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Diffusion Magnetic Resonance Imaging (dMRI) simulations in geometries mimicking the microscopic
complexity of human tissues enable the development of innovative biomarkers with unprecedented
fidelity to histology. Simulation-informed dMRI has traditionally focussed on brain imaging, and it has
neglected other applications, as for example body cancer imaging, where new non-invasive
biomarkers are still sought. This article fills this gap by introducing a Monte Carlo diffusion simulation
framework informed by histology, for enhanced body dMR microstructural imaging: the Histo-pSim
approach. We generate dictionaries of synthetic dMRI signals with coupled tissue properties from
virtual cancer environments, reconstructed from hematoxylin-eosin stains of human liver biopsies.
These enable the data-driven estimation of properties such as the intrinsic extra-cellular diffusivity, cell
size or cell membrane permeability. We compare Histo-uSim to metrics from well-established
analytical multi-compartment models in silico, on fixed mouse tissues scanned ex vivo (kidneys,
spleens, and breast tumours) and in cancer patients in vivo. Results suggest that Histo-uSim is
feasible in clinical settings, and that it delivers metrics that more accurately reflect histology as
compared to analytical models. In conclusion, Histo-uSim offers histologically-meaningful tissue
descriptors that may increase the specificity of dMRI towards cancer, and thus play a crucial role in

precision oncology.

The ultimate aim of diffusion MRI (dMRI) is the estimation of statistics of
the cellular environment, referred to as tissue microstructure, from sets of
diffusion-weighted (DW) signal measurements, by solving an inverse
mathematical problem"”. Multi-compartment biophysical dMRI models
have gained momentum as practical approaches capable of providing maps
of biologically-meaningful properties, such as cell size (CS) indices. These
have found applications in multiple organs, e.g., brain’, muscles’, breast’,
liver’, prostate” and beyond. Non-invasive CS measurement may be par-
ticularly relevant for disease characterisation and treatment response
assessment in oncology, given the variety of cell types that can coexist within

tumours, each featuring unique, distinctive dimensions (e.g., normal vs
malignant cells, immune cell infiltration, etc)’ .

However, current biophysical models are often based on idealised
representations of tissue components, such as spheres of fixed radii
to describe cells”". This implies that they may neglect other,
relevant features of intra-voxel microstructure, e.g., the existence of
distributions of CSs, intra-cellular (IC) kurtosis'*", or extra-cellular (EC)
diffusion time dependence'™"®. Neglecting such characteristics may bias
parameter estimation, and may also cause clinically relevant information to
be missed.

Afull list of affiliations appears at the end of the paper.
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Recently, numerical methods based on more realistic tissue repre-
sentations have enabled the development of accurate dMRI signal
models'”"®, increasing the biological specificity of parameter estimation™".
In particular, Monte Carlo (MC) diffusion simulations within 3D meshes
derived from histology have enabled the characterisation of fine, sub-cellular
microstructural details, such as axonal beading/undulation®*”, or neural
process complexity”*”'. Nevertheless, to date histology-informed dMRI has
focussed heavily on neural tissue, with only a few examples outside the
central nervous system®. More accurate biophysical models are urgently
needed in a variety of other contexts beyond brain dMR], as in oncological
body imaging of solid tumours”. New dMRI approaches could tackle sev-
eral, unmet clinical needs, such as patient stratification for treatment
selection, response assessment in immunotherapy*, or the determination of
the malignity of lesions that cannot be biopsied™.

This article aims to fill this gap by introducing a histology-informed
MC framework for microstructural diffusion simulations and parameter
mapping, referred to as Histo-uSim. We present a rich database of virtual
cellular environments reconstructed from hematoxylin and eosin (HE)
stains of liver biopsies, and use these to synthesise signals for clinically
feasible dMRI protocols. The database provides the community with
reference values of key cellular properties in cancerous and non-cancerous
tissues, information not easily accessible in the literature, yet essential to
inform the development of the new dMRI techniques of tomorrow. The set
of cellular-level characteristics and corresponding dMRI signals allowed us
to devise a strategy for the numerical estimation of unexplored tissue
properties with clinically feasible acquisitions. In particular, we tested the
estimation of the intrinsic EC diffusivity (referred to as Dyy,,) and of cell
characteristics, as CS statistics and cell membrane permeability «, which we
showcase in pre-clinical scans of fixed mouse tissues and in cancer patients
in vivo. Results from in silico, ex vivo, and in vivo data suggest that Histo-
uSim enables the computation of microstructural metrics that more accu-
rately reflect the underlying histology than standard analytical signal

models, and that these can be obtained in clinically acceptable times. In
summary, Histo-4Sim is a promising new approach for the non-invasive
characterisation of body cancers, and may play a crucial role in both clinical
practice and research settings, enhancing precision oncology.

Results

The virtual tissue environments enable histologically-realistic
diffusion simulations

We reconstructed 18 virtual tissue environments from regions-of-interest
(ROIs) of HE stains of liver tumour biopsies, which we will refer to as
substrates. The environments enable the generation of synthetic dMRI
signals through MC diffusion simulations, based entirely on open-source
software (Fig. 1). The set of environment properties and paired signals can
be used to inform cancer parameter estimation on a new patient’s dMRI
scan. The substrates include tissue from non-cancerous liver parenchyma,
as well as from primary and metastatic cancers of the liver, such as: primary
hepatocellular carcinoma (HCC); metastatic colorectal cancer (CRC);
melanoma; breast cancer. The cancer environments encompass a rich
variety of cytoarchitectures, including areas of active tumour with high cell
density; areas rich in desmoplastic stroma or fibrosis; areas of necrosis; a mix
of all of those, as well as regions at the tumour-liver interface. High-
resolutions images of the substrates are shown in Supplementary Figs. S2,
S3, and S4. In practice, the virtual tissue environments are represented
through triangular meshes derived from the outline of cellular structures
identified on HE images. As a first demonstration, the environments
effectively consist of 3D structures with cylindrical geometry, obtained by
prolonging 2D segmentations along the third dimension. dMRI signals are
obtained from a substrate through MC simulations, in which water mole-
cules are seeded uniformly within each substrate in both intra-cellular (IC)
and extra-cellular (EC) spaces. Afterwards, molecules experience Brownian
random walks, simulating diffusion, during which they interact with the
boundaries of the cellular structures through elastic reflection or
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Fig. 1 | Illustration of our MC simulation framework generating synthetic dMRI
signals from histological images. The framework relies on the following open-
source software packages: QuPath, Inkscape, Blender, MCDC. a Simulation of dMRI

signals from histology, used to build numerical signal models. b Inference of cancer
biological properties on a new patient’s scan based on such numerical models.
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permeation. We simulated 225 realisations of each substrate by varying the
intrinsic IC and EC diffusivities (Dgy;» and Dyy,) and the cell membrane
permeability x, obtaining a total of 4050 microstructures.

The virtual tissue environments characterise a variety of tissue
microstructures
We characterised the reconstructed tissue environments through several
metrics, related to the cell size (CS), cell density and to other IC and EC
properties. The metrics were:
+ the substrate area and cellularity (number of cells per mm?);
o the IC area fraction f;,;
* the fraction of the EC space occupied by luminal structures f;
o the diameters of the lumina d,,,.,., when these are present;
» the mean of the cell size (CS) distribution mCS;
* the variance of the CS distribution varCS;
* the skewness of the CS distribution skewCS;
* two volume-weighted mean CS (vCS) indices, vCS,,, and vCS,, (for a
system with spherical vs cylindrical geometry);
* shape and scale parameters of a gamma-distribution™, which we fitted
to the set of cell diameters {d.y;, deenar ...} (see Supplementary
Methods for details).

VCS,,, and vCS ., provide a characteristic CS for the substrate, similarly
to mCS. However, as compared to mCS, they put more emphasis on larger
cells, and are thus more direct counterparts of dMRI-derived cell size sta-
tistics compared to mCS™"* (note that in dMRI large cells contribute more to
the measured signals than small cells, since they contain more water).

Table 1 reports value of the metrics for all substrates. The reconstructed
cancer substrates encompass a rich variety of cytoarchitectures, showing
large between-substrate contrasts in all histological metrics. For example, f;,,
values as high as 0.868 are seen in areas featuring densely packed cells, as in
the non-cancerous liver parenchyma, while f;,, as low as 0.130 in seen in CRC
fibrosis, or as low as 0.024 in necrosis. The table also highlights contrasts in
terms of CS. The largest cells are found in the non-cancerous liver (mCS
around ~ 16 ym), while all cancers feature the presence of smaller cells.
Differences in CS are also seen within the same type of cancer, e.g., mCS of
~13 ymand ~6 um in two different CRC substrates. Substrates also feature
different skewnesses of the CS distribution, with positive skewCS in most
cancers, and negative skewCS in the non-cancerous liver. Finally, in some
substrates (e.g., CRC) the EC space features the presence of large lumina,
with equivalent diameters as large as ~ 90 um. Substrates also include areas
of partial volume between non-cancerous hepatocytes and cancer cells
(substrates 10, 11, 12) with different proportions, a fact that is reflected in
different values of skewCS.

Figure 2 illustrates the different cellular structures that have been
identified on HE histology to enable the substrate reconstruction. These are
shown in four representative substrates, namely: non-cancerous liver, CRC,
breast cancer, and melanoma. The figure highlights again the richness of
microstructural characteristics included in our substrates. Tightly packed
cells are seen in both non-cancerous liver and in melanoma, with the former
showing much larger cells than the latter (mCS of almost 16 ym in non-
cancerous liver, twice as large as the approximately 8 ym seen in melanoma).
A wide range of IC fraction f;, is also seen, ranging from 0.076 in the breast
cancer substrate (containing fibrotic areas and extensive necrosis) up to
0.846 for the non-cancerous liver. Finally, large luminal spaces in CRC
substrates occupy a considerable portion of the EC space, with areas
equivalent to the space taken by hundreds of cells.

The simulation of the diffusion random walks on the virtual cancer
substrates corresponding to Table 1 is feasible on standard computational
hardware. We timed the simulation time for a representative substrate
(substrate 4) on a 64-core, 3.169 GHz AMD Ryzen Threadripper™ PRO
5995WX CPU. The simulation of 110 ms of diffusion for 20,000 spins, for a
temporal resolution of 46.4 ys, took 45 s on a single thread for a fixed value of
IC/EC diffusivity and permeability x. The simulation time can be
approximately 10 times longer in some rare cases, when the IC fraction is

very low (e.g,, in necrotic substrates), due to internal memory handling in
the MCDC simulator.

Histo-pySim parameter estimation outperforms analytical signal
modelling

We used the set of paired examples made of synthetic dMRI signals from
MC simulations and corresponding histological features to inform tissue
parameter estimation on unseen dMRI signals. The approach was compared
to the fitting of a well-established, multi-exponential analytical dMRI signal
model, which accounts for restricted IC diffusion within impermeable
cylindrical structures (given the cylindrical symmetry of our substrates), as
well as hindered, EC diffusion® (see Methods, Eq. (4)). The experiment,
performed on signals obtained for x = 0 (impermeable cells, as assumed in
the analytical signal model), unequivocally suggests that our proposed
parameter estimation strategy outperforms more standard analytical model
fitting, since the former provides tissue parameter estimates that correlate
more strongly to ground truth values than the latter, and which show less
variability. For this experiment, we built an MC-informed forward signal
model (referred to as forward model 1) taking vCS,;, fin, Dojin and Dy as
input tissue parameters, being these the same tissue parameters of the
analytical model. To build the signal model, we only used signals generated
from impermeable cells (x = 0), as the analytical model used for bench-
marking does not account for water exchange. For the same reason, we also
tested both Histo-;Sim and the analytical model on signals corresponding
to substrates made of impermeable cells.

Figure 3 shows scatter density plots of ground truth versus estimated
tissue parameters in in silico experiments. The figure refers to the analysis of
dMRI signals synthesised with a pulsed-gradient spin echo (PGSE) protocol
matching that of available in vivo scans, and referred to as protocol PGSE-in
(see Materials and Methods). The protocol includes multiple b-values
(maximum b = 1500 s/mm*) and multiple diffusion times, and results refer
to simulations of impermeable cells (x = 0). It is apparent that f;,, and Dyy;;,
are, respectively, the metrics that are the most/the least accurately predicted.
Correlation coefficients between ground truth and predicted values are
consistently higher for Histo-4Sim than for the analytical model. While for
both models a strong correlation between estimated and ground truth is
seen for f;,,, a moderate correlation is seen for vCS,,; for MC-informed fitting
(r=0.63), and alow correlation for the analytical model (r = 0.14). For Dy;,
instead, the correlation is weak for both approaches, although considerably
higher for Histo-4Sim (r = 0.30 against 0.04). Interestingly, we also observe a
moderate correlation between ground truth and predicted Dy, for MC-
informed fitting (r = 0.47). Note that the analytical model in Eq. (4) enables
the estimation of the EC apparent diffusion coefficient (ADC) ADC,,, and
not of the intrinsic EC diffusivity Do)... The existence of “hot spots” (clus-
tered points) in the scatter density plots in Fig. 3 is a consequence of the
discrete nature of the distribution of the ground truth tissue properties,
given that our data set consists of 18 unique values on IC fraction and
volume-weighted CS (vCS), 5 values of Dyy;,, and Dy, and 9 values of «. For
example, it is apparent that histological vCS tends to cluster around 10 ym
and 18 ym, with fewer values around 14 ym. Clustering in the y-direction
outside the diagonal instead indicates bias in the estimation, as seen clearly,
for example, for Dyy;, inference through the analytical signal model.

