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Label-free nonlinear microscopy probes
cellular metabolism and myelin dynamics

in live tissue
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Metabolic coupling between neurons and glial cells plays a critical role in brain activity and myelin
plasticity. Understanding its role in physiological and pathological contexts requires advanced
methods to map metabolism and myelin in live tissue with high spatiotemporal resolution. Here, we
present a label-free, multimodal, nonlinear optical microscopy platform integrated with an advanced
image processing framework that simultaneously maps cellular metabolism and myelin distribution in
organotypic cerebellar cultures. We combine third-harmonic generation microscopy for high-
resolution myelin imaging with single axon precision with two-photon fluorescence lifetime microscopy
of NAD(P)H metabolic biomarker to assess redox states with single-cell resolution. We introduce
automated image analysis methods for cell segmentation and myelinated axon detection, enabling
quantitative metabolic and myelin assessment in intact tissue during experimental myelination,
demyelination and remyelination. Using this framework, we map the 3D myelin distribution in cerebellar
folia and identify distinct metabolic signatures in neurons, oligodendrocytes, and microglia.
Furthermore, we measure a metabolic shift in microglia along with myelin distribution changes during
experimental demyelination. In conclusion, we establish label-free optical imaging as a powerful tool for
the non-invasive characterization of neuro-glial metabolic coupling and myelin organization in living
brain tissue, opening new perspectives for research in neuroinflammation and neurodegeneration.

Proper brain activity and myelin formation in the nervous system rely on
the metabolic coupling between neurons and glial cells and axon-myelin
interaction'”. Glial cells encompass notably myelin-producing oligo-
dendrocytes, astrocytes, and microglia, which are the innate immune cells
of the central nervous system (CNS). Under physiological conditions, the
brain is intrinsically characterized by metabolic heterogeneity at the cel-
lular level, and the metabolic functions of neurons and glial cells are
closely linked to support neuronal function*®. Recent studies have
uncovered a novel role for myelinating oligodendrocytes in delivering
glycolytic metabolites such as lactate or pyruvate to fast-spiking
axons"*'" and providing an energy reserve for white matter axons with
their fatty acid metabolism'. As the strong metabolic cooperation

between neurons and glia is essential for neuronal activity and survival,
disruptions in this communication can lead to brain diseases’. Demyeli-
nation and impaired energy metabolism are indeed hallmarks of neuro-
degenerative diseases such as multiple sclerosis (MS)**" and
Alzheimer'" leading to significant cognitive and behavioral effects.
Growing evidence suggests that demyelination and neuronal energy
deficiency are tightly connected'*'*". Simultaneously, immunometabo-
lism has emerged as a central player in maintaining tissue homeostasis and
protection while driving the progression of neurodegenerative diseases™.
Microglia can adopt either pro-inflammatory or pro-regenerative/pro-
myelinating phenotypes®, with metabolic changes closely linked to their
functional states™ .
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The neuron-glia metabolic coupling and its influence on demyeli-
nation and remyelination in the nervous tissue are still not well under-
stood at high spatiotemporal resolution. This gap in knowledge hinders
the development of improved treatments and therapeutic strategies for
neurodegenerative diseases. A significant challenge is the lack of non-
invasive imaging methods capable of probing metabolism at the cellular
level and visualizing myelin at the single-fiber level in vivo. Traditional
imaging techniques such as magnetic resonance imaging (MRI) and
positron emission tomography (PET) are constrained by their spatial
resolution, making it difficult to capture the intricate spatial complexity
and heterogeneity of these processes at the micrometer scale'*****°. Light
microscopy and two-photon excited fluorescence (2PEF) can visualize
myelinated axons with micrometer resolution using exogenous dyes and
transgenic mice”’ and can also monitor single-cell energy metabolism
through the use of genetically encoded biosensors™. However, these
methods often require labeling strategies that may interfere with normal
tissue function. Label-free nonlinear optical (NLO) methods, such as
2PEF of endogenous fluorophores, second- and third-harmonic gen-
eration (SHG and THG), and coherent anti-Stokes Raman scattering
microscopy, offer functional imaging of live tissues with various contrast
mechanisms without the need for exogenous staining””~**. Additionally,
NLO techniques allow for the study of the local environment in fem-
toliter volumes deep within tissue, thanks to their intrinsic three-
dimensional resolution, high penetration depth, minimal out-of-focus
photobleaching, and reduced photodamage.

2PEF of intrinsic biomarkers, combined with fluorescence lifetime
imaging microscopy (FLIM), has demonstrated significant potential for
non-invasive monitoring of metabolic processes in unstained living
tissues™ ™. The primary intracellular sources of endogenous fluorescence
are reduced nicotinamide adenine dinucleotide (NADH), reduced nicoti-
namide adenine dinucleotide phosphate (NADPH) and flavin adenine
dinucleotide (FAD), the major fluorescent cofactors of cellular redox
(reduction/oxidation) reactions in the cell and central regulators of energy
production and metabolism*. Since NADH and NADPH are not spectrally
separable, the combined fluorescence is often denoted as NAD(P)H. The
lifetimes of NAD(P)H and FAD are highly sensitive to enzymatic binding",
making them valuable indicators of various metabolic pathways, including
oxidative phosphorylation (OXPHOS), glycolysis, fatty acid oxidation, and
oxidative stress””**, 2PEF lifetime imaging microscopy (2P-FLIM) of
these intrinsic metabolites has demonstrated the spatial resolution necessary
to characterize metabolic cellular heterogeneity and intracellular
compartmentalization*™*. This technique has also demonstrated its ability
to investigate metabolic patterns and changes in neurons*, immune
cells*, and within the context of neuroinflammation and
neurodegeneration"**%*"*%%,

THG is another label-free NLO process in which three photons at the
fundamental frequency are converted into one photon at the third-
harmonic. THG microscopy is sensitive to optical heterogeneity at the sub-
pm scale, such as lipid/water interfaces’, it therefore allows the visualization
of the tissue morphology of tissues without staining”>*"*>. THG has shown
the capability to provide label-free, micron-resolution imaging of myeli-
nated axons in both the CNS and peripheral nervous system (PNS) across
ex vivo and in vivo mouse and zebrafish models®**°. THG is, however, not
specific to myelin”*", but we recently demonstrated that THG specificity
and sensitivity to myelin can be enhanced using polarization-resolved THG
contrast®*”. THG microscopy can visualize both large nerves™ and thin
myelinated axons in the cortex in vivo™. It has shown potential for probing
myelin damage and pathology®**.

In this work, we develop and implement a novel label-free NLO
imaging framework that simultaneously probes cellular metabolism and
myelin distribution in living cerebellar slices, a live model for myelination,
demyelination, and remyelination”. We also introduce advanced auto-
mated image analysis techniques to quantify single-cell metabolism and the
distribution of myelinated axons. First, we present multimodal microscopy
images of organotypic cerebellar slices from mice, integrating several

contrast modalities: 2PEF lifetime imaging microscopy of NAD(P)H and
THG. Using transgenic fluorescent mouse lines to identify different cell
types, we demonstrate the visibility of sub-um myelinated axons in the
cerebellar folia and reveal their high metabolic heterogeneity. Next, we
develop automated image analysis tools for single-cell segmentation and
metabolic fingerprint measurements, as well as automated segmentation of
myelinated axons to assess myelin content in nerve tissue. We conduct a
systematic analysis of single-cell heterogeneity in cerebellar folia and
demonstrate the effectiveness of 2P-FLIM in characterizing the metabolic
states of various cell types, including neurons and glial cells. Finally, we
showcase the potential of the FLIM-THG imaging platform for studying
metabolic shifts in microglia at the single-cell level and monitoring changes
in myelin distribution under demyelination and remyelination conditions
using the organotypic culture of sagittal cerebellar slices.

Results

Label-free multimodal nonlinear microscopy to probe metabo-
lism and myelin

We implemented a label-free, multimodal, nonlinear microscopy platform
that combines two-photon excitation, fluorescence lifetime microscopy
(FLIM), and third-harmonic generation microscopy (THG). The setup is
described in Fig. la. We integrated a custom-built microscope with a
commercial femtosecond laser that can be tuned at different wavelengths to
generate different NLO contrasts. We minimized the pulse width at the
sample to optimize THG efficiency generation (See Methods). Fluorescence
signals were epi-detected in three different spectral ranges (blue, green, and
red), while the THG signal was forward-detected (Fig. 1a).

