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Cellular shape dynamics are critical for understanding cell fate determination and organogenesis
during development. However, fluorescence live-cell images of cell membranes frequently suffer from
a low signal-to-noise ratio, especially during long-duration imaging with high spatiotemporal
resolutions. The low ratio is caused by a tradeoff between embryo viability and phototoxicity and
photobleaching of fluorescent markers, which hinders effective cell shape reconstruction, particularly
in rapidly developing embryos. Here, we devise an integrative computational framework, EmbSAM,
that incorporates a deep-learning-based cell boundary localization algorithm and the Segment
Anything Model. EmbSAM enables accurate segmentation of three-dimensional cell membrane
images for roundwormCaenorhabditis elegans embryos imagedwith exceptional temporal resolution,
i.e., every 10 seconds per stack. The resolved cell shapes prior to gastrulation quantitatively
characterize a series of cell-division-coupled morphodynamics associated with cell position, cell
division phase duration, cell division axis reorientation, cell identity, lineage, fate, among others, which
can be accessed locally and online.

Embryogenesis is the developmental process during which a single-celled
fertilized egg undergoes cleavage (rapid division) along with the emergence
of stereotypical spatial architectures and fate maps of numerous cells,
forming a functional larva that can survive independently1–3. The rapid
division takes place concurrentlywith cellmigration and cell differentiation,
where cell shape changes dramatically to accommodate cell fate determi-
nation and organogenesis4,5. Studying detailed cellular behaviors during
rapid division becomes a challenging task because early embryonic mitotic
phases, duringwhich three-dimensional (3D) cell shape changes drastically,
are very short. In theory, fast (high-frequency) imaging is able to reconstruct
the cellular behaviors, but it can only be conducted with a relatively lower
laser power to minimize accumulative photobleaching and phototoxicity.
Therefore, a more sensitive cell segmentation algorithm is needed to com-
pensate for the low signal-to-noise ratio (SNR) of the acquired images6,7. For
instance, the duration of cytokinesis, i.e., the time between the complete

separation of sister cell nuclei and that of cell membranes, in early round-
worm embryogenesis is roughly 2.5min, during which the cell shape
changes from spherical to dumbbell-shaped8,9. Notably, cytokinesis often
exhibits differential behaviors (e.g., differential cell division axes and dura-
tions of different phases of mitosis) along with specific cell shape dynamics
depending on cell positions, cell identities, cell lineages, and cell fates.
Moreover, these differential behaviors can also exist within a single cell type
across successive cell cycles10–14. The details of cytokinesis and cell shape
dynamics in such a short period are commonly missed in time-lapse 3D
imaging due to insufficient spatial and temporal resolutions, especially the
temporal one. Moreover, many cellular properties, in particular those
related to cytokinesis, also change drastically over development, such as the
asymmetric partition of cell volume between sister cells and the decrease of
cell sphericity within roughly 7min at late metaphase14,15. To enable illus-
trationof the biologicalmechanismsunderlying these cellular behaviors, it is
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essential to acquire fluorescence images of cell membranes through time-
lapse 3D live-cell imaging (also called in toto imaging) at an exceptional
temporal resolution, which permits reconstruction of cell shape with suf-
ficient temporal resolution to analyze cell shape dynamics during cytokin-
esis. Furthermore, cell shape reconstruction is crucial for quantifying the
spatiotemporal dynamics of functional molecules associated with cell
membrane and cell division, such as filamentous actin (F-actin) and non-
muscle myosin (NMY) that control the cell cortex stiffness and fluidity12,16.
However, because of photobleaching and phototoxicity, a tradeoff has to be
applied between imagequality and laser power or imaging frequency.This is
especially true if both the cell identity and cell boundary need to be simul-
taneously resolved, with one laser channel for cell nucleus tracing and the
other for cell membrane segmentation8,17. Therefore, the development of a
cell (membrane) segmentation algorithm has to take into consideration a
modest quality of fluorescence image, either for the raw one or the pro-
cessed one.

The transparent roundwormCaenorhabditis elegans is one of themost
popularmodels for studying the developmental control over embryogenesis
due to its precise development, including cell lineage and fate, cellmigration
trajectory, cell division timing and axis orientation and cell size among
others (Supplementary Fig. 1)18–24. Thus, multiple 3D cell segmentation
algorithms that process time-lapse image stacks of different temporal
resolutions have been devised in the past several years: spheresDT/Mpacts-
PiCS at 3-min intervals25, CShaper at ~1.5-min intervals8, and BCOMS2 at
30-s intervals15.

Apart from the customized frameworks, there are also many tech-
niques developed for universal experimental conditions, in other words,
for realizing the cell segmentation with a general computational frame-
work, such as CellProfiler26, RACE27,, and SingleCellDetector28. Recently,
the Segment Anything Model (SAM) based on the Vision Transformer
(ViT) architecture further revolutionized the field of computer vision,
along with its truncated versions adapted to general 3D biomedical

images, MedLSAM and MedSAM29–33. The limitations of current SAM
frameworks include their heavy reliance on manual input for segmenta-
tion promoters, such as seeding points or bounding boxes. Although the
general SAM frameworkswith these limitationsmaynot be comparable to
the customized oneswhen executed in the custom system (e.g., spheresDT/
Mpacts-PiCS, CShaper, and BCOMS2 for the C. elegans embryo8,15,25, they
still impose a chance that the advantage of different approaches could be
integrated so as to increase the overall cell segmentation performance
coherently, for example, targeting the fluorescence imageswith a low SNR
just like the ones obtained at a high temporal resolution and with a weak
laser power9,20,21.

To realize cell-resolved shape reconstruction of developing embryos
from fluorescence images with a low SNR, particularly those captured at
high temporal resolutionson theorder of 10 sor less,wedevisedEmbSAM, a
computational framework that extends the SAM with additional cell
boundary localization part containing a denoising module and a watershed
module. This framework outputs 3Dbounding boxes as a guide to direct the
SAM to perform accurate segmentation of the cell membrane fluorescence
in 2D, which can then be assembled in 3D space (Fig. 1). Evaluation using
three C. elegans embryos imaged with a low SNR demonstrates that Emb-
SAM significantly outperformsCShaper,MedSAM, andPlantSeg, regarding
3D cell segmentation accuracy. Furthermore, EmbSAM was applied to
segment six moreC. elegans embryos imaged at 10-s intervals and up to the
moment before gastrulation, leading to a quantitative measurement of
cell shape changes for fundamental cellular behaviors (e.g., cell division and
cell migration) as well as their dependence on cell positions, cell identities,
cell lineages, and cell fates. The resultingdatahave been reformatted for both
local andonline analytical platformspreviouslymade available to the public.
Developmental landmarks such as post-fertilization pseudocleavage,
dorsal-ventral and left-right body axes establishment, and spatial reorga-
nization for gastrulation, are digitized and monitored over the course
of time.

Fig. 1 | The flowchart of EmbSAM, with time-lapse 3D fluorescence images (left)
as input and lineage-resolved 3D cell shapes (bottom right) as output. Top panel:
Raw cell membrane fluorescence images were subjected to two add-on modules
(denoising model highlighted with purple background and watershed module
highlighted with blue background) that constitute the Cell Boundary Localization
algorithm; the denoised images outputted by the denoisingmodule are inputted into
the image encoder in the SAM module30, while the watershed pre-segmentation
outputted by the watershed module are inputted as the prompt tokens for the mask

decoder in the SAMmodule. The slice-by-slice segmentation results from the SAM
module are subjected to 2D irregularity filter and 3D region assembling accordingly.
Note that the lock icon represents frozen neural network without retraining and the
unlock icon represents re-trained network with our data. Bottom panel: Raw cell
nucleus fluorescence images were subjected to cell lineage tracing via
StarryNite/AceTree50–52, where the outputted cell position and identity label each
assembled 3D cell region.

https://doi.org/10.1038/s42003-025-09220-3 Article

Communications Biology |             (2026) 9:8 2

www.nature.com/commsbio


Results
Performance of EmbSAM in cell segmentation on low-
SNR images
With C. eleganswild-type embryo samples “Emb1” and “Emb2” at their 4-,
6-, 7-, 8-, 12-, 14-, 15-, 24-, 26-, 28-, and ≥44-cell stages, we compared
EmbSAM toCShaper8,17 (oneof themostupdated algorithmscustomized for
C. elegans embryonic images), MedSAM33 (one of the most updated SAM
algorithms generalized for biomedical images), and PlantSeg34,35 (one of the
most updated algorithms validated on both plant tissue and mouse
embryonic images)(Supplemental Note 1). Considering that MedSAM
was designed for segmenting 2D images and demands bounding box
promoters to guide the reconstruction of 3D objects, the cell nucleus posi-
tion ðxnuc; ynuc; znucÞ and the conserved C. elegans embryonic cell volume
(V)8,17 documented before were utilized for constructing the required
3D bounding box promoters, a cuboid with boundaries
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regions fromMedSAM can be assembled into 3D regions.