Histo-uSim enables the data-driven estimation of cell size and
permeability
Motivated by the encouraging results on CS and density mapping obtained
by comparing Histo-uSim to a standard analytical signal model, we also
investigated whether our framework enables the data-driven, equation-free
estimation of additional microstructural properties of cells. To this end, we
investigated the joint estimation of a volume-weighted CS index (vCS,,;) and
of a characteristic cell membrane permeability metric x, given their potential
relevance as non-invasive biomarkers in cancer’*.

We tested MC-informed fitting of a second signal model, referred to as
forward model 2, with tissue parameters vCS,;, fi» Dojin» Dojex and «. Figure 4
shows parameter estimation results for the same PGSE-in protocol used
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Fig. 2 | Visualisation of four illustrative substrates used for MC diffusion
simulations. a, d, g, j HE histological images. b, e, h, k SVG files reconstructed with
the Blender software package, showing different substrate features (e.g., cells and
debris in green, vessels in red, lumina in dark blue). ¢, f, i, 1 Histograms depicting the
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CS (i.e., cell diameter) distribution for each substrate, with summary statistics and
with a Gamma distribution fit superimposed onto it (black solid line). From top to
bottom: non-cancerous liver (substrate 4), colorectal cancer (substrate 8), breast
cancer (substrate 17), melanoma (substrate 18).

previously in Fig. 3 as well as for two additional dMRI protocols, namely: a
DW twice-refocussed spin echo (TRSE) acquisition, matching that of
another set of available in vivo dMRI scans (maximum b-value:
1600 s/mm’); a second PGSE acquisition, matching a high-field acquisition
performed on fixed ex vivo mouse tissue (maximum b-value: 4500 s/mm?).
We will refer to the former as protocol TRSE, while to the latter as protocol
PGSE-ex.

Findings from all protocols converge towards the feasibility of esti-
mating jointly vCS,,;and « through simulation-informed fitting, given that
moderate-to-strong correlations are seen between ground truth and esti-
mated parameter values for these metrics. Regarding vCS,,;, we observed
moderate and strong correlations between ground truth and estimated
values (minimum 7 of 0.55 for protocol PGSE-in, maximum r of 0.81 for
protocol PGSE-ex, featuring the shortest diffusion times). As far as « is

concerned instead, we observe a moderate correlation between ground truth
and estimated parameters (maximum r of 0.45 for the TRSE protocol,
featuring instead the longest diffusion times). Results for the estimation of
fins Dojinand Dy are in line with what was seen for forward model 1, namely:
good agreement for f;,, in all cases, with highest correlation r = 0.89 for TRSE;
moderate correlations for Dy, with highest correlation r = 0.43 for PGSE-
in; weaker correlations for D;,, with highest 7 = 0.38 for PGSE-ex.

Figure 5 reports Bland-Altman plots corresponding to the estimation
of tissue parameters from forward model 2. The panels report plots for all
metrics and protocols, and include bias and limit-of-agreement (LOA)
figures. While no systematic biases in the estimation are seen for any
metrics, the figure highlights that the estimates of Dyj;,;, Dojex> and, to a lesser
extent, « are considerably more variable than those of f;,, and vCS,,;. The
plots clearly highlight the challenge of resolving jointly Dy;, and a CS index
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Fig. 3 | Scatter density plots between ground truth and estimated tissue para-
meters and Bland-Altman plots comparing the performances of MC-informed
forward model 1 with a standard analytical signal model. First row, (a-d): scatter
density plots and correlation between ground truth and estimated parameters for
forward model 1 (from left to right: f;,,, VCS_,, Dojins Dojex)- Second row, (e-g): scatter
density plots and correlation between ground truth and estimated parameters for the
analytical signal model (from left to right: f;,,, VCS,;s, Doj;n). Third row, (h-k): Bland-
Altman plots for forward model 1 (from left to right: f;,,, vCS,,s, Dojin> Dojex)- Fourth

(VCSspnianiest + VCSsphigt ) / 2 [um]

( Dojinaniest + Dojinjgt ) / 2 [um?/ms]

row, (I-n): Bland-Altman plots for the analytical signal model (from left to right: f;,,,
VCS,yp, Dyjin)- Scatter density plots also include the identity line for reference, and the
Pearson’s correlation coefficient between ground truth and estimated parameter
values (n=4050 unique data points from 18 independently-simulated substrates per
subplot). Bland-Altman plots relate the average values between estimated/ground
truth parameters (x-axis) to their difference (y-axis), and include the bias and upper/
lower limit-of-agreement (LOA). The figure refers to the estimation for protocol
PGSE-in.

from compact protocols that are feasible in the clinic. It also demonstrates
that the protocols that include short diffusion times allow for higher pre-
cision in the inference of this metric (compare protocol PGSE-ex, featuring
short diffusion times, against the clinical TRSE protocol, featuring much
longer diffusion times).

Histo-pySim microstructural parameters correlate with their his-
tological counterparts in fixed mouse tissue

We tested Histo-;Sim fitting on pre-clinical PGSE scans, acquired at 9.4T
on 8 formalin-fixed ex vivo mouse tissue specimens, for which HE sections
were also available. These were: a non-cancerous breast and 3 breast
tumours from the mouse mammary tumour virus (MMTYV) polyomavirus
middle T antigen (PyMT) transgenic mouse model”>*, obtained at weeks 9,

11 and 14; a normal spleen and a spleen suffering from splenomegaly from
the MMTYV mice; two kidneys from C57BL/6 WT male mice (9 weeks old),
one normal and one featuring folic acid-induced injury”. Quantitative
analyses also show that key Histo-uSim metrics correlate with their direct
histological counterparts, as illustrated by the correlation matrix in Fig. 6.
For example, we observe a statistically significant, positive, strong correla-
tion between Histo-uSim f;, and vCS with histological f;, and vCS (r = 0.68
between fiymc and figpisor p=0.0025 r=0.74 between vCSypc and
VCSqyijistor P = 0.001) These correlations are systematically stronger than
those obtained for the analytical signal model, demonstrating the potential
of Histo-uSim for increasing dMRI biological specificity (Fig. 6: r = 0.63, p =
0.005 between f,;jan and fijnistos ¥ = 0.37, p = 0.125 between vCS,y and
VCSqpniisto)- Histo-pSim permeability « also correlates moderately with the
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Fig. 4 | Scatter density plots between ground truth and estimated tissue para-
meters for MC-informed parameter estimation (forward model 2) and for the
three MRI protocols considered in this study. Each plot corresponds to a metric
and protocol. Top row (a—e): PGSE-in protocol; mid row (f-j): TRSE protocol;
bottom row (k-0): PGSE-ex protocol. First column form left (a, f, k): IC fraction f;,;;
second column form left (b, g, I): CS index vCS,;; third column form left (c, h, m):

1.53
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intrinsic IC diffusivity Dy;,;; fourth column form left (d, i, n): intrinsic EC diffusivity
Do fifth column form left (e, j, 0): cell membrane permeability parameter .
Pearson’s correlation coefficients between ground truth and estimated parameters
are included in each plot (n = 4050 unique data points from 18 independently-
simulated substrates per subplot).

histological metrics. For example, positive correlations between « and f,jisto
and with all histological CS indices are seen (e.g., r = 0.56, p = 0.015 with
Sinlhistor 7=0.63, p=0.006 with mCSp,). Figure 6 also reports Bland-
Altman plots relating MRI metrics to their histological counterparts. Both
Histo-4Sim and the analytical signal model underestimate the IC fraction
and overestimate CS compared to histology, to a similar extent. However,
Histo-4Sim estimates show less variability than those from the analytical
model, given the narrower range between the upper/lower LOA.

Tables 2 and 3 list dMRI and histological metrics within all ROIs. The
values in the tables were used to generate Fig. 6. Contrasts in histological
metrics agree with dMRI in several cases. For example, histological mCS and
vCS, as well as permeability x are lower in necrotic compared to non-
necrotic areas in the week 14 breast tumour (ROI 2 vs 1), or in the normal
spleen compared to the normal kidney (ROI 17 compared to ROI 16).
Histological f;, is higher in the week 9 breast tumour than in the non-
cancerous breast (ROI 1 vs 5), and very low in necrosis (ROI 2). « is lower in
the non-cancerous breast, compared to the breast tumours. In some cases,
differences between dMRI and corresponding histology metrics are also
seen, e.g., the low dMRI f;, seen in the healthy kidney underestimates
considerably the corresponding f;,, values from histology (ROI 16).

Figure 7 shows examples of dMRI and co-localised HE images in the
four breast specimens. These contain a variety of cytoarchitectural envir-
onments, with higher inter-sample and intra-sample heterogeneity. For
example, the non-cancerous breast features areas rich in stroma. Con-
versely, higher cell densities are observed in the three MMTV-PyM
tumours. At late stages (week 14 tumour), widespread necrosis is also seen.

Figure 7 also shows parametric maps from forward model 2 in the same
breast specimens, namely: f;,,, Dojins VCS¢y Dojex and «.

The variability of cellular microarchitectures seen in Fig. 7 is reflected
in the parametric maps. Reduced f;,, is seen in areas compatible with necrosis
within the week 14 tumour (ROI2, Fig. 7). Additionally, higher f;,, is seen in
the week 11 tumour, compared to the non-cancerous breast. On histology,
this contrast corresponds to presence of areas featuring high cellularity
(Fig. 7, ROI 4), compared to stroma in the non-cancerous breast (Fig. 7, ROI
5). Changes in CS with respect to the non-cancerous breast are also seen, e.g.,
reduced vCS in areas compatible with the presence of cell debris in necrosis
(ROI 2, Fig. 7). Local variations of IC and EC diffusivities Dyy;,, and Dy, are
also seen. For instance, Dyy;,, is lower in areas with high f,, (e.g., in ROI 4 in
the week 14 tumour), and Dy is the highest at the interface between
specimens and the agarose. Within- and between-sample variations in cell
membrane permeability x are observed, such as lower x in the week 9
tumour, compared to week 14.

Supplementary Fig. S5 reports maps of microstructural parameters
from analytical signal model fitting in the mouse breast specimens. Map
contrasts generally match those from Histo-uSim fitting, and highlight
similar microstructural characteristics (e.g., necrosis in the week 14 MMTV
breast tumour). Overall, the presence of luminal spaces in breast tissue
appears underestimated in the f;, map from both the analytical signal model
and from Histo-uSim. We speculate that this may result, at least in part,
from partial volume effects with highly cellular areas, which is likely more
intense in MRI (slice thickness: 570 ym) than on histology (section thick-
ness: 3 ym).
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Fig. 5 | Bland-Altman plots relating ground truth and estimated parameters for
all tested dMRI protocols. The plots relate the average values between estimated/
ground truth parameters (x-axis) to their difference (y-axis), and include the bias
and upper/lower limit-of-agreement (LOA) (n = 4050 unique data points from 18
independently-simulated substrates per subplot). Top row (a—e): PGSE-in protocol;

mid row (f-j): TRSE protocol; bottom row (k-o0): PGSE-ex protocol. First column
form left (a, f, k): IC fraction f;,;; second column form left (b, g, 1): CS index vCS,;;
third column form left (¢, h, m): intrinsic IC diffusivity Dqy;,;; fourth column form left
(d, i, n): intrinsic EC diffusivity Dy.; fifth column form left (e, j, 0): cell membrane
permeability parameter .

Supplementary Figs. S6 and S7 show Histo-ySim maps and HE datain a
normal spleen and in splenomegaly secondary to late-stage MMTV tumour
growth. The spleens exhibit a patchy structure in most dMRI metrics. The
same pattern is seen on HE histology, where an alternation of white and red
pulps is seen (white pulps are known to contain higher T-cell density than red
pulps, which are instead rich in blood and iron). Supplementary
Figs. S6 and S8 show results from the two kidney samples: one normal, and
one following folic acid-induced injury. On histology, the former shows
normal representation of all kidney structures, while the injured case shows
proximal tubule alteration and extensive inflammation. In terms of dMRI
metrics, the injured kidney shows increased f;,, and reduced Dyy;,, and Dy, as
compared to the normal case. Higher f;, is also seen in the injured kidney
cortex as compared to its medulla, a finding that corresponds to higher cell
density on visual inspection of histology stains. Higher permeability « is
observed in the injured kidney, compared to the control organ.