Multi-contrast imaging was performed sequentially. Label-free ima-
ging of myelin in organotypic cerebellar slices was first performed with THG
with an excitation wavelength of 1150 nm to avoid three-photon resonance
from blood™**”", At this wavelength, we were able to simultaneously excite
red fluorescent proteins expressed in the cells of interest using two-photon
excitation (see Fig. 1b)”>. Emission filters were chosen to specifically select
the THG signal (390/40) and the red fluorescence simultaneously (628/32).
We then implemented two-photon excitation and FLIM of the intrinsic
biomarker NAD(P)H involved in metabolism (Fig. 1¢) to perform label-free
metabolic imaging in live cerebellar slices (Fig. 1d) and to study the meta-
bolic states of different cells of the nervous tissue, such as Purkinje neurons,
oligodendrocytes and microglia (le) (see Methods). We focused on the
endogenous fluorescence of NAD(P)H because it is the most well-
characterized metabolic biomarker” and it enables reliable and robust
measurements in the presence of a red fluorophore, due to its significant
spectral separation”’. We utilized specific transgenic mouse lines to express
red fluorescent protein in myelin-producing oligodendrocytes or microglia
(see Methods)™*”.

Two-photon excitation of NAD(P)H of the same areas was performed
at 760 nm excitation wavelength permitting the simultaneous excitation of
NAD(P)H and red fluorescent proteins in the lower part of their absorption
spectra”’* (Fig. 1b). Appropriate emission filters (Fig. 1c) were chosen to
select the endogenous fluorescence signal with a good compromise between
fluorophore specificity and signal-to-noise ratio (SNR) (see Methods and
Fig. 1b)***. Under these excitation and emission conditions, NAD(P)H is
the dominant contributor to the blue channel signal and interference from
other intrinsic fluorophores, such as FAD and lipofuscin, is considered
negligible for NAD(P)H lifetime measurements™***"*".

FLIM was implemented with a custom-made time-resolved electronics
providing simultaneous channels with 24 temporal bins of 500 ps (see
Methods)”. We determined the minimal optimal illumination conditions
permitting 2P-FLIM of NAD(P)H with a good SNR and with negligible
photoperturbation (see Methods) to create non-invasive metabolic maps of
the metabolic coenzymes. The fluorescence lifetime of NAD(P)H varies
depending on whether it is free or bound to enzymes. Specifically, protein-
bound NAD(P)H exhibits a longer fluorescence lifetime compared to free
NAD(P)H* and NAD(P)H lifetime depends on the type of binding
enzymes that influence the fate of cellular glucose carbon, such as pyruvate
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Fig. 1 | Label-free multimodal NLO imaging of live brain tissue. a The multi-
photon microscope optimized for multimodal label-free THG and FLIM imaging
with a dual-output laser and TCSPC electronics. b Jablonski diagrams depicting
THG and 2PEF absorption at different wavelengths, along with the absorption and
emission spectra of the exogenous fluorophores used in this study, including
tdTomato, dsRed and NAD(P)H. ¢ Sketch of key metabolic pathways relevant to this
study: oxidative phosphorylation in the mitochondrion and glycolysis in the cyto-
plasm. d Simplified sketch of the mouse cerebellum with an enlarged view of a
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folium. White matter track and myelinated axons are represented in white, mole-
cular layer in light gray, granule cell layer in intermediate gray and Purkinje cell
bodies in dark gray. e Cell types relevant to this study in the cerebellum, including
Purkinje cells, oligodendrocytes involved in neuron myelination, and microglia, the
immune cells of the central nervous system. Sketches were created using BioRender.
f Examples of multimodal imaging showing THG, 2PEF of labeled oligoden-
drocytes, and the intensity and lifetime of NAD(P)H. g Zoomed-in view of a region
of interest of the granule cell layer of the folium.
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dehydrogenase (PDH) in mitochondria and Lactate dehydrogenase (LDH)
in the cytoplasm””. This difference in fluorescence lifetimes can be exploited
to estimate the relative contributions of glycolysis and OXPHOS in cellular
metabolism®*>** as well as to estimate fatty acid synthesis and 8-oxidation
contribution”. It is important to note that due to the spectral overlap
between NADH and NADPH, their collected fluorescence signal is a

Z (um) z (Hm)

combination of the two, often referred to as NAD(P)H. As a result, the
NAD(P)H signal can reflect changes in both energy production and oxi-
dative stress within cells. Specifically, NADH is primarily associated with
OXPHOS in the mitochondria and glycolysis in the cytoplasm, while
NADPH is more involved in antioxidant defense mechanisms and bio-
synthetic pathways.
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Fig. 2 | Automated detection of myelinated axons from THG images. a THG and
PLP-GFP in fixed cerebellar slices, along with excitation and emission spectra.

b Automated myelin segmentation process and myelin score determination. The
steps include preprocessing the raw image (ii), Hessian and Meijering filtering (iii),
intermediate labeling (iv) and K-means filtering (v) for the final segmentation.

¢ Application of the segmentation algorithm to 2D THG images during saggital
cerebellar slices development shows an increase in myelinated axons density and
myelin score as myelination occurs in cerebellar slices from 4 days in vitro (4 DIV) to
8 DIV. d Myelin score during tissue development, where each point represents an
ROI from an entire cerebellar folium of the cerebellum slice including all the layers.
For 4 DIV: N =9 ROI from 1 animal (avg * stdv = 0.0175 # 0.005), for 5 DIV N = 4:
ROI from 1 animal (avg + stdv = 0.0203 + 0.009), for 8 DIV: N =5 ROI from three
animals (avg + stdv = 0.0348 + 0.016). e Comparison of automated axons detection
workflow from THG images and myelin manual tracing in the 3D dataset at the peak

of myelination (6 DIV). The first row displays the sum of the images across all the
optical sections for raw data (THG), manually segmented data (Manual), and
automatically segmented data (Automated), while the second row displays a
zoomed-in view of the sum of a few optical sections. A 3D display of the THG raw
data and a 3D reconstruction of the manually traced myelinated fibers is shown. 3D
reconstruction of the white matter tract outlier (in gray) and myelinated fibers (in
blue); the intersections between fibers and white matter tract outlier were high-
lighted in red. Only the fiber portions outside of the white matter tract are shown.
f Comparison between myelin score profiles calculated from automated myelin
detection (purple) and manually segmented data (green) as a function of the optical
depth at 4 DIV and 6 DIV stages. Myelin scores are calculated in ROIs that
encompass the entire cerebellar folium, including all the layers. Myelin scores are
normalized by dividing the values of the myelin score by the maximum value in each
3D stack.

The fluorescence lifetime decays were analyzed using phasor
analysis™’®, as previously described* (see Methods) and using our custom-
written open-source software” (See Methods). The intensity decay is
transformed with an FFT into g and s coordinates. To quantify subcellular
metabolism, we calculated the fluorescence lifetime (74) of NAD(P)H at
each pixel (Fig. 1f). We also quantified the fraction of bound NAD(P)H by
graphically calculating the distance between the multi-exponential experi-
mental point on the phasor plot from the phasor location of free NAD(P)H,
assumed to have a single exponential lifetime of 0.4 ns, while no assumption
was made on the location of bound NAD(P)H (see Methods)***”°.

Organotypic sagittal cerebellar slices are a well-established and suitable
model for studying myelination and demyelination, as they maintain axonal
survival”®*. Brain slices from the cerebellum were extracted from the brains
of 8 and 10-day-old mice (see Method). Representative multimodal NLO
images of a live cerebellum slice are shown in Fig. 1f. We used two transgenic
mouse lines expressing either dsRed or GFP protein associated with the
proteolipid protein (PLP)™**, enabling the identification of oligodendrocyte
bodies and processes. High-resolution THG images of the cerebellar folium
reveal myelinated fibers of Purkinje neurons branching out from the white
matter tracts and colocalizing with the red processes of oligodendrocytes
(Fig. 1g). At the end of each axon, the cell body of the Purkinje neuron is
visible as a negative contrast in the THG image, with the Purkinje cell bodies
arranged in a crown pattern, as schematized in Fig. 1d. The intensity map of
NAD(P)H reveals significant heterogeneity among cells, with some dis-
playing a star shape and very high intensity, while Purkinje cell bodies
appear as dark nuclei surrounded by brighter mitochondria. The map of
NAD(P)H lifetime reveals metabolic heterogeneity among cells and the
subcellular metabolic compartmentalization. Purkinje cell bodies and
dendrites display a long NAD(P)H lifetime, while the granule cell layer of
the folium has a shorter lifetime. NAD(P)H lifetime maps show hetero-
geneity at the cellular level.

