo mouse data).
Also, we point out that care would be needed to deploy Histo-μSim in
cancers that were not included in the generation of the virtual tissuemodels,
as for example lymphomas. These are characterised by the infiltration of
small, malignant lymphocytes in an organ parenchyma - a type of micro-
structural environment that was not included in our cancer substrates.
Adding examples of lymphocyte infiltration in our meshed tissue models is
one of our priorities for the next developments of Histo-μSim.

Additionally, when analysing histological images for MRI-histology
validation, we segmented cellular structuresmanually for the ex vivomouse
data, while we used the automated cell segmentation for the analysis of
patients’ biopsies. We did not carry out manual cell segmentation for the
patients’ data because it was not possible to identify the exact, within-
tumour location on dMR images from which the biopsy was taken. Due to
this,metrics fromall tumour tissue foundon theHEhad tobe compared to a
whole tumour seen on dMRI, making manual cell segmentation on HE
images unfeasible. Comparisons between manual and automatic QuPath40

cell segmentation show thatwhileQuPath-derived varCS and skewCSdiffer
considerably from varCS and skewCS from manual segmentations (high
bias for the former, poor correlation for the latter),QuPath-derived vCS and
mCS are acceptable surrogates of their manually-derived counterparts
(Supplementary Table S1).

Another important aspect revealed by our MRI-histology correlation
analysis is that each Histo-μSim metric exhibits correlations with several
histological indices at the same time, beyond its direct histological coun-
terpart. This is apparent, for example, for fin∣MC, which correlates also with
vCShisto, and not only with fin∣histo. These can be, at least in part, spurious
correlations arising from the complex landscape of our non-linear fitting
objective function46, which may limit the biological specificity of the pro-
posed technique. However, it is also possible that these correlations capture
biologically meaningful associations between histological indices, since
these are not fully independent among eachother (Supplementary Fig. S12).
For example, we observe a positive correlation between density and size of
cells (i.e., between fin∣histo and vCShisto), whichmay indicate that the size of a
cell influences how it interacts with the environment, and hence how a cell
ensemble organises spatially, influencing the local cell density. Future work

is warranted to characterise relationships among histological indices in
more detail, and thus guide dMRI-based cell property characterisation.

Regarding the MRI-histology correlation study, we also point out that
itsmain aimwas to testwhether salient contrasts seen in histologicalmetrics
across samples/patients are picked up non-invasively by MRI. It should be
noted that an analysis of this type, while informative, does not allow for the
detailed characterisation of more complex characteristics of tumours, as for
example intra-tumour heterogeneity55, defined as the existence of different
clonal populations within a tumour’s cell microenvironment, and a hall-
mark of treatment resistance. Cancer cell heterogeneity, while commonly
assessed from a genetic point of view56, has also been shown to lead to
multiple radiological phenotypes within a tumour57, opening up its non-
invasive assessment withMRI. Techniques such as Histo−μSimmay equip
oncologists with new tools for intra-tumour heterogeneity assessment.
Ultimately, quantitative imaging approaches of this kindmayplay a key role
for patient stratification in treatment planning, or in response assessment.
However, we stress that a more sophisticated histological validation would
be required compared to what has been done here, in order to deploy new
intra-tumour heterogeneity assessment tools in the radiology clinic. For
example, accurate co-registration between in vivo MRI and whole-tumour
excisions would be required, beyond simple biopsies and ROI comparisons.
Future work is warranted to elucidate these aspects.

Another aspect worth emphasising is that histopathological properties
were obtained from formalin-fixed tissue. Formalin fixation can cause con-
siderable shrinkage of tissues58, implying that quantitative properties assessed
on formalin-fixed tissue are biased, distorted versions of the true histo-
pathological characteristics. To minimise variability caused by differing dis-
tortions from various histopathological techniques, we processed all
histologicalmaterial using the samepipeline and laboratory instrumentation.
Nonetheless, we acknowledge that the histological properties reported in our
study likely differ from the true characteristics exhibited by tissues in vivo,
before excision and fixation. More accurate histological quantification could
have been potentially obtained by taking the actual specimen’s shrinkage into
account, andby collecting calibrationdata inwhich specimens from the same
tumour undergo distinct histological procedures. Ultimately, improvements
on the histological pipeline of this kind would lead to benefits on any
downstream histology-informed MRI technique. In future work, we aim to
explore complementaryhistological pipelines to enhance theperformancesof
our proposed Histo-μSim framework even further.

Furthermore, in this work we did not study advanced diffusion
encodings such as oscillating gradients6, double diffusion59 or b-tensor60

encoding, since we focussed on off-the-shelf, widespread clinical protocols.
Some of these advanced encodings may improve parameter estimation
compared to what has been shown here. For example, including ultra-short
diffusion times through oscillating gradientsmay improve the estimation of
D0∣in, as this is a challenging parameter to be estimated independently of
CS46–48. Its inference is known to benefit fromacquisitions that include short
diffusion times, a fact that is confirmed in our study, being in line with the
better estimation seen for protocol PGSE-ex compared, for example, to
TRSE. In the future we aim to simulate more advanced dMRI acquisitions,
beyond routine PGSE. These may give access to more detailed information
on cancermicrostructure than standard diffusion encoding, and potentially
improve the estimation of CS and cell membrane permeability, with
important applications in non-invasive cell profiling in cancer11. Moreover,
future work is warranted to assess the influence of the acquisition protocol
design on Histo-μSim metrics, and to deliver compact, optimised acquisi-
tions that maximise Histo-μSim metric quality and that are feasible under
time pressure in radiology settings.