Supplementary Table S8 reports the coefficient of determination (R*)
for Histo-uSim as obtained in all mouse tissue ROIs. Histo-¢Sim explains
most of the signal variability in almost all ROIs, with R* as high as 0.99 in
various breast and kidney ROIs. However, between-ROI differences in R?
values exist, with lower R” seen, for example, in necrotic ROIs (R” of around
0.68) or, even more, in the ROI drawn in the enlarged spleen (splenomegaly;
R® of around 0.05). The lower R* values in these ROIs likely result from noise
effects, since (i) the DW signal decay is stronger in necrosis than in highly
cellular areas, (ii) the enlarged spleen has a short T2 (see b = 0 image in
Supplementary Fig. S6). The average R* across all ROIs is just below 0.88.
This finding demonstrates that Histo-Sim captures the salient character-
istics of the dMRI signal, and is therefore a valid representation to explain its
variability across b-values and diffusion times.

Histo-uSim is feasible in cancer patients in vivo and reveals
meaningful inter- and intra-tumoural contrasts

Lastly, we tested Histo-uSim for tumour characterisation in cancer patients
in vivo. In this demonstration, we included scans from 27 patients suffering
from advanced solid tumours, primary or metastatic. These were scanned at

abdominal or pelvic level, on either a clinical 1.5T or 3T MRI scanner, with a
15-minute dMRI protocol, maximum b-value of 1600 s/mm’ on the 1.5T
system (mean signal-to-noise ratio (SNR) of 36.4 at b = 0 and minimum TE),
and of 1500 s/mm” on the 3T system (mean SNR of 77.3 at b = 0 and
minimum TE; per-patient SNR statistics reported in Supplementary
Table S2). Moreover, we also included HE-stained histological material
from a biopsy, which was collected from one of the patient’s tumours,
approximately one week after MRI. The analysis of the dMRI scans shows
that Histo-uSim is feasible in vivo within clinically acceptable scan times,
and that it provides metrics whose intra-tumour and inter-tumour contrasts
are compatible with the cellular environments seen on the biopsies. Fur-
thermore, despite the inherent challenge of comparing dMRI maps obtained
over large tumoural areas with histological metrics obtained from a tiny
sliver of biopsied tissue, MRI-histology correlations show that Histo-uSim
IC fraction fiync and vCS,ypc are positively correlated with their histo-
logical counterparts from the HE images, albeit weakly (Fig. 8: r=0.32 and
p=0.102 between fiymc and fiumisos r=029 and p=0.148 between
VCSynac and vCS,yasc)- These correlations are stronger than those of a
standard analytical signal model (r=0.25, p=0.203 between f,an and
Sinthistos 7=0.014, p=0.943 between vCS 4y and vCSgyppisto). Notably, cell
membrane permeability x shows negative correlations with all histological
indices. However, the correlation strength is much weaker than what was
observed in mice (e.g, r=—0.136, p=0.500 with f;pis0s r=—0248,
p=0.213 with mCSy,;,). While these correlations are not significant, they
feature opposite sign compared to the same correlations seen between MRI/
histology in mouse tissue scanned ex vivo. We speculate that this difference
may arise, at least partially, from the fact that mouse specimens were fixed.
As a consequence, cells do not exhibit active functions, a fact that may alter
water exchange considerably compared to a living organism. All in all, these
findings show that Histo-4Sim has clinical potential, as it may serve as a
useful tool for enhanced non-invasive tumour biology characterisation
through dMRI in real-world clinical settings.

Figure 8 also visualises the agreement in IC fraction and CS estimation
of Histo—uSim and of the analytical signal model with respect to histology,
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through Bland-Altman plots. Similarly to what was observed for the mouse
data, both Histo—uSim and the analytical signal model underestimate f;,
compared to histology, to similar extents. Conversely, in this case both MRI
approaches underestimate CS compared to histology. This result does not
match what was observed in the mouse data, where MRI CS was system-
atically higher than histological CS. This discrepancy likely results from the
fact that biopsies may have shrunk less than the whole-tumour HE sections
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obtained in mice. Other effects may also have played a role, e.g., mechanical
compression of the cells in situ due to mass effects, which affected the in vivo
dMRI acquisition, but that was not present once tissue was extracted from
the body.

Tables 4 and 5 summarises dMRI and histological metrics within all
biopsied tumours. Both dMRI and histology reveal inter-tumour hetero-
geneity. dMRI-derived values of IC fraction f;, are consistently lower than
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Fig. 6 | Relationship between all MRI metrics and histological indices as obtained
on fixed mouse tissue ex vivo. Metrics from Histo-ySim are indicated by subscript
MC, for “Monte Carlo simulation-informed"; metrics from the analytical signal
models are indicated by subscript AN, for “analytical”; metrics from histology are
indicated by subscript histo. MRI metrics are: IC fraction f;,,; volume-weighted
characteristic CS indices (vCS); intrinsic IC and EC diffusivities (Doj;, and Dyj.x); EC
ADC (ADC,,); cell membrane permeability «. Panels to the left: results for Histo-
uSim; panels to the right: results for the analytical two-compartment model. Top
row: correlation matrices (a) for Histo-uSim; (b) for the analytical model. p < 0.05 is
flagged by yellow squares (sample size n = 18 ROlIs). Histological metrics were

obtained through manual segmentation of cells on HE data. Middle row: Bland-
Altman plots, with biases and upper/lower limit-of-agreement (LOA) comparing
MRI and histological f;,, ((c) for Histo-uSim; (d) for the analytical model). Bottom
row: Bland-Altman plots, with biases and LOAs comparing MRI and histological
vCS ((e): vCS,,,; for Histo-uSim; (f) vCS,, for the analytical model). To aid the visual
comparison of the results of each model, the same limits have been used for the axes
related to f;, and related to vCS in both models. This leads to an abrupt cut-off of the
contours, and to the presence of empty white space, since the two models provide f;,,
and vCS estimates in slightly different numerical ranges.

Table 2| Mean values of metrics from Histo-uSim forward model 2 and from histology within different ROls drawn on the breast,
kidney and spleen tissue scanned ex vivo on a pre-clinical 9.4T MRI system

Description finihisto finimc VCSsphinisto VCScyihisto mCSpjsto VCScymc K
[um] [um] [um] [um] [um/s]

ROI 1: Breast tumour - Week 9 (cellular area) 0.70 0.56 8.6 8.4 7.5 12.5 21.7
ROI 2: Breast tumour - Week 14 (necrosis) 0.03 0.08 4.5 4.4 4.0 10.0 41
ROI 3: Breast tumour - Week 14 (cellular area) 0.72 0.48 104 10.1 9.0 12.0 24.8
ROI 4: Breast tumour - Week 11 (cellular area) 0.64 0.61 8.7 8.4 7.2 12.7 23.7
ROI 5: Non-cancerous breast 0.11 0.04 7.7 7.4 6.3 8.7 0.20
ROI 6: Breast tumour - Week 9 (cellular area) 0.68 0.75 5.7 5.6 5.2 8.0 3.3
ROI 7: Breast tumour - Week 9 (cellular area) 0.55 0.77 8.0 7.7 6.8 12.7 4.5
ROI 8: Breast tumour - Week 9 (cellular area) 0.76 0.70 8.8 8.6 7.6 12.4 6.3
ROI 9: Breast tumour - Week 11 (cellular area) 0.81 0.53 9.6 9.4 8.7 121 11.3
ROI 10: Breast tumour - Week 11 (cellular area) 0.84 0.60 11.0 10.8 9.9 13.2 28.3
ROI 11: Breast tumour - Week 11 (cellular area) 0.77 0.52 9.1 8.9 8.1 12.4 25.3
ROI 12: Breast tumour - Week 14 (necrosis) 0.01 0.03 2.0 1.9 1.7 9.4 4.4
ROI 13: Breast tumour - Week 14 (cellular area) 0.74 0.60 9.7 9.5 8.5 12.9 25.0
ROI 14: Breast tumour - Week 14 (cellular area) 0.77 0.54 9.8 9.5 8.8 12.9 21.1
ROI 15: Injured kidney 0.66 0.48 6.0 5.8 5.0 11.8 26.7
ROI 16: Healthy kidney 0.82 0.10 11.8 11.6 10.1 11.6 17.3
ROI 17: Healthy spleen 0.75 0.44 5.2 5.1 4.4 8.9 8.6
ROI 18: Splenomegaly 0.64 0.41 4.7 4.6 4.0 8.3 0.50

Histological metrics are indicated with subscript histo, while Histo-uSim metrics with MC, for Monte Carlo simulation-informed estimation.

reference histological fi,nist» and so is MRI vCSypsc, compared to both
VCSeyipisto and VCSgppnisto- Between-tumour contrast in terms of diffusion
metrics is also seen, as for the permeability . For example, the lowest «
values are observed in two melanoma cases.

Supplementary Table S7 investigates differences across the two most
frequent primary tumour types in our in vivo MRI cohort, namely CRC and
melanoma. This experiment is motivated by the fact that distinguishing
cellular phenotypes non-invasively through imaging has potential applica-
tion for differential diagnosis or for patient stratification in the clinic. These
two cancers are characterised by distinct cellular phenotypes, with the for-
mer exhibiting the presence of large luminal spaces unlike the latter, and
hence lower cell density (Table 1). As expected, CRC exhibits lower fi,jisto
than melanoma (mean/standard deviation: 0.498/0.139 in CRC and 0.685/
0.073 in melanoma, with t-test p = 0.0173), a finding compatible with the
presence of luminal spaces in the former type of cancer. Such a between-
cancer cytoarchitectural difference seen on histology is replicated in MRI.
Comparing CRC against melanoma, we observe a trend towards lower
finpmc in the former compared to the latter for Histo-¢Sim (mean/standard
deviation of fi,ac: 0.219/0.0486 in CRC, while to 0.277/0.0556 in mela-
noma, t-test p = 0.0789), and lower f;,an for the analytical signal model
(mean/standard deviation of f;,an: 0.193/0.035 in CRC, while to 0.273/
0.060 in melanoma, t-test p = 0.0132). No differences between these two
types of cancer are seen on cell size indices for any of histology, Histo-4Sim
and the analytical model.

Examples of parametric maps from Histo-uSim forward model 2
obtained in vivo are shown in Fig. 9 in two patients (ovarian cancer liver
metastases, scanned at 1.5T; endometrial cancer, scanned at 3T), alongside
clinical ADC. Maps show intra-tumour variability. For example, in the
ovarian cancer case, the largest liver metastasis features reduced f;,, and mCS
and increased D). in the necrotic core compared to the tumour outer ring, a
fact that corresponds to hyperintense clinical ADC. Conversely, no within-
tumour contrast is seen for other diffusion metrics, as for example Dy;,, and
cell membrane permeability «. For the endometrial cancer case, maps reveal
different microstructural environments within the tumour, i.e., areas with
higher/lower f;,, matching areas with lower/higher vCS. Inspection of his-
tological images confirms the existence of heterogeneous cellular char-
acteristics in both cases (Fig. 9), i.e., presence of active cancer and necrosis in
the ovarian cancer case, and presence of necrotic areas with abundance of
cell debris adjacent to areas with high cellularity in the endometrial tumour.
Fitting of a standard analytical model provides metrics that show similar
trends, highlighting again, for example, the necrotic core in the ovarian
cancer metastasis (Supplementary Figs. S9 and S10).