THG microscopy and automatic myelinated axon segmentation
probe dynamic changes of myelin distribution

THG microscopy is emerging as an effective label-free contrast to visualize
both large myelinated axons and nerves in different areas of the brain and
spinal cord *****° and small (1-4 micrometers) diameter axons in the cortex
of mouse brain®**. However, automated detection of axons and myelin
content in tissue images, as well as quantification of myelin content and
distribution, remains challenging and unexplored in brain tissue. Thus, here
we aim to: a) develop an analysis workflow to automatically detect axons and
determine myelin score in THG images from nervous tissues; b) determine
whether this method can detect and quantify changes in myelin distribution
during myelination; c) determine the sensitivity to myelinated axons and
explore the applicability to 3D THG volumetric imaging.

Recent studies showed that myelin is a primary source of THG contrast
in the mouse cortex and corpus callosum® when the excitation wavelength
is set to =1100-1150 nm, ie., far from hemoglobin resonance near
1250-1300 nm®. Here, we extend this observation to cerebellar tissue

(Fig. 2a). High-resolution THG-2PEF images from a transgenic line with
PLP-GFP in the membrane confirm that THG highlights myelinated axons
both when axons are separated from each other (Fig. 2a top right panel) and
when they are bundled in white matter tracts in the cerebellum folium
(Fig. 2a top bottom panel). THG highlights axons oriented along all 3D
directions®*. Therefore, in 2D THG images out-of-plane axons appear as
bright dots while in-plane axons appear as elongated fibers (Figs. 1g and 2a).

We developed a fully automated workflow to detect and segment in-
plane axons from 2D THG images (Fig. 2b) by using custom-written and
open-source software®*’ (see Methods). The fiber detection workflow
(Fig. 2b(i)) comprises four main steps: preprocessing (Fig. 2b(ii)), fiber
segmentation (Fig. 2b(iii)), intermediate labeling (Fig. 2b(iv)) and K-means
filtering (Fig. 2b(v)). We first optimized the preprocessing step to enhance
the quality and reliability of the THG images by applying three filters to the
raw THG image (see Methods). The fiber segmentation step was optimized
and enhanced by using a combined filtering strategy that integrates Hessian
and Meijering approaches (Fig. 2b(iii)). While Hessian-based filtering
exhibits high sensitivity to tubular geometries, it is susceptible to noise-
induced false positives; in contrast, Meijering filtering demonstrates greater
efficacy in attenuating noise contributions”, thereby complementing the
Hessian response. We chose a spatial-domain framework over frequency-
domain methods (e.g., Gabor or steerable filters) for three reasons: it exploits
local geometric properties without costly frequency transforms, reducing
computations to simple matrix operations; Hessian-based strategies, unlike
frequency approaches, are well validated for vessel and fiber detection (e.g.,
Frangi vesselness); and Hessian filtering better captures irregular, branching
fibrillar architectures, whereas frequency methods are optimized for regular,
periodic, globally consistent patterns for texture analysis. An intermediate
labeling step was developed to identify single axons (Fig. 2b(iv)) and finally
K-means filtering was applied as a post-processing method to separate true
myelin structures from other segmented objects in our pipeline. K-means
clustering was selected for discriminating genuine fibrils from imaging
artifacts owing to its algorithmic simplicity and ease of implementation.
While alternative clustering strategies, such as density-based spatial clus-
tering of applications with noise or Gaussian mixture models, impose
additional constraints, K-means clustering provides satisfactory perfor-
mance with minimal parameterization and low computational overhead.
Finally we obtained the final mask with pixels that we associate with in-plane
axons (Fig. 2b(v)) (see Methods).

We then establish a score to quantify myelin content in a given region
of interest (ROI), starting from myelin-associated pixels assigned to the
binary mask (Fig. 2b(v)). We defined a “myelin score” as the ratio of the
number of pixels in the mask (Fig. 2b(v)) corresponding to myelinated fibers
to the total number of pixels of the image, i.e.,: Myelin score = Npper/Niotal
where Ngp, represents the number of pixels associated with detected fibers,
while Ny, represents the total number of pixels of the image. We note that
the myelin score depends on both the distribution of myelin within the ROI
and the ROI size; therefore, the ROI selection and dimensions should be
reported, and quantitative comparisons should be made under similar
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conditions. We also note that the obtained myelin score does not account for
out-of-plane myelinated fibers that appear as bright dots or small segments
in the 2D THG images. As a result, the score may underestimate the density
of axons with out-of-plane orientations. To assess the sensitivity of the
developed automated workflow and scoring method, we quantified myelin
content and scores in cerebellar folia during myelination occurring in

T
Microglia

development (Fig. 2c, d). Additionally, we compared automated and
manual segmentation of myelin in a 3D THG dataset (Fig. 2e). We used
organotypic sagittal cerebellar slices” as a model to investigate different
stages of myelination during development. Folia were imaged from the
onset of the myelination process at 4 days in vitro (DIV) to the peak of
myelination at 6 DIV, up to DIV 8 (Figs. 2c and S1). At the beginning of
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Fig. 3 | Single-cell endogenous fluorescence lifetime reveals metabolic differences
between different cell types of the nervous system. a Measurement of the fraction
of bound NAD(P)H of single cells in a cultured tissue slice. Each column represents a
step in the analysis workflow, and each row corresponds to a different cell type.
Either the THG map (for Purkinje cells) or the 2PEF map of the exogenous fluor-
ophore (for oligodendrocytes and microglia) was used to segment single cells. These
single-cell masks were then applied to the lifetime maps to provide information at
the single-cell level. b The fraction of bound NAD(P)H of single-cell measurements
reveals metabolic differences between the three different cell types of the cerebellum
(Purkinje cells, oligodendrocytes and microglia) as well as metabolic heterogeneity

among cells. Each point in the box plot represents a single cell. N = 12 oligoden-
drocytes from 2 animals (avg + stdv = 0.443 + 0.019), N = 17 Purkinje neurons from
two animals (avg + stdv=0.465 + 0.011), and N = 115 microglia from five animals
(avg + stdv = 0.384 + 0.034) at 8 DIV. ¢ Purkinje neurons rely more on the oxidative
phosphorylation pathway, which is linked to the abundance of bound NAD(P)H. In
contrast, oligodendrocytes and microglia have shorter, more glycolytic lifetimes,
with microglia having the shortest lifetime, which is linked to the abundance of free
NAD(P)H. Sketches were created using BioRender. The asterisk * indicates a sta-
tistically significant difference in the data following a t-test analysis (p < 0.05).

myelination, we observed less THG signal from myelinated axons, resulting
in a smaller number of segmented fibers in the folium. In contrast, at the
peak of myelination, when most axons are myelinated, more THG signal
from fibers is observed, leading to a higher number of segmented fibers
(Figs. 2c and S1). Following the automated segmentation of axons during
development (Fig. S2), we measured an increasing myelin score as myeli-
nation progressed (Fig. 2d).

Finally, we extended the automated fiber detection to 3D THG data,
where myelinated axons were manually traced (Fig. 2e), and we tested the
sensitivity of the method by comparing it to manual tracing in two datasets
with different myelin content: at the beginning of myelination (4 DIV) and
at the peak of myelination (6 DIV). Manual tracing was performed by
identifying myelinated axons displaying an unambiguous THG signal to the
human eye, with primary emphasis on large internodes of Purkinje cell
axons that showed a high signal-to-background ratio (SBR) (see Fig. S3b and
Methods). Following manual tracing, 3D reconstruction of axons was
performed at both myelination stages (Fig. S3b), enabling the quantification
of the number of myelinated axons, their orientation, length, and tortuosity
(Figs. 2e and S3c-f; see Methods). The folium at 6 DIV exhibited a higher
number of myelinated axons (Fig. S3c), longer fibers (Fig. S3e), and greater
tortuosity (Fig. S3f) compared to the folium at 4 DIV. We then compared
the performance of automated fiber detection with manual tracing (Fig. 2e)
as well as the resulting myelin scores (Fig. 2f) to demonstrate the capability
of the automated workflow to capture myelin fibers. Fig. 2e demonstrates
that the automated segmentation (right column) using the developed
workflow accurately detects all myelinated axons manually traced (center
column) from a 3D THG dataset (left column), both at the level of the entire
folium (top row) and within smaller tissue areas (bottom row). We note that
automated fiber detection demonstrates greater sensitivity, identifying a
larger number of myelinated segments compared to manual tracing,
including internodes with weaker THG SBRs-likely representing either
developing internodes or Purkinje cell axon collaterals. After normalization,
to account for differences in fiber thicknesses between automated and
manual detection, we compared myelin scores obtained using both methods
across various tissue depths in the folium at both four DIV and six DIV
developmental stages (Fig. 2f). The myelin scores derived from the two
methods exhibited very similar profiles across tissue depths (Fig. 2f),
showing consistency between automated and manual detection, and con-
firming the sensitivity of the automated method for detecting myelinated
axons. Slight discrepancies between the myelin scores estimated from the
two methods may result from the underestimation of out-of-plane axonal
contributions in the automated detection, the exclusion of internodes with
weaker THG SBRs in the manual segmentation, and the dependence of
automated segmentation performance on SBR, which varies with
imaging depth.

