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Network-specific corpus callosum aging
and age-moderated cognitive
associations using tract-to-region
analysis
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The corpus callosum (CC), the brain’s largest white matter commissure, undergoes significant age-
related atrophy that varies across subregions. However, how network-specific callosal connections
age and relate to cognitive performance remains poorly understood. We analyzed diffusion-weighted
imaging data from718healthy adults (ages 36-100 years) from theHumanConnectomeProject-Aging
dataset. Using a tract-to-region approach, we quantified CC tract density within seven canonical
functional networks. Cubic polynomial models examined network-specific aging trajectories, while
correlation andmoderation analyses investigated relationshipswith cognitive andmotor performance
across agegroups.Network-specificCC tract densities showeddistinct agingpatterns.Somatomotor
and Default Mode networks exhibited highest baseline tract density but steepest age-related declines
(β =−0.068 and −0.025, respectively, p < 0.001), while Visual and Limbic networks showed relative
preservation. CC tract density showed small-to-medium associations with executive function,
memory, and motor performance (r =−0.32 to 0.33). Critically, age moderated these brain-behavior
relationships: associationswereminimal in younger adults but becameprogressively stronger in older
adults across cognitive domains. The CC follows network-specific aging trajectories, with high-order
association networks showing accelerated decline while primary sensory networks remain preserved.
Strengthening brain-behavior associations with advancing age suggest callosal integrity becomes
increasingly critical for maintaining cognitive performance in later life.

The corpus callosum (CC) is the largest white-matter commissure in the
human brain, integrating information and coordinating cognitive proces-
sing between the two hemispheres1,2. Its integrity is fundamental to a vast
array of cognitive processes that rely on the integration and coordination of
neural activity across thebrain3. In the context of thehuman lifespan, theCC
is of particular interest as it undergoes significant age-related atrophy, often
at a rate that is disproportionately high compared to other brain regions4,5.
This pronounced decline in structural integrity appears to be a uniquely
humancharacteristic, as it is not observed inother non-humanprimates like
chimpanzees or baboons, suggesting that callosal aging may be a key factor
in understanding human cognitive aging6,7.

However, the CC is not a uniform structure. It is a complex mosaic of
fibers with distinct cellular compositions that connect to specific cortical
areas8. A recent comprehensive atlas used high-quality diffusion MRI to
create a fine-grained, population-based map of these callosal connections,

confirming a highly organized and topographically specific pattern of
connectivity between callosal subregions and the cerebral cortex9. This
framework gives rise to the hypothesis of differential aging, that different
sub-regions of the CC, defined by their network connections, may follow
distinct lifespan trajectories.

This structural variability has complex functional consequences. A
large body of research has established that the integrity of the CC is sig-
nificantly related to cognitive performance, particularly in domains of
executive function and memory10–12. Yet, a comprehensive picture of how
the lifespan trajectories of network-specific callosal connections relate to
cognition and motor remains incomplete. It is unclear if the link between
brain structure and cognitive and motor functions is stable across the life-
span, or if it is moderated by the aging process itself.

To enhance sensitivity to network-specific age effects, we adopted a
tract-to-region approach13. Unlike traditional connectome analysis (which
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give region-to-region links without identifying the underlying tracts), the
tract-to-region method explicitly quantifies each white-matter pathway’s
projection to defined cortical regions13.

The present study aims to investigate callosal aging at the level of
canonical brain networks by leveraging a large adult lifespan dataset from
theHumanConnectomeProject inAging (HCP-A).Using a tract-to-region
approach, we sought to: (1) map the adult lifespan trajectories of CC tract
density within seven canonical functional networks; (2) investigate the
relationship between this network-specific integrity and performance on
key tests of executive function, memory and motor; and (3) formally test
whether age moderates these brain-behavior relationship, providing a
detailed picture of how network-based callosal pathways age and how their
preservation supports cognitive/motor health across the adult lifespan.

Result
Demographic characteristics
Thefinal study sample included 718 healthy adults (56.0% female)with ages
ranging from 36 to 100 years (M= 60.40, SD = 15.66). The age distribution
showed slight negative skew (Shapiro–Wilk W= 0.962, p < 0.001), with
adequate representation across the adult lifespan (Supplementary Fig. S1).
Participants were recruited from four sites: Washington University in St.
Louis (28.8%, n = 207), University of Minnesota (28.6%, n = 205), Massa-
chusetts General Hospital (22.3%, n = 160), and University of California,
Los Angeles (20.3%, n = 146).

Descriptive statistics for all cognitive andmotormeasures are provided
in Table 1. Participants demonstrated mean performance within the
expected normative range for age across all domains: general cognitive
function (Montreal Cognitive Assessment [MoCA]: M = 26.28, SD = 2.56),
processing speed (NIH Toolbox Pattern Comparison Processing Speed
Test: M = 104.83, SD = 20.56), and verbal memory (Rey Auditory Verbal
Learning Test [RAVLT] total recall: M = 59.83, SD = 14.22). Motor func-
tion, as measured by the NIH Toolbox 4-Meter Walk Gait Speed Test
locomotion composite score, showed relatively low variability (M = 1.26,
SD = 0.25), whereas executive function measures (Trail Making Test)
showed substantial inter-individual variability, particularly on TMT Part B
(M= 76.43, SD = 59.28).

Site harmonization validation
To address potential multisite variability, ComBat harmonization14 was
applied to tract density measures across all seven networks with age and sex
as protected biological covariates. The harmonization procedure success-
fully reduced site-related variance while preserving age-related biological
effects (Supplementary Table S1). Average site variance reduction across
networks was 0.90% (range: 0.31–1.77%), indicating that site effects in the
original data were minimal. The correlation between age and tract density

changed by an average of only −0.002 across networks (range: −0.013 to
+0.004), confirming that age-related biological variance was preserved.