In the EmbSAM segmentation, 99.73% of cells obtain fully connected
3D regions after the slice-by-slice 2D irregularity filtering. Intuitively, the
EmbSAM segmentation outputs smooth and compacted cell shapes in both
2D and 3D for the whole embryo at developmental stages with a few to
dozens of cells (Supplementary Fig. 2), while the segmented cell shapes from
CShaper, MedSAM, and PlantSeg are coarse or uncompacted (Supple-
mentary Fig. 3). While quantitative evaluation shows PlantSeg achieves a
comparable performance to EmbSAM (reflected by Hausdorff distance) at
the 12-cell stage, EmbSAM achieves both significantly larger Dice score
(0.921 ± 0.061) and smaller Hausdorff distance (2.380 ± 1.530) than all
CShaper, MedSAM, and PlantSeg at all developmental stages
afterward8,17,33–35, supporting its outperformance in segmentation accuracy.
Compared to the coarse or uncompacted cell shapes outputted byCShaper,
MedSAM, andPlantSeg, the ones byEmbSAM resemble those of the ground
truth (Fig. 2A). To test if EmbSAM holds its outperformance when image is
even noisier, we further added artificial Poisson noise to each voxel: for each
voxel with original fluorescence brightness φ x;y;zð Þ, noise was sampled from

a Poisson distribution with mean and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aφ x;yð Þ

q
, where

the amplification coefficient A took increasing values of 0.01*0 (no noise),
0.01*0.75, 0.01*0.5, 0.01*0.25, and 0.01*0.1; then all voxel brightness values
were proportionally normalize to 0–255 (Supplementary Fig. 4). Across the
first four noise levels, EmbSAM always achieved the largest Dice scores and
smallest Hausdorff distances, while all algorithms failed at the highest noise
level. This artificial noise experiment again demonstrates EmbSAM’s
superior tolerance to noise and its high segmentation accuracy.

Apart from algorithm benchmarking, we further validated EmbSAM’s
segmentation accuracyusing themanually annotated ground truth from the
additional embryo sample “Emb3” first published in this work (Supple-
mentary Fig. 5). What is more, we inspected how reproducible EmbSAM’s
segmentation accuracy is by segmenting the 3D image stack slice-by-slice
along all six orthogonal axes (i.e., with slicing direction along+x, –x,+y, –y,
+z, and –z), which is equivalent to rotating the stack while maintaining the
original slicing direction along –z. With two embryo samples, 11 develop-
mental stages, and 379 individual cells (Fig. 2B), we consistently observed
large Dice scores (0.890 ± 0.093) and small Hausdorff distances
(2.856 ± 0.993) and segmented 3D cell shapes matching ground truth and
indistinguishable across all six conditions, confirming EmbSAM’s repro-
ducible segmentation accuracy regardless stack rotation or slicing direction
(Supplementary Fig. 6, and Supplementary Data 1).

Further, we applied 3D shape descriptors (incl., general sphericity,
Hayakawa roundness, and spreading index) to assess cell shape consistency
in three contexts: (1) betweenEmbSAM segmentation and ground truth; (2)
across individual embryos (imaged under the same experimental condition
with compression) segmented byEmbSAM; (3) betweenuncompressed and
compressed embryos (imaged under the same experimental condition
respectively) segmented by EmbSAM. First, shape descriptor values from

379 individual cells in “Emb1” and “Emb2” are highly similar between
EmbSAM segmentation and ground truth (Supplementary Fig. 7; R ¼
0:993; 0:991; 0:996 accordingly, with R2 from a proportional least-squares
fit to test a proportional relationship), demonstrating considerable seg-
mentationaccuracy in termsof cell shape. Second, shapedescriptor values in
four embryo samples “Emb4” to “Emb7” (imaged under the same experi-
mental condition with compression) are close to their averages (Supple-
mentary Fig. 8; R ¼ 0:851; 0:879; 0:753 accordingly, with R2 from a
proportional least-squares fit to test a proportional relationship). This
suggests both the high accuracy of measurement and a tight control of C.
elegans embryogenesis variability in the scale of cell shape, similar to cell
lineage and fate patterns, cell division timings and axis orientations, cell
cycle lengths, cell sizes (Supplementary Fig. 8; R ¼ 0:952 for volume and
R ¼ 0:932 for surface area, with R2 from a proportional least-squares fit to
test a proportional relationship), cell positions, and other cellular develop-
mental properties discovered before8,18,36,37. It should be pointed out that the
variation coefficients within EmbSAM segmentation (0.072 averaged over
all 379 cells and three shape descriptors) and within ground truth (0.113
averaged over all 379 cells and three shape descriptors) are both low and
near to each other, supporting both the high segmentation accuracy of our
algorithm and the high biological reproducibility of embryogenesis. Third,
all three shape descriptor values in compressed embryo samples “Emb4” to
“Emb7” exhibit a decreasing trend in comparison to those in uncompressed
embryos “Emb8” to “Emb9” (Supplementary Fig. 9). This overall cell shape
shift raises enduring questions about how embryogenesis maintains
robustness across varying mechanical environments, such as the com-
pressive stresses experienced in aged or nutrient-deprived adults. Beyond
local compensatory cell movements38, what global self-correction
mechanisms are engaged to accommodate these variable cell shapes war-
rants further investigation, particularly using our dataset.

Substantial contribution of denoising module and
watershed module
To explain why EmbSAM and MedSAM (two SAM-based algorithms
sharing the same segmentation architecture but differing in their training
datasets) exhibit divergent performance, we evaluated the contributions of
the denoising module and watershed module. To validate these modules’
effectiveness and necessity before SAM segmentation in the EmbSAM fra-
mework, we implemented an ablation experiment for each of them:
when ablating the denoising module, the inputted image moves directly
to watershed module and then segmentation module; when ablating
the watershed module, the cuboid with boundaries

ðxnuc ±
ffiffiffiffiffi
3V
4π

3

q
; ynuc ±

ffiffiffiffiffi
3V
4π

3

q
; znuc ±

ffiffiffiffiffi
3V
4π

3

q
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tion is used as the 3D bounding box promoters (i.e., SAM prompt tokens
shown in Supplementary Fig. 10) for SAM segmentation of the image
outputted by the denoising module. Besides, we added these modules
individually and jointly into MedSAM before its SAM segmentation. The
modified MedSAM produces smooth and compacted 3D cell shapes for
≥44-cell-stage embryos, matching ground truth and appearing indis-
tinguishable from EmbSAM (Supplementary Fig. 11). In both frameworks,
omitting the denoisingmodule led to severe cell missing, while omitting the
watershed module led to unrealistic cell irregularity, underscoring their
essential roles in mitigating low SNR and prompting cell boundary (gen-
erating slice-specific bounding boxes instead ofMedSAM’s default rectan-
gular 3D bounding box or 2D bounding box without automatic slice-
specificity, which is yet to be refined33 (Supplementary Fig. 12)) prior to
SAM segmentation. These findings indicate that EmbSAM’s superior per-
formance arises from its integrated denoising module and watershed
module, while its segmentationmodule remains on parwith other retrained
SAM-based algorithms.

Quantitatively, the ablation experiments on EmbSAM reveal a global
decline in segmentation performance following the removal of eachmodule
(Fig. 2C). While 97.76% of the 3D cell regions acquired a poorer Hausdorff
distance after the denoising module removal, all of them acquired a poorer
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Dice score. This evidence strongly supports the pivotal role of these two
modules in recognizing individual cells in noisy images and promoting the
accuracy of SAM segmentation. Such severe segmentation defects in abla-
tion experiments were mostly seen at the top and bottom of the cells
(Supplementary Fig. 11), where the fluorescence signal intensity is relatively
lower due to the single-layer cell membrane (compared to the double-layer

ones formed by two contacting cells inside the embryo) and the loss of laser
power through the z-axis (parallel to the imaging direction and perpendi-
cular to the focal plane) in the embryo39,40.