Another biological feature that was not included in our modelling
framework is diffusion anisotropy. In this first demonstration of Histo-
μSim, we studied diffusion protocols that include only 3 mutually ortho-
gonal directions, and thus do not allow for accurate anisotropy quantifi-
cation. In future, we plan to extend Histo-μSim to account for features
related to microscopic and macroscopic diffusion anisotropy, and thus
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enable themodelling of signals acquired with protocols with higher angular
resolution.

Lastly, we acknowledge that this work provides only a first proof-of-
concept of Histo-μSim. Demonstrating adequate repeatability and repro-
ducibility of the technique is essential before it can be adopted widely in the
clinic. This will be addressed in future scan-rescan analyses, involving larger
cohorts of travelling volunteers scanned across multiple sites andmachines
with different dMRI protocols, or patients scanned multiple times at the
same site. Similarly, future optimisationswill also focus on reducing the scan
time required to obtain images of sufficient quality for Histo-μSim analysis.
These could guide the design of acquisition strategies that bring down the
scan time required from 15 to 5 minutes or less, and thus enhance the
clinical applicability of the proposed method.

Conclusions
Histo-μSim, a new dMRI parameter estimation approach informed by
MC simulations within tissue environments reconstructed from histol-
ogy, provides histologically-meaningful indices in solid tumours within
clinically-acceptable scan times. The method outperforms standard
multi-compartment analytic models on in silico data, as well as in dMRI
scans acquired on fixed mouse tissue ex vivo and on cancer patients
in vivo. Histo-μSim may therefore play a key role in the development of
new assays for the non-invasive characterisation of solid tumors in the
body, and thus contribute to bringing precision oncology one step closer
to the clinic.

Materials and Methods
Simulation framework
In our framework, illustrated in Fig. 1, we create 3D meshes of histological
structures, such as cells, from segmentations drawn on histological images.
Thesemeshes canbeused to generate randomwalks inMCsimulations and,
finally, dMRI signals, for any dMRI protocol of interest. We proceed as
follows.

First, a histological image is opened with QuPath40 and a ROI is
selected and cropped, taking care to include in the image the scale of
magnification. The image is then opened in Inkscape, where cells and
other geometric features are manually segmented and separated into
layers. We segmented cells and cell debris, luminal spaces, and vessels.
Here we demonstrate the framework with careful, manual segmentation,
but automatic segmentations would also be possible. Two types of files
are then exported: a 3D object with all the features included included in a
single SVGfile, as well as an individual SVG file for each feature. The SVG
format is used as it allows for further manipulation with Blender. In
Blender, SVG files are then transformed into 3D ASCII PLY triangular
meshes. We reconstructed 2D cellular environments from standard HE
biopsies and obtained 3D meshes by simply replicating 2D contours
along the trough-plane direction, thus generating cylinderswith irregular
sections. Nonetheless, 3D segmentations could also be used (e.g., from
3D confocal microscopy).

Meshes are fed to theMCDC Simulator, an open-sourceMC engine41,
in order to synthesise water molecules Brownian random walks within the
substrate. We used a beta-version simulating water exchange (Triangles_
dev branch). Spins were seeded uniformly within the substrates, and cells
where modelled as permeable32. We indicate with D0∣in and D0∣ex the
intrinsic IC and EC diffusivities, while with κ the cell membrane perme-
ability, with IC/EC water exchange increasing as κ increases. The water
exchange implementation in MCDC follows18 and32. In this implementa-
tion, the probabilities of a spin crossing a cell membrane from the IC to the
EC space or, vice versa, from the EC to the IC spaces, are

pin!ex ¼
2 κ lin
3D0jin

1þ 1
2

2 κ lin
3D0jin

þ 2 κ lex
3D0jex

� � ð1Þ

and

pex!in ¼
2 κ lex
3D0jex

1þ 1
2

2 κ lin
3D0jin

þ 2 κ lex
3D0jex

� � ; ð2Þ

Above, lin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Δt D0jin

p
and lex ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Δt D0jex

p
are the elementary diffu-

sion displacements during a simulation iteration of duration Δt in the IC
and EC spaces61, and κ is the effective cell membrane permeability32.