Harmonized and non-harmonized tract density values were highly
correlated for all networks: Control (r = 0.998), Default (r = 0.997), Dorsal
Attention (r = 1.000), Limbic (r = 0.991), Salience/Ventral Attention
(r = 0.997), Somatomotor (r = 0.998), and Visual (r = 0.997). Site-specific
distributions before and after harmonization are shown in Supplementary
Fig. S2, illustrating comparable distributions across all four sites (UMinn,
WashU, UCLA, MGH) following harmonization. The near-perfect corre-
lations between harmonized and non-harmonized values (all r > 0.99) are
visualized in Supplementary Fig. S3, demonstrating that harmonization
preserved biological variance while removingminimal site-related technical
variance.

Despite the minimal site effects, all subsequent analyses were con-
ducted on harmonized data to ensuremaximum rigor and consistencywith
best practices for multisite neuroimaging studies. Complete comparison
between harmonized and non-harmonized results, including descriptive
statistics and age correlations for all networks, is provided in Supplementary
Table S2.

Network-specific cubic trajectories of corpus callosum tract
density
Systematic model comparison revealed that cubic polynomial models
provided the best fit (lowest AIC) for all seven networks (Supplementary
Table S3). Compared to linear models, cubic models showed substantial
improvements across networks, with ΔAIC values indicating superior fit.
The magnitude of improvement varied by network, with the most pro-
nounced differences observed in higher-order association networks.

Cubic age terms were statistically significant after FDR correction
(q < 0.05) for five networks: Salience/Ventral Attention (R² = 0.431,
q < 0.001), Somatomotor (R² = 0.420, q < 0.001), Dorsal Attention
(R² = 0.364, q = 0.006), Default (R² = 0.310, q = 0.001), and Limbic
(R² = 0.082, q < 0.001). The Control network showed a marginally sig-
nificant cubic effect (R² = 0.307, q = 0.057), while the Visual network
showedminimal age-related variance (R² = 0.009, q = 0.057). All significant
effects were validated by permutation testing (1000 iterations; all p < 0.001),
confirming the robustness of the observed age-related patterns (Supple-
mentary Table S4).

Figure 1 illustrates these network-specific trajectories with 95% con-
fidence intervals. Five networks exhibited complex non-linear patterns
characterized by relative stability or subtle decline in early-to-middle
adulthood (~36–60 years), followed by accelerated decline in late adulthood
(60–100 years). This pattern was most pronounced in the Salience/Ventral
Attention and Somatomotor networks, which also demonstrated the
highest overall model fit (R² > 0.40).

Table 1 | Demographic, cognitive, and motor characteristics of the HCP-Aging sample (N = 718)

Measure N Mean SD Min Median Max

Age (years) 718 60.40 15.66 36.00 58.50 100.00

Locomotion composite score 615 1.26 0.25 0.47 1.23 2.42

RAVLT total recall 703 59.83 14.22 4.00 60.00 99.00

RAVLT trial VI recall 710 9.38 3.22 0.00 10.00 15.00

MoCA total score 718 26.28 2.56 18.00 27.00 31.00

NIH Pattern Comparison 608 104.83 20.56 54.00 106.00 150.00

Vocabulary (theta score) 629 6.11 2.44 −2.99 6.17 11.83

NIH Picture Vocabulary 608 108.06 16.09 60.00 110.00 146.00

TMT-A (seconds) 713 30.31 12.98 0.31 27.36 132.56

TMT-B (seconds) 713 76.43 59.28 1.21 62.99 1158.75

RAVLT Rey Auditory Verbal Learning Test,MoCA Montreal Cognitive Assessment, NIH National Institutes of Health, TMT-A/B Trail Making Test Parts A and B.
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The Limbic network showed a distinct trajectory with subtle positive
cubic trends across the age range, though the overall variance explained
remainedmodest (R² = 0.082). TheVisual network remained essentially flat
across the adult lifespan (R² = 0.009), indicating preservation of primary
sensory callosal connections throughout adulthood.

Complete model parameters including cubic coefficients, standard
errors, and confidence intervals are provided in Table 2. Comparison with
non-harmonized data showed highly consistent results (Supplementary
Table S5 and Supplementary Fig. S4).

Correlation with cognitive and motor performance
We investigated relationships between CC tract density within seven
canonical functional networks and cognitive and motor performance.
Pearson correlation analyses were performed with permutation testing
(10,000 iterations) to validate statistical significance. Multiple comparison
corrections were applied using both False Discovery Rate (FDR;
Benjamini–Hochberg) and Bonferroni methods.

Of 56 network-behavior associations tested, 39 survived FDR correc-
tion (q < 0.05) and 29 survived themore conservative Bonferroni correction
(p < 0.05). All significant correlations identified by parametric testing were
confirmed by permutation testing (all p_perm ≤ 0.0042), validating the
robustness of the observed associations (Supplementary Fig. S5). Effect sizes
ranged from small to medium, with the majority classified as small
(r = 0.10–0.30; n = 32) and six showing medium effects (r = 0.30–0.50).

Significant associations after Bonferroni correction are summarized in
Table 3.

CC tractdensity showed the strongest andmost consistent associations
with verbal memory and executive function measures across multiple net-
works. Tract density in five networks showedmedium positive correlations
with RAVLT total recall performance: Salience/Ventral Attention
(r = 0.330), Control (r = 0.306), Somatomotor (r = 0.306), Default
(r = 0.294), and Dorsal Attention (r = 0.277; all p < 0.001), indicating that
greater callosal connectivity supports verbal learning and memory con-
solidation. Processing speed and attention, measured by Trail Making Test
PartA, showednegative correlationswith tract density infivenetworks,with
correlations ranging from r =−0.266 to r =−0.324 (all p < 0.001). Lower
completion times, reflecting better performance, were associated with
higher tract density in Dorsal Attention, Salience/Ventral Attention,
Somatomotor, Control, and Default networks.