Single-cell endogenous fluorescence analysis reveals metabolic
differences between neuronal, oligodendrocytes, and microglia
populations

The brain exhibits significant metabolic heterogeneity (Fig. 1f), with cellular
metabolic states closely linked to their specific functions. The metabolic
interplay between neurons and glial cells plays a crucial role in supporting
overall brain activity. Beyond the simple adaptation of energy supply to

neuronal consumption, evidence suggests that energy delivery is not a
passive response to neuronal demand but is dynamically regulated by an
integrated neuron-glia network, actively shaping cerebral activity. Each cell
type has distinct workloads and energy requirements, resulting in unique
metabolic signatures™*"*. Neurons are highly specialized for rapid electrical
signaling and can exhibit variable spiking activity. This requires maintaining
ion gradients through ATP-dependent pumps and supporting processes
such as neurotransmitter release and synaptic activity. These energy-
intensive tasks necessitate a highly efficient energy production system,
primarily mitochondrial OXPHOS, which provides a high ATP yield per
glucose molecule™"*. Glial cells, such as astrocytes, oligodendrocytes, and
microglia, play supportive roles, including maintaining homeostasis, recy-
cling neurotransmitters, myelinating, and modulating immune responses.
These tasks are less dependent on rapid ATP generation. Instead, glial cells
rely more on glycolysis with respect to neurons™****’, which is less efficient in
ATP production but provides metabolic intermediates that are essential for
biosynthesis and antioxidant defense. Of particular importance in MS is the
energetic coupling between axons, myelin, and oligodendrocytes. By
ensheathing axons, oligodendrocytes serve as a source of lactate for neurons
through the myelin sheath. Lactate, a glycolytic product, is essential for
neuronal survival and function and plays a critical role in the generation of
metabolic energy"’.

Therefore, we sought to determine whether differences in metabolic
states of different cell types can be observed and characterized at the
cellular level in living brain tissue, and whether cell-scale analysis can
reveal metabolic heterogeneity across the tissue. We implemented
single-cell metabolic analysis in three different cell types of cerebellum
organotypic slices: (i) Purkinje cells, which are fast-spiking inhibitory
neurons (ii) oligodendrocytes, and (iii) microglia. We first developed an
automated workflow for cell segmentation as detailed in Figs. 3 and S4
(see Methods). We used the open-source segmentation software
CellProfiler" to segment individual cells from red fluorescence images,
where cell bodies were visible with good contrast (Fig. 3 and Fig. S4a).
The CX3CR1-CreErt2/Rosa-tdTomato line was used to highlight
microglia”, while the PLP-dsRed line was used to highlight oligoden-
drocyte bodies®'. From the single-cell mask, shape parameters—such as
cell area and eccentricity were extracted for each cell (see Methods and
Supplementary material). To isolate Purkinje neuron cell bodies visible
with shadow contrast in the THG image, we first generated a probability
map using the deep-learning-based ilastik software®, and then seg-
mented individual cells using the CellProfiler software (Figs. 3 and S4b,
see Methods). Once the masks were obtained, they were applied to the
images of the intensity or fraction of bound NAD(P)H, as shown in
Fig. 3a. The metabolic state of each cell was then estimated by measuring
the mean lifetime and distance to free NAD(P)H within each cell’s mask.
Higher levels of bound NAD(P)H are generally associated with
increased OXPHOS activity, fatty acid synthesis or oxidative stress,
whereas lower bound NADH fractions are associated with elevated
glycolysis and fatty acid f-oxidation®*”. In healthy cerebellar brain tis-
sue, we observe a different NAD(P)H lifetime (Fig. S5) and fraction of
bound NAD(P)H in these different cell types (Fig. 3a, b). Purkinje
neurons cell bodies show the longest lifetime and the highest fraction of
bound NAD(P)H, possibly indicating the highest OXPHOS metabolism,
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whereas microglia show the shortest lifetime and the lowest fraction of
bound NAD(P)H, indicating the most glycolytic phenotype or the most
fatty acid B-oxidation metabolism among these cell types (Fig. 3c).
Oligodendrocyte cells have an intermediate value of the fraction of
bound NAD(P)H. Their state is therefore more glycolytic or relying
more on fatty acid -oxidation than neurons, but more OXPHOS or

relying more on fatty acid synthesis than microglia. These results show
that glial cells (microglia and oligodendrocytes) have an overall more
glycolytic phenotype or fatty acid f-oxidation compared to neurons, in
line with their different functions and metabolic requirements’. Our
results are also in agreement with previous in vivo measurements in
which microglia exhibited a glycolytic phenotype, characterized by a low
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Fig. 4 | Metabolic shifts in microglia during demyelination and remyelination.
a Maps of THG, myelin segmentation, 2PEF, and distance from free NAD(P)H in
the entire tissue, single cells, and a few zoomed-in cells in a region of interest for
control (representing healthy condition), LPC at 8 DIV (representing the peak of
demyelination), and LPC at 11 DIV (representing the peak of remyelination).

b Experimental schedule: slices are kept in the incubator at 0 DIV, and the medium is
changed every 2-3 days. LPC is added at 6 DIV to the treated slices to induce
demyelination, and imaging is performed at 8 DIV and 11 DIV. ¢ Box plots of the
myelin score showing a decrease at 8 DIV and a recovery in remyelinated tissue at 11
DIV, with each point representing an ROL There are N = 21 ROIs for the control in
10 animals (avg * stdv = 0.068 + 0.023), N = 5 ROIs for the demyelinating condition
in 3 animals (avg * stdv = 0.005 + 0.003), and N = 13 ROIs for the remyelinating
condition in five animals (avg + stdv=0.051 + 0.017). Myelin scores are calculated in
ROIs within the granule cell layer of the cerebellar folium. d Box plots of eccentricity,
which measures how circular (eccentricity=0) or elliptical (eccentricity 1) a shape is,
for the shape of microglia in different conditions, namely pro-regenerative and pro-

inflammatory. A significant difference is observed between pro-inflammatory
microglia at 8 DIV compared to pro-regenerative microglia in control and 11 DIV
conditions. e A decrease in the lifetime towards a more glycolytic phenotype is seen
at 8 DIV, followed by a recovery in the metabolic phenotype at 11 DIV. d, e Each
point represents a single cell. N = 256 cells from 10 animals in control (avg + stdv for
fraction of bound NAD(P)H = 0.384 + 0.041) (avg + stdv for eccentricity = 0.788
+ 0.145); N =179 microglia from three animals in the demyelinating condition
(avg * stdv for fraction of bound NAD(P)H = 0.365 + 0.048) (avg + stdv for
eccentricity = 0.683 + 0.174) and N = 147 microglia from five animals in the
remyelinating condition (avg * stdv for fraction of bound NAD(P)

H=0.377 +0.071) (avg * stdv for eccentricity=0.742 + 0.154) with 2-3 ROIs for each
animal. f A schematic representation of the microglia states ranging from pro-
regenerative to pro-inflammatory, with both lifetime and eccentricity decreasing
from the former to the latter. The asterisk * indicates a statistically significant
difference in the data following a t-test analysis (p < 0.05).

NAD(P)H lifetime compared to the surrounding neuropil® and in vitro
measurements in which microglial cells exhibited a lower NAD(P)H
lifetime compared to non-microglial cells*. We also find that endo-
genous fluorescence analysis with single-cell precision highlights
metabolic heterogeneity among cells (Fig. 3c), revealing the highest
metabolic heterogeneity in microglia.

Finally, we investigated whether NAD(P)H intensity measurement
could provide quantitative and complementary measurements of the
metabolic differences between different cell types in living tissues. In Fig. S6,
we applied the same single-cell mask to the NAD(P)H intensity images
(Fig. S6a) and measured the NAD(P)H intensity distribution in different cell
types (Fig. S6b). Despite the very high heterogeneity in intensity values, we
observed that both oligodendrocytes and microglia had higher NAD(P)H
levels compared to neurons. The elevated levels of NAD(P)H intensity in
glial cells are consistent with other label-free 2PEF imaging studies, both in
hippocampal slice preparations® and in engineered three-dimensional
brain tissue model™. However, we do not observe a significant difference in
NAD(P)H intensity between microglia and oligodendrocytes (Fig. S6b),
while they show a difference in lifetime (Fig. 3b). In summary, these results
indicate that NAD(P)H FLIM measurements are more sensitive and reliable
than NAD(P)H intensity measurements because FLIM measurements are
unaffected by fluorophore concentration, excitation variability, or tissue
absorption and scattering.