We used 5 linearly-spaced values in the range [0.8, 3] μm2/ms for both
IC and EC intrinsic diffusivities (referred to asD0∣in andD0∣ex), and 9 values
of cellmembrane permeability κ in the range [0; 40] μm/s (a similar range of
κ values as those used inGardier et al.32), covering all possible combinations
of the three (225 unique (D0∣in, D0∣ex, κ) triplets for each substrate). Each
simulation was conducted over a duration of T = 110 ms and with a step
number ofNstep=2370 (temporal resolution of 46.4 μs). The simulationwas
performed using 20 000 walkers per substrate. As mentioned, vessel struc-
tures were included in the segmentation as they influence the patterns of
diffusion, but they were not seeded with walkers. Cell debris found in
necrotic areas were seeded with diffusing spins, and thus contribute to
restricted diffusion. Simulations were timed for a representative substrate
(substrate 4) on a 64-core, 3.169 GHz AMD Ryzen Threadripper PRO
5995WX CPU.

Regarding the range of variation of the intrinsic diffusivities D0∣in
and D0∣ex, we chose the upper bound to match the intrinsic self-diffusivity
of water at 37°C (or room temperature for ex vivo imaging). The
lower bound is instead even lower than the intrinsic diffusivity of water
at 0 °C (≈ 1.26 μm2/ms). This value was chosen to account for potential
short-time interactions betweenwater and nanometric structures of the IC/
EC space on the microsecond scale as, for example, nuclear macro-
molecules, organelles or collagen fibres.

Lastly, custom-written python code was used to synthesise dMRI
signals from the random walks for a given acquisition protocol of interest.
The magnitude dMRI signal S is obtained as in52, i.e.,

S ¼ 1
W

XW
w¼1

e�jγΔt
PTE

t¼0
gðtÞTrwðtÞ

�����
�����: ð3Þ

Above, rw(t) is the w-th walker trajectory; Δt = T/Nstep is the temporal
resolution; T is the simulation duration; and g(t) is the diffusion-encoding
gradient. Note that IC and EC signal fractions fin and fex = 1 − fin are T2-
weighted in principle, given that the IC/EC spaces may feature different T2
constants8,12. Nonetheless, in thisfirst demonstration of ourMC framework,
we do not account for intra-compartment relaxation properties, in order to
reduce thenumberof tissueparameters required to characterise the signal.A
repository with step-by-step guidelines on how to implement the frame-
work is released at https://github.com/radiomicsgroup/dMRIMC.

Reconstruction of virtual tissue environments
We reconstructed 18 cellular environments, referred to as substrates. These
were derived from biopsies ofmalignant solid tumours of the liver (primary
cancer and metastatic) of 10 different patients (1 to 3 substrates drawn per
patient, see Table 1), acquired as part of ongoing imaging studies at the Vall
d’Hebron Institute of Oncology (Barcelona, Spain). The substrates spanned
a rich set of different cytoarchitectures, from non-cancerous liver par-
enchyma to cancer areas, such as dense cancer cell packings, fibrosis,
necrosis, and a mix of all the above.

We characterised each substrate with the following microstructural
parameters:
• ROI area and cellularity (number of cells permm2 of biopsied tissue);
• IC area fraction fin;
• lumen fraction of EC area fl;
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• lumen diameters dlumen ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Alumen=π

p
, with Alumen being the seg-

mented lumen area;
• mean CS index mCS = 〈dcell〉, where dcell ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Acell=π

p
is the indivi-

dual cell diameter calculated from its areaAcell, and 〈… 〉 is the average
over the distribution in a substrate;

• CS variance index varCS ¼ hðdcell �mCSÞ2i;
• CS skewness index

skewCS ¼ hðdcell �mCSÞ3i=varCS3=2;

• volume-weighted CS (vCS) index for a system with spherical
geometry1,14 (vCSsph), defined as

vCSsph ¼
hd7celli
hd3celli

 !1=4

;

• vCS index for a systemwith cylindrical geometry3,15 (vCScyl), defined as

vCScyl ¼
hd6celli
hd2celli

 !1=4

;

• shape h (dimensionless) and scale c (units: μm) parameters of a
gamma-distribution30

pðdcell; h; cÞ ¼ 1
ΓðhÞ ch dh�1

cell e�dcell=c;

fitted to the set of cell diameters {dcell,1, dcell,2, … }. Above,R1
0 pðdcell; h; cÞ ddcell ¼ 1, dcell is the generic cell diameter (units:
μm), and Γ(z) is the Gamma function

ΓðzÞ ¼
Z 1

0
tz�1e�t dt; <ðzÞ > 0:

Development of simulation-informed parameter inference
We investigated the potential utility of our synthetic signals to inform
microstructural parameter estimation. We synthesised DW signals
according to three dMRI protocols, matching those implemented for the
acquisition of ex vivo and in vivo MRI data (see sections below). We
simulated 225 signals per substrate (5 values ofD0∣in× 5 values ofD0∣ex×9
values of κ), for a total of 4050 signals. For all protocols, we obtained the
final measurement set by averaging signals generated for two orthogonal
directions, perpendicular to the substrate longitudinal axis, emulating
trace imaging on a clinical scanner. Note that our meshes are essentially
made by cylindroids with axes aligned along the z axis, implying that
random walks produce free diffusion in the z direction. Because of this,
we emulated trace imaging by averaging two mutually orthogonal gra-
dient directions spanning the (x, y) plane, such that their z component
was 0 (namely, g = [1 0 0]T and g = [0 1 0]T). However, our signal
synthesis code allows for the simulation of signals for any desired gra-
dient direction.