Cognitive flexibility, assessed by Trail Making Test Part B, showed
small negative correlations with tract density in five networks (r range =
−0.183 to−0.205, all p ≤ 0.001). General cognitive function, measured by
MoCA total scores, showed small positive correlations with tract density in
Salience/Ventral Attention (r = 0.205), Somatomotor (r = 0.197), Default
(r = 0.194), and Control (r = 0.191) networks (all p < 0.001). Locomotion
composite scores, reflecting motor function, showed small positive asso-
ciations with tract density in five networks, with correlations ranging from
r = 0.172 to r = 0.192 (all p < 0.001).

Fig. 1 | Network-specific cubic trajectories of
corpus callosum tract density across the adult
lifespan. Each point represents an individual parti-
cipant’s harmonized tract density value (N = 718,
ages 36–100 years). Solid lines show cubic poly-
nomial model fits for each of the seven functional
networks: Visual (Vis), Somatomotor (SomMot),
Dorsal Attention (DorsAttn), Salience/Ventral
Attention (SalVentAttn), Limbic, Control (Cont),
and Default Mode (Default). Five networks show
significant cubic effects (FDR q < 0.05, indicated by
*), characterized by relative stability in early-middle
adulthood followed by accelerated decline. The
Limbic network shows a distinct positive trajectory,
while the Visual network remains essentially flat.
Shaded regions represent 95% confidence intervals.

Table 2 | Cubic polynomial models of age-related changes in harmonized corpus callosum tract density across functional
networks

Network N R² Linear β (SE) Quadratic β (SE) Cubic β (SE) Cubic p FDR q Perm p

SalVentAttn 718 0.431 −0.156 (0.028) 0.0018 (0.0004) −0.000007 (0.000002) <0.001 <0.001 <0.001

SomMot 718 0.420 −0.142 (0.031) 0.0015 (0.0005) −0.000006 (0.000002) <0.001 <0.001 <0.001

DorsAttn 718 0.364 −0.098 (0.026) 0.0011 (0.0004) −0.000004 (0.000002) 0.004 0.006 <0.001

Default 718 0.310 −0.089 (0.029) 0.0009 (0.0004) −0.000003 (0.000002) 0.001 0.001 <0.001

Cont 718 0.307 −0.084 (0.027) 0.0008 (0.0004) −0.000003 (0.000002) 0.049 0.057 0.001

Limbic 718 0.082 0.032 (0.012) −0.0003 (0.0002) 0.000001 (0.000001) <0.001 <0.001 <0.001

Vis 718 0.009 −0.018 (0.021) 0.0002 (0.0003) −0.000001 (0.000001) 0.057 0.057 0.084

All models include sex as covariate and site as fixed effect. FDR correction applied across 7 networks using Benjamini–Hochberg procedure.
β unstandardized coefficient, SE standard error, Perm p permutation test p-value (1000 iterations).

https://doi.org/10.1038/s42003-025-09219-w Article

Communications Biology |          (2025) 8:1823 3

www.nature.com/commsbio


Vocabulary performance showed smaller negative correlations with
tract density in Somatomotor (r =−0.157, p = 0.006), Limbic (r =−0.154,
p < 0.001), and Dorsal Attention (r =−0.143, p = 0.011) networks. Proces-
sing speed, measured byNIH Pattern Comparison, showed a small positive
correlation only with Salience/Ventral Attention network tract density
(r = 0.156, p = 0.017). The Visual and Limbic networks showedminimal or
no associations with cognitive measures after correction, consistent with
their distinct aging trajectories.

Scatter plots illustrating significant correlations are provided in Sup-
plementary Fig. S6. Complete results including effect sizes (R², Cohen’s f²),
permutation p-values, and all tested associations are provided in Supple-
mentary Table S6.

Moderating effect of age on the relationship between network
tract density and cognitive performance
To examine whether agemoderates the association between CC tract density
and cognitive performance, we conducted interaction analyses using con-
tinuous age as a moderator variable. Participants were stratified into tertiles
based on chronological age: Younger (36.0–51.75 years, n= 239), Middle
(51.75–67.83 years, n= 238), and Older (67.92–100.0 years, n= 241). Sex

distributiondid not differ significantly across age tertiles (χ² = 0.69,p= 0.709),
indicating balanced sex representation across age groups.Complete demo-
graphic characteristics by age group are provided in Supplementary Table S7.
We focused on the five networks showing the strongest brain-behavior
associations: Somatomotor, Dorsal Attention, Salience/Ventral Attention,
Control, and Default. Cognitive measures included processing speed (TMT-
A), executive function (TMT-B), andverbalmemory (RAVLTtotal recall).All
interaction effects were validated using permutation testing (1000 iterations
per test), with FDR correction applied across the 15 tests.

Moderation analyses revealed significant tract density × age interac-
tions for 11 of 15 network-behavior combinations after permutation testing
and FDR correction (q < 0.05), indicating that the strength of brain-
behavior relationships systematically varies across the adult lifespan
(Table 4). Parametric and permutation-based p-values showed high con-
cordance (Supplementary Fig. S7), validating the robustness of the observed
moderation effects. The pattern of moderation was consistent across cog-
nitive domains: associations were minimal or absent in younger adults but
became progressively stronger with advancing age.

For TMT-A, significant negative interactions were observed in all five
networks after permutation testing and FDR correction (all q ≤ 0.006).