While the classic watershed module was also used in some other cell
segmentation algorithms customized for C. elegans embryonic images8,40–42,
our denoising module was introduced to overcome the low SNR present in
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certain images. To evaluate its performance in such a goal, we compared it
with two other state-of-the-art image denoisers, Noise2Void43 and CARE44

(SupplementaryNote1), using the 2D image acquired at themid-focal plane
of embryo samples “Emb1” to “Emb 3” at their ≥44-cell stage (Supple-
mentary Fig. 13). Along the middle line y ¼ 0 (as a function of x), our
denoising module reaches a brightness distribution with zero regions at
cytoplasm locations and sharp peaks at membrane locations, whereas
Noise2Void exhibits noticeably lower contrast.At the embryoperiphery, our
denoising module yields continuous, uniform membrane fluorescence; in
CARE-denoised images, themembrane signal appears thin and fragmented.
These results demonstrate that our denoising module offers superior per-
formance for low-SNR C. elegans embryonic images.

Segmentation outperformance without reliance on cell nucleus
information
While EmbSAM outperforms other membrane-based segmentation algo-
rithms (i.e., CShaper,MedSAM, and PlantSeg just compared), it remains to
be seen whether EmbSAM can also outperform the nucleus-assisted ones.
ForC. elegans embryogenesis, this is a straightforward and useful strategy to
prompt the segmentation of cell membrane boundary by providing the cell
nucleus position as a seed39,40. In this context, CMap is a kind of such
segmentation algorithm that very recently reconstructed a C. elegansmor-
phological map with >95% of embryonic cells segmented at 1.5-min
intervals40. Thereof, we compare EmbSAM (only cell membrane fluores-
cence images) and CMap (using both cell membrane and cell nucleus
fluorescence images, where the cell nucleus position is extracted and serves
as a segmentation seed) as describedabove.Qualitatively,CMapoutputs cell
shapes resembling those of the ground truth, but they are coarser than both
those of the ground truth and the ones by EmbSAM (Supplementary
Fig. 14AB). Quantitatively, EmbSAM achieves both significantly larger Dice
score and smaller Hausdorff distance than CMap at all developmental
stages40 (Supplementary Fig. 14C). These findings support EmbSAM’s
outperformance in segmentation accuracy, and suggest that it more effec-
tively discriminates cell membrane fluorescence signal from background
noise, obviating the need for cell-nucleus-based seeding. By getting rid of the
cell nucleus fluorescence channel, future experiments can repurpose that
fluorescent label for other molecules of interest, such as the cell adhesion
molecule E-cadherin (HMR-1), to quantify their dynamics in space and
time with the segmented 3D cell shapes45.

Monitoring 3D morphodynamics of cell biology event at 10-
second intervals
Embryonic cell divisions proceed with drastic cell shape dynamics as
fast as seconds to minutes, such as cytokinesis, which is coupled with
rapid cell motion, asymmetric cell volume segregation, and fate
differentiation10,11,13,14,21. Since the EmbSAM framework can effectively
segment the cell membrane fluorescence images with a low SNR in
the embryo samples “Emb1” to “Emb3” (Fig. 2, and Supplementary
Figs. 2 and 5), we further applied it to other C. elegans wild-type
embryo samples, “Emb4” to “Emb9”, that were imaged at a high
temporal resolution but with a weak laser intensity9,20. Fascinatingly,
the overall 3D cell shapes inside both embryos were successfully
reconstructed up to the moment before gastrulation (i.e., 24-cell
stage) at 10-s intervals (Supplementary Movies 1 and 2), allowing a
detailed study of specific cellular behaviors and developmental

landmarks with traced cell identities, lineages, and fates, as shown
below46–48. Based on the four embryo samples with the most imaging
time points, reconstruction process from the ≤4- to ≥24-cell stages
requires <11 h in total and <6 min per time point on a GPU (graphics
processing unit; NVIDIA A100 40 GB PCIe), demonstrating con-
siderable computing efficiency for broad usage (Supplementary
Data 2). Note that such smooth and compact cell shapes produced by
our low-SNR fast imaging cannot be reconstructed by CShaper,
which was originally customized for C. elegans embryonic images8,17

(Supplementary Figs. 3 and 15). The digital embryonic cell shape
data has been reformatted for convenient access, visualization, and
analysis through public platforms, including both the local software
ITK-SNAP-CVE and the online website https://bcc.ee.cityu.edu.hk/
cmos/embsam (user instruction in Supplementary Movies 3 and 4)40.

Cell shape dynamics related to cell division
The cell division axis orientation and cell cycle lengthhavebeenknown tobe
regulated by various biomechanical and biochemical processes10,13. Our
segmented 3D cell shape data can illustrate the cell divisions in multiple
lineages and generations at 10-s intervals, exemplified by theAB cells (the 1st

somatic founder cell derived from the 1st cell division post fertilization)
(SupplementaryFig. 16), EMScell (the 2nd somatic founder cell derived from
the 3rd cell division post fertilization) (Fig. 3A),MS and E cells (anterior and
posterior daughter cell of EMS) (Supplementary Fig. 17), and C and P3 cells
(the 3rd somatic founder cell and remaining germline stem cell derived from
the 7th cell division post fertilization) (Supplementary Figs. 1 and 18). Each
cell division is identifiedwithin a single segmented 3Dcell region by apair of
mitotic sister cell nuclei (or two sets of separate reformed chromosomes
after nuclear envelope breakdown) — distinct histone-labeled fluorescent
domains — recognized via StarryNite/AceTree that comprises automatic
tracing and manual correction49–52. Taking the EMS cell division for a case
study, the Wnt signaling from its neighbor cell, i.e., the P2 cell, controls its
axis orientation and differentiation of the two daughter cells, i.e., theMS cell
for mesoderm and the E cell for endoderm53,54 (Fig. 3A, and Supplementary
Movie 5). Both the separation andmotion of cell nuclei and cell membrane
can be vividly visualized and quantitatively characterized, at the temporal
resolution three times of the previous one15 (Fig. 3A, and Supplementary
Fig. 19). At the end of EMS cell division, in other words, the anaphase
(starting with a symbol of cell nuclei separation and their widening gap), an
increase of cell surface area is detected (Fig. 3B), in consistencywithprevious
cell biology knowledge on cell division55,56. The cell sphericity keeps
declining as reported before15, along with the other three independent cell
shape descriptors (i.e., Hayakawa roundness, spreading index, and dia-
meter) obeying the same trend57 (Fig. 3B). It is noteworthy that, the four
embryo samples “Emb4” to “Emb7” shows lower variability in cell shape
(with variation coefficient of 0.062, averaged over all five curves and all time
points) is less than that of cell surface area and cell-cell contact areas (with
variation coefficient of 0.342, averaged over all five curves and all time
points), suggesting variability levels could substantially differ between cel-
lular developmental properties even though they are essentially relevant
(Fig. 3BC, and Supplementary Fig. 20).