The simulated protocols were:
• PGSE-in: a PGSE protocol, matching that implemented on a 3T

clinical system in vivo. It consisted of 3 b = 0 and 18 DW measure-
ments, namely: b = {50, 100, 400, 900, 1200, 1500, 50, 100, 400, 900,
1200, 1500, 50, 100, 400, 900, 1200, 1500} s/mm2, δ= {3.9, 5.2, 9.2, 15.0,
18.2, 21.0, 3.9, 5.2, 9.2, 13.0, 15.8, 18.5, 3.9, 5.2, 9.2, 13.0, 15.8, 18.5}ms,Δ
= {27.8, 29.0, 33.0, 28.7, 31.8, 34.7, 7.8, 29.0, 33.0, 37.0, 39.6, 42.3, 7.8,
29.0, 33.0, 37.0, 39.6, 42.3}ms.

• TRSE: a DW twice-refocussed spin echo (TRSE) protocol, matching
that implemented on a 1.5T clinical system in vivo. It consisted of 3 b =
0 and 18 DWmeasurements, namely: b = {0, 50, 100, 400, 900, 1200,
1600} s/mm2, repeated for 3 different diffusion times. The duration/
separation of the gradient lobes (Supplementary Fig. S1) for the 3
diffusion times were: δ1= {8.9, 13.2, 18.9}ms, δ2= {17.6, 19.3, 21.0}ms,
δ3 = {20.4, 24.8, 30.5}ms, δ4 = {6.0, 7.7, 9.5}ms,Δ1,2 = {17.4, 21.7, 27.5}
ms, Δ1,4 = {63.9, 74.2, 87.5} ms.

• PGSE-ex: a second PGSE protocol, matching that implemented on a
pre-clinical 9.4T system for ex vivo imaging. It consistedof 2 b=0 and6
DWmeasurements, namely: b = {0, 500, 2000, 4500} s/mm2 acquired
for each of Δ = {16.5, 37.0}ms, with δ = 12 ms.

We then interpolated the set of paired examples of tissue parameters p
and dMRI signals s(p) with a RBF regressor, which implements the forward
modelp↦ s(p). Thiswasfinally embedded into routineNNLSfitting, based
on maximum-likelihood estimation45. To test the feasibility of using
simulation-informed forward models for parameter estimation, we per-
formed a leave-one-out experiment. Briefly, for all substrates in turn, we
learnt p ↦ s(p) on noise-free signals from 17/18 substrates, and then
plugged the learnt model in NNLS fitting of the noisy signals from the 18th

substrate (Rician noise; b= 0 SNRof 50). This ensured that the performance
of the simulation-informed forwardmodelswasnot testedon signalsused to
build the model itself.

We performed fitting twice, considering two different forward mod-
els p↦ s(p):
• in forward model 1,

p ¼ f in;D0jin; vCScyl;D0jex
n o

;

estimating a single CS statistic (vCScyl) per voxel. We chose to esti-
mate vCScyl, rather thanmCS, to enable the comparison ofmodel 1 to
fitting a well-established multi-compartment analytical signal model
(see below);

• in forward model 2 instead,

p ¼ f in;D0jin; vCScyl; κ;D0jex
n o

;

estimating a CS statistic and the cell membrane permeability.

The quality of parameter estimation was assessed by scatter density
plots and Pearson’s correlation coefficients between estimated and ground
truth parameter values. Bland-Altmann plots with biases and LOA figures
were also evaluated.Moreover,fitting of forwardmodel 1was compared to a
widely-used analytical model, describing the dMRI signal as the sum of IC/
ECcontributions. The comparisonwas performedon synthetic signals from
impermeable cells (κ = 0). The analytical signal model to which forward
model 1 was compared against is

S ¼ f in e
�bADCinðD0jin;R;δ;ΔÞ þ ð1� f inÞ e�bADCex ; ð4Þ

where ADCin characterises signal decay due to restriction within cells. This
approach is used, for example, in popular techniques such asVERDICTand
IMPULSED6,7. However, while VERDICT and IMPULSEDADCin is based
on a model of spherical cells, here we used the expression for diffusion
within cylinders, given the cylindrical symmetry of our substrates.We used
an effective radius R ¼ 1

2 vCScyl . We used vCScyl rather than mCS since the
former accounts for the fact that larger cells contain more water, and hence
contributemore to theDWsignal, than smaller cells3. Nonetheless, we point
out that vCScyl is a metric prone to mesoscopic fluctuations, being highly
sensitive to the tails of the cell size distribution within a voxel, with
increasing sensitivity the smaller the voxel gets1. In practice,ADCin inEq. (4)
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is written as

ADCin ¼
2R4

D0jin δ ðΔ� δ=3Þ
X1
m¼1

2 a2m þ R2

D0jin δ
ðum � 2Þ

a6mða2m � 1Þ ; ð5Þ

where

um ¼ 2 e�
D0jin
R2

δa2m þ 2 e�
D0jin
R2

Δa2m � e�
D0jin
R2

ðΔ�δÞa2m � e�
D0jin
R2

ðΔþδÞa2m : ð6Þ

Above,D0∣in is the intra-cylinder diffusivity,am is them-th root of J 01ðxÞ ¼ 0,
with J1(x) being the Bessel function of the first kind, order 1, and
J 01ðxÞ ¼ d

dx J1ðxÞ62. Note that the analytical model in Eq. (5), while common
in dMRI literature, lacks higher-order terms in each compartment. It is
therefore only a crude approximation of the signal from realistic biological
structures at a given b, δ and Δ, since variety in cell shape and morphology
exists. This fact is indeed what motivates our efforts to build numerical
dMRI signal models informed directly by simulations, which do not rely on
approximated analytical signal expressions.