Table 3 | Pearson correlations between functional network-specific corpus callosum tract density and behavioral performance
(Bonferroni-corrected)

Behavioral test Network Pearson’s r R² Cohen’s f² p-value (Bonferroni)

RAVLT total recall SalVentAttn 0.330 0.109 0.123 <0.001

RAVLT total recall SomMot 0.306 0.093 0.103 <0.001

RAVLT total recall Cont 0.306 0.093 0.103 <0.001

RAVLT total recall Default 0.294 0.087 0.095 <0.001

RAVLT total recall DorsAttn 0.277 0.077 0.083 <0.001

TMT-A (seconds) DorsAttn −0.324 0.105 0.118 <0.001

TMT-A (seconds) SalVentAttn −0.311 0.097 0.107 <0.001

TMT-A (seconds) SomMot −0.306 0.093 0.103 <0.001

TMT-A (seconds) Cont −0.288 0.083 0.090 <0.001

TMT-A (seconds) Default −0.266 0.070 0.076 <0.001

TMT-B (seconds) DorsAttn −0.205 0.042 0.044 <0.001

TMT-B (seconds) SalVentAttn −0.204 0.042 0.043 <0.001

TMT-B (seconds) Default −0.203 0.041 0.043 <0.001

TMT-B (seconds) SomMot −0.189 0.036 0.037 <0.001

TMT-B (seconds) Cont −0.183 0.034 0.035 <0.001

MoCA total score SalVentAttn 0.205 0.042 0.044 <0.001

MoCA total score SomMot 0.197 0.039 0.040 <0.001

MoCA total score Default 0.194 0.038 0.039 <0.001

MoCA total score Cont 0.191 0.036 0.038 <0.001

MoCA total score DorsAttn 0.161 0.026 0.027 <0.001

Locomotion composite SalVentAttn 0.192 0.037 0.038 <0.001

Locomotion composite DorsAttn 0.189 0.036 0.037 <0.001

Locomotion composite SomMot 0.189 0.036 0.037 <0.001

Locomotion composite Default 0.185 0.034 0.035 <0.001

Locomotion composite Cont 0.172 0.030 0.031 <0.001

Vocabulary (theta) SomMot −0.157 0.025 0.025 0.006

Vocabulary (theta) Limbic −0.154 0.024 0.024 <0.001

Vocabulary (theta) DorsAttn −0.143 0.020 0.021 0.011

NIH Pattern Comparison SalVentAttn 0.156 0.024 0.025 0.017

Only associations surviving Bonferroni correction for multiple comparisons are shown (p < 0.05; 29 of 56 tests). All correlations were validated by permutation testing with 10,000 iterations. R² = coefficient
of determination; Cohen’s f² = effect sizemeasure. Effect sizes classified as small (r = 0.10–0.30) or medium (r = 0.30–0.50). Negative correlations for Trail Making Tests indicate that lower completion times
(better performance) are associated with higher tract density. Complete results for all 56 tested associations are provided in Supplementary Table S6.
RAVLT Rey Auditory Verbal Learning Test,MoCA Montreal Cognitive Assessment, NIH National Institutes of Health, TMT Trail Making Test.
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Younger adults showednegligible orweak correlationsbetween tract density
and processing speed (r range =−0.119 to 0.089), while older adults
demonstratedmoderate negative correlations (r range =−0.222 to−0.276),
indicating that higher tract density was associated with faster performance
in later life. The Salience/Ventral Attention network showed the largest age-
dependent change (interaction β =−0.126, p_perm < 0.001, q < 0.001;
Δr =−0.320 from younger to older), followed by Default (β =−0.069,
p_perm < 0.001, q < 0.001; Δr =−0.313) and Somatomotor (β =−0.051,
p_perm < 0.001, q < 0.001; Δr =−0.223) networks.

For TMT-B, significant interactions emerged in two networks after
FDRcorrection: Somatomotor (β =−0.100, p_perm < 0.001, q < 0.001) and
Salience/Ventral Attention (β =−0.191, p_perm = 0.010, q = 0.019). Three
additional networks showed marginal effects that did not survive FDR
correction: Control (p_perm = 0.056, q = 0.065), Default (p_perm = 0.054,
q = 0.065), and Dorsal Attention (p_perm = 0.062, q = 0.066). The pattern
mirrored TMT-A findings, with younger adults showing weak positive or
null associations (r range = 0.028–0.131) and older adults showing negative
associations (r range =−0.078 to−0.121), though effect sizeswere generally
smaller than for TMT-A.

For RAVLT total recall, significant positive interactions were observed
in three networks after permutation testing and FDR correction: Somato-
motor (β = 0.032, p_perm = 0.001, q = 0.003), Control (β = 0.049,
p_perm = 0.015, q = 0.025), and Salience/Ventral Attention (β = 0.048,
p_perm = 0.021, q = 0.030). The Default network showed a marginal effect
(p_perm = 0.022, q = 0.030). Younger adults showed negligible or slightly
negative correlationswith verbalmemory (r range =−0.103 to 0.007), while
older adults demonstrated positive correlations (r range = 0.183–0.235),
indicating that higher tract density supports memory performance in later
life. The Somatomotor network showed the largest age-dependent
strengthening (Δr = 0.338), followed by Control (Δr = 0.257) and Sal-
ience/Ventral Attention (Δr = 0.214).

Scatter plots illustrating these age-moderated relationships are shown
in Fig. 2. Visual inspection confirms the statistical findings: regression lines
for younger and middle-aged groups are relatively flat, while older adult
regression lines show steeper slopes, reflecting stronger brain-behavior
coupling in later life. This pattern was consistent across all three cognitive
domains, demonstrating that callosal tract density becomes increasingly
important for cognitive performance with advancing age.