Single-cell endogenous fluorescence analysis reveals metabolic
changes in microglia during demyelination and remyelination
Recent studies suggest that, during demyelination and remyelination of
neural tissue, microglia exhibit distinct phenotypes characterized by distinct
molecular signatures, metabolic states and functions™*>. A commonly used
yet oversimplified vision categorizes microglia into two states: pro-
inflammatory (M1) and anti-inflammatory/pro-healing (M2)**. Pro-
inflammatory stimuli are generally thought to trigger a metabolic shift from
OXPHOS to glycolysis, while a shift to OXPHOS metabolism is associated
with protective and regenerative microglial phenotypes that support
remyelination’ ™. However, a more plastic and dynamic perspective is
emerging”™”, highlighting the spatial and temporal heterogeneity of
microglial transcriptomes, metabolism and function and showing how
microglial activation and function are in turn shaped by the local tissue
environment, influencing regional differences in remyelination**”***. While
regional differences in the rate of remyelination have been observed™ their
correlation to microglia heterogeneity”””* is unknown due to a lack of high-
resolution imaging approaches in a living tissue.

Therefore, we sought to assess i) whether changes in microglial
metabolic function during demyelination and remyelination can be
observed at the single cell level in living tissue, simultaneously with changes
in myelin distribution, ii) whether such changes are associated with
microglial shape and their activation phenotypes (pro-inflammatory and
pro-regenerative), and iii) whether these changes correlate with myelin

distribution in the cerebellar brain tissue and with the presence of myelin
debris within microglia.

For this purposes, we performed multimodal, label-free assessment of
single-cell metabolism and myelin content in organotypic saggital cerebellar
slices*, a model for demyelination and remyelination, by analyzing the
NAD(P)H lifetime readout and comparing them with THG image changes
(Fig. 4a). We used an overnight demyelinating treatment lysopho-
sphatidylcholine (LPC) (see Methods) to induce demyelination in the cul-
tures slices. This treatment is known to reach the peak of demyelination
around 24 hours post treatment’. A spontaneous remyelination initiates
three days following demyelination and is achieved within a week. In our
experiments, the peak of demyelination in treated slices is observed at 8 DIV,
and remyelination is proceeding at 11 DIV (Fig. 4b), which were the
timepoints included in this study.

To achieve high-quality imaging while preserving the physiological
health of the tissue, we used the THG contrast modality to identify a
myelinated folium (Figs. 1f and S7a). Representative THG images of the
entire cerebellar folia for control, demyelination, and remyelination con-
ditions are shown in Fig. S7a. We then performed multimodal THG and
FLIM imaging in 2-3 smaller (=250 x 250 um) regions within the granule
layer of the folium (Fig. 4a). First, we performed THG imaging exciting at
1150 nm and simultaneously collecting THG signals from myelin (Fig. 4a
first column) and 2PEF signals from microglia. Subsequently, we performed
FLIM imaging with an excitation wavelength of 760 nm, allowing the
simultaneous acquisition of 2PEF signals emitted by tdTomato-tagged
microglia (Fig. 4a, third column) and NAD(P)H (Fig. 4a, fourth column).

Automatic segmentation of myelinated axons in each region of interest
(Fig. 4a second column) reveals a different myelin distribution in demye-
linating and remyelinating conditions (Fig. 4a) and allows evaluation of the
myelin score in the three different conditions (Fig. 4c). We note that, after
the peak of myelination at DIV 6, i.e. between DIV 8 and DIV 11, myelin
score of control slices that were not treated with the demyelinating drug LPC
is not affected by time of culture (Fig. S8), therefore we merge the control
data of the 2 days (Fig. 4c). Control slices consistently exhibited higher
myelin scores. In contrast, demyelinating slices had the lowest myelin
content and score, reflecting the extensive demyelination of fibers
throughout the folia. During the transition to the remyelination phase, the
myelin scores increased significantly. Consequently, at 11 DIV, the differ-
ence in myelin scores between control and LPC-treated slices became
insignificant, indicating progress in remyelination.

In parallel, we performed automated single-cell analysis of the
microglial population to assess their shape and metabolic fingerprint (See
Methods). It is well-established in the literature that changes in microglial
function are often accompanied by changes in cell shape, making mor-
phological analysis a key method for identifying activation phenotypes*”.
Homeostatic and pro-regenerative microglia typically display a “branched”
shape with elongated processes, whereas pro-inflammatory microglia
exhibit a morphology characterized by round cell bodies and increased
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phagocytic activity. To quantitatively assess cell shape and morphological
differences, we measured cell eccentricity99 (See Methods). In control folia,
myelination appeared to be intact, as evidenced by well-defined myelinated
fibers observed in THG images. Microglial cells in these samples exhibited
elongated processes and high eccentricity values (closer to 1), suggesting
active surveillance within the brain tissue (Figs. 4a top and S7a). In contrast,
microglia in the demyelinated state displayed a more rounded shape with
lower eccentricity values (closer to 0), indicating a polarization towards a
pro-inflammatory phenotype Figs. 4a and S7a. During remyelination at 11
DIV, microglial morphology became more versatile and appeared to be
influenced by their spatial location within the folia. Near remyelinated
regions, microglia in LPC-treated slices tended to exhibit an elliptical shape
with higher eccentricity values, resembling an elongated structure. These
observations highlight dynamic changes in microglial morphology during
the transition to a remyelination state, reflecting their role in tissue remo-
deling and repair processes. Cellular eccentricity of microglia was quantified
across multiple folia and animals, revealing an overall decrease in eccen-
tricity during demyelination, followed by a recovery in remyelinating slices
(Fig. 4d). To evaluate the robustness of the microglial eccentricity metric
(Fig. 4d), which is automatically assessed at the single-cell level, we com-
pared it to the number of microglial processes (Fig. S7a, third row, and
Fig. S7b) that were manually evaluated using Sholl analysis without tracing
or reconstruction'”, (https://imagej.net/plugins/sholl-analysis). Microglia
with high eccentricity values typically exhibit a greater number of processes,
whereas those with low eccentricity values have fewer processes (Fig. S7a,
third row). This finding suggests a strong correlation between the auto-
matically scored eccentricity and the manually scores number of processes
(Fig. S7b).

We then investigated the metabolic patterns across conditions at the
single-cell level. To verify the effect of time in culture on microglia meta-
bolism, we first compared the controls samples that were handled identically
but not treated with the demyelinating drug LPC. As microglia NAD(P)H
lifetime is not affected by the time in culture (Fig. S8) we combined the
control groups from 8 DIV and 11 DIV (Figs. 4d, e and S9) to focus our
analysis on differences attributable to LPC-induced demyelination and
subsequent remyelination. During demyelination, microglia generally
exhibited a lower levels of the fraction of bound NAD(P)H (Fig. 4e) and
NAD(P)H lifetime (Fig. S9) compared to controls, suggesting a shift toward
a glycolytic phenotype or increase in fatty acid -oxidation metabolism*"”".
However, by 11 DIV, at the peak of remyelination, no significant difference
with the control was observed, indicating a recovery of the metabolic phe-
notype in remyelinating slices (Fig. 4e). A general correlation was observed
between the fraction of bound NAD(P)H and cell eccentricity (Fig. 4c-e).
We also observed a higher value of NAD(P)H intensity in microglial cells
during demyelination compared to control and remyelination (Fig. S10).
Taken together, these findings suggest that during demyelination, microglia
tend to adopt a pro-inflammatory, with a round shape, low eccentricity and
low fraction of bound NAD(P)H (Fig. 4f) possibly indicating a metabolic
phenotype relying more on glycolysis or fatty acid S-oxidation. In contrast,
during remyelination, more cells display a pro-regenerative phenotype with
a “branched” shape with processes and high eccentricity values and high
fraction of bound NAD(P)H possibly indicating a metabolic phenotype
relying more on OXPHOS or fatty acid synthesis. Our findings in living
tissue are consistent with previous in vitro studies on macrophages, which
reported a decrease in the fraction of bound NAD(P)H in classically acti-
vated macrophages (M1/pro-inflammatory) while an increase in the frac-
tion of bound NAD(P)H was observed in alternatively activated
macrophages (M2/pro-healing)”. We observed significant metabolic het-
erogeneity within the cell population, especially under demyelinating con-
ditions (Figs. 4e and S9). This single-cell metabolic variability may reflect
regional heterogeneity and dynamic temporal and spatial microglial
polarization reflecting a spectrum of states ranging from pro-inflammatory
to anti-inflammatory'”".