The cell deformation with declining general sphericity, Hayakawa
roundness, spreading index, and diameter during cell division is actually
proceeding with the cell shape changed from spherical to dumbbell-shaped
(Fig. 3A). Further exemplified by the ABpr and E cells and their neighbor

Fig. 2 | The segmentation performance of EmbSAM. A Segmentation results
(exemplified by the embryo sample “Emb1”) of ground truth (1st row), EmbSAM (2nd

row), CShaper (3rd row), MedSAM (4th row), and PlantSeg (5th row) at different
developmental stages. B Outperformance of EmbSAM compared to CShaper,
MedSAM, and PlantSeg, revealed by Dice score (top) and Hausdorff distance (bot-
tom). Presentation: box-and-whisker plot (colored interquartile with upper and
lower quartiles as boundaries and median inside; whiskers extended to upper
quartile + 1.5× interquartile range and lower quartile – 1.5× interquartile range;
outliers beyond the range above). significance (one-sidedWilcoxon rank-sum test):

n.s. (not significant), p > 0.10; *p < 0.10; **p < 0.05; ***p < 0.01. Data: the embryo
samples “Emb1” and “Emb2” (in toto: 4-, 6-, 7-, 8-, 12-, 14-, 15-, 24-, 26-, 28-, and
≥44-cell stage with 8, 12, 14, 16, 24, 28, 30, 48, 52, 56, and 91 data points, respectively,
per embryo). C Poorer segmentation performance of EmbSAM when the denoising
module and watershed module are ablated respectively, revealed by Dice score (left)
and Hausdorff distance (right). The percentage of 3D cell regions with increasing or
decreasing values is marked near the diagonal line. Data: the embryo samples
“Emb1” and “Emb2” (in toto: 379 data points). Source data: Supplementary Data 5
for (B) and Supplementary Data 6 for (C).
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cells (C andABplp respectively), when a cell initiates its division program, it
firstly turns spherical with its interface protruding toward its neighbor cell,
and subsequently turns to dumbbell-shaped, squeezing its neighbor cell
severely into a flat shape (Fig. 4A, B, and Supplementary Movies 6 and 7).
Quantitative cell-cell contact interfacecurvature (definedas the reciprocal of
radius of a sphere fitted to the curved contact interface) decreases con-
tinuously from positive values (indicating protrusion toward the dividing
cell), through zero (indicating a flat interface), into negative values (indi-
cating protrusion in opposite orientation to the initial one and toward the
dividing cell’s neighbor)58 (Fig. 4C, D). This implies a strong intracellular
and intercellular mechanical force generated by the dividing cell. Such an
intensive passive force and deformation exerted by a dividing cell on its
neighbor cell appear to be a common phenomenon, further supported not
only by the previously reported EMS and P2 cells (squeezed by ABa and
ABpcell divisions) but alsobyother cells–C(squeezedbyABpr cell),ABplp
(squeezed by E cell) (Fig. 4A, B), MS (squeezed by ABpl cell division), E
(squeezed by ABpl cell division), among others58 (Supplementary
Figs. 21 and 22, and Supplementary Movie 8). Previous fluorescence ima-
ging on the spatiotemporal dynamics of F-actin demonstrates its accumu-
lation on the cell membrane near cell division and in the cytosol beyond cell
division,whichmakes the cells get rounder andharderwhen it is around cell
division (further validated by atomic force microscopy measurements of
Young’s modulus)59. Our data can clearly illustrate such cell-cycle-
dependent cell shape dynamics at 10-s intervals, represented by the cells
mentioned above when they turn spherical and dumbbell-shaped

successively, squeezing their neighbor cells (relatively soft) to adapt to it
(relatively hard) through severe deformation.

Cell shape dynamics related to body axis establishment
The anaphase and telophase of cell division, defined as starting from cell
nuclei separation and ending in cell membrane separation, is as fast as
2.5minmeasured before8,9. Such a short-termbiological process is critical to
establishing the body axes that determine the dorsal (D), ventral (V), left (L),
and right (R) of an embryo (also called symmetry breaking), while the
anterior-posterior (A-P) axis is determined by sperm entry and cell polar-
ization that makes the first cell division asymmetric60,61. While the first two
cells AB and P are located in the anterior and posterior of the embryo,
respectively, the second cell division taking place in AB is initiated with an
axis perpendicular to the A-P axis first and then reoriented to it, making its
posterior daughter ABp determining the dorsal of the embryo (Fig. 5A, and
Supplementary Movie 8).

As previous experimental observation indicated that the cell divisions
in theAB lineage have a regulated reorientation during cytokinesis while the
ones in the P1 lineage don’t11, we measure the skew angle of cell nuclei
orientation during anaphase and telophase for all cells recorded (Fig. 5B),
with each time-dependent curve averaged across embryo samples “Emb4”
to “Emb7”. Here, the skew angle is quantitatively defined as the included
angle between two vectors in 3D space: the first connects two cell nuclei at
their initial separation (serving as the baseline at thefirst timepoint), and the
second connects the same cell nuclei at any subsequent time point to track

Fig. 3 | The segmentation results (exemplified by the embryo sample “Emb5”) of
EmbSAM for the EMS cell division at 10-second intervals. A 2D (middle plane)
and 3D segmentation results viewed in the imaging direction and highlighted by the
dotted cell nuclei and masked cell membranes. Shown are lateral views with the
anterior of the embryo to the left. All cell identities at the first and last moments are
labeled next to their cell regions. Scare bar: 10 μm.BMonotonic curves of cell surface
area, general sphericity, Hayakawa roundness, spreading index, and diameter over
time, shown with their data in individual embryo samples (differentially color-

coded) as well as averaged over all embryo samples (black) alongside standard
deviation (orange shade). C Curves of cell-cell contact area over time, shown with
their data in individual embryo samples (differentially color-coded) and in average
(black) with standard deviation (orange shade). For (A, B, C), the developmental
time is shown, with the moment of complete cell membrane separation as time zero;
For (B, C), the durations of all embryo samples are normalized to their average.
Source data: Supplementary Data 7 for (B) and Supplementary Data 8 for (C).
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Fig. 4 | The 3D segmentation results of EmbSAM for the drastic shape dynamics
of dividing cells and newborn daughters (non-transparent), as well as their
squeezed neighbors (semi-transparent) at 10-second intervals. A E cell division
that squeezes ABplp, in accordance with Supplementary Movie 6. B ABpr cell
division that squeezes C, in accordance with Supplementary Movie 7. The swapped
cell-cell contact interface orientation originating from the hard cell and pointing the
soft cell is highlighted by the starting and endingmoments of the top three rows. For

(A, B), the developmental time is shown, with the moment of complete cell nuclei
separation as time zero.C,DCurves of cell-cell contact interface curvature with sign
changed over time, corresponding to (A, B) respectively. Data: the embryo sample
“Emb5”. For (A–D), the developmental time is shown, with themoment of complete
cell nuclei separation as time zero. Source data: Supplementary Data 9 for (C) and
Supplementary Data 10 for (D).
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Fig. 5 | The segmentation results (exemplified by the embryo sample “Emb5”) of
EmbSAM for the cell division responsible for dorsal-ventral axis establishment at
10-second intervals. A 2D (middle plane) and 3D segmentation results of theAB cell
division (top, with the large skew angle of cell nuclei orientation) and P1 cell division
(bottom, with the small skew angle of cell nuclei orientation), viewed in the imaging
direction and highlighted by the dotted cell nuclei and masked cell membranes.
Connecting lines between cell nuclei are overlaid on the time-lapse images: the
dashed vector marks the initial separation orientation (serving as the baseline at the
first time point), while the solid vector tracks subsequent orientation changes; the
angle between these vectors in Cartesian coordinates quantifies the skew angle of cell
nuclei orientation during anaphase and telophase. Shown are lateral views with the
anterior of the embryo to the left. Scare bar: 10 μm.B Intuitive schematic for how the
skew angle of cell nuclei orientation during anaphase and telophase is calculated –

the included angle between newborn cell nuclei’s connecting lines at the first
moment (marked by NS) and later moments in Cartesian coordinates. C Curves of
skew angle of cell nuclei orientation of all recorded cells in the AB lineage (left) and
P1 lineage (right) over time. Data: the embryo samples “Emb4” to “Emb7” (in toto:
AB and P1 lineages with 60 and 27 cells respectively). For (A–C), the developmental
time is shown, with the moment of complete cell membrane separation as time zero;
for (C) the durations of all embryo samples are normalized to their average.