To confirm that moderation findings were not dependent on the
specific tertile boundaries, we conducted sensitivity analyses using three
alternative age grouping approaches: quartile-based (4 groups),median split
(2 groups), and continuous age as moderator (no grouping). Results were
highly consistent across allmethods (SupplementaryTable S8).Thenumber
of significant tract density × age interactions (FDR q < 0.05) was nearly
identical: tertiles (11/15, 73.3%), quartiles (11/15, 73.3%), median split (12/
15, 80.0%), and continuous (11/15, 73.3%). Interaction coefficients and
effect sizes (Δr) were comparable across methods, varying by less than 15%.
For example, the Control-RAVLT interaction showed β = 0.049 and
Δr = 0.17–0.26 across all four approaches.

Sensitivity analysis
To examine the consistency of CC tract-to-region estimates across parcel-
lation resolutions, we repeated all analyses using the higher-resolution
Schaefer-Yeo 1000-node atlas. The 1000-node data underwent identical
preprocessing and harmonization procedures as the 400-node analysis,
including ComBat harmonization with age and sex as protected biological
covariates.

Tract-to-region estimates derived from the 400- and 1000-node atlases
were highly consistent (r = 0.972, R² = 0.945, p < 0.001), with values tightly
aligned along the unity line (Fig. 3), indicating excellent reproducibility
despite the finer spatial resolution. This strong correlation demonstrates
that the tract density metric is robust across different parcellation
granularities.

Cubic polynomial models at the 1000-node resolution reproduced the
network-specific age-related effects observed with the 400-node atlas. Five

networks showed significant cubic age effects after FDRcorrection: Salience/
Ventral Attention (R² = 0.429, q < 0.001), Somatomotor (R² = 0.418,
q < 0.001), Dorsal Attention (R² = 0.363, q = 0.006), Default (R² = 0.309,
q = 0.001), andLimbic (R² = 0.080, q < 0.001). TheControl network showed
a marginally significant effect (R² = 0.306, q = 0.057), while the Visual net-
work showed minimal age-related variance (R² = 0.009, q = 0.057). These
results closely matched the 400-node findings, with R² values differing by
less than 0.002 across all networks (Supplementary Table S9).

Brain-behavior correlations at the 1000-node resolution, validated by
permutation testing (1000 iterations per test), similarly replicated the 400-
nodefindings.Of 56network-behavior associations tested, 39 survived FDR
correction and 29 survived Bonferroni correction, identical to the 400-node
results. The rank order of correlation magnitudes and the direction of all
significant effects were preserved across both parcellation schemes (Sup-
plementary Table S10). This consistency confirms that the observed brain-
behavior relationships are not artifacts of the chosen parcellation resolution
but reflect genuine structural-functional associations.

Discussion
In this study,we investigated the adult lifespan trajectories of network-based
callosal pathways and their relationship with cognitive performance.

Systematic model comparison identified cubic polynomial models as
providing the best fit for characterizing age-related changes in network-
specific CC tract density. Five networks—Salience/Ventral Attention,
Somatomotor, Default, Dorsal Attention, and Limbic—showed significant
cubic age effects after FDR correction, all validated by permutation testing.
These cubic trajectories reveal a complex pattern: relative stability or subtle
decline in early-to-middle adulthood (~36–60 years), followed by acceler-
ated decline in later life (60–100 years). This non-linear pattern most
strongly characterized higher-order association networks (Salience/Ventral
Attention R² = 0.44; Somatomotor R² = 0.43), while the Visual network
showed minimal age effects (R² = 0.02), indicating preservation of primary
sensory callosal pathways.

The accelerated late-life decline in association networks likely reflects
differential vulnerability of lightly-myelinated, thin-diameter axons con-
necting frontal and parietal association cortices15. These fibers are particu-
larly susceptible to age-related myelin degradation and oligodendrocyte
dysfunction16. In contrast, the heavily-myelinated, large-diameter fibers
connecting primary sensory cortices show greater resilience. Notably, the
Limbic network showed a distinct positive trajectory, which requires cau-
tious interpretation and may reflect compensatory mechanisms, measure-
ment considerations related to medial callosal regions, or genuine
microstructural changes in cingulate connectivity that diverge from the
typical aging pattern.

The differential aging trajectories observed across networks provide
partial support for the ‘last in, first out’ principle. Networks supporting
higher-order cognitive functions (Default, Control, Dorsal Attention)
showed pronounced age-related declines, consistent with the relatively late
myelination of association cortices during development and their vulner-
ability in aging5. Conversely, the Visual network—connecting primary
sensory cortices thatmyelinate early in development—showedminimal age
effects. The pronounced decline in Somatomotor connections, despite their
early developmental myelination, suggests additional factors beyond
developmental timing influence callosal aging, possibly including differ-
ential vulnerability to myelin degradation in thinner versus thicker axons
connecting different cortical regions.

The strong correlations we observed between CC integrity and a range
of neuropsychological tests confirm the critical role of interhemispheric
communication in supporting complex cognition11. Specifically, we found
that lower tract density was associated with poorer attention and executive
function, as measured by slower performance on the TMT-A and TMT-B)
and with deficits in memory function, as assessed by the RAVLT. This is
consistent with a recent comprehensive review which concluded that the
CC, particularly its anterior segments connecting association cortices, is
consistently associatedwith executive processes12. Similarly, ourfinding that
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Fig. 2 | Age-dependent moderation of brain-behavior relationships across five
functional networks. Scatter plots show associations between corpus callosum tract
density and cognitive performance for three behavioral measures (columns):
RAVLT total recall (left), TMT-A (center), and TMT-B (right) across five networks
(rows): Somatomotor, Dorsal Attention, Salience/Ventral Attention, Control, and
Default. Participants were stratified into tertiles by age: Younger (36.0–51.75 years,
blue, N = 239), Middle (51.75–67.83 years, green, N = 238), and Older (67.92–100.0
years, red, – = 241). Each point represents an individual participant. Solid lines show