Histo-uSim fits dMRI signal measurements in mouse tissue and
in humans in vivo

Lastly, we studied the quality of Histo-uSim signal fitting against that of
other popular dMRI signal models, which are being increasingly used in
cancer applications. In more detail, we compared the fitting mean squared
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Table 3| Mean values of metrics from the analytical signal model and from histology within different ROls drawn on the breast,
kidney, and spleen tissue scanned ex vivo on a pre-clinical 9.4T MRI system

Description Tinjnisto finian VCSspnhisto VCScyipisto mCShisto VCSsphian
[um] [um] [um] [um]
ROI 1: Breast tumour - Week 9 (cellular area) 0.70 0.76 8.6 8.4 7.5 16.9
ROI 2: Breast tumour - Week 14 (necrosis) 0.03 0.17 4.5 4.4 4.0 15.6
ROI 3: Breast tumour - Week 14 (cellular area) 0.72 0.65 10.4 10.1 9.0 16.5
ROI 4: Breast tumour - Week 11 (cellular area) 0.64 0.64 8.7 8.4 7.2 14.3
ROI 5: Non-cancerous breast 0.11 0.06 7.7 7.4 6.3 13.9
ROI 6: Breast tumour - Week 9 (cellular area) 0.68 0.61 5.7 5.6 5.2 8.4
ROI 7: Breast tumour - Week 9 (cellular area) 0.55 0.80 8.0 7.7 6.8 131
ROI 8: Breast tumour - Week 9 (cellular area) 0.76 0.69 8.8 8.6 7.6 13.5
ROI 9: Breast tumour - Week 11 (cellular area) 0.81 0.80 9.6 9.4 8.7 17.0
ROI 10: Breast tumour - Week 11 (cellular area) 0.84 0.59 11.0 10.8 9.9 15.3
ROI 11: Breast tumour - Week 11 (cellular area) 0.77 0.57 9.1 8.9 8.1 15.0
ROI 12: Breast tumour - Week 14 (necrosis) 0.01 0.06 2.0 1.9 1.7 15.1
ROI 13: Breast tumour - Week 14 (cellular area) 0.74 0.63 9.7 9.5 8.5 15.8
ROI 14: Breast tumour - Week 14 (cellular area) 0.77 0.55 9.8 9.5 8.8 14.4
ROI 15: Injured kidney 0.66 0.63 6.0 5.8 5.0 17.0
ROI 16: Healthy kidney 0.82 0.05 11.8 11.6 10.1 15.0
ROI 17: Healthy spleen 0.75 0.39 5.2 5.1 4.4 10.7
ROI 18: Splenomegaly 0.64 0.32 4.7 4.6 4.0 11.2

Histological metrics are indicated with subscript histo, while metrics from the analytical signal model with AN, for analytical modelling.

error (MSE) and the Bayesian Information Criterion (BIC)’*” of Histo-
uSim against that of the other models. Lower values of both MSE and BIC
are indicative of better fitting performances. While MSE provides a measure
of the overall discrepancy between measured dMRI signals and model
predictions, BIC also accounts for model complexity, penalising models
with more parameters, compared to those with fewer. For this experiment,
we compared Histo-uSim forward model 2 (the model accounting for water
exchange) against the two-compartment analytical model described above.
Additionally, we also compared it to popular Diffusion Kurtosis Imaging
(DKI)* and to Restriction Spectrum Imaging (RSI)*. Tables S3 and S5
report MSE rankings performed on the mouse and in vivo human data,
while Tables S4 and S6 report BIC figures. When looking at MSE, Histo-
uSim is the signal model that provides the best quality of fit in the highest
number of mouse specimens (3 out of 8), as well as in the highest number of
human scans in vivo (15 out of 27). However, when considering the BIC
index, the performances of Histo-ySim drop, since the model contains more
parameters than compact techniques such as as RSI and DKI (5 against 2 of
RSI and DKI). In this case, RSI surpasses Histo-ySim in model rankings
obtained on both mouse and human data. However, despite the better
performances in terms on fitting quality, RSI only captures salient char-
acteristics of the dAMRI signal (i.e., the IC signal fraction), and fails to provide
estimates of specific characteristics of the cellular compartment (CS and cell
membrane permeability), which could become per se biologically-specific
biomarkers in cancer.

Discussion

Summary and key findings

This article presents Histo-Sim, a new dMRI approach for microstructural
parameter estimation informed by MC diffusion simulations within cellular
environments reconstructed from histology. Our article has three main
contributions. Firstly, it describes a practical step-by-step procedure, based
entirely on freely available software, to reconstruct meshed cellular envir-
onments from histological images. These can be used to generate large
dictionaries of realistic dMRI signals, coupled with histological properties.
Secondly, it provides the scientific community with unique reference values

of histology-derived cell size and density in non-cancerous and cancerous
human liver tissues, information not easily found in the literature, yet
essential to design the next-generation of cancer imaging techniques in
radiology. Lastly, our paper showcases a numerical approach for dMRI
parameter estimation informed directly by the simulated MC diffusion
signals. The approach, feasible in cancer patients in vivo, is shown to out-
perform classical fitting of analytical signal models. As compared to the
latter, Histo-uSim enhances parameter estimation on in silico data, and
delivers metrics that correlate more strongly with co-localised histology.

Simulation framework

Our simulation framework combines freely available software tools (i.e.,
QuPath*, Inkscape and Blender) to reconstruct meshed cellular environ-
ments from 2D histological images. These are stored as sets of ASCII PLY
files, a common file format for meshed geometrical models, being accepted
by popular open-source MC diffusion simulators such as MCDC"' or
Camino®. The procedure to convert histological data into PLY files has been
described in detail in this article, and practical examples as well as tutorials
for would-be users are provided in our freely accessible online repository, at
the permanent address https://github.com/radiomicsgroup/dMRIMC. Our
detailed guidelines equip the community with a practical tool to increase the
realism of dMRI simulations, narrowing the gap between radiology and
histology in cancer applications.

Substrates

To demonstrate our framework, we segmented 18 cellular environments
from HE-stained liver tumour biopsies, referred to as substrates. These
included tissues of different kinds, e.g., non-cancerous liver parenchyma as
well as primary cancers of the liver and liver metastases, which were char-
acterised in terms of cell density, IC area fraction, presence and morphology
of EC luminal spaces, and CS distribution characteristics. We compiled a
table reporting this information in a systematic manner, providing the
community with reference histological values for cancer applications. To
our knowledge, histology-derived cell morphometry literature has tradi-
tionally focussed on the study of neuroanatomy***, and limited quantitative
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MMTV-PyM breast tumour (bottom left). Second row (b-d): IC fraction f;, (b);
volume-weighted cell size index vCS,,yc (c); intrinsic IC diffusivity Dyj;,, (d). Third
row (e, f): intrinsic EC diffusivity Dy, (e); cell membrane permeability « (f). For
each metric, we show results on the four breast specimens. Examples of histological
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tiles in different ROIs are also included, alongside with corresponding quantitative
histological indices and mean MRI metrics for each ROIs. The coefficient of
determination R® between measured dMRI signals and signals predicted through
Histo-pSim model fitting is reported for the shown ROIs, alongside Histo-xSim and
histological metrics. Areas with high concentration of fat (resulting in very low

b =0 signal due to fat suppression) were not included in the parametric map
computation.
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data are available in body tissues or cancer, especially in relation to CS.
Information on the expected CS and cell density of a tissue is essential to
optimise dMRI acquisition protocols, e.g., to design b-values or diffusion
times. Therefore, delivering such a data base is a major contribution of our
work, as it may be used to devise innovative dMRI acquisition protocols
tailored for body imaging.
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Simulation-informed parameter inference in silico

We investigated whether synthetic dMRI signals generated through our
histology-informed framework can be used to devise new strategies for
microstructure parameter mapping, urgently sought in applications such as
cell population profiling in oncology'*"". To this end, we interpolated the
discrete dictionary of paired examples of tissue parameters and synthetic
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Fig. 8 | Relationship between all MRI metrics and histological indices obtained in
cancer patients scanned in vivo. Metrics from Histo-4Sim are indicated by sub-
script MC, for “Monte Carlo simulation-informed"; metrics from the analytical
signal models are indicated by subscript AN, for “analytical"; metrics from histology
are indicated by subscript histo. MRI metrics are: IC fraction f;,; volume-weighted
characteristic CS indices (vCS); intrinsic IC and EC diffusivities (Doj;, and Dyj.x); EC
ADC (ADC,,); cell membrane permeability k. Panels to the left: results for Histo-
uSim; panels to the right: results for the analytical two-compartment model. Top
row: correlation matrices ((a) for Histo-xSim; (b) for the analytical model). p < 0.05
is flagged by yellow squares (sample size n = 26 biopsies). Histological metrics were

obtained by automatic image processing in QuPath. Middle row: Bland-Altman
plots, with biases and upper/lower limit-of-agreement (LOA) comparing MRI and
histological f;,, ((c) for Histo-uSim; (d) for the analytical model). Bottom row: Bland-
Altman plots, with biases and LOAs comparing MRI and histological vCS ((e): vCS,;
for Histo-uSim; (f) vCSyy, for the analytical model). To aid the visual comparison of
the results of each model, the same limits have been used for the axes related to f;,, and
related to vCS in both models. This leads to an abrupt cut-off of the contours, and to
the presence of empty white space, since the two models provide f;,, and vCS esti-
mates in slightly different numerical ranges.

dMRI signals using Radial Basis Function (RBF) regressors. This provided
numerical forward models that do not rely on approximated analytical
functional forms for the IC/EC signal, e.g,, restricted diffusion within cells of
regular shape and equal size®’, or Gaussian EC diffusion. Our new numerical
forward models can be easily embedded into routine non-linear least
squares (NNLS) fitting, based on likelihood maximisation™.

We compared the performance of our approach in predicting a single
CS (effective cell diameter) statistic’ against standard analytical approaches
based on restricted diffusion within cylinders, in a scenario in which cell
membrane permeability is negligible. Results not only point towards the
superiority of our approach in CS estimation, but also show benefit in the
estimation of other diffusion properties, such as the intrinsic cytosolic dif-
fusivity or the IC fraction. We also studied the feasibility of estimating the
intrinsic EC diffusion coefficient and a volume-weighted CS (vCS) statistics,
jointly with the cell membrane permeability «, without imposing any ana-
lytical functional form to the signal (forward model 2). Results in scatter
density and Bland-Altman plots show that Histo-uSim enables the suc-
cessful estimation of these metrics. We observe an accurate estimation of IC
fraction and of the vCS, for a variety of acquisition protocols, with estimates
that are moderately to strongly correlated to the ground truth. Satisfactory
performances (i.e., moderate correlations with ground truth values) are also
seen for the estimation of the intrinsic EC diffusivity Dy, and the cell
membrane permeability x. These are microstructural properties that are still
unexplored in cancer, and the satisfactory estimation in silico observed here
motivates their investigation on actual preclinical and clinical MRI scans.
These new indices may play a role in characterising the tumour micro-
environment non-invasively, i.e., to describe properties of the stromal
compartment, or the aggressiveness of tumours. Lastly, our in silico results
confirm that the estimation of the intrinsic IC diffusivity Dy;, is an extre-
mely complex task”* on clinically feasible protocols as those considered
here. As a note, we point out that owing to the discrete nature of the input
parameter space of the simulations, both density and Bland-Altman plots
show a preference for areas corresponding to the input values inputs, a fact
that is most apparent for metrics Do), Dojex and «.

Simulation-informed parameter inference in fixed ex vivo
mouse tissue

After demonstrating CS and permeability mapping in silico, we tested its
feasibility on actual MRI scans. For this experiment, we analysed both pre-
clinical ex vivo data from 8 mouse tissue samples, as well as in vivo scans
acquired on cancer patients with two clinical MRI systems. Notably, the
tissue scanned on the pre-clinical system was considerably different from
that used to build the numerical signal models (e.g., mouse breast tumours,
kidneys, and spleens, versus human liver parenchyma and liver tumours),
and thus served as a useful out-of-distribution test bed for generalisation. On
these ex vivo mouse data, Histo-uSim captures most of the variability
exhibited by the measured dMRI signal across diffusion times and b-values,
with an average R” or around 0.88. Additionally, its parametric maps show a
number of interesting and potentially relevant inter-sample and intra-
sample contrasts, which are in most cases confirmed by histology both
qualitatively and quantitatively. The co-localised MRI and histology data
acquired in mice enabled a detailed MRI-correlation analysis, which
essentially confirms findings from in silico experiments. Specifically, we
observed moderate-to-strong correlations between dMRI and histological

fin and vCS. The MRI-histology correlation analysis also reveals that despite
the good correlation between MRI and histological values of f;, and vCS,
some differences between MRI and histological estimates of IC fraction f;,
and CS exist. This is apparent, for example, in the Bland-Altman plots in
Fig. 6, where an ellipsoidal clustering of the points is seen, pointing towards
the fact that similar values of histological f;, (or vCS) can be mapped to
different values of f;,, (or vCS) in MRI. On the one hand, this can be a result of
the known degeneracy of parameter estimation in dMRI***’. On the other
hand, inaccuracies in histological metric computation may also have con-
tributed, since histology is not free from artifacts (see detailed methodolo-
gical discussion in section 3.8 below on this point).

However, all in all, the MRI-histology correlation study demonstrates
the potential of Histo-uSim to boost the biological specificity of dMRI
towards cancer, and are encouraging, given i) the relatively small size of our
sample; ii) the inherent difficulty of ensuring accurate co-localisation
between dMRI and histology; iii) the differences between the substrates used
to build the models and the tissue imaged ex vivo; iv) the fact that these MRI-
histology correlations were stronger than those from standard analytical
signal model. Globally, the ex vivo experiments suggest that Histo-uSim,
beyond being a useful representation that captures most of the observed
signal variability, may also provide new biomarkers of tissue microstructure
to shed new light onto the presence of different cell populations in a voxel,
through CS morphology and permeability mapping.