Finally, we explored the feasibility of THG microscopy to detect myelin
debris during demyelination. It is known that microglia support

remyelination by clearing myelin debris through internalization and by
expressing genes associated with phagocytosis and lysosomal
pathways”**'®”. For this purpose, we performed automated single-cell
analysis using the red fluorescence image acquired simultaneously with
THG (Fig. S11a) to ensure perfect co-registration of the images, and we
measured the THG intensity inside every cell. In demyelinating folia, we
observed higher THG signals within the microglial cytoplasm (Figs. 4a, S7a
and S11a), resembling lipid droplets or debris™. This signal possibly cor-
responds to myelin and lipid debris phagocytosed by active microglia. To
quantify this, we defined the “microglia THG score”, a normalized metric

defined as Microglia THG score = I[“"g, where I, is the average THG

intensity within a single microglial cell and I, is the maximum intensity
across all ROIs and conditions. Single-cell analysis revealed significantly
higher microglial THG levels in demyelinating tissue (Fig. S11c), possibly
indicating active phagocytosis of myelin debris during inflammation
(Fig. S11d). In control regions, the lower microglial THG scores combined
with higher myelin scores reflect a healthy state with intact myelination.
Remyelinating slices showed microglial THG scores similar to controls,
suggesting a return to a non-phagocytic phenotype. However, the large
standard deviation indicates spatial heterogeneity, with some areas still
showing active phagocytosis, particularly where remyelination is incom-
plete. This highlights the importance of microglial localization within the
tissue. The scatter plot in Fig. Slle shows the anti-correlation between
microglial THG score and myelin score in different regions of interest of the
cerebellum. Demyelinating regions of interest with low myelin scores gen-
erally show microglia with high THG scores, possibly reflecting increased
phagocytic activity and reduced myelin content. On the other hand,
remyelinating regions showed microglial low THG scores, although with
considerable variability, reflecting differences in microglial activity between
regions.

Discussion

The study presented in this manuscript describes the implementation of a
NLO microscopy framework for the investigation of cellular metabolism
and myelin distribution in mouse nervous tissue during demyelination and
remyelination processes (Fig. 1). The method is based on the combination of
two complementary label-free contrast modalities: two-photon fluorescence
lifetime of the cellular endogenous metabolic cofactor NAD(P)H is used to
probe the metabolic state of intact tissue with single-cell resolution, while
THG provides a label-free probe of myelin organization and distribution.
We have also developed dedicated image analysis approaches, such as
automated detection and scoring of myelinated axons based on THG
contrast (Fig. 2) and measurement of metabolic signatures at the single cell
level based on NAD(P)H lifetime (Fig. 3). A promising direction of this
work would be to upscale the automated detection and segmentation of
myelinated axons across brain regions, accounting for variations in axon
diameter, myelin thickness, density, organization and orientation in 3D. We
aim to adapt our analysis in 3D and combine spatial- and frequency-domain
approaches to account for out-of-plane axons and myelinated axons. We
used different mouse lines (PLP-dsRed, PLP-GFP, CX3CR1-CreErt2/Rosa-
tdTomato) to specifically study oligodendrocytes and microglia. In addition,
Purkinje neurons were identified on a morphological basis in organotypic
cerebellar cultures. Combining FLIM measurement of intrinsic biomarkers
and cell segmentation, we performed label-free measurements of metabolic
signatures in single cells, revealing distinct metabolic phenotypes in different
cell types (Fig. 3), possibly related to their function (Fig. 3b). Neurons have
the longest NAD(P)H lifetime and the highest fraction of bound NAD(P)H,
revealing a phenotype that relies primarily on OXPHOS, consistent with
their electrical activity. Oligodendrocytes are found to have a shorter
NAD(P)H lifetime, indicating a phenotype relying more on glycolysis or
fatty acids -oxidation, possibly related to their need to rapidly produce
lipids for myelin synthesis and provide lactate to neurons for metabolic
support. Microglia have the shortest NAD(P)H lifetime and the lowest
fraction of bound NAD(P)H, suggesting that they are the most glycolytic
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cells among those we studied. As a future direction, it would be interesting to
investigate whether different neuronal subtypes with different firing pat-
terns and excitatory-inhibitory dynamics have different metabolic profiles
that reflect their energy requirements. Interestingly, in the intact Drosophila
brain, we recently demonstrated that neuronal subtypes display distinct
basal metabolic states and that memory formation triggers a subtype-
specific metabolic reprogramming in mid-term memory neurons'”.

We then systematically compared the optical signatures recorded from
demyelinatuing and remyelinating neural tissues from organotypic cultures
of the mouse cerebellum (Fig. 4). Using automated axons detection we
measured a decrease in myelin score during demyelination and its rescue
during remyelination. At the same time, a shorter NAD(P)H lifetime and a
lower fraction of bound NAD(P)H (phenotype relying on glycolysis or fatty
acids B-oxidation) were measured in microglia with a pro-inflammatory
profile (during demyelination), and a rescue of NAD(P)H lifetime and
fraction of bound NAD(P)H (relying on OXPHOS, fatty acids synthesis or
oxidative stress) was observed in the promyelinating (remyelination) states
of microglia (Fig. 4). These findings are consistent with the emerging evi-
dence that metabolic states are closely linked with immune cell function
during homeostatic and inflammatory processes. During demyelination, we
observed a change in microglial morphology towards a rounder shape,
typically associated with pro-inflaimmatory polarization, along with an
increase in THG intensity within microglial cells, which may be attributed to
the presence of myelin debris within the microglia (Fig. S11).

This study is the first to use label-free optical imaging to simultaneously
visualize myelin at the single-fiber level and metabolism at the single-cell
level in living tissue. It highlights the potential of advanced microscopy to
address key unanswered questions in neuroscience, such as how metabolic
coupling between glial cells and neurons shapes brain activity, particularly in
modulating myelin plasticity. Our approach provides a means to char-
acterize spatial and temporal heterogeneity during the progression of
demyelinating pathology. A promising direction for future research will be
to further explore the spatial and temporal metabolic heterogeneity of
individual neurons, microglia, oligodendrocytes and astrocytes during
demyelination and remyelination, and to correlate their metabolic pheno-
types with microglial phagocytosis activity and local myelination levels in
different regions of the cerebellar folia. Such advanced analyses could help to
quantify the metabolic heterogeneity and adaptability of immune cells
during the remyelination process, shedding light on the dynamic and plastic
nature of these mechanisms. Furthermore, the observed metabolic adapt-
ability and heterogeneity of microglia highlight the potential of targeting
microglial metabolism as a therapeutic strategy for demyelinating diseases"”.

Since multiple metabolic pathways (glycolysis, OXPHOS, fatty acid f3-
oxidation and synthesis, as well as oxidative stress) modulate NAD(P)H
lifetime, unambiguous quantification of the measured metabolic changes
requires in vivo calibrations together with the readout of multiple optical
parameters—such as FAD lifetime, optical intensity redox ratio or mito-
chondrial clustering to provide complementary information to NAD(P)H
lifetime®**'"". Therefore, a promising direction opened by this work would
be to implement multiparametric metabolic imaging by incorporating
FLIM measurements of the FAD biomarker alongside NAD(P)H, using
wavelength mixing’, as well as mitochondrial clustering analysis based on
NAD(P)H intensity signal’**. Performing such multiparametric metabolic
imaging across different cell types and tissue states could potentially identify
distinct metabolic phenotypes associated with inflammation, oligoden-
drocyte dysfunction, neuronal metabolic failure and degeneration. In
addition, studying metabolic changes in neurons during demyelination and
remyelination would deepen our understanding of the metabolic interplay
between different cell types. These label-free approaches could also be used
to investigate how neuronal activity influences the microglial phenotypic
switch to a pro-regenerative state during repair®>'”’, and how it affects the
metabolic signatures of both neurons and glial cells. Finally, extending these
microscopy tools to in vivo studies in zebrafish or mouse models of
demyelination would allow longitudinal monitoring of the temporal and
spatial dynamics of cellular metabolism in microglia and neurons during

inflammation and demyelination, together with simultaneous visualization
of myelination dynamics and repair using THG imaging. This will open up a
new field of research in optical imaging of immune metabolism and increase
the potential of therapeutic strategies for inflammatory diseases.

In conclusion, measuring cellular temporal and spatial metabolic
patterns and myelin (dis)organization during de- and remyelination pro-
cesses has the potential to improve therapeutic strategies to promote
remyelination and ensure neuroprotection. Furthermore, disruption of the
myelin sheath is also involved in several other neuropathies of the central
and PNS, while oxidative stress and metabolic alterations are important
hallmarks of several neurodegenerative diseases, such as Alzheimer’s and
Parkinson’s diseases. Therefore, the optical techniques developed in this
work could be used in the future in several areas of basic and translational
neuroscience.