linear regression fits with shaded 95% confidence intervals for each age group. P-
values (inset) indicate permutation-based significance of the Tract Density × Age
interaction term. Across all cognitive domains, associations between tract density
and performance areminimal in younger adults but strengthen substantially in older
adults, demonstrating that callosal integrity becomes increasingly critical for cog-
nitive function with advancing age. Negative correlations for Trail Making Tests
reflect faster performance (shorter completion times) associated with higher tract
density.
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lower tract density in the Somatomotor network’s callosal connections was
linked to poorer cognitive/motor behavior is consistent with evidence from
clinical populations. Studies of stroke patients, for instance, show that
cognitive impairment is linked to atrophy in these same callosal pathways17

and that damage to interhemispheric motor tracts is a primary predictor of
motor network dysfunction18.This structure-function link is further illu-
minated by studies showing that when placed under a high-load dual-task,
older adults fail to increase motor cortex activation and instead adopt a less
effective strategy of increasing functional connectivity, which is insufficient
to prevent a decline in gait performance19.

Themost novelfinding of our study is the significantmoderating effect
of age on these brain-behavior relationships. This result helps to resolve an
apparent paradox in the literature. In healthy young adults, a high degree of
functional specialization is associated with weaker callosal connectivity, a
trade-off thought to increase processing efficiency by reducing cross-
hemispheric interference20. Our results suggest this principle holds true for
the younger individuals in our sample. However, in our older participants,
this relationship inverts: higher CC integrity becomes strongly associated
with better cognitive performance.

This shift can be understood through the lens of neural reserve and
compensation3. The young brain has a high degree of plasticity and com-
pensatory capacity. As the brain ages and this reserve declines, cognitive
performance becomes more directly dependent on the health of the
underlying structural “hardware.” This aligns with recent graph-theoretical
work showing that age-related decline in executive function is specifically
mediated by a loss of local efficiency, or network segregation21. Our results
suggest that the callosal pathways are the critical structural underpinning
that allows these networks tomaintain their segregated, efficient processing.
Older adults may attempt to compensate for decline by recruiting both
hemispheres, as suggested by the HAROLDmodel5, but our results suggest
that the success of this strategy is critically dependent on the remaining

density of the CC. Furthermore, this age-related decline may represent a
“double hit,” impairing not only direct communication duringwaking tasks
but also the restorative, cross-hemispheric processes that occur during
sleep22. Finally, these findings were consistent across both the 400- and
1000-parcel Schaefer-Yeo atlases, indicating that the observed effects are
independent of parcellation resolution.

Several limitations should be acknowledged. First, our cross-sectional
design precludes direct inference about within-individual aging trajectories.
Longitudinal studies are needed to confirm these patterns and assess indi-
vidual variability in callosal aging. Second, while tract-to-region analysis
quantifies network-specific connectivity, it remains an indirect proxy for
structural connectivity. The volume ratio metric reflects the extent of cor-
tical territory intersected by CC fibers but does not capture axonal-level
microstructure, myelin content, or synaptic efficacy directly. Third, the
HCP-Aging sample, while large and well-characterized, represents a rela-
tively healthy, educated population. Generalization to clinical populations
ormorediversedemographic groups requires caution. Fourth, our age range
(36–100 years) captures adult aging but not early development, precluding
true lifespan inferences about the origins of the observed patterns. Fifth,
despite rigorous quality control (visual inspection of all 718 tracts, high
registration quality, topology-informed pruning), residual confounding
from scanner differences across the four sites cannot be entirely excluded.
However, ComBat harmonization validation showed minimal site effects
(0.9% variance reduction). Sixth, the modest effect sizes for some brain-
behavior associations (r = 0.15–0.20), while statistically robust after cor-
rection, indicate that CC tract density represents one of many factors
influencing cognitive performance.

In conclusion, our findings paint a picture of the CC as a mosaic of
connections that age at different rates. The density of this structure, parti-
cularly the fibers that support the brain’s association networks, becomes an
increasingly critical and rate-limiting factor for maintaining cognitive/
motor functions in later life. This highlights the importance of preserving
white matter health as a key target for interventions aimed at promoting
successful cognitive aging.

Method
Study data and participants
Data were obtained from the HCP-A Lifespan 2.0 Release, a multi-site
project that collected data from a large cohort of healthy adults23. The study
included participants aged 36 to over 90 years, and all procedures were
approved by the relevant Institutional Review Boards. All participants
provided written informed consent. All ethical regulations relevant to
human research participants were followed. Exclusion criteria included a
history of major psychiatric or neurological conditions that required
treatment, such as schizophrenia, bipolar disorder, stroke, or brain tumors.
From the full release, the present study utilized a final dataset of 718 par-
ticipants for whom high-quality diffusion data were available after quality
control24.

Behavioral data
The HCP-Aging project included a comprehensive battery of behavioral
and cognitive assessments23. The specific tests and their corresponding
cognitive domains utilized in the current study are provided in Table 5.
These measures were selected to provide a broad assessment of cognitive
and motor function.

General cognitive functionwas evaluatedusing theMontrealCognitive
Assessment (MoCA), a widely used screening tool for detecting cognitive
impairment with sensitivity to age-related cognitive changes. Attention and
executive function were assessed with the Trail Making Test Parts A and B
(TMT-A, TMT-B), where TMT-A primarily measures processing speed
and visual attention, while TMT-B assesses cognitive flexibility, set-shifting,
and executive control.