DComparison between all recorded cells in the AB lineage and P1 lineage, regarding
their net skew angle of cell nuclei orientation during anaphase and telophase aver-
aged over all embryo samples (left), and their standard deviation among all embryo
samples (right). Presentation: box-and-whisker plot (colored interquartile with
upper and lower quartiles as boundaries and median inside; whiskers extended to
upper quartile + 1.5× interquartile range and lower quartile – 1.5× interquartile
range; outliers beyond the range above). Statistical significance (one-sided t-test):
n.s. (not significant), p > 0.10; *p < 0.10; **p < 0.05; ***p < 0.01. Data: the embryo
samples “Emb4” to “Emb7” (in toto: AB and P1 lineages with 60 and 27 cells
respectively). E Comparison between all recorded cells in the AB lineage and P1
lineage, regarding their positional variability at the onset of anaphase and at the end
of telophase. Presentation: box-and-whisker plot (colored interquartile with upper
and lower quartiles as boundaries and median inside; whiskers extended to upper
quartile + 1.5× interquartile range and lower quartile – 1.5× interquartile range;
outliers beyond the range above). Statistical significance (one-sided t-test): n.s. (not
significant), p > 0.10; *p < 0.10; **p < 0.05; ***p < 0.01. Data: the embryo samples
“Emb4” to “Emb7” (in toto: AB and P1 lineages with 10 and 6 cells respectively, per
embryo). Source data: Supplementary Data 11 for (C) and Supplementary Data 12
for (D) and Supplementary Data 13 for (E).
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orientation changes. Shown by the overall curve averaged over all cells at the
temporal resolution of 10 s, theAB cells (incl., AB,ABa,ABal, ABala, ABalp,
ABalpa, ABalpp, ABar, ABara, ABaraa, ABarap, ABarp, ABarpa, ABarpp,
ABp, ABpl, ABpla, ABplaa, ABplap, ABplp, ABplpp, ABpr, ABpra, ABpraa,

ABprap, ABprp, ABprpa, ABprpp) exhibit a stably increasing skew angle
deviated from its initial direction but the P1 cells (incl., EMS,MS,MSa, E, C,
Ca,Cp,D, P1, P2, P3) exhibit a stably unchangedvalue, faithfully supporting
previous conclusion (Fig. 5C). This conclusion holds whether the durations

Fig. 6 | The segmentation results (exemplified by the embryo sample “Emb5”) of
EmbSAM for the cell division responsible for left-right axis establishment at 10-
second intervals. A 2D (middle plane) and 3D segmentation results of the ABp cell
division, viewed from the dorsal view and highlighted by the dotted cell nuclei and
masked cell membranes. Shown are lateral views with the anterior of embryo to the
left. Scare bar: 10 μm. The developmental time is shown, with the moment of
complete cell membrane separation as time zero. B 3D segmentation results
(exemplified by the embryo sample “Emb4”) ofEmbSAM for theABpl cellmigration
at 10-s intervals. Shown are lateral views with the anterior of the embryo to the left.
ABpl is colored in red and other cells are in gray. The developmental time is shown,
with the last moment before ABpl cell nuclei separation as time zero. C Positive
correlation between cell volume and duration of anaphase and telophase (defined as
starting from cell nuclei separation and ending in cell membrane separation as

illustrated in (A). Data: the embryo samples “Emb4” to “Emb7” (in toto: 79 data
points).D Significance comparison between ABpl cell and its sister and cousins (i.e.,
the ABal, ABar, and ABpr cells), regarding the duration of anaphase and telophase
(defined as starting from cell nuclei separation and ending in cell membrane
separation as illustrated in (A). Presentation: box-and-whisker plot (colored inter-
quartile with upper and lower quartiles as boundaries and median inside; whiskers
extended to upper quartile + 1.5× interquartile range and lower quartile – 1.5×
interquartile range; outliers beyond the range above). Statistical significance (one-
sided t-test): n.s. (not significant), p > 0.10; *p < 0.10; **p < 0.05; ***p < 0.01. Data: the
embryo samples “Emb4” to “Emb7” (in toto: 79 data points). Source data: Supple-
mentary Data 14 for (C) and Supplementary Data 15 for (D).
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of anaphase and telophase among embryo samples, along with the skew
angle at those time points, are proportionally normalized to their length
(leading to skewangle curveswith an equal duration) ornot (leading to skew
angle curves with unequal durations) (Fig. 5C, and Supplementary Fig. 23).
Although the AB cells carry substantially larger skew angle than P1 cells on
average, their standard deviations among embryo samples is also larger
(Fig. 5D). Alongside the more variable skew angle of AB cells, they also
exhibit significantly higher positional variability (defined as root-mean-
square deviation of distance vectors between a cell and all other cells, in all
four embryo samples37) than P1 cells, at the end of the telophase but at the
onset of anaphase (Fig. 5E). This finding suggests that, beyond the pre-
viously reported cell adhesion and gap junction37, regulated cell nuclei
orientation skewing is another critical contributor to positional variability
during embryonic development. In the future, the variability of skew angle,
cell position, and other cellular developmental properties is worth joint
investigation, using our data coupled with cell identities, cell lineages, and
cell fates.

Following the diamond-shaped 4-cell stage with both anterior-
posterior and dorsal-ventral symmetry breaking, the fourth and fifth cell
divisions simultaneously taking place in ABa and ABp (anterior and pos-
terior daughter ofAB) are initiatedwith an axis roughly perpendicular to the
plane constituted by the A-P and D-V axes; regulated by a contact-induced
myosin flow demonstrated before10, the axis orientation is slightly skewed
with the left daughter cells nearer to the anterior (Fig. 6A, and Supple-
mentary Movie 9). Subsequently, the ABpl cell (left daughter of ABp)
undergoes long-range migration toward the dorsal of the embryo with its
migration-coupled spreading shape occurring in themiddle of its lifespan4,57

(Fig. 6B, and Supplementary Movie 10). The migration of ABpl, which has
been identified with the longest distance among all cells before the 24-cell
stage and has nearly themost irregular shape among all cells before the 350-
cell stage8,20, was proposed to be driven by cell adhesion regulation9,62 and
enhances the left-right symmetry breaking substantially. Interestingly, the
duration of anaphase and telophase positively associates with cell volume,
evidenced in both absolute coordinates (Supplementary Fig. 24A;
R ¼ 0:300, with R2 from an unconstrained least-squares fit to test a power-
law relationship) and semi-log coordinates (Fig. 6C; R ¼ 0:441, with R2

from a proportional least-squares fit to test a proportional relationship).
Although previous experimental measurements and our data consistently
revealed that the cell cycle length negatively associates with cell volume21,63

(Supplementary Fig. 24B), no correlation (Supplementary Fig. 24C,
R < 0:001, R2 from an unconstrained least-squares fit) was found between
the cell cycle length and duration of anaphase and telophase. This is pos-
sibily attributed to the one-order-of-magnitude difference in their time-
scales and distinct regulatory mechanisms without direct correlation: while
cell cycle length is affected by the limited content of its regulatorymolecules
(e.g., nuclear pore complexes) unequally allocated during cell volume
partition13,64, thedurationof anaphase and telophase is likely affectedby cell-
volume-dependent physical constraints—namely, the distance sister nuclei
must separate and the equatorial diameter that the contractile ring must
ingress through during cytoskeleton remodeling for cytokinesis65,66.

The relationship between cell volume and the duration of anaphase
and telophase appears in a global manner and independent of lineage: cells
from both the germline lineage (i.e., P lineage) and all of its derived somatic
lineages (i.e., AB, EMS, and C lineages, each with at least two cells) (Sup-
plementary Fig. 1) intermix on both sides the fitted line, with no apparent
shifts between lineages (Supplementary Fig. 24A). Notably, ABpl’s duration
of anaphase and telophase is significantly shorter than those of its sister and
cousins with similar size (with a relative difference of <8%), probably
reflecting its unique cytoskeletal state that facilitates left-right symmetry
breaking and embryo rotation4,67 (Fig. 6D). Beyond the difference between
ABpl and its sister and cousins, the cell-specific duration of anaphase and
telophase is reproducible between individual embryos. Remarkably, the
unidentical cells’ four duration lengths in embryo samples “Emb4” to
“Emb7” (imagedunder the same experimental conditionwith compression)
fluctuate around their averages, which together considerably fit the

proportional relationship (Supplementary Fig. 24D; R ¼ 0:767, with R2

fromaproportional least-squaresfit to test a proportional relationship)with
a small variation coefficient of 0:131 ± 0:036. This suggests both the high
accuracy of measurement and a tight control of C. elegans embryogenesis
variability in the scale of cell division phase durations, similar to cell lineage
and fate patterns, cell division timings and division orientations, cell cycle
lengths, cell sizes (Supplementary Fig. 8; R ¼ 0:952, with R2 from a pro-
portional least-squares fit to test a proportional relationship), cell positions,
and other cellular developmental properties discovered before8,18,36,37.