Methods

Multimodal NLO setup and imaging conditions

We optimized a lab-built multiphoton laser scanning upright microscope, a
sketch of which is shown in Fig. 1a. A dual-output femtosecond laser source
(Insight X3, Spectra-Physics, Santa Clara, CA, USA) was used for excitation,
offering a tunable output range from 680 to 1300 nm (120fs pulses,
80 MHz) and a fixed output at 1045 nm (200 fs pulses). For THG and
NAD(P)H imaging, the tunable output was set to 1150 nm and 760 nm,
respectively. Beam power was adjusted using two independent motorized
waveplates and polarizers (Semrock, Rochester, NY, USA). A typical power
of 20 mW was used to excite NAD(P)H fluorescence at 760 nm. For THG at
1150 nm, the power was set to ~50 mW. Pulse width at the sample was
minimized using the laser’s built-in dispersion pre-compensation, itera-
tively adjusted to maximize THG intensity at constant power. The
absorption spectra of the red fluorescent proteins used in this work, along
with imaging wavelengths and examples, are shown in Fig. 1b. GFP was
excited at 900 nm.

To focus the beam on the sample, we used a water immersion objective
(%25, 1.05 NA, XLPLN25XWMP, Olympus, Tokyo, Japan) with a working
distance of 2 mm. The sample was positioned on an XYZ translation stage
(Z-Deck, Prior Scientific), which can be controlled manually with a joystick
or automatically. A conventional photon-counting photomultiplier tube
(PMT) (SensTech, Langley, UK) was used to detect the THG signal in the
forward direction by using a condenser of NA =14 to collect the light.
Fluorescence signals were epi-detected in three different spectral channels
using GaAsP detectors (Hamamatsu H7422-40) for 2P-FLIM and green
fluorescence and a standard PMT (SensTech, Langley, UK) for red fluor-
escence. Bandpass filters were placed in front of these detectors to collect
THG (390/40), and 2PEF of NAD(P)H (450/70), GFP (525/50) and red
biomarkers (628/32), respectively. This choice was based on the emission
spectra of these fluorophores, as shown in Fig. 1b.

We used a fast discriminator (Hamamatsu C9744 photon-counting
unit) to detect pulses from the detectors. FLIM data acquisition was per-
formed simultaneously in two channels using custom counting electronics
developed in our laboratory, allowing time-correlated single-photon-
counting. The trigger for the laser pulse was derived from the Insight X3,
and a time-to-digital converter (TDC) integrated on an electronics board
using a Xilinx Spartan-6 FPGA (field-programmable gate array), was used
to measure the arrival time between the photon and the laser pulse. For each
channel, the TDC used two parallelized deserializers that were synchronized
with the x12 laser frequency and phase-shifted by 180° using a digital clock
manager of the FPGA. The laser was operated with an interpulse interval of
1248 ns, and the measured arrival times were histogrammed using 24
temporal bins with a width of 0.52 ns. To calibrate the FLIM system, we
measured the lifetimes of HG at 0 ns and fluorescein at pH 9, which has a
single exponential decay of 4 ns. The system included galvanometric mir-
rors (VM500S, GSI Lumonics, Bedford, MA, USA) for laser scanning, and
the acquisition process was synchronized using custom LabVIEW software
(National Instruments, USA) and a multichannel I/O board (PCI-6115,
National Instruments, Austin, TX, USA). Typically, our FLIM image
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acquisitions consisted of 320 x 320 pixel images, accumulating between 400
and 1000 photons. The total acquisition time was ~120 s, during which four
images with a pixel dwell time of 20 us were accumulated. We note that,
although broad time bins and instrument response function (IRF) of the
FLIM microscope reduce the separability of fluorescence lifetimes, this loss
can be compensated by increasing the number of detected photons'**'”. We
previously demonstrated that, given the instrument parameters of our
microscope and FLIM card (24 bins and 0.52 bin width), a photon budget of
~500 photons is sufficient to reliably resolve physiologically relevant
NAD(P)H lifetime differences in cells and tissues’®.

All THG images were acquired at depths between 20 and 70 pm in the
tissue using laser powers of ~55 mW, with pixel sizes ranging from 0.5 to
1um, and a pixel dwell time of 20 ps accumulated twice, resulting in
~50-100 photons per image.

For live multimodal FLIM and THG imaging, the organotypic cere-
bellar slice preparation was positioned in a Petri dish filled with a non-
fluorescent assay medium. The experimental setup was maintained in an
incubation chamber at a temperature of 37 °C and 5% CO, (Okolab, Poz-
zuoli, Italy).

Organotypic cerebellar slices preparation

We used mice with C57bl6 background. Mice were euthanized between
postnatal days 8 and 10 (P8-P10, respectively), and both males and
females were taken. Sagittal mouse cerebellar slices were prepared and
then maintained in an incubator until the imaging days at 8 and 11 DIV
(8 and 11 DIV, respectively) as described in ref. 70 and in Fig. 4b. Mouse
cerebella at P8 to P10 were dissected in ice-cold Gey’s balanced salt
solution supplemented with 4.5 mg/mL D-glucose and penicillin-
streptomycin (100 IU/mL, Thermo Fisher Scientific). The cerebella
were then cut into 250 um parasagittal slices using a Mcllwain tissue
chopper, and the slices were placed on Millicell membranes (3-4 slices
per membrane, 2 membranes per animal) (0.4 pmm Millicell, Merck
Millipore). These slices were cultured in a medium consisting of 50%
BME (Thermo Fisher Scientific), 25% Earle’s balanced salt solution
(Sigma), and 25% heat-inactivated horse serum (Thermo Fisher Scien-
tific), supplemented with GlutaMax (2 mM, Thermo Fisher Scientific),
penicillin-streptomycin (100 IU/mL, Thermo Fisher Scientific), and
D-glucose (4.5 mg/mL, Sigma). Organotypic cerebellar slices were
maintained at 37°C under 5% CO, with medium changes every
2-3 days. To account for animal variability, organotypic cerebellar slices
from each animal were cultured on two membranes-one treated with a
demyelinating treatment and the other untreated as a control. This
approach helped to minimize potential variability and allowed for paired
experiments. To induce demyelination, one membrane from each ani-
mal was incubated overnight at 6 DIV in fresh culture medium con-
taining 0.5 mg/mL LPC, while the other membrane was kept as a
control”. To assess the demyelination process, imaging experiments
were performed at 8 DIV to compare the peak of demyelination in LPC-
treated samples with the peak of myelination in untreated samples. In
order to assess the remyelination process, organotypic cerebellar slices
were imaged at day 11, and LPC-treated slices were compared with
untreated control slices. Three different transgenic mouse lines were
used in order to identify different cell types. The first two mouse lines
were PLP-dsRed®' and PLP-GFP to identify oligodendrocytes bodies™.
To obtain the microglial expression of tdTomato, we crossed CX3CR1-
creERT2 heterozygous mice (Jackson laboratory) with Rosa26-
tdTomato Ail4 homozygous mice (Jackson laboratory). The activity
of the Cre recombinase was then induced at postnatal day 3 by an
intraperitoneal injection of 40 pL of Tamoxifen (T5648, Sigma, 15 mg/
mL, diluted in 1:10 EtOH: Sunflower oil, S5007, Sigma), leading to the
specific expression of tdtomato in the vast majority of microglial cells as
previously described”. The care and use of mice conformed to institu-
tional policies and guidelines (Sorbonne Université, INSERM, French
and European Community Council Directive 86/609/EEC). The project
underwent ethical validation (project number 20266).

Image analysis

We developed and implemented several advanced analysis workflows for
single cell segmentation, FLIM analysis and automated myelinated axon
detection. These workflows used different software tools such as
CellProfiler*” and ilastik* for cell segmentation, and Python GUIs FLUTE”
for phasor analysis of FLIM data. MATLAB was used for further processing
of the single-cell analyses, while Image], R, Origin, and MS Excel were used
for visualization and statistical analysis.

Single-cell segmentation. To segment single oligodendrocytes and
microglia, we processed the 2PEF images from the red fluorescent pro-
teins using CellProfiler”” software (Fig. S1.a). First, the intensity of the
2PEF image is rescaled to enhance the contrasts by using the Resca-
leIntensity’ module (Fig. Sla(ii)). Next, the ’IdentifyPrimaryObjects’
module is employed to identify single cells (Fig. Sla(iii)). The identified
objects are measured for their size and shape in CellProfiler software
using the "MeasureObjectSizeShape’ module. We extracted the eccen-
tricity of each cell, defined as the ratio of the distance between the foci to
the length of the major axis of an ellipse with the same second moments as
the object™. A value of 0 corresponds to a perfect circle, while values
approaching 1 indicate an increasingly elongated or elliptical shape.
Subsequently, the outlines of the filtered cells are overlaid using the
’OverlayOutlines’ module to locate them within the tissue. The location
of each cell in an image is exported to a spreadsheet via the ’Export-
ToSpreadsheet’ module. Finally, the image with the overlaid cells is saved
using the *Savelmages’ module.