Histological validationofHisto-μSimMRIonexvivomouse tissue
We tested simulation-informed fitting on pre-clinical dMRI data, which
were acquired on 8 formalin-fixed ex vivomouse tissue specimens, namely:
a non-cancerous breast sample; 3 breast tumours from the MMTV PyMT
model33,34, obtained at weeks 9, 11 and 14; a normal spleen and a spleen
suffering from splenomegaly, secondary to advanced breast cancer in one
MMTV mouse; two kidneys from C57BL/6 WT male mice (9 weeks old),
one normal and one with folic acid-induced injury35. Mice were housed at
the Specific Pathogen-Free barrier area of the Vall d’Hebron Institute of
Oncology (VHIO). We have complied with all relevant ethical regulations
for animal use. All animal procedures were approved by the Animal Care
unit and the Ethics Committee for Animal Experimentation (CEEA) of the
Vall d’Hebron Research Institute (VHIR) and theGeneralitat de Catalunya,
and were performed according to the European legal framework for
research animal use and bioethics. Animals were monitored daily and
euthanised upon signs of humane endpoints. Twomousemodelswere used,
generating breast, spleen and kidney samples. These were processed for
further histological analyses, as part of ongoing studies at VHIO. A dMRI
scan of the tissue was performed at room temperature before inclusion in
paraffin for histology.

MMTV-PyMT transgenic mouse model. The MMTV-PyMT FVB/NJ
mouse strain33 is commonly employed to mimic human breast cancer
progression34. The model relies on the MMTV long terminal repeat
promoter, which drives the expression of the antigen of PyMT, a potent
oncogene. These transgenic mice are viable despite loss of lactational
ability, which is coincidentwith the transgene expression. Breast tumours
arise in virgin and breeder females as well as in males starting from
9 weeks of age. Splenomegaly is also observed at the latter stages of the
tumour growth. For this study, we used 4MMTV-PyMT FVB/NJ female
mice, whichwere euthanised byCO2 asphyxiation at different time points
to collect the following samples: non-cancerous breast and non-
pathological spleen (2 weeks); a breast tumour at weeks 9, 11 and 14;
an enlarged spleen (splenomegaly) at late stage cancer (14 weeks).

Folic acid-induced kidney injury. The folic acid-induced kidney injury
mouse model is based on the fact that high doses of folic acid are toxic,
despite being the same substance beneficial at low doses35. For this study,
we used twomalemice (C57BL/6WT, approximately 9weeks old), which
were intra-peritoneally injected with a single dose of vehicle (300 mM
NaHCO3) or with folic acid (250mg/kg). 30 days after the injection, mice
were euthanised by CO2 asphyxiation and the kidneys were collected for
downstream processing.

dMRI acquisition. Briefly, collected tissues were fixed for 24 hours in
buffered 4% formaldehyde, transferred to phosphate-buffered saline
(PBS) solution and embedded in 1%agarose gel dissolved in PBS,within a
histological cassette. Embedded samples were kept in PBS solution, and
scanned at room temperature on a 9.4T Bruker Avance system, with 200
mT/mgradient insert and aRX/TXbirdcage coil. The protocol included a
high resolution anatomical T2-weighted RARE scan, and dMRI (DW
spin echo), with the protocol matching the PGSE-ex protocol described
above (see Materials and Methods; same nominal b-values, and same
gradient timings). Other salient dMRI scan parameters were: fat sup-
pressionwith a frequency-selective 90 degree gauss512 pulse (bandwidth:
1400.1 Hz); resolution 0.2 × 0.2 × 0.57 mm3, TE = 55.1 ms, TR = 2250
ms, 3 mutually-orthogonal direction for each gradient timing and
b-value. The maximum gradient strength was of 189.5 mT/m. The total
duration of the dMRI protocol was of 210 minutes.