The 10-s window in our extensive dataset provides an opportunity to
analyze the spatial distribution of functional subcellular structures (i.e.,
contractile ring, lamellipodia, protrusion, and filopodia) over time to
understand the underlyingmechanism for cell division andmigration, how
the dividing and migrating cells interact with their neighbors, and how are
multidimensional cellular properties stored in our dataset (e.g., cell division,
cellmigration, cell shape, cell cycle, cell identity, cell lineage, cell fate, and cell
nucleus position and size (Supplementary Fig. 25)) affect each other63,68. In
the future, physical simulation of cytoskeletal dynamics is anticipated to
elucidate their contributions to the cell division,migration, anddeformation
behaviors observed in this dataset69,70.

Cell shape dynamics related to spatial reorganization for
gastrulation
In addition tomorphogenetic events drivenbyoneor a fewcell divisions, the
ones proceeding over multiple rounds of cell divisions can also be char-
acterized quantitatively at exceptional spatiotemporal resolutions. Previous
experimental studies have reported that C. elegans early embryonic cells
undergo spatial reorganization for gastrulation through apical-basal
polarization, where all cells remain attached to the eggshell and form a
cavity (blastocoel) to facilitate the upcoming cell ingression, i.e.,
gastrulation46,71. In our data with a temporal resolution of 10 s, the cells keep
acquiring enlarged lateral contact area and slimmer shape to get aligned on
the inner surface of the eggshell regularly (Supplementary Fig. 26A). This is
supplementedby a strongnegative correlationobservedbetween the relative
outer surface area (contacting the eggshell) of a cell and developmental time
(Supplementary Fig. 26B).

Conclusion
Quantitative and automatic reconstructionof time-lapse 3Dcell shapeswith
fluorescently-labeled cell membranes is challenging, especially for a devel-
oping embryo, in which cells undergo rapid division and migration fre-
quently coupledwith cell fate specification and cell shape deformation. Such
a challenge is even more severe when the fluorescence images exhibit a low
SNR because of various experimental protocols (e.g., strains) and purposes
(e.g., observing short-term or long-term biological processes) (Supple-
mentary Fig. 27). In this paper, we successfully segmented the time-lapse 3D
images with a relatively low SNR from nine C. elegans wild-type embryo
samples with resolved cell identities, which had failed to be segmented by
state-of-the-art algorithms. The successful segmentation is achieved by an
integrative computational framework, EmbSAM, that contains a deep-
learning-based denoising module and a watershed module followed by
SAM, which allows accurate reconstruction of the cell shapes frommultiple
developing embryos (Figs. 1–3).With an exceptional temporal resolution as
high as 10-s in six of the embryos, the results allow examination of the
instantaneous change in cellular behaviors during rapid cell division of
embryogenesis, For example, the cell shape change and nucleus movement
during division and fast directional cell movement after division can be
examined, together with their dependence on cell identities, cell lineages,
and cell fates; upon those single-cell behaviors, whole-embryo morpho-
genesis including body axes establishment and spatial reorganization for
gastrulation is illustrated in 3D, along with quantitative cellular properties
like cell division axis reorientation and cell surface area distribution pre-
sented in the timecourse (Figs. 4–6).All the reconstructed time-lapse 3Dcell
shapes at 10-s intervals and calculated shape features (incl., cell volume, cell
surface area, and cell-cell contact area) are publically available in the data

https://doi.org/10.1038/s42003-025-09220-3 Article

Communications Biology |             (2026) 9:8 10

www.nature.com/commsbio


format of software ITK-SNAP-CVE andwebsite https://bcc.ee.cityu.edu.hk/
cmos/embsam40,72.

Given the high segmentation accuracy of the EmbSAM framework, it
could be applied not only to thewild-type embryos but also to the perturbed
ones, such as the one curated with external compression, laser ablation, and
RNAinterference, touncover howadeveloping embryo coordinates cellular
behaviors (e.g., cell division and coupled motion) to enable the faithful
formation of tissues or organs9,11,20,38,73,74. Preliminary test with fifteen more
C. elegans wild-type and RNAi-treated embryos image reveals cell mem-
brane segmentation is feasible with fluorescence labeling on alternative
molecules, including both the homogeneously-distributed one (phosphoi-
nositide) and the heterogeneously-distributed one (NMY-2), where the
latter one (profiles biologically significant dynamics, i.e., cell cortex fluidity
associated with cell division and coupled motion)10–12 could replace the
traditional marker for cell membrane labeling and leave more fluorescence
channels for monitoring the dynamics of other molecules simultaneously
(Supplementary Note 2, Supplementary Figs. 28–31, and Supplementary
Data 3). Such monitoring can be customized for specific developmental
stages from fertilization to late and even post embryogenesis, for the whole
body or tissue/organ of interest (e.g., ACT-5 for monitoring the lumenal
formation in intestinal cells) (Supplementary Fig. 32) and at flexible inter-
vals (e.g., down to2-s)75,76 (SupplementaryFig. 33). Following this paradigm,
more molecule dynamics in time-lapse format can be collected quantita-
tively by strain crossing, fluorescence imaging, and cell segmentation in a
high-throughput manner. When imaging different fluorescent markers,
variations in brightness or SNR will require fine-tuning of both laser power
and re-trained denoising module; alternatively, for scenarios where cells lie
in a 2D plane (e.g., C. elegans 1- to 4-cell stages with anterior-posterior and
dorsal-ventral axes establishment), image quality could be enhanced by
projecting the z-stack into a 2D image for accurate cell membrane seg-
mentation, revealed by embryos in the preliminary test (Supplementary
Note 2, Supplementary Data 4, and Supplementary Figs. 28–31).

The fluorescence images of dozens of C. elegans embryos and the
reconstructed cell shapes in 2D and 3D at high temporal resolutions in this
work enable systematic, detailed, and in-depth analysis of cellular behaviors,
includingbutnot limited to theones analyzed in this paper. For example, the
skew angle of cell nuclei orientation during anaphase and telophase likely
reflects both the cell nucleus movement inside a cell and the whole cell
body’s movement, where the orientation of a bounding box of the 3D cell
body can be extracted by principal component analysis as demonstrated
before57. Classic Hertwig’s rule — namely, that how the embryonic cell
division axis orientations are determined by cell nucleus movements, cell
body movements, cell shapes, cell positions, cell-cell contact relationships
and areas, as well as other external environments (e.g., mechanical com-
pression) andmolecular dynamics (e.g., myosin density and flow)— can be
systematically investigated using our high-resolution multidimensional
dataset10,12. The identified correlations, causal relationships, and inde-
pendencies among these factors are expected to facilitate the construction of
new theoretical models that help predict what’s going on in reality. For
instance, the cell shape change during fast cell division and cytokinesis can
help understand the cell membrane mechanics, providing a reference for
testing various cell membrane models established previously9,77–79. More-
over, such embryo-wide cell shapes can be used to reversely infer the
intracellular and intercellular mechanical properties over development,
which are usually hard to measure directly56,79–81. When replacing the
fluorescent marker used for labeling cell membranes with those specific for
other cellular or subcellular compartments (e.g., E-cadherin and F-actin),
thedynamics of their related cellular behaviors, such as cell adhesionandcell
stiffness, can be examined with an exceptional temporal resolution, i.e., at a
10-s or a shorter interval82,83. All the detailed cellular or subcellular behaviors
above not only help understand the biological regulation in vivo, but also
facilitate the establishment of a reliable, comprehensive computational
model that simulates developmental control in silico and permits virtual
experiments for mechanism discovery9,62,78,84. In the future, the EmbSAM
framework could be used to analyze datasets with fluorescently-labeled cell

membranesbeyond theones analyzed in thiswork, suchas thoseof ascidian,
fruit fly, zebrafish, andmouse, so as to broaden the cell shape data in various
biological contexts27,85,86.