Simulation-informed parameter inference in cancer patients

in vivo

Following extensive comparison to histology on preclinical MRI data, we
also demonstrated Histo-uSim in a pilot cohort of patients in vivo, and
compared Histo-ySim metrics to histological indices from HE biopsies
collected from one of the imaged tumours. This demonstration shows that
Histo-Sim maps can be obtained with dMRI scans that are feasible in the
clinic, i.e., not exceeding 15 minutes, with moderate maximum b-values
(around 1500 s/mm?), and based on vendor-provided sequences. The
inspection of parametric maps reveals key inter-tumour and intra-tumour
contrasts, which are plausible given the high microstructural heterogenity
seen in the HE-stained biopsied tissue. For example, areas lying within
tumour necrotic cores show reduced f;, and vCS, compatible with necrosis
and presence of cell debris. Histologically-meaningful contrasts in MRI
metrics are also seen, for example, when comparing tumour types, as CRC
and melanoma malignancies. These are the two most common cancers in
our pilot cohort, and are known to feature notably different architectures at
the cellular level. We observed lower IC fraction in CRC than melanoma
tumours in histology, a finding compatible with the presence of large, fluid-
filled luminal structures in the former. This contrast was replicated in MRI
metrics obtained from both Histo-uSim and, even more clearly, for the
analytical signal model, highlighting the utility of dMRI signal models in
enhancing the biological specificity of imaging towards cancer.

The collection of biopsy data enabled a second MRI-histology corre-
lation study. Despite the inherent challenge of relating a small sliver of
biopsied tissue to MRI metrics evaluated over large tumours, the new
biopsy-MRI comparison confirms that Histo-uSim provides metrics that
correlate more strongly to their histological counterparts than standard
analytical signal models. This result suggests, again, that Histo-uSim may
contribute to increasing the biological specificity of dMRI, compared to
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Fig. 9 | Parametric maps from Histo-uSim forward model 2 as obtained on two
representative patients in vivo, scanned on two different MRI scanners. Top:
maps on ovarian cancer liver metastases (3T system); bottom: endometrial cancer
(1.5T MRI system). From left to right, each panel reports a b = 0 image with the
tumour outline ((a) and (1)) and then metrics f;,, ((b) and (m)), vCS,,; ((c) and (n)),

Dyjin(um?/ms) Dyjex(um?/ms) x (um/s)

1.9 3.0 0.8

Dyjin ((d) and (0)), Doy« ((e) and (p)) and « ((f) and (q)). Below the metrics, details
from a biopsy taken from one of the imaged tumours are also included (HE-stained
biopsy in (h) and (s); necrosis in (i) and (t); active tumour in (j) and (u)). Below the
b =0 image, the standard Apparent Diffusion Coefficient (ADC) map is also shown
((g) and (r)).

current state-of-the-art multi-exponential approaches. Nevertheless, we
acknowledge that in this case correlations between dMRI and histology are
weaker. The observed correlation levels are not surprising given that we
could not locate the exact tumour location where the needle was inserted.
Because of this, we included all MRI voxels within the tumour to obtain per-
tumour MRI metrics in our MRI-histology comparison, a fact that has
reduced the accuracy of the co-localisation between the two modalities.
Nevertheless, we also acknowledge that other factors may have contributed
to explaining the difference in correlation seen on in vivo human data,
compared to ex vivo mouse tissue. A possible explanation could be, for
example, that tumours in mice are more homogeneous than in humans,

given that human data was acquired in advanced, heavily pre-treated
patients. This might have caused histological sampling bias to be less pro-
blematic in mice than in patients, leading to higher MRI-histology corre-
lations. Other aspects potentially contributing to the discrepancy between
histological and MRI estimates of IC fraction f;, and CS are similar to those
discussed for the ex vivo data above, namely: degeneracy in MRI parameter
estimation***%; inaccuracies in histological metric computation.

All in all, our pilot in vivo demonstration in cancer patients demon-
strates the potential of microstructural imaging to provide phenotypical
characterisations of tumours at the cellular level, and thus complement gross
information on tumour size provided by standard-of-care radiology.
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Histo-uSim fitting quality in mouse and human scans

Lastly, we studied the quality of Histo-uSim model fitting, comparing its
fitting performances to those of other popular diffusion techniques, as for
example DKI** and RSI”, by means of the fitting MSE and the BIC* indices.
Lower values of both metrics point towards better fitting performances, with
BIC essentially correcting MSE to penalise model complexity. Results on
both fixed mouse tissue and in cancer patients in vivo show that Histo-uSim
provides the best performances in terms of MSE, being the top-ranking
model in most mouse and human scans. This finding demonstrates the
excellent capabilities of Histo-ySim to describe dMRI contrasts across a
variety of b-value ranges, diffusion times, and acquisition schemes. How-
ever, detailed analyses of BIC show that simpler models, containing fewer
parameters than Histo-uSim, surpass the performances of the proposed
approach when model complexity is penalised. This is the case, for example,
for RSL, a model which, in our custom implementation, features only 2 free
parameters, against 5 of Histo-uSim. Despite the drop in performances,
Histo-Sim still ranks either first or second in BIC in the majority of in vivo
cases, i.e., even after being penalised for model complexity.

Overall, these results suggest that the good fitting performances of
Histo-uSim, jointly with its histology-informed design, make it a pro-
mising new tool to characterise dMRI contrasts with biologically
meaningful metrics. Nonetheless, the results also highlight that simple
approaches may still suffice to deliver compact representations of the
dMRI signal, especially in those applications where biomarker sensitivity,
rather than biological specificity, is of interest. This is the case, for
example, also for well-established clinical ADC measurement. We point
out that Histo-uSim aims to tell apart the different biological sources
underlying contrasts in simple metrics such as ADC, e.g., by distin-
guishing between areas featuring different cell sizes, for a fixed cell
density. In other words, with Histo-ySim we aim to provide com-
plementary information to standard diffusion imaging, boosting the
biological specificity of standard-of-care radiology. Nevertheless, it
should be remembered that in contexts where only an ADC map is
sufficient to solve a clinical task, there would be no need to acquire longer
scans for Histo-uSim computation, as short protocols (e.g., featuring as
few as two-b-value) and simple processing pipelines could suffice.

Methodological considerations and limitations

We acknowledge some potential limitations of our approach. The first one
relates to the manual reconstruction of virtual tissue environments from
histology. Despite some remaining inaccuracies, the manual outlining has
enabled the segmentation of cell boundaries, difficult to achieve with high
accuracy and high precision through automatic cell segmentation software
such as QuPath"’ (Supplementary Table S1). Nevertheless, we acknowledge
that the approach is inherently slow and difficult to scale up to create larger
dictionaries of synthetic signals and histological properties, essential to
support more advanced parameter estimation techniques (e.g., through
deep learning). In future, we plan to expand our tissue environment data
bases through automatic histological image processing, and explore more
sophisticated parameter estimation methods as those used in the first
demonstration of Histo-xSim.

Secondly, we built virtual tissue environments effectively characterised
by cylindrical geometries, and then focussed on the analysis of 2D diffusion.
This was due to the availability of a large data set of HE-stained sections in
human and mouse tissue (inherently 2D). From the 2D segmentations, we
essentially had two options to build 3D meshes for Monte Carlo simulation,
namely: (i) inferring somehow the 3D shape of the cells from the 2D out-
lines, or (ii) focussing on diffusion random walks in the cut plane, dis-
regarding completely the third dimension. We preferred the latter option, as
the former would have required strong assumptions on the 3D shape of the
cells, a fact that could have equally led to biases. In future, we plan to perform
simulations that capture the full 3D complexity of the tissue substrates,
reconstructing these, for example, from 3D micrographs™ or from 3D
confocal microscopy”’ data.

To give an intuition of the effect of our 2D modelling strategy on the
diffusion signal decay, we compared the diffusion signal from a cell cylin-
droid derived from a 2D cell segmentation against that of a 3D spheroid
derived from the same outline (effective cell radius: 7.5 ym). The spheroid
was derived by shrinking the 2D outline of the cell isotropically, along the
through-plane direction, on both sides of the 2D cut plane. The comparison,
reported in Supplementary Fig. S11, shows the instantaneous, radial IC
diffusion coefficient D;, (f) as a function of the diffusion time ¢, as well as the
signal e~*P»® for various b-values (Dyy;, = 2 pm?/ms). The figure shows that
D, (t) from the cylindroid is always higher than that of the spheroid, leading
to stronger signal decay for any t. This difference is more apparent at shorter
t, and at higher b. In practice, this implies that if actual dMRI signal mea-
surements arise from roughly spherical cells, the proposed cylindroid model
likely underestimates histological cell size, compared to a spheroid model.
This is due to the fact that for a fixed diffusion time and intrinsic IC
diffusivity, the cylindroid model always provides higher IC ADC than the
spheroid model. Hence, the CS that best explains any measured IC ADC is
going to be smaller for the cylindroid model, compared to the spheroid one.
This potential source of bias should be accounted for when interpreting
results from Histo-¢Sim.

Another consequence of relating 2D histological information to 3D
MRI data is that the co-localisation between the two is only approximate.
The two modalities feature not only different in-plane resolutions (0.45 ym
histology, 200 ym dMRI), but also different thicknesses (3 ym in histology,
570 ym in MRI). To minimise effects coming from the first resolution
discrepancy, we extracted histological ROIs over large patches of size
comparable to that of a dMRI voxel (i.e., between approximately 50 to 100
pm; Supplementary Fig. S13). However, the wild difference in terms of
thickness implies that tissue that contributed to the dMRI signal was not
captured in the histological assessment. We speculate that this may have
impoverished the correlation between MRI and histology indices, and we
acknowledge that this is a severe limitation of any MRI-histology correlation
study that does not rely on full, 3D histology. Aware of this intrinsic
shortcoming of our approach, we obtained different HE sections for each
mouse specimen, at different microtome depths, across the whole organ. On
visual inspection, the best match between MRI and histology was obtained
when both MRI and histology images were derived roughly in the middle of
the specimen. However, we remark once more that the correspondence
between MR and HE images in our mouse data set is only approximate, and
that full 3D histology (e.g., through confocal microscopy) would be required
to enhance MRI-histology co-localisation.

Regarding the set-up of a dictionary of virtual cancer environments to
inform dMRI model fitting, we stress that in this first demonstration of
Histo-uSim we only used 18 histology-derived tissue reconstructions. While
we effectively created a rich dictionary of signals and coupled tissue para-
meters by varying the IC/EC diffusivities and the cell membrane perme-
ability, we point out that such a limited set-up does not suffice to deliver a
comprehensive dictionary that can be deployed in all applications. For
example, our virtual tissue dictionary did not include examples of large areas
featuring tightly packed lymphocytes, which are seen, for examples, in
lymphomas, where malignant lymphocytes can invade the liver par-
enchyma. This implies that care is needed when interpreting current Histo-
pSim maps in contexts such as lymphoma imaging, or for immune cell
infiltration detection, as in immunotherapy. In future work we aim to
expand the data base of virtual cancer environments considerably by virtue
of automated histological image processing, and thus broaden the range of
applicability of the proposed technique.

Related to the tissue parameters used to build tissue-signal dictionaries,
we would like to remark that one of the key parameters studied in this article,
cell membrane permeability x, is difficult to determine accurately, given the
challenge in independently measuring it from other parameters (Eq. (1)
and Eq. (2)). Future experiments in vitro are warranted to further validate
Histo-uSim cell permeability estimates. These could include cell pellets or
suspensions with controlled permeability levels”, and comparisons of
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Histo-4Sim « values to those from other MR contrasts, e.g.,, T1 mapping
from inversion recovery imaging’'.

Moreover, in this study we illustrated the benefits of relaxing some of
the constraints and hypotheses underlying standard analytical diffusion
models through numerical simulations. However, we point out that this first
demonstration is not free from assumptions, since Histo-uSim tissue
parameter estimates inherit the hypotheses made to conduct the MC
simulations themselves. It is possible that some of the discrepancies
observed between dMRI and histology may have been exacerbated by
important microstructural properties that were not accounted for in our
simulated random walks, as for example: variability in intrinsic diffusivity or
permeability among cells or between lumina and EC space; differences in
intra-compartament relaxation properties®'>”; additional sources of diffu-
sion hindrance or restrictions, like intra-cellular organelles, the presence of a
dense nucleus, or extra-cellular collagen depositions. Related to this point,
we remind the readers that our signal models do not account for con-
tributions coming from intra-voxel incoherent flow within capillaries™,
which we did not simulate. For this reason, we took care to exclude b < 100
s/mm’ measurements in vivo, where vascular signals are not negligible. In
future, we aim to increase the realism of our simulations by including a third
compartment of capillary perfusion, alongside IC and EC diffusion.