Memory function was evaluated using the Rey Auditory Verbal
Learning Test (RAVLT).We analyzed both total recall across learning trials
(sum of trials I-V) and delayed recall (trial VI after a 20-min delay) to assess

Fig. 3 | Correlation between tract density measures from Schaefer-Yeo 400- and
1000-node atlases. Scatter plot illustrates the strong positive relationship between
harmonized tract density values derived from the Schaefer-400 atlas (x-axis) and the
Schaefer-1000 atlas (y-axis) across all participants and networks (N = 5026 data
points: 718 subjects × 7 networks). Each point represents a single subject-network
measurement. The red dashed line represents the identity line (y = x). The near-
perfect correlation (Pearson’s r = 0.972, R² = 0.945, p < 0.001) and tight clustering
along the unity line demonstrate that tract density estimates are highly consistent
across parcellation resolutions, confirming the robustness and reliability of the tract-
to-region metric independent of atlas granularity.
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verbal learning andmemory consolidation. Language functionwas assessed
via the NIH Toolbox Picture Vocabulary Test, reported as both age-
corrected standard scores and theta scores. The theta score provides a
continuous measure of vocabulary knowledge based on item response
theory that is less affected by ceiling effects than traditional scoring
approaches.

Processing speed was measured with the NIH Toolbox Pattern
Comparison Processing Speed Test, which requires participants to discern
whether two visual patterns are the sameordifferent under time constraints.
Motor function was quantified using the NIH Toolbox 4-Meter Walk Gait
Speed Test, expressed as a locomotion composite score that reflects overall
gait speed and motor performance25.

Data acquisition and preprocessing
Thediffusion-weighted imaging (DWI)datawas acquiredusing amultishell
scheme. The acquisition used b-values of 1500 and 3000 s/mm²with 93 and
92 diffusion sampling directions, respectively. The imaging resolution was
isotropic at 1.5 mm for both in-plane resolution and slice thickness.

Before analysis, the data underwent preprocessing to correct for sus-
ceptibility and eddy current artifacts. This was performed using the topup
and eddy tools from the FMRIB Software Library (FSL)26, accessed through
the integrated interface of the DSI Studio “Chen” release. Following cor-
rection, thedatawas rotated to alignwith the anterior commissure-posterior
commissure (AC-PC) line. To ensure data quality, the orientation of the
b-table was verified by comparing the resulting fiber orientations with a
population-averaged template. The data were reconstructed using gen-
eralized q-sampling imaging (GQI) with a diffusion sampling length ratio
of 1.2527.

A deterministic fiber tracking algorithm was employed to generate CC
tractography. The tracking was seeded with a track-to-voxel ratio of 2.00. To
enhance reproducibility, several parameters were randomized for each seed:
the anisotropy threshold was selected from a range of 0.5–0.7 of the Otsu
threshold, and the angular threshold was varied between 45 and 90 degrees28.
The step size was set to the voxel spacing, and streamlines with lengths
shorter than 19.5mm or longer than 158.2mm were discarded. Then, the
CC was then automatically identified using automated tractography29. This
procedure compared the generated streamlines to a population-based trac-
tography atlas in the ICBM152 space28, using a distance tolerance of
22.00mm for matching. Finally, to enhance the anatomical accuracy of the
resulting tract, topology-informed pruning was applied for 32 iterations to
identify and remove spurious or invalid connections.

Atlas registration and tract-to-region analysis
To map the cortical connections of the CC, the Schaefer-Yeo 400-node
7-network functional atlas30 was aligned from the standard MNI space to
each subject’s native diffusion space. This was achieved through a two-stage
registration process within DSI Studio. First, a linear affine registration
provided a coarse, global alignment by correcting for differences in

translation, rotation, and scale. Subsequently, a nonlinear diffeomorphic
registration was performed, using a multi-resolution deformation field to
warp the atlas precisely to the subject’s local anatomical structures. Regis-
tration quality was validated using automated correlation metrics, with all
subjects exceeding quality thresholds (see Supplementary Methods S1 for
details).

With the atlas accurately registered, a tract-to-region analysis was
conducted on the identified CC tract13. Tract-to-region quantifies the
volume ratio of cortical regions intersected by tract streamlines. This metric
represents the proportion of each cortical region’s territory structurally
connected to the CC. The analysis generated a tract-to-region map, iden-
tifying which of the 400 cortical parcels were intersected by streamlines
of the CC.

To quantify the innervation density of the CC within large-scale
functional brain networks, the results from the tract-to-region analysis were
further aggregated. This analysis utilized the canonical seven resting-state
networks defined by Thomas Yeo et al.31: Visual, Somatomotor, Dorsal
Attention, Salience/Ventral Attention, Limbic, Control, and Default Mode.
Using a custom Python script, we processed the tract-to-region output for
each subject. For each of the seven functional networks, the script identified
all constituent cortical parcels from the Schaefer atlas belonging to
that network in both the left (LH) and right (RH) hemispheres. The tract
density values for these parcels were then summed together. This procedure
yielded a single, aggregate value for each network, representing the total
density of CC fibers innervating the cortical territory of that functional
network.

Statistical analysis
Site harmonization. To address potential multisite variability beyond
simple covariate adjustment, we performed ComBat harmonization on
tract density measures14. ComBat uses an empirical Bayes framework to
remove site-related batch effects while preserving biological variability
associated with covariates of interest (age and sex). The harmonization
was implemented using the neuroCombat Python package, with age and
sex specified as protected biological covariates. Site-specific mean and
variance parameters were estimated and removed from the tract density
measures across all seven networks. Detailed harmonization procedures,
validation metrics, and site-specific distributions are provided in Sup-
plementary Methods S2. All main analyses were conducted on harmo-
nized data, with complete comparison between harmonized and non-
harmonized results provided in Supplementary Table S1, S2 and Sup-
plementary Fig. S3.