Histology acquisition. After MRI, samples were transferred to 70%
ethanol for 24 hours and then embedded in paraffin. 3 μm-thick sections
were obtained on a manual microtome and stained with HE, using a
robust carousel tissue stainer (Slee Medical) according to common
methods. Digital images of the HE-stained sections were acquired on a
Hamamatsu C9600-12 scanner (resolution: 0.45 μm). To maximise the
co-localisation between MRI and histology in our mouse data, we took
several HE sections of each mouse specimen, at different depths, span-
ning the whole tissue sample.

dMR imageprocessing. dMRI scans were denoised63 and Gibbs ringing
was mitigated64. Maps from forward model 2 were computed voxel-by-
voxel, via NNLS regularised maximum-likelihood fitting. Metrics were:
fin,D0∣in, vCScyl, κ,D0∣ex.When learning the forward signal model via RBF
regression, we pooled together all 4050 signals from all substrates. For
comparison, we also fitted an analytical signal model voxel-by-voxel. The
model accounted again for restricted IC diffusion and hindered EC dif-
fusion, and is thus equivalent to that of Eq. (4). However, in this case we
used the expression of IC ADC derived for diffusion within spheres,
rather than for cylinders65. For all model fitting (MC-informed and
analytical), L2 regularisation of the fitting objective function was used.
The freely-available bodymritools python tools were used (https://github.
com/fragrussu/bodymritools; scripts mri2micro_dictml.py and
pgse2sphereinex.py).

We computed themean values of the IC fraction, volumeweighted CS
and cell membrane permeability in 18 ROIs, drawn in homogenous areas,
far from edges and from the location of sharp contrasts on the b = 0 dMRI
image, and in areas with negligible fat content as seen on histology (ROIs
illustrated in Supplementary Fig. S13). We indicated the metrics as follows:
fin∣MC, vCScyl∣MC and κ forHisto-μSimMC-informedfitting; fin∣AN, vCSsph∣AN
for analytical model fitting.

Histological image processing. In parallel, we also processed the HE
images to obtain histological counterparts of MRI metrics. We manually
segmented cells in histological ROIs, and computed fin∣histo, vCSsph∣histo,
vCScyl∣histo andmCShisto, given the set of segmented cells, as illustrated for
the tissue environment generation above.Note thatwe did not co-register
HE and MR images in this study; practically, this means that each ROI
had to be drawn twice, once on the b = 0 dMR image, and once on theHE,
in the same approximate location. Segmentation was not performed in
areas rich of fat as seen on HE images, given that dMRI acquisitions are
fat-suppressed. For reference, we also obtained cell segmentations
automatically, using QuPath40, and compared manually-derived and
QuPath-derived histological metrics. For this, we calculated Pearson’s
correlations between manually-derived and QuPath-derived histological
metrics. Additionally, we also evaluated a Bias Index (BI), defined as
BI = median(E), where E ¼ 100

ðmQuPath�mmanualÞ
mmanual

. mQuPath/mmanual repre-
sents the generic metric obtained from QuPath/manual segmentations,
and IQR is the inter-quartile range. BI quantifies the bias of QuPath-
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derived histological indices compared to reference values obtained
through manual cell segmentation. Note that when processing histolo-
gical ROIs for MRI-histological comparison, we did not create 3D
meshes, since the 2D cell outlines drawn on the HE images sufficed for
histological property estimation (e.g., estimation of fin, vCS, etc).

MRI-histology correlation analysis and ROI characterisation. We
computed Pearson’s correlation coefficients among all possible ROI-wise
mean values of Histo-μSim and histological metrics, namely: fin∣histo,
vCSsph∣histo, vCScyl∣histo, mCShisto (manually-derived histological metrics);
fin∣MC, vCScyl∣MC, κ, D0∣in∣MC and D0∣ex∣MC (Histo-μSim MC-informed
fitting). To characterise the performance of Histo-μSim in each ROI, we
also computed a summary coefficient of determination (R2) between the
dMRI signalmeasurements and the signal predictions frommodelfitting.
R2 quantifies the fraction of the signal measurement variability that is
explained by the model, and is is directly comparable across ROIs. In
practice, R2 was computed as

R2 ¼ 1� SSres
SStot

; ð7Þ

pooling together DWmeasurements from all voxels within an ROI. Above,
SSres ¼

P
voxels

PM
m¼1 am � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2m þ η2
p� �2

is the residual sum of squares,
while SStot ¼

P
voxels

PM
m¼1 ðam � �aÞ2 is the total sum of squares, having

indicated withM the number of dMRI measurements; with am and sm the
m-th dMRImeasurement and them-th signal prediction fromHisto-μSim;
with η the estimated noise floor; and with �a the quantity �a ¼ 1

M

PM
m¼1 am.

The correlations between Histo-μSim and histological metrics were
benchmarked against those of the correspondingmetrics from the standard
two-compartment analytical signal model, namely: fin∣AN, vCSsph∣AN,
D0∣in∣AN and ADCex∣AN.