Importantly, in this first demonstration of Histo-uSim we deployed
numerical signal models developed from human cancers of the liver on a
variety of conditions, including even, for example, fixed mouse tumours of
the breast. Such an “out-of-distribution” deployment test gives confidence
on the generalisability of the approach. However, this also implies that better
performances could have been obtained had a more representative set of
virtual tissue substrates been used to build signal models tailored for these
cases (e.g., meshed mouse breast tumours for the 9.4T ex vivo mouse data).
Also, we point out that care would be needed to deploy Histo-4Sim in
cancers that were not included in the generation of the virtual tissue models,
as for example lymphomas. These are characterised by the infiltration of
small, malignant lymphocytes in an organ parenchyma - a type of micro-
structural environment that was not included in our cancer substrates.
Adding examples of lymphocyte infiltration in our meshed tissue models is
one of our priorities for the next developments of Histo-uSim.

Additionally, when analysing histological images for MRI-histology
validation, we segmented cellular structures manually for the ex vivo mouse
data, while we used the automated cell segmentation for the analysis of
patients” biopsies. We did not carry out manual cell segmentation for the
patients” data because it was not possible to identify the exact, within-
tumour location on dMR images from which the biopsy was taken. Due to
this, metrics from all tumour tissue found on the HE had to be compared to a
whole tumour seen on dMRI, making manual cell segmentation on HE
images unfeasible. Comparisons between manual and automatic QuPath*
cell segmentation show that while QuPath-derived varCS and skewCS differ
considerably from varCS and skewCS from manual segmentations (high
bias for the former, poor correlation for the latter), QuPath-derived vCS and
mCS are acceptable surrogates of their manually-derived counterparts
(Supplementary Table S1).

Another important aspect revealed by our MRI-histology correlation
analysis is that each Histo-uSim metric exhibits correlations with several
histological indices at the same time, beyond its direct histological coun-
terpart. This is apparent, for example, for f;, e, which correlates also with
VCSpisto» and not only with f;,,uist0. These can be, at least in part, spurious
correlations arising from the complex landscape of our non-linear fitting
objective function™, which may limit the biological specificity of the pro-
posed technique. However, it is also possible that these correlations capture
biologically meaningful associations between histological indices, since
these are not fully independent among each other (Supplementary Fig. S12).
For example, we observe a positive correlation between density and size of
cells (i.e., between f;,,isto and VCSy,;), which may indicate that the size of a
cell influences how it interacts with the environment, and hence how a cell
ensemble organises spatially, influencing the local cell density. Future work

is warranted to characterise relationships among histological indices in
more detail, and thus guide dMRI-based cell property characterisation.

Regarding the MRI-histology correlation study, we also point out that
its main aim was to test whether salient contrasts seen in histological metrics
across samples/patients are picked up non-invasively by MRI It should be
noted that an analysis of this type, while informative, does not allow for the
detailed characterisation of more complex characteristics of tumours, as for
example intra-tumour heterogeneity™’, defined as the existence of different
clonal populations within a tumour’s cell microenvironment, and a hall-
mark of treatment resistance. Cancer cell heterogeneity, while commonly
assessed from a genetic point of view™, has also been shown to lead to
multiple radiological phenotypes within a tumour”, opening up its non-
invasive assessment with MRI. Techniques such as Histo—uSim may equip
oncologists with new tools for intra-tumour heterogeneity assessment.
Ultimately, quantitative imaging approaches of this kind may play a key role
for patient stratification in treatment planning, or in response assessment.
However, we stress that a more sophisticated histological validation would
be required compared to what has been done here, in order to deploy new
intra-tumour heterogeneity assessment tools in the radiology clinic. For
example, accurate co-registration between in vivo MRI and whole-tumour
excisions would be required, beyond simple biopsies and ROI comparisons.
Future work is warranted to elucidate these aspects.

Another aspect worth emphasising is that histopathological properties
were obtained from formalin-fixed tissue. Formalin fixation can cause con-
siderable shrinkage of tissues™, implying that quantitative properties assessed
on formalin-fixed tissue are biased, distorted versions of the true histo-
pathological characteristics. To minimise variability caused by differing dis-
tortions from various histopathological techniques, we processed all
histological material using the same pipeline and laboratory instrumentation.
Nonetheless, we acknowledge that the histological properties reported in our
study likely differ from the true characteristics exhibited by tissues in vivo,
before excision and fixation. More accurate histological quantification could
have been potentially obtained by taking the actual specimen’s shrinkage into
account, and by collecting calibration data in which specimens from the same
tumour undergo distinct histological procedures. Ultimately, improvements
on the histological pipeline of this kind would lead to benefits on any
downstream histology-informed MRI technique. In future work, we aim to
explore complementary histological pipelines to enhance the performances of
our proposed Histo-uSim framework even further.

Furthermore, in this work we did not study advanced diffusion
encodings such as oscillating gradients’, double diffusion™ or b-tensor®
encoding, since we focussed on off-the-shelf, widespread clinical protocols.
Some of these advanced encodings may improve parameter estimation
compared to what has been shown here. For example, including ultra-short
diffusion times through oscillating gradients may improve the estimation of
Dojin» as this is a challenging parameter to be estimated independently of
CS**. Its inference is known to benefit from acquisitions that include short
diffusion times, a fact that is confirmed in our study, being in line with the
better estimation seen for protocol PGSE-ex compared, for example, to
TRSE. In the future we aim to simulate more advanced dMRI acquisitions,
beyond routine PGSE. These may give access to more detailed information
on cancer microstructure than standard diffusion encoding, and potentially
improve the estimation of CS and cell membrane permeability, with
important applications in non-invasive cell profiling in cancer''. Moreover,
future work is warranted to assess the influence of the acquisition protocol
design on Histo-ySim metrics, and to deliver compact, optimised acquisi-
tions that maximise Histo-uSim metric quality and that are feasible under
time pressure in radiology settings.

Another biological feature that was not included in our modelling
framework is diffusion anisotropy. In this first demonstration of Histo-
uSim, we studied diffusion protocols that include only 3 mutually ortho-
gonal directions, and thus do not allow for accurate anisotropy quantifi-
cation. In future, we plan to extend Histo-uSim to account for features
related to microscopic and macroscopic diffusion anisotropy, and thus
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enable the modelling of signals acquired with protocols with higher angular
resolution.

Lastly, we acknowledge that this work provides only a first proof-of-
concept of Histo-uSim. Demonstrating adequate repeatability and repro-
ducibility of the technique is essential before it can be adopted widely in the
clinic. This will be addressed in future scan-rescan analyses, involving larger
cohorts of travelling volunteers scanned across multiple sites and machines
with different dMRI protocols, or patients scanned multiple times at the
same site. Similarly, future optimisations will also focus on reducing the scan
time required to obtain images of sufficient quality for Histo-pSim analysis.
These could guide the design of acquisition strategies that bring down the
scan time required from 15 to 5 minutes or less, and thus enhance the
clinical applicability of the proposed method.

Conclusions

Histo-4Sim, a new dMRI parameter estimation approach informed by
MC simulations within tissue environments reconstructed from histol-
ogy, provides histologically-meaningful indices in solid tumours within
clinically-acceptable scan times. The method outperforms standard
multi-compartment analytic models on in silico data, as well as in dMRI
scans acquired on fixed mouse tissue ex vivo and on cancer patients
in vivo. Histo-uSim may therefore play a key role in the development of
new assays for the non-invasive characterisation of solid tumors in the
body, and thus contribute to bringing precision oncology one step closer
to the clinic.

Materials and Methods

Simulation framework

In our framework, illustrated in Fig. 1, we create 3D meshes of histological
structures, such as cells, from segmentations drawn on histological images.
These meshes can be used to generate random walks in MC simulations and,
finally, dMRI signals, for any dMRI protocol of interest. We proceed as
follows.

First, a histological image is opened with QuPath* and a ROI is
selected and cropped, taking care to include in the image the scale of
magnification. The image is then opened in Inkscape, where cells and
other geometric features are manually segmented and separated into
layers. We segmented cells and cell debris, luminal spaces, and vessels.
Here we demonstrate the framework with careful, manual segmentation,
but automatic segmentations would also be possible. Two types of files
are then exported: a 3D object with all the features included included in a
single SVG file, as well as an individual SVG file for each feature. The SVG
format is used as it allows for further manipulation with Blender. In
Blender, SVG files are then transformed into 3D ASCII PLY triangular
meshes. We reconstructed 2D cellular environments from standard HE
biopsies and obtained 3D meshes by simply replicating 2D contours
along the trough-plane direction, thus generating cylinders with irregular
sections. Nonetheless, 3D segmentations could also be used (e.g., from
3D confocal microscopy).

Meshes are fed to the MCDC Simulator, an open-source MC engine“,
in order to synthesise water molecules Brownian random walks within the
substrate. We used a beta-version simulating water exchange (Triangles_
dev branch). Spins were seeded uniformly within the substrates, and cells
where modelled as permeable”. We indicate with Dyy;,, and Dy, the
intrinsic IC and EC diffusivities, while with x the cell membrane perme-
ability, with IC/EC water exchange increasing as x increases. The water
exchange implementation in MCDC follows'® and™. In this implementa-
tion, the probabilities of a spin crossing a cell membrane from the IC to the
EC space or, vice versa, from the EC to the IC spaces, are

2kl
3 Dyin
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1 +3 (3D0“n +

pin%ax =

2;clex> @

3 Dyjex
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Above, I, = | /6 At Dy;, and I, = /6 At Dy, are the elementary diffu-

sion displacements during a simulation iteration of duration At in the IC
and EC spaces®’, and « is the effective cell membrane permeability™.

We used 5 linearly-spaced values in the range [0.8, 3] yum’/ms for both
IC and EC intrinsic diffusivities (referred to as Dqj;,, and Dyj.), and 9 values
of cell membrane permeability x in the range [0; 40] um/s (a similar range of
x values as those used in Gardier et al.”), covering all possible combinations
of the three (225 unique (Doj;y» Dojex» &) triplets for each substrate). Each
simulation was conducted over a duration of T = 110 ms and with a step
number of N, = 2370 (temporal resolution of 46.4 us). The simulation was
performed using 20 000 walkers per substrate. As mentioned, vessel struc-
tures were included in the segmentation as they influence the patterns of
diffusion, but they were not seeded with walkers. Cell debris found in
necrotic areas were seeded with diffusing spins, and thus contribute to
restricted diffusion. Simulations were timed for a representative substrate
(substrate 4) on a 64-core, 3.169 GHz AMD Ryzen Threadripper PRO
5995WX CPU.

Regarding the range of variation of the intrinsic diffusivities Doy,
and Dy, we chose the upper bound to match the intrinsic self-diffusivity
of water at 37°C (or room temperature for ex vivo imaging). The
lower bound is instead even lower than the intrinsic diffusivity of water
at 0 °C (= 1.26 ym’/ms). This value was chosen to account for potential
short-time interactions between water and nanometric structures of the IC/
EC space on the microsecond scale as, for example, nuclear macro-
molecules, organelles or collagen fibres.

Lastly, custom-written python code was used to synthesise dMRI
signals from the random walks for a given acquisition protocol of interest.
The magnitude dMRI signal S is obtained as in™, i.e.,

pexain =

1 L4 . TE
S = er—l)’mztzog(fﬁl’w(ﬂ. 3)

w=1

Above, r,,(t) is the w-th walker trajectory; At = T/Ny,, is the temporal
resolution; T is the simulation duration; and g(t) is the diffusion-encoding
gradient. Note that IC and EC signal fractions f;, and f,, = 1 — f;, are T»-
weighted in principle, given that the IC/EC spaces may feature different T,
constants®'”. Nonetheless, in this first demonstration of our MC framework,
we do not account for intra-compartment relaxation properties, in order to
reduce the number of tissue parameters required to characterise the signal. A
repository with step-by-step guidelines on how to implement the frame-
work is released at https://github.com/radiomicsgroup/dMRIMC.