To segment the cell bodies of Purkinje cell neurons, we used the THG
image, as they are visible as a negative contrast. (Figs. 1f and S1b). We first
performed a preprocessing step by stretching the contrast of the THG raw
image (Fig. S1b(ii)) by using Fiji. We then trained ilastik software®® machine
learning algorithm by annotating cell bodies with some THG images. We
then used the same software to generate a probability map highlighting cell
bodies (Fig. S1b(iii)). Finally, we used CellProfiler* software to segment
single cell masks from the probability map (Fig. S1b(iv)).

Analysis of FLIM data. FLIM Images acquired in the time domain were
analyzed with Phasor analysis*’®. The phasor analysis of FLIM data
was performed by using the open-source software FLUTE written in
Python, in our lab”. The fluorescence decay of every pixel of the FLIM
image was transformed with an FFT and converted into one pixel in the
phasor plot, as previously described’®**”® and detailed in the supple-
mentary information (SI). The coordinates g and s in the phasor plot
were calculated from the fluorescence intensity decay of each pixel
using equations 1 and 2 of Supplementary Information. We applied a
minimum intensity threshold of 20 photons to eliminate the back-
ground and pixels with low SNR. In addition, we applied a 3 x 3 median
filter to the gand s matrices to enhance the SNR without compromising
the spatial resolution. The matrices of g and s were extracted and then
further processed with a custom-written Matlab code. For each pixel in
the image, we computed the phase and modulation lifetimes (equations
7 and 8 of Supplementary Information) from g and s values. To esti-
mate the fractional contributions of bound NAD(P)H, we estimated
the distance from free NAD(P)H, by calculating the distance between
the pixel in the phasor plot and the phasor location of the free coen-
zyme (equations 17 of Supplementary Information)’’. We note that we
disregard here the differences in quantum yield between the free and
enzyme-bound metabolites.

Once the maps of NAD(P)H lifetime and distance from NAD(P)H are
calculated, the single cell mask is applied (Fig. 3s), and the average values are
calculated in single cell masks.

Automated myelinated axon segmentation workflow. We developed
a fiber detection workflow to automatically extract myelinated axons
from label-free THG images. This workflow involves four main steps:
preprocessing (Fig. 2b(ii)), Hessian and Meijering filter for fiber
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segmentation (Fig. 2b(iii)), intermediate labeling (Fig. 2b(iv)) and
K-means filtering (Fig. 2b(v)).

Preprocessig step (Fig. 2b(ii)) is performed with a custom-written
software in python (https:/github.com/laboratoryopticsbiosciences/thg-
segmentation) that uses functions from the Scikit-image python library*’.
Preprocessing involves the application of three filters to the raw image to
improve the quality and reliability of the THG images. First, we applied an
inpainting filter with the function “skimage.restoration.inpaint()” to filter
out Isolated bright pixels. Second, we applied the tophat transformation
with “skimage.morphology.white.tophat()” function in order to enhance and
extract the bright myelin structures from the dark background. Third, we
removed the outliers by applying a median filter with the “skimage.-
filters.median()” function.

After preprocessing, segmentation of fiber structures (Fig. 2b(iii)) was
performed using combining two methods: the Meijering neuriteness filter*
and a custom Hessian eigenvalue filter. For the custom Hessian filter,
eigenvalues A, 1, of the Hessian matrix were computed for each pixel in the
preprocessed image. The Hessian matrix contains information about the
second-order partial derivatives of an image and describes the curvatures of
image intensity at each pixel. We select the largest absolute eigenvalue for
each pixel, defined as Ajqqe = max(|A4], [A2]), and set the positive Ayq,g. values
to zero. The remaining non-zero Ay, values correspond to ridge-like
structures within the image. We then threshold |A;e| by keeping only the
pixels with values above the 84.5th percentile for large ROI images and
above the 80th percentile for small ROI images. This percentile-based
thresholding helps identify the strongest ridge-like structures while adap-
tively accounting for variations in image intensity across different ROI sizes.
The segmentation from both filters is combined using an intersection
operation, preserving only those pixels identified by both the Meijering filter
and the custom Hessian eigenvalue filter. This eliminates outliers and
improves segmentation accuracy by emphasizing regions consistently
identified by both methods. To refine the obtained segmentation and
remove artifacts, such as folium borders and other non-myelin structures
incorrectly captured, we apply K-means clustering to each object within the
segmented masks. Initially, every object in each mask is assigned a distinct
label (Fig. 2b(iv)). The labeled objects were created using skimage.measur-
elabel() function. We input a binary segmentation (fiber mask) into the
function, and the algorithm finds each separate object (connected pixels)
and assigns a unique number to all the pixels. Next, using the “measure.r-
egionprops” function from scikit-image version 0.24.0%, the following fea-
tures, as defined in Supplementary material, are measured and computed for
each object: Equivalent diameter, Perimeter, Area, Bbox-area, Convex-area,
Solidity, Minor-axis-length, Major-axis-length, Extent, Orientation,
Eccentricity, Filled-area. K-means clustering (Fig. 2b(v)) with k=10 is
applied taking in account all parameters, and the clusters representing the
objects of interest are visually selected. Each object is assigned to one of 10
clusters based on the similarity of these features. Then, by visual inspection
of the properties of objects in each cluster, we select those clusters that
contain predominantly myelin structures, while excluding clusters con-
taining mostly artifacts (like folium borders or non-myelin structures).
Typically, 3-4 clusters representing the fibers are retained. The objects
within these selected clusters for each image are aggregated to form the final
segmentation mask. In some cases, manual adjustments were made to
correct regions where artifacts such as folium borders were erroneously
identified as myelin in large ROIs.

Manual myelinated axon segmentation and analysis. The myelinated
fibers and the white matter tracts were first manually annotated using
Imaris software. The white matter tract outliers were then approximated
by using a convex hull in Meshlab'”. Myelin fibers with a clearly dis-
tinguishable THG signal to the human eye were manually selected, pri-
marily focusing on large internodes of Purkinje cell axons that exhibited a
strong SBRin the THG images. Internodes with weaker SBRs—potentially
corresponding to developing segments or Purkinje cell axon collaterals—
were not systematically traced. The fibers coordinates and the white

matter tract outliers were imported into GeNePy3D'” to extract the fibers
portions staying outside of the white matter tracts. We then count them,
compute their orientation distribution, lengths and tortuosity (Fig. S2).
The source code for analyzing the myelinated fibers is available in a
repository (https://github.com/laboratoryopticsbiosciences/thg-folium).

Microglia morphometry by Sholl analysis. To quantify microglia
morphometry from 2D images by bypassing reconstruction and tracing
of microglia processed, we performed Sholl analysis with an open-source
program for ImageJ/Fiji'”, (https://imagej.net/plugins/sholl-analysis).
Sholl analysis of microglial morphology (1 = 4 microglia per group) was
performed by manually binarizing each cell, and the number of inter-
sections was then calculated through the algorithm. The analysis mea-
sured intersections from the center of the microglia extending outwards
to ~12 um.

Statistical analysis and reproducibility. To perform statistical analysis,
we utilized various software tools, including Microsoft Excel (2013),
Origin (Version 2019, Northampton, MA: OriginLab Corporation), and
R (Vienna, Austria: R Foundation for Statistical Computing). To ensure
robust statistical comparisons and account for animal-to-animal
variability, we employed a mixed-effect model ¢ test. This method
enabled us to assess the impact of different experimental conditions
while considering inherent variations across animals. Numbers of
samples for each experiment are specified in the figure legends. For the
CX3CR1-tdTomato line, we used a total of 10 animals: 10 for the control
condition, 3 for the demyelination condition, and 5 for the remyelina-
tion condition. For the PLP-dsRed line, we had 3 animals, resulting in 2
for the control and 2 for the demyelination conditions, with 1 animal
serving both conditions. A summary has been provided in the follow-
ing table.

Condition #Cells #Animals
Microglia in control slices @8 DIV 115 5
Microglia in control slices @11 DIV 141 5
Microglia during demyelination @8 DIV 179 3
Microglia during remyelination @11 DIV 147 5
Oligodendrocytes in control slices @8 DIV 12 2
Purkinje neurons in control slices @8 DIV 17 2

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data that support the findings of the study are openly available in the
following repository: https://zenodo.org/records/17105359.

Code availability

All the code and software used and developed in this publication are open
source and available at the following ref. 79, (https://github.com/labo
ratoryopticsbiosciences/thg-segmentation, https://github.com/laboratoryop
ticsbiosciences/thg-folium).
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