Age trajectories of tract density: model comparison and
selection
To identify the optimal functional form formodeling age-related changes in
CC tract density, we systematically compared four models: (1) linear (Age),
(2) quadratic (Age+Age²), (3) logarithmic (log[Age]), and (4) cubic (Age+

Table 5 | Neuropsychological tests and corresponding cognitive domains

Cognitive domain Neuropsychological test Abbreviation

General cognitive function Montreal Cognitive Assessment MoCA

Attention/Executive function Trail Making Test Part A TMT-A

Executive function/Cognitive flexibility Trail Making Test Part B TMT-B

Verbal learning and memory Rey Auditory Verbal Learning Test - Total Recall RAVLT total

Delayed memory Rey Auditory Verbal Learning Test - Trial VI RAVLT VI

Language/Vocabulary NIH Toolbox Picture Vocabulary Test (theta score) Vocabulary (theta)

Language/Vocabulary NIH Toolbox Picture Vocabulary Test (standard score) NIH Picture Vocabulary

Processing speed NIH Toolbox Pattern Comparison Processing Speed Test NIH Pattern Comparison

Motor function NIH Toolbox 4-Meter Walk Gait Speed Test Locomotion composite

RAVLT Rey Auditory Verbal Learning Test,MoCA Montreal Cognitive Assessment, NIH National Institutes of Health, TMT Trail Making Test.
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Age²+Age³). Model selection was based on Akaike Information Criterion
(AIC), with lower values indicating better fit.

For each network, ordinary least squares regressionmodels were fitted
with harmonized tract density as the dependent variable, age terms (varying
by model), sex, and site as covariates. Statistical significance was assessed
using F-tests, with FalseDiscovery Rate (FDR) correction applied across the
seven networks (q < 0.05). All significant cubic age effects were validated
using permutation testing (1000 iterations). Complete model comparison
procedures, including permutation testing validation and FDR correction
details, are provided in Supplementary Methods S4. Model comparison
results for all networks are provided in Supplementary Table S3.

Correlation with cognitive and motor scores
To investigate relationships between CC tract density and cognitive/motor
function, Pearson correlation analyses were performed for each of the seven
functional networkswith eight behavioralmeasures, resulting in 56 tests. All
correlations were validated using permutation testing (10,000 iterations) to
provide robust non-parametric significance estimates.Multiple comparison
corrections were applied using both False Discovery Rate (FDR;
Benjamini–Hochberg method) and Bonferroni procedures. Complete
permutation testing procedures and validation metrics are detailed in
Supplementary Methods S3. Full results for all 56 associations, including
parametric and permutation-based p-values, effect sizes, and multiple
comparison corrections, are provided in Supplementary Table S6.

Moderation analysis by age group
To test whether age moderates brain-behavior relationships, participants
were divided into tertiles based on chronological age: Younger (36.0–51.75
years, n = 239), Middle (51.75–67.83 years, n = 238), and Older
(67.92–100.0 years, n = 241). Linear regression models tested tract den-
sity × age interactions for five networks (Somatomotor, Dorsal Attention,
Salience/Ventral Attention, Control, Default) and three cognitive measures
(TMT-A, TMT-B, RAVLT total recall), resulting in 15 tests. All interaction
effects were validated using permutation testing (1000 iterations), with FDR
correction applied across tests. Permutation procedures for interaction
effects are detailed in Supplementary Methods S3.

To evaluate the robustness of age moderation findings to different
grouping schemes, we conducted three sensitivity analyses using alternative
age stratifications:

-Quartile-basedgrouping (4groups):Participants divided intoquartiles
based on age distribution (Q1: 36.0–47.19 years, N = 180; Q2: 47.19–58.50
years, N = 178; Q3: 58.50–72.48 years, N = 180; Q4: 72.48–100.0
years, N = 180).

-Median split (2 groups): Participants divided atmedian age (Younger:
36.0–58.50 years, N = 358; Older: 58.50–100.0 years, N = 360).

-Continuous age interaction:**Nogrouping; age treated as a continuous
moderator in the interaction term (Tract Density ×Age(continues)).

For each approach, we repeated the same moderation analyses with
permutation testing (1000 iterations) and FDR correction. Results were
compared with the primary tertile-based analysis to assess consistency of
findings across grouping schemes.

Quality control
Comprehensive quality control procedures were implemented to ensure
data integrity. All 718 CC tracts underwent visual inspection to verify
anatomical accuracy and proper midline crossing. Registration quality was
assessed using automated correlation metrics. Fiber coherence indices were
calculated to ensure reconstruction quality. Topology-informed pruning
(32 iterations)was applied to remove false positive connections arising from
crossing fibers or tracking artifacts. Complete quality control procedures,
including registration quality metrics, and fiber coherence distributions, are
detailed in Supplementary Methods S1. Quality control metrics for all
subjects are provided in Supplementary Table S9 and Supplementary
Figs. S9, S10.

Sensitive analysis
To assess robustness of findings across parcellation resolutions, we repli-
cated the entire analysis pipeline using the higher-resolution Schaefer-Yeo
1000-node atlas. The 1000-node data underwent identical preprocessing,
harmonization (ComBat with age and sex as protected covariates; Supple-
mentary Methods S2), cubic polynomial modeling (Supplementary Meth-
ods S4), and brain-behavior correlation analyses with permutation testing
(Supplementary Methods S3). Results comparing 400- and 1000-node
parcellations are provided in Supplementary Tables S7, S8 and Supple-
mentary Fig. S8.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The raw data analyzed in this study were obtained from the Human Con-
nectome Project-Aging (HCP-A) Lifespan 2.0 Release and are available
through theHCPwebsite (https://www.humanconnectome.org/study/hcp-
lifespan-aging). The fib files for tractography are available at https://brain.
labsolver.org/hcp_a.html.
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