Reconstruction of virtual tissue environments
We reconstructed 18 cellular environments, referred to as substrates. These
were derived from biopsies of malignant solid tumours of the liver (primary
cancer and metastatic) of 10 different patients (1 to 3 substrates drawn per
patient, see Table 1), acquired as part of ongoing imaging studies at the Vall
d’Hebron Institute of Oncology (Barcelona, Spain). The substrates spanned
a rich set of different cytoarchitectures, from non-cancerous liver par-
enchyma to cancer areas, such as dense cancer cell packings, fibrosis,
necrosis, and a mix of all the above.
We characterised each substrate with the following microstructural

parameters:

 ROI area and cellularity (number of cells per mm’ of biopsied tissue);

* IC area fraction f;,;

¢ lumen fraction of EC area f;;
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e lumen diameters dy,,,., = 2+/Apen/ 7> With Aje, being the seg-

mented lumen area;

+ mean CS index mCS = (d_.), where d_; = 2+/A_;/7 is the indivi-
dual cell diameter calculated from its area Ay, and (... ) is the average
over the distribution in a substrate;

+ CS variance index varCS = ((d_,; — mCS)?);
* CS skewness index
skewCS = ((d,,; — mCS)?) /varCS>/%;

* volume-weighted CS (vCS) index for a system with spherical
geometry"'* (VCS,,), defined as

1/4
d7

ves,, = (e

<dcell)

+ vCSindex for a system with cylindrical geometry™"* (vCS,)), defined as
o N\ /4

VCScyl = 7([1;6”) H

<dcell >

* shape h (dimensionless) and scale ¢ (units: ym) parameters of a
gamma-distribution™

1 h-1 —d,
W e terdalt,
fitted to the set of cell diameters {d.;, depo -.-}. Above,
IS p(degyi h, ) dd gy = 1, deey is the generic cell diameter (units:
pm), and I'(z) is the Gamma function

p(dcell; h7 C) =

o0
I'(z) =/ et dt,  9(z)>0.
0

Development of simulation-informed parameter inference

We investigated the potential utility of our synthetic signals to inform
microstructural parameter estimation. We synthesised DW signals
according to three dMRI protocols, matching those implemented for the
acquisition of ex vivo and in vivo MRI data (see sections below). We
simulated 225 signals per substrate (5 values of Dyy;, x 5 values of Dyjex X 9
values of k), for a total of 4050 signals. For all protocols, we obtained the
final measurement set by averaging signals generated for two orthogonal
directions, perpendicular to the substrate longitudinal axis, emulating
trace imaging on a clinical scanner. Note that our meshes are essentially
made by cylindroids with axes aligned along the z axis, implying that
random walks produce free diffusion in the z direction. Because of this,
we emulated trace imaging by averaging two mutually orthogonal gra-
dient directions spanning the (x, y) plane, such that their z component
was 0 (namely, g = [100]" and g = [010]"). However, our signal
synthesis code allows for the simulation of signals for any desired gra-
dient direction.

The simulated protocols were:

* PGSE-in: a PGSE protocol, matching that implemented on a 3T
clinical system in vivo. It consisted of 3 b = 0 and 18 DW measure-
ments, namely: b = {50, 100, 400, 900, 1200, 1500, 50, 100, 400, 900,
1200, 1500, 50, 100, 400, 900, 1200, 1500} s/mm’, § = {3.9,5.2,9.2, 15.0,
18.2,21.0,3.9,5.2,9.2,13.0,15.8,18.5,3.9,5.2,9.2,13.0,15.8,18.5} ms, A
=1{27.8,29.0,33.0, 28.7, 31.8, 34.7, 7.8, 29.0, 33.0, 37.0, 39.6, 42.3, 7.8,
29.0, 33.0, 37.0, 39.6, 42.3} ms.

» TRSE: a DW twice-refocussed spin echo (TRSE) protocol, matching
that implemented on a 1.5T clinical system in vivo. It consisted of 3b =
0 and 18 DW measurements, namely: b = {0, 50, 100, 400, 900, 1200,
1600} s/mn?’, repeated for 3 different diffusion times. The duration/
separation of the gradient lobes (Supplementary Fig. S1) for the 3
diffusion times were: 6;= {8.9, 13.2, 18.9} ms, §,= {17.6, 19.3, 21.0} ms,
8y =1{20.4,24.8,30.5} ms, 8, ={6.0,7.7,9.5} ms, A, = {174, 21.7,27.5}
ms, Ay 4 =163.9, 74.2, 87.5} ms.

* PGSE-ex: a second PGSE protocol, matching that implemented on a
pre-clinical 9.4T system for ex vivo imaging. It consisted of 2b=0and 6
DW measurements, namely: b = {0, 500, 2000, 4500} s/ mm? acquired
for each of A = {16.5, 37.0} ms, with § = 12 ms.

We then interpolated the set of paired examples of tissue parameters p
and dMRI signals s(p) with a RBF regressor, which implements the forward
model p - s(p). This was finally embedded into routine NNLS fitting, based
on maximum-likelihood estimation®. To test the feasibility of using
simulation-informed forward models for parameter estimation, we per-
formed a leave-one-out experiment. Briefly, for all substrates in turn, we
learnt p — s(p) on noise-free signals from 17/18 substrates, and then
plugged the learnt model in NNLS fitting of the noisy signals from the 18"
substrate (Rician noise; b = 0 SNR of 50). This ensured that the performance
of the simulation-informed forward models was not tested on signals used to
build the model itself.

We performed fitting twice, considering two different forward mod-
els p — s(p):

* in forward model 1,

p= {fin?DO\imVCScyh DO\ex}’

estimating a single CS statistic (vCS,,;) per voxel. We chose to esti-
mate vCS,, rather than mCS, to enable the comparison of model 1 to
fitting a well-established multi-compartment analytical signal model
(see below);

* in forward model 2 instead,
pP= {firﬁ DO\irH VCScy17 K, DO\ex}7

estimating a CS statistic and the cell membrane permeability.

The quality of parameter estimation was assessed by scatter density
plots and Pearson’s correlation coefficients between estimated and ground
truth parameter values. Bland-Altmann plots with biases and LOA figures
were also evaluated. Moreover, fitting of forward model 1 was compared toa
widely-used analytical model, describing the dMRI signal as the sum of IC/
EC contributions. The comparison was performed on synthetic signals from
impermeable cells (x = 0). The analytical signal model to which forward
model 1 was compared against is

S = fin e—bADCm(DD‘,,,‘R‘rS,A) + (1 _fin) e—bADCL,X’ (4)

where ADC;, characterises signal decay due to restriction within cells. This
approach is used, for example, in popular techniques such as VERDICT and
IMPULSED®’. However, while VERDICT and IMPULSED ADC,, is based
on a model of spherical cells, here we used the expression for diffusion
within cylinders, given the cylindrical symmetry of our substrates. We used
an effective radius R = %VCSC},,. We used vCS,, rather than mCS since the
former accounts for the fact that larger cells contain more water, and hence
contribute more to the DW signal, than smaller cells’. Nonetheless, we point
out that vCS,,; is a metric prone to mesoscopic fluctuations, being highly
sensitive to the tails of the cell size distribution within a voxel, with
increasing sensitivity the smaller the voxel gets'. In practice, ADC;,, in Eq. (4)
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is written as

2 R?
ADC,, = 2K i 2n + 5,3 (tn —2) (5)
" Dy, 6 (A — 8/3) — al,(a2, — 1) ’
where
Dojin Dojin Dojin Dojin
u, =2e ,Tz da2, 426 2‘2 Aal, e 12‘2 (A=8)aZ, e*%(AJrﬁ)uf". (6)

Above, Dyy;,, is the intra-cylinder diffusivity, a,, is the m-th root of 7 (x) = 0,
with Jj(x) being the Bessel function of the first kind, order 1, and
J1(x) = 4 J,(x)”. Note that the analytical model in Eq. (5), while common
in dMRI literature, lacks higher-order terms in each compartment. It is
therefore only a crude approximation of the signal from realistic biological
structures at a given b, § and A, since variety in cell shape and morphology
exists. This fact is indeed what motivates our efforts to build numerical
dMRI signal models informed directly by simulations, which do not rely on
approximated analytical signal expressions.

Histological validation of Histo-uSim MRI on ex vivo mouse tissue
We tested simulation-informed fitting on pre-clinical dMRI data, which
were acquired on 8 formalin-fixed ex vivo mouse tissue specimens, namely:
a non-cancerous breast sample; 3 breast tumours from the MMTV PyMT
model™*, obtained at weeks 9, 11 and 14; a normal spleen and a spleen
suffering from splenomegaly, secondary to advanced breast cancer in one
MMTV mouse; two kidneys from C57BL/6 WT male mice (9 weeks old),
one normal and one with folic acid-induced injury™. Mice were housed at
the Specific Pathogen-Free barrier area of the Vall d'Hebron Institute of
Oncology (VHIO). We have complied with all relevant ethical regulations
for animal use. All animal procedures were approved by the Animal Care
unit and the Ethics Committee for Animal Experimentation (CEEA) of the
Vall d'Hebron Research Institute (VHIR) and the Generalitat de Catalunya,
and were performed according to the European legal framework for
research animal use and bioethics. Animals were monitored daily and
euthanised upon signs of humane endpoints. Two mouse models were used,
generating breast, spleen and kidney samples. These were processed for
further histological analyses, as part of ongoing studies at VHIO. A dMRI
scan of the tissue was performed at room temperature before inclusion in
paraffin for histology.

MMTV-PyMT transgenic mouse model. The MMTV-PyMT FVB/N]J
mouse strain® is commonly employed to mimic human breast cancer
progression™. The model relies on the MMTV long terminal repeat
promoter, which drives the expression of the antigen of PyMT, a potent
oncogene. These transgenic mice are viable despite loss of lactational
ability, which is coincident with the transgene expression. Breast tumours
arise in virgin and breeder females as well as in males starting from
9 weeks of age. Splenomegaly is also observed at the latter stages of the
tumour growth. For this study, we used 4 MMTV-PyMT FVB/NJ female
mice, which were euthanised by CO, asphyxiation at different time points
to collect the following samples: non-cancerous breast and non-
pathological spleen (2 weeks); a breast tumour at weeks 9, 11 and 14;
an enlarged spleen (splenomegaly) at late stage cancer (14 weeks).

Folic acid-induced kidney injury. The folic acid-induced kidney injury
mouse model is based on the fact that high doses of folic acid are toxic,
despite being the same substance beneficial at low doses™. For this study,
we used two male mice (C57BL/6 WT, approximately 9 weeks old), which
were intra-peritoneally injected with a single dose of vehicle (300 mM
NaHCOs) or with folic acid (250 mg/kg). 30 days after the injection, mice
were euthanised by CO, asphyxiation and the kidneys were collected for
downstream processing.

dMRI acquisition. Briefly, collected tissues were fixed for 24 hours in
buffered 4% formaldehyde, transferred to phosphate-buffered saline
(PBS) solution and embedded in 1% agarose gel dissolved in PBS, within a
histological cassette. Embedded samples were kept in PBS solution, and
scanned at room temperature on a 9.4T Bruker Avance system, with 200
mT/m gradient insert and a RX/TX birdcage coil. The protocol included a
high resolution anatomical T2-weighted RARE scan, and dMRI (DW
spin echo), with the protocol matching the PGSE-ex protocol described
above (see Materials and Methods; same nominal b-values, and same
gradient timings). Other salient dMRI scan parameters were: fat sup-
pression with a frequency-selective 90 degree gauss512 pulse (bandwidth:
1400.1 Hz); resolution 0.2 x 0.2 x 0.57 mm?, TE = 55.1 ms, TR = 2250
ms, 3 mutually-orthogonal direction for each gradient timing and
b-value. The maximum gradient strength was of 189.5 mT/m. The total
duration of the dMRI protocol was of 210 minutes.

Histology acquisition. After MRI, samples were transferred to 70%
ethanol for 24 hours and then embedded in paraffin. 3 ym-thick sections
were obtained on a manual microtome and stained with HE, using a
robust carousel tissue stainer (Slee Medical) according to common
methods. Digital images of the HE-stained sections were acquired on a
Hamamatsu C9600-12 scanner (resolution: 0.45 um). To maximise the
co-localisation between MRI and histology in our mouse data, we took
several HE sections of each mouse specimen, at different depths, span-
ning the whole tissue sample.

dMR image processing. dMRI scans were denoised® and Gibbs ringing
was mitigated®’. Maps from forward model 2 were computed voxel-by-
voxel, via NNLS regularised maximum-likelihood fitting. Metrics were:
Sin> Dojins VCSeys &, Dojex. When learning the forward signal model via RBF
regression, we pooled together all 4050 signals from all substrates. For
comparison, we also fitted an analytical signal model voxel-by-voxel. The
model accounted again for restricted IC diffusion and hindered EC dif-
fusion, and is thus equivalent to that of Eq. (4). However, in this case we
used the expression of IC ADC derived for diffusion within spheres,
rather than for cylinders™. For all model fitting (MC-informed and
analytical), L2 regularisation of the fitting objective function was used.
The freely-available bodymritools python tools were used (https://github.
com/fragrussu/bodymritools;  scripts  mri2micro_dictmlpy  and
pgse2sphereinex.py).

We computed the mean values of the IC fraction, volume weighted CS
and cell membrane permeability in 18 ROIs, drawn in homogenous areas,
far from edges and from the location of sharp contrasts on the b = 0 dMRI
image, and in areas with negligible fat content as seen on histology (ROIs
illustrated in Supplementary Fig. S13). We indicated the metrics as follows:
Simmc VCSeyymcand « for Histo-pSim MC-informed fitting; fi, ans VCSspnian
for analytical model fitting.