In spiteof the successful 3Dsegmentationof pre-gastrulatingC. elegans
embryos at 10-s intervals, performance declines at the periphery of embryos
no matter they are mechanically compressed or not, leading to missing or
overspreading cell regions (Supplementary Fig. 34). Estimated with repre-
sentative embryo samples “Emb7” (under compression) and “Emb8”
(without compression) in an 100-time-point intervals, those errors start
occurring in the 500th time points, while the save duration up to the 400th

time point ends with 22 cells for both embryos; between the 100th and 400th

time points, the SNR of the 3D image volume (256 × 356 × 214 voxels, with
a voxel resolution of 0.18 μm/pixel) was calculated to be just above 2,
defining the quantitative image-quality threshold thatEmbSAM can reliably
deal with. The segmentation failure in embryo periphery is typical in C.
elegans embryonic cell segmentation, stemming from the single fluorescent
cell membrane layer at the edge, in contrast to the double layers between
adjacent internal cells that boost intensity39,40. To extend data collection into
later, more challenging periods of development, one may execute a two-
stage imaging protocol – proceed the single channel (nucleus fluorescence)
at 1.5-min intervals (minimizing photobleaching and phototoxicity while
permitting cell lineage tracing) up to the 24-cell stage, and then switch to
dual channels (nucleus and membrane fluorescence) at 10-s intervals with
sufficient laser power87. On the computational front, cell segmentation
algorithms could leverage spatiotemporal correlations betweenneighboring
slices and consecutive frames (e.g., short-term consistency in cell volume
and shape) to improve accuracy and robustness, instead of completely
separate segmentation slide-by-slide and frame-by-frame88.

Methods
Embryo data collection for time-lapse 3D cell segmentation
C. elegans is awell-establishedmodel animal cultured at laboratory for half a
century. C. elegans is a hermaphrodite, which reproduces mostly through
selfing although rare males are present and canmate with hermaphrodite89.
A total of nineC. eleganswild-type embryo samples were used for 3D image
acquisition and cell segmentation in this paper, with green fluorescence
labeling cell nuclei and red fluorescence labeling cell membranes ubiqui-
tously (strainsZZY0535 andZZY0861)8,17,40. The images acquired according
to the unified protocol8 were subjected to cell segmentation. These fluor-
escence images exhibited a significantly lower SNR (quantification detailed
in Section 2.5) than those successfully segmented by CShaper before90

(Supplementary Fig. 35), preventing them from successful 3D cell seg-
mentation by theCShaper (one of themost updated algorithms customized
for C. elegans embryonic images), MedSAM (the most updated SAM
algorithm generalized for biomedical images), or PlantSeg (one of the most
updated algorithms validated on both plant tissue and mouse embryonic
images) algorithm8,17,33–35. The fluorescence labeling on cell nuclei was used
for cell lineage tracing (since no later than the 4-cell stage). This was con-
ducted with StarryNite (automatic tracing) and with AceTree for visuali-
zation andmanual correction50–52,91–93, whichproducedcell identity, division
timing, and position to each cell in addition to assigning cell division. A total
of nine embryos were imaged in 3D at two different temporal resolutions as
described below.

Three embryo samples (strain ZZY0535)8,17 were imaged at 1.41-min
intervals for 60 timepoints, whichwere imaged in 712 × 512pixels on the xy
planewith a total of 68 focal planes along the z-axis (0.09 μm/pixel for the xy
plane and 0.42 μm/pixel for the z-axis, i.e., the imaging direction). Two of
them were reused from our previous works20,21; these two embryo samples
(“Emb1” and “Emb2”) were used for quantitatively evaluating the cell
segmentation performance. The last embryo sample (“Emb3”) was first
published in this paper, for further independent cell segmentation perfor-
mance evaluation.

Two embryo samples (strain ZZY0535)8,17 were imaged at 10-s inter-
vals. One (“Emb4”) was published in our previous work20, which was
imaged in 712 × 512 pixels on the xy plane with a total of 47 focal planes
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along the z-axis (0.09 μm/pixel for the xy plane and 0.59 μm/pixel for the z-
axis, i.e., the imaging direction) for 260 timepoints. The other (“Emb5”)was
published in our previous work9, which was imaged in 712 × 512 pixels on
the xyplanewith a total of 47 focal planes along the z-axis (0.09 μm/pixel for
the xy plane and 0.59 μm/pixel for the z-axis, i.e., the imaging direction) for
300 time points. These two embryo samples exhibit cell cycle lengths
strongly proportional to the ones in the embryo samples “Emb1” to “Emb3”,
suggesting that the fundamental biological process was not affected by the
imaging at a substantially higher temporal resolution (almost an order of
magnitude) (Supplementary Fig. 27).

Another four embryo samples (strain ZZY0861)40 were imaged at 10-s
intervals for ≥650 time points, which were imaged in 712 × 512 pixels on the
xy plane (0.09 μm/pixel for the xy plane). Two of them (“Emb6” and “Emb7”)
were imaged with a total of 66 focal planes along the z-axis (0.46 μm/pixel for
the z-axis, i.e., the imaging direction); another two of them (“Emb8” and
“Emb9”) were imaged with a total of 56 focal planes along the z-axis (0.80 μm/
pixel for the z-axis, i.e., the imaging direction). These four embryo samples
(“Emb6” to “Emb9”) were used to reveal how the cell segmentation method
will behave or fail at more challenging later stages of development.

It is worth noting that the four embryo samples “Emb4” to “Emb7”
were imaged under mechanical compression according to the unified
protocol8, whereas the two embryo samples “Emb8” and “Emb 9” were
imaged without mechanical compression according to the unified
protocal40. These two groups togetherwill facilitate direct comparison of cell
segmentation performance and embryonic development modes, while the
former cohort itself can facilitate assessing developmental variability from
embryo to embryo94,95.

Manual annotation for ground truth
Manual annotation of cellmembraneswithfluorescence imageswas used as
ground truth, whichwas necessary for training and evaluating an automatic
cell segmentation algorithm. In this work, multiple groups of manually
annotated ground truths were used as detailed below.

For training the deep-learning-based denoising module, 16 3D volu-
metric images manually annotated in five C. elegans wild-type embryos (a
collection of 2339 3D cell objects) were adopted from our previous work;
these manually annotated ground truths (binarized images showing ideal
cell regions, used as the state after denoising), together with their corre-
sponding raw images (noisy images with blurred cell regions, used as the
state before denoising) with a SNR around 5.227, roughly twice the one of
EmbSAM dataset (Supplementary Fig. 35), were generated through labor-
intensive efforts and serve as a standardized and reusable resource for
training a deep-learning-based denoising module8,90,96 (Supplementary
Data 4). Whether the denoising module trained with high-SNR images
(CShaper dataset) is sufficient for dealing with low-SNR images (EmbSAM
dataset) will be evaluated in subsequent analyzes (Supplementary Fig. 35).
The 3D volumetric images were subsequently sliced in the x, y, and z
directions according to the corresponding recorded pixels, resulting in a
total of 4096, 5696, and 2560 2D images, respectively. From these, we
randomly selected 10% in each direction to construct the training dataset,
which enabled comprehensive learning and adaptation, containing the
imaging features on fluorescently-labeled cell shapes in different directions.

For evaluating the automatic cell segmentationperformance, all the cell
shapes of the embryo samples “Emb1” and “Emb2” at 4-, 6-, 7-, 8-, 12-, 14-,
15-, 24-, 26-, 28-, and ≥44-cell stages (a collection of 379 3D cell objects)
weremeticulously annotatedwith respect to all thex, y, and zdirections, slice
by slice and cell by cell. Besides, a total of 45 2D images (focal planes) in the
embryo sample “Emb3” were manually annotated for independent per-
formance evaluation.

Embryo data collection for alternative fluorescently-labeled
molecules
For time-lapse imaging, young adult worms were dissected to free embryos.
The embryos were mounted on a 3–5% (wt/vol) agarose pad with 0.5%
tetramisole and sealed with Vaseline. Green fluorescent protein (GFP) and

mCherry were visualized using 488 nm and 561 nm excitation lasers,
respectively.Channelswere imaged sequentially to eliminate bleed-through.
Imaging in all channels was captured using 0.1-s exposure time and at 2- to
30-s intervals on an inverted spinning-disk confocal microscope (Olympus
SpinSR10) using a Yokogawa CSU W1 scanner system, equipped with a
60×/1.4 NA objective and two Hamamatsu ORCA Flash sCMOS cameras.
All movies were acquired under the control of cellSens Dimension software
(Olympus), in which multi-z sections were merged into a single projected
image using ImageJ97. Images were subsequently arranged using ImageJ
with small and global adjustments for contrast and brightness. Embryos
with fluorescence labeling the phosphoinositide through pleckstrin
homology (PH) domain (“Emb10” to “Emb15”) and non-musclemyosin II
(NMY-2) (“Emb16” to “Emb24”) are involved98–100.