In vivo demonstration of Histo-μSim in cancer patients
Lastly, we also tested the feasibility of Histo-μSim in actual in vivo dMRI
scans of cancer patients, which were acquired as part of ongoing imaging
studies at the Vall d’Hebron Institute of Oncology. All ethical regulations
relevant to human research participants were followed. All participants
provided informed written consent, and were scanned in imaging sessions
approved by the Clinical Research Ethics Committee (CEIm) of the Bar-
celona Vall d’Hebron University Hospital (VHUH) (code: PR(AG)29/
2020). We studied scans from 27 patients suffering from advanced solid
tumours, candidate for phase I clinical trials at theVHUH, and referred to as
Cases 0 to 26, with the case ID being randomly generated for this article.
Scanswere acquired at either abdominal or pelvic level, using a 1.5TSiemens
Avanto system (10 cases) and a 3TGESIGNAPioneer systemwere used (17
cases). Additionally, an ultrasound-guided biopsywas collected fromone of
the tumours approximately one week after MRI.

dMRI acquisition. For the 1.5T system, the protocol included anato-
mical T2-weighted fast spin echo imaging and dMRI. dMRI was based on
a DW TRSE Echo Planar Imaging (EPI) sequence, with the diffusion
encoding protocol matching exactly the TRSE protocol used in simula-
tions (see above for details). Other salient parameters were: resolution
1.9 × 1.9 × 6 mm3, TE = {93, 105, 120} ms, TR = 7900 ms, trace DW
imaging, NEX = 2, GRAPPA = 2, 6/8 Partial Fourier imaging, BW = 1430
Hz/pixel, acquisition of a b = 0 image with reversed phase encoding. The
maximum gradient strength was of 40.8 mT/m. For the 3T scanner
instead, the protocol also included anatomical T2-weighted fast spin echo
imaging and dMRI, acquired with PGSE EPI according to the “PGSE-in”
protocol described in simulations above. Other salient parameters were:
resolution 2.4 × 2.4 × 6 mm3, TE = {75, 90, 105} ms, TR ≈ 3000 ms
(respiratory gated), trace DW imaging, NEX = 2, ASSET = 2, BW = 1953
Hz/pixel. The maximum gradient strength was of 48.5 mT/m. The dMRI
protocol took approximately 15 minutes in both machines. A schematic

of the PGSE and TRSE DW sequences is included in Supplemen-
tary Fig. S1.

Histology acquisition. We obtained ultrasound-guided biopsies from
one of the imaged tumours, obtained approximately one week after
dMRI. The histological material underwent standard processing, form
whichwe obtainedHE-stained sections, whichwe digitised aHamamatsu
C9600-12 slide scanner (resolution: 0.45 μm).

dMR image processing. Scans were denoised63, corrected for Gibbs
ringing64 andmotion, and EPI distortions mitigated (1.5T system only)66.
A characteristic SNR was computed for each subject by dividing the
signal at b = 0 and at the minimum TE after denoising, by the estimated
noise standard deviation σ. Afterwards, each DW image was normalised
to the b = 0 acquired at the corresponding TE7, and forward model 2 was
fitted voxel-by-voxel (regularised maximum-likelihood NNLS fitting;
images for b ≤ 100 s/mm2 were excluded to minimising vascular con-
tributions) within tumours, whose outline was drawn manually on the
dMRI scan by an experienced radiologist (R.P.L.). For comparison, we
also fitted the same multi-exponential analytical model deployed on the
ex vivo mouse scans, accounting for restricted IC diffusion within
spherical cells and hindered extra-cellular diffusion. Note that to our
knowledge, no analytical signal expression exists for restricted IC diffu-
sion within spherical cells for the TRSE acquisition. For this reason, we
replaced the IC analytical signal expression with a continuous RBF
interpolation of signals generated through MC simulations41 within
meshed spheres.

For all model fitting (MC-informed and analytical), L2 regularisation
of the fitting objective function was used. Finally, mean values of all dMRI
metrics within the tumours were extracted and reported just like in the
ex vivo demonstration.

Histology image processing. Histological material underwent stan-
dard histological processing (dehydration; paraffin-embedding; cut-
ting on a microtome of 3 μm-thick sections; HE staining). An
experienced pathologist (S.S.) inspected HE-stained biopsies and
outlined the tumour tissue, on which we segmented cells auto-
matically using QuPath40. Segmented cells were collected and per-
biopsy histological metrics were computed. As mentioned for the
mouse data above, we did not create 3D meshes from the 2D cell
segmentations obtained on the HE biopsies, since these 2D outlines
sufficed for histological property estimation.

MRI-histology correlation analysis. Similarly to what was performed
with mouse dMRI data, we evaluated Pearson’s correlation coefficients
between histological and dMRI metrics. To this end, we obtained per-
patient representative dMRI indices by averaging parametricmaps across
tumoural voxels. In summary, we focussed on the following metrics. For
histology: IC fraction fin∣histo, volume-weighted CS and mean CS
(vCScyl∣histo, vCSsph∣histo and mCShisto). For Histo-μSim: IC fraction fin∣MC

vCScyl∣MC and κ. For the analytical signal model: IC fraction fin∣MC and
vCSsph∣AN.

Comparison across primary cancer types. We compared MRI and
histological metrics through t-tests across the twomost frequent primary
cancer types in our in vivo cohort, namely CRC and melanoma. These
tests investigatedwhetherMRI can non-invasively detect different cancer
phenotypes at the cellular level, given that CRC is known to be char-
acterised by the presence of large luminal spaces, with reduced cell
density, unlike melanoma.

Analysis of Histo-μSim model fitting quality
Models andparameters. Lastly, we compared the quality of Histo-μSim
fitting to other popular models and representation of the dMRI signal.
This analysis was performed on dMRI measurements from both mouse
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tissue scanned ex vivo, as well as on human scans acquired in vivo. In
more detail, we compared Histo-μSim forward model 2 to the two-
compartment analytical model described above. Additionally, we also
compared it to popular DKI38 and to RSI39.