Histological image processing. In parallel, we also processed the HE
images to obtain histological counterparts of MRI metrics. We manually
segmented cells in histological ROIs, and computed finistor VCSsphnistos
VCSeyipnisto and mCSyg;,, given the set of segmented cells, as illustrated for
the tissue environment generation above. Note that we did not co-register
HE and MR images in this study; practically, this means that each ROI
had to be drawn twice, once on the b = 0 dMR image, and once on the HE,
in the same approximate location. Segmentation was not performed in
areas rich of fat as seen on HE images, given that dMRI acquisitions are
fat-suppressed. For reference, we also obtained cell segmentations
automatically, using QuPath”, and compared manually-derived and
QuPath-derived histological metrics. For this, we calculated Pearson’s
correlations between manually-derived and QuPath-derived histological
metrics. Additionally, we also evaluated a Bias Index (BI), defined as
BI = median(E), where E = 100 M. MQupath! Mmanual T€PIE-
sents the generic metric obtained from (JuPath/manual segmentations,
and IQR is the inter-quartile range. BI quantifies the bias of QuPath-
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derived histological indices compared to reference values obtained
through manual cell segmentation. Note that when processing histolo-
gical ROIs for MRI-histological comparison, we did not create 3D
meshes, since the 2D cell outlines drawn on the HE images sufficed for
histological property estimation (e.g., estimation of f;,,, vCS, etc).

MRI-histology correlation analysis and ROI characterisation. We
computed Pearson’s correlation coefficients among all possible ROI-wise
mean values of Histo-ySim and histological metrics, namely: fiunistor
VCS,phihistor VCScyijnistor MCSpisto (manually-derived histological metrics);
Sinmo VCSeynmcs % Dojinppc and Dojexpe (Histo-uSim MC-informed
fitting). To characterise the performance of Histo-xSim in each ROIL we
also computed a summary coefficient of determination (R*) between the
dMRI signal measurements and the signal predictions from model fitting.
R’ quantifies the fraction of the signal measurement variability that is
explained by the model, and is is directly comparable across ROIs. In
practice, R* was computed as

S§

o )

R?=1- ,
Sstat

pooling together DW measurements from all voxels within an ROI Above,
SSrs = oo, (a%— s+ 112)2 is the residual sum of squares,
while SS,,, = 3", Sov (a,, — @) is the total sum of squares, having
indicated with M the number of dMRI measurements; with a,,, and s,,, the
m-th dMRI measurement and the m-th signal prediction from Histo-xSim;
with 7 the estimated noise floor; and with @ the quantity a2 = & fozl a,,.

The correlations between Histo-4Sim and histological metrics were
benchmarked against those of the corresponding metrics from the standard
two-compartment analytical signal model, namely: fiyans VCSgpnans
Dojinjan and ADCeyqan-

In vivo demonstration of Histo-pySim in cancer patients

Lastly, we also tested the feasibility of Histo-uSim in actual in vivo dMRI
scans of cancer patients, which were acquired as part of ongoing imaging
studies at the Vall d'Hebron Institute of Oncology. All ethical regulations
relevant to human research participants were followed. All participants
provided informed written consent, and were scanned in imaging sessions
approved by the Clinical Research Ethics Committee (CEIm) of the Bar-
celona Vall d’Hebron University Hospital (VHUH) (code: PR(AG)29/
2020). We studied scans from 27 patients suffering from advanced solid
tumours, candidate for phase I clinical trials at the VHUH, and referred to as
Cases 0 to 26, with the case ID being randomly generated for this article.
Scans were acquired at either abdominal or pelviclevel, usinga 1.5T Siemens
Avanto system (10 cases) and a 3T GE SIGNA Pioneer system were used (17
cases). Additionally, an ultrasound-guided biopsy was collected from one of
the tumours approximately one week after MRI

dMRI acquisition. For the 1.5T system, the protocol included anato-
mical T2-weighted fast spin echo imaging and dMRI. dMRI was based on
a DW TRSE Echo Planar Imaging (EPI) sequence, with the diffusion
encoding protocol matching exactly the TRSE protocol used in simula-
tions (see above for details). Other salient parameters were: resolution
1.9 x 1.9 x 6 mm’, TE = {93, 105, 120} ms, TR = 7900 ms, trace DW
imaging, NEX = 2, GRAPPA = 2, 6/8 Partial Fourier imaging, BW = 1430
Hz/pixel, acquisition of a b = 0 image with reversed phase encoding. The
maximum gradient strength was of 40.8 mT/m. For the 3T scanner
instead, the protocol also included anatomical T2-weighted fast spin echo
imaging and dMRI, acquired with PGSE EPI according to the “PGSE-in”
protocol described in simulations above. Other salient parameters were:
resolution 2.4 x 2.4 x 6 mm®, TE = {75, 90, 105} ms, TR = 3000 ms
(respiratory gated), trace DW imaging, NEX = 2, ASSET = 2, BW = 1953
Hz/pixel. The maximum gradient strength was of 48.5 mT/m. The dMRI
protocol took approximately 15 minutes in both machines. A schematic

of the PGSE and TRSE DW sequences is included in Supplemen-
tary Fig. S1.

Histology acquisition. We obtained ultrasound-guided biopsies from
one of the imaged tumours, obtained approximately one week after
dMRI. The histological material underwent standard processing, form
which we obtained HE-stained sections, which we digitised a Hamamatsu
C9600-12 slide scanner (resolution: 0.45 ym).

dMR image processing. Scans were denoised®, corrected for Gibbs
ringing™ and motion, and EPI distortions mitigated (1.5T system only)®.
A characteristic SNR was computed for each subject by dividing the
signal at b = 0 and at the minimum TE after denoising, by the estimated
noise standard deviation o. Afterwards, each DW image was normalised
to the b = 0 acquired at the corresponding TE’, and forward model 2 was
fitted voxel-by-voxel (regularised maximum-likelihood NNLS fitting;
images for b < 100 s/mm’ were excluded to minimising vascular con-
tributions) within tumours, whose outline was drawn manually on the
dMRI scan by an experienced radiologist (R.P.L.). For comparison, we
also fitted the same multi-exponential analytical model deployed on the
ex vivo mouse scans, accounting for restricted IC diffusion within
spherical cells and hindered extra-cellular diffusion. Note that to our
knowledge, no analytical signal expression exists for restricted IC diffu-
sion within spherical cells for the TRSE acquisition. For this reason, we
replaced the IC analytical signal expression with a continuous RBF
interpolation of signals generated through MC simulations' within
meshed spheres.

For all model fitting (MC-informed and analytical), L2 regularisation
of the fitting objective function was used. Finally, mean values of all dMRI
metrics within the tumours were extracted and reported just like in the
ex vivo demonstration.

Histology image processing. Histological material underwent stan-
dard histological processing (dehydration; paraffin-embedding; cut-
ting on a microtome of 3 pm-thick sections; HE staining). An
experienced pathologist (S.S.) inspected HE-stained biopsies and
outlined the tumour tissue, on which we segmented cells auto-
matically using QuPath®. Segmented cells were collected and per-
biopsy histological metrics were computed. As mentioned for the
mouse data above, we did not create 3D meshes from the 2D cell
segmentations obtained on the HE biopsies, since these 2D outlines
sufficed for histological property estimation.

MRI-histology correlation analysis. Similarly to what was performed
with mouse dMRI data, we evaluated Pearson’s correlation coefficients
between histological and dMRI metrics. To this end, we obtained per-
patient representative dMRI indices by averaging parametric maps across
tumoural voxels. In summary, we focussed on the following metrics. For
histology: IC fraction fiupis» volume-weighted CS and mean CS
(VCS¢yihistos VCSsphnisto and mCSy;,). For Histo-uSim: IC fraction fi e
vCS,,mc and . For the analytical signal model: IC fraction f,ac and
VCSephjaN:

Comparison across primary cancer types. We compared MRI and
histological metrics through t-tests across the two most frequent primary
cancer types in our in vivo cohort, namely CRC and melanoma. These
tests investigated whether MRI can non-invasively detect different cancer
phenotypes at the cellular level, given that CRC is known to be char-
acterised by the presence of large luminal spaces, with reduced cell
density, unlike melanoma.

Analysis of Histo-uSim model fitting quality

Models and parameters. Lastly, we compared the quality of Histo-uSim
fitting to other popular models and representation of the dMRI signal.
This analysis was performed on dMRI measurements from both mouse

Communications Biology | (2025)8:1695

23


www.nature.com/commsbio

https://doi.org/10.1038/s42003-025-09096-3

Article

tissue scanned ex vivo, as well as on human scans acquired in vivo. In
more detail, we compared Histo-uSim forward model 2 to the two-
compartment analytical model described above. Additionally, we also
compared it to popular DKI*® and to RSI*.

In DKI, the dMRI signal is parametrised as

_ K 2
s = spe b ADC+ ¢ (b ADC) , (8)

as a function of the b-value, where ADC and K are respectively the apparent
diffusion and kurtosis coefficients.

In RST instead, the dMRI signal is expressed as a linear combination of
exponential functions, describing signal contribution from different water
compartments. In this work, we used a 3-compartment RSI model, where
the dMRI signal is written as

So Z c,e P, )

In Eq. (9) above, the 3 exponential functions describe signal from restricted,
hindered and free water. Their diffusion coefficients are fixed to D; =
0.1 ym®/ms (restricted water), D, = 1.8 um*/ms (hindered water) and D =
3.6 ym’/ms (free water) in vivo”, while to D, = 0.1 ygm’/ms, D, = 1.3 ym*/ms
and D; = 2.5 ym®/ms ex vivo. The lower diffusivity values ex vivo account
for the lower temperature (room temperature vs body temperature), as well
as for reduced water mobility caused by formalin fixation®.
In summary, the following parameters were estimated for each dMRI
technique (excluding the b = 0 signal):
* 5 parameters for Histo-uSim: {f;,,, Dojin» YCSeyp Dojers K}
* 4 vparameters for the two-compartment analytical
{fim DOIim VCSsph’ ADCex};
2 parameters for RSL: {f;, o}, such that ¢; = f;, c; = (1 — fi)f; and
c;=(1 — fi)(1 — f,) in Eq. (9) above;
¢ 2 parameters for DKI: {ADC, K}.

model:

Quality of fit comparison. For all dMRI approaches (Histo-uSim, two-
compartment analytical model, DKI, and RSI), fitting was performed by
minimising the MSE over the dMRI measurement set for an offset
Gaussian noise model”, defined as

1 & 2
WSl ar o)

In the expression above, a,, is the m-th out of M measurements, s,,, is the
corresponding model prediction, and # accounts for the noise floor. MSE
measures the model fitting quality, with lower MSE pointing towards better
fits. From the MSE, the BIC* can be computed as

MSE = (10)

BIC = Pln(M) — 2In(%), 11)

where

n(%) = — ZM?MSE - %ll’l(\/2ﬂ02> (12)

is the log-likelihood function, o the noise standard deviation, P the number
of free model parameters, and M the number of dMRI signal measurements.
Lower BIC values point towards better model performances. However, as
compared to MSE, BIC includes a penality term that penalises model
complexity (x P).

We computed MSE and BIC for all models voxel-by-voxel on both
mouse and human scans. Afterwards, we ranked models for each mouse/
human scans according to both MSE and BIC. The top-ranking model was
the one providing the lowest MSE/BIC in the largest proportion of voxels.

Statistics and reproducibility

All statistical analysis was performed with custom Python scripts using
standard scientific libraries when possible. Comparisons between ground
truth and estimated tissue parameters in silico, and between histological and
MRI metrics in the mouse and human data set were performed by com-
puting the Pearson’s correlation coefficient. Our analysis code relied on
SciPy® (v.1.12.0) and NumPy”’ (v.1.26.4). A p-value < 0.05 was considered
statistically significant. The sample size (n) varied across in silico, mouse,
and human data. The exact value of n has been reported in the caption of
each relevant figure.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The virtual tissue environments reconstructed from histology’’, and the
ex vivo mouse MRI and histology data” have been released on Zenodo
(virtual tissue substrates: https://doi.org/10.5281/zenodo.14559104; MRI
and histological mouse data: https://doi.org/10.5281/zenodo.14559355).
Data points containing ROI-wise MRI and histological metric values in
mouse tissue and in cancer patients used for all MRI-histology correla-
tion analyses are included as tables and as supplementary materials in
this manuscript. Additionally, scripts generating all panels with scatter
plots, Bland-Altman plots, and correlation matrices are included
as supplementary data in this article. Raw MRI scans from patients
cannot be released freely online due to ethical restrictions. Requests for
accessing the scans need to be addressed to the corresponding authors,
so that appropriate data sharing agreements can be stipulated at
institutional level.

Code availability

The MC simulation framework upon which Histo-uSim has been
developed is freely available in GitHub at the permanent address: https://
github.com/radiomicsgroup/dMRIMC.  Routines for simulation-
informed and analytical dMR model fitting are freely available as part
of BodyMRITools at the permanent address: https://github.com/
fragrussu/bodymritools (command-line python scripts mri2micro_-
dictml.py for simulation-informed fitting; pgse2cylperpinex.py for fitting
of a two-compartment analytical model based on cylindrical cells;
pgse2sphereinex.py for fitting of a two-compartment analytical model
based on spherical cells).
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