In DKI, the dMRI signal is parametrised as

s ¼ s0 e�bADCþ K
6 ðbADCÞ2 ; ð8Þ

as a function of the b-value, where ADC andK are respectively the apparent
diffusion and kurtosis coefficients.

In RSI instead, the dMRI signal is expressed as a linear combination of
exponential functions, describing signal contribution from different water
compartments. In this work, we used a 3-compartment RSI model, where
the dMRI signal is written as

s ¼ s0
X3
n¼1

cn e
�bDn : ð9Þ

In Eq. (9) above, the 3 exponential functions describe signal from restricted,
hindered and free water. Their diffusion coefficients are fixed to D1 =
0.1 μm2/ms (restricted water), D2 = 1.8 μm2/ms (hindered water) and D3 =
3.6 μm2/ms (freewater) in vivo67,while toD1 = 0.1 μm

2/ms,D2 = 1.3 μm
2/ms

and D3 = 2.5 μm2/ms ex vivo. The lower diffusivity values ex vivo account
for the lower temperature (room temperature vs body temperature), as well
as for reduced water mobility caused by formalin fixation68.

In summary, the following parameters were estimated for each dMRI
technique (excluding the b = 0 signal):
• 5 parameters for Histo-μSim: {fin, D0∣in, vCScyl, D0∣ex, κ};
• 4 parameters for the two-compartment analytical model:

{fin, D0∣in, vCSsph, ADCex};
• 2 parameters for RSI: {f1, f2}, such that c1 = f1, c2 = (1 − f1)f2 and

c3 = (1 − f1)(1 − f2) in Eq. (9) above;
• 2 parameters for DKI: {ADC, K}.

Quality of fit comparison. For all dMRI approaches (Histo-μSim, two-
compartment analytical model, DKI, and RSI), fitting was performed by
minimising the MSE over the dMRI measurement set for an offset
Gaussian noise model45, defined as

MSE ¼ 1
M

XM
m¼1

am �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2m þ η2

q� �2
: ð10Þ

In the expression above, am is the m-th out of M measurements, sm is the
corresponding model prediction, and η accounts for the noise floor. MSE
measures themodel fitting quality, with lowerMSE pointing towards better
fits. From the MSE, the BIC36 can be computed as

BIC ¼ P lnðMÞ � 2 lnðLÞ; ð11Þ

where

ln ðLÞ ¼ � M
2σ2

MSE � M
2

ln
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p� �
ð12Þ

is the log-likelihood function, σ the noise standard deviation, P the number
of freemodel parameters, andM the number of dMRI signalmeasurements.
Lower BIC values point towards better model performances. However, as
compared to MSE, BIC includes a penality term that penalises model
complexity (∝ P).

We computed MSE and BIC for all models voxel-by-voxel on both
mouse and human scans. Afterwards, we ranked models for each mouse/
human scans according to both MSE and BIC. The top-ranking model was
the one providing the lowest MSE/BIC in the largest proportion of voxels.

Statistics and reproducibility
All statistical analysis was performed with custom Python scripts using
standard scientific libraries when possible. Comparisons between ground
truth and estimated tissue parameters in silico, and betweenhistological and
MRI metrics in the mouse and human data set were performed by com-
puting the Pearson’s correlation coefficient. Our analysis code relied on
SciPy69 (v.1.12.0) and NumPy70 (v.1.26.4). A p-value < 0.05 was considered
statistically significant. The sample size (n) varied across in silico, mouse,
and human data. The exact value of n has been reported in the caption of
each relevant figure.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The virtual tissue environments reconstructed from histology71, and the
ex vivo mouse MRI and histology data72 have been released on Zenodo
(virtual tissue substrates: https://doi.org/10.5281/zenodo.14559104;MRI
and histological mouse data: https://doi.org/10.5281/zenodo.14559355).
Data points containing ROI-wise MRI and histological metric values in
mouse tissue and in cancer patients used for all MRI-histology correla-
tion analyses are included as tables and as supplementary materials in
this manuscript. Additionally, scripts generating all panels with scatter
plots, Bland-Altman plots, and correlation matrices are included
as supplementary data in this article. Raw MRI scans from patients
cannot be released freely online due to ethical restrictions. Requests for
accessing the scans need to be addressed to the corresponding authors,
so that appropriate data sharing agreements can be stipulated at
institutional level.

Code availability
The MC simulation framework upon which Histo-μSim has been
developed is freely available in GitHub at the permanent address: https://
github.com/radiomicsgroup/dMRIMC. Routines for simulation-
informed and analytical dMR model fitting are freely available as part
of BodyMRITools at the permanent address: https://github.com/
fragrussu/bodymritools (command-line python scripts mri2micro_-
dictml.py for simulation-informed fitting; pgse2cylperpinex.py for fitting
of a two-compartment analytical model based on cylindrical cells;
pgse2sphereinex.py for fitting of a two-compartment analytical model
based on spherical cells).
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