For single-shot imaging, embryos were mounted in M9 buffer with
10mM sodium azide (Sigma) on glass slides, and observed under the Carl
Zesis LSM 980 confocal microscope equipped with a Zeiss 60×/1.40 NA oil
immersion objective lens (Carl Zeiss). Lasers 488 nm were used to excite
GFP. Single-plane imageswere taken as 6–10 sections along the z-axis at 0.2-
µm intervals. Multi-z sections were acquired and merged into a single
projected image using Zen software (Carl Zeiss). Images were subsequently
arranged using Adobe Photoshop with small and global adjustments for
contrast and brightness. Embryos with fluorescence labeling filamentous
actin 5 (ACT-5) (“Emb25” to “Emb30”) are involved75,76.

RNA interference
For standard RNA interference (RNAi), about 10 young adults were picked
and cultured on RNAi plates (nematode growth media (NGM) containing
1mM isopropylthiogalactoside (IPTG) and 100 μg/mL ampicillin) seeded
with bacterial clones of target genes, and theirfirst-generation embryoswere
examined after 72 h. Worms were fed with RNAi bacteria containing the
L4440 empty vector plasmid as a control treatment (EV RNAi). All RNAi
clones were confirmed by sequencing. For time-lapse images, the young
adult worms were put in the M9 buffer and dissected by two needles to
release their embryos. Embryos were then mounted on a 2% agarose pad
and imaged with oil immersion objectives.

Signal-to-noise ratio evaluation for microscopy-produced cell
membrane fluorescence image
For a 3Dcellmembranefluorescence image Iraw x; y; z

� �
(with its brightness

valueφ x; y; z
� �

in each voxel x; y; z
� �

within thewhole rectangular domain
Ωwhole) produced by microscopy, 3D cell regions can be segmented either
manually or automatically. To delineate the cell membrane domains, we
inwardly erode each 3D cell region by five voxels in all directions; voxels
present in the original region but absent after erosion define the membrane
domain Ωmembrane. Next, subtracting Ωmembrane from Ωwhole defines the
background (cytoplasmic and extraembryonic space) domains Ωbackground.
Finally, the fluorescence within Ωmembrane (with voxel number
N x;y;zð Þ2Ωmembrane

) derives the average membrane signal:

βS ¼
P

x;y;zð Þ2Ωmembrane
φ x; y; z
� �

N x;y;zð Þ2Ωmembrane

ð1Þ

while the fluorescence within Ωbackground (with voxel number
N x;y;zð Þ2Ωbackground

) derives the average background noise:

βN ¼
P

x;y;zð Þ2Ωbackground;φ x;y;zð Þ > 0 φ x; y; z
� �

N x;y;zð Þ2Ωbackground

ð2Þ

evaluating the SNR at the voxel resolution as βR ¼ βS
βN
.

Proposed cell segmentation framework
The proposed computational framework for cell segmentation, EmbSAM,
consists of three major parts:

https://doi.org/10.1038/s42003-025-09220-3 Article

Communications Biology |             (2026) 9:8 12

www.nature.com/commsbio


1) The cell boundary localization part for denoising fluorescence images
and generating bounding boxes for each cell region. This is primarily
composed of a denoising module (the deep neural network that
removes small noisy components to increase the SNR of raw images)
and a watershed module (the pre-segmentation for generating
bounding boxes based on a watershed algorithm and obtaining
approximate boundaries of the target cell to be segmented)42,101.

2) The SAM part for final automatic cell segmentation23. This accom-
plishes automatic cell segmentation based on a series of bounding box
promoters. The SAM module maximizes the performance of the
proposed framework, whose pre-trained model was trained with
billions of images containing thousands of imaging conditions. It is one
of the reasons that it probably can help deal with low-SNR images. For
the target cells in each slice (focal plane), the bounding box produced
by the cell boundary localization part was used to facilitate the SAM
segmentation with 3D assembling.

3) The cell tracing part for assigning cell identity to the reconstructed 3D
cell regions. The cell nucleus positionoutput by StarryNite andAceTree
is used to match its corresponding 3D cell region.

Image denoising using conditional normalizing flow
The image-denoising network is based on the LLFlow (Low-Light Image
Enhancement with Normalizing Flow)model101, which utilizes a conditional
normalizing flow model102,103 informed by the Retinex theory104. The work-
flow of step-by-step data processing and network training in this module is
detailedly described in Supplementary Fig. 36 and Supplementary Note 3.
Given a raw image Iraw, the processing procedure includes histogram
equalization, color extraction, and noise extraction followed by the RRDB
(Residual-in-ResidualDenseBlock)module105 for feature extraction, resulting
in the illumination invariant color map GðIrawÞ. The trained invertible net-
work F of the conditional normalizing flow can construct the transformation
process of the probability distribution between the manually annotated
ground truth image with low noise (Iclean) and its original cell membrane
fluorescence imagewithhigh-noise (Iraw) froma latent code J that alignswith
the standard Gaussian distribution and GðIrawÞ. Here, F consists of three
layers (incl., a squeeze layer and 12 flow steps), with the probability density
function PðIjIref Þ in the condition (reference image) of Iref expressed as:

PðIjIref Þ ¼
1
2b

exp � I � Iref
�� ��

b

� 	
ð3Þ

where b is a positive constant related to the learning performance. Thus, the
probability distribution of Iclean under the condition of Iraw can be repre-
sented asPðIcleanjIrawÞ, and the transformationprocess canbe represented as
Iclean ¼ FðJ; IrawÞ. From the established conditions, we can deriveR
PðIcleanjIrawÞ ∂Iclean ¼ R

PðJjIrawÞ ∂J and J ¼ F�1ðIclean; IrawÞ. After
applying the Jacobian correction to the probability density of J , we obtain:

PðIcleanjIrawÞ ¼ PJ ðJjIrawÞ
∂F�1ðIclean; IrawÞ

∂Iclean

����
���� ð4Þ

To capture distributional differences between noise and cell features, a
negative log-likelihood (NLL) minimization approach is utilized to max-
imize the probability distribution of PðIcleanjIrawÞ to train F, getting the loss
function:

Loss Iraw; Iclean
� � ¼ � logðPðIcleanjIrawÞÞ ¼ �logPJ ðJjIrawÞ

� log
∂F�1ðIclean; IrawÞ

∂Iclean

����
���� ð5Þ

After training, the inference can be implemented onto all raw images
beyond themanually annotated ground truths, Îclean ¼ F J; Iraw

� �
, deriving

their low-noise outputs (Fig. 1, and Supplementary Fig. 37).
Duringdenoising, 2D images are stacked along the z-axis to construct a

3D image resized to ð256; 356; 160Þ by trilinear interpolation with an even

voxel resolution of 0:18 μm=pixel. Then 2D slices are generated by cutting
the 3D images along the x-, y-, and z-axis, followed by the denoising process
in all three directions. For each pixel in space, the maximum value from its
three orthogonal denoised 2D slices is adopted, so that a small-noise 3D
image is recombined. This denoising step is essential for taking advantage of
the complementary information in three directions regarding the 3D cell
membrane fluorescence images.

Auto-seeding watershed pre-segmentation for generating
bounding box promoter and locating cell boundary
The denoised volume (3D image) is fed into the watershed module for
generating bounding box promoters that approach cell boundaries slice-by-
slice. Theworkflow of step-by-step data processing in thismodule is detailly
described in the middle row of Fig. 1. A Gaussian filter is applied for image
smoothing, utilizing aGaussian kernel size of 13 and a standard deviation of
2. The image is binarized via Otsu’s thresholding106 to produceM, produ-
cing an intermediate 3D image, M, in which C and E represent the pixels
valued 0 (cell interior and exterior) and 1 (cell boundary) respectively. Then,
the watershed pre-segmentation algorithm41 from our previous work8,42 was
applied onM. The 3D Euclidean distance map ofM is obtained:

Ed x; y; z
� � ¼ min

x;y;zð Þ2C
min

ðx0;y0;z0Þ2E
x � x0
� �2 þ y � y0

� �2 þ z � z0
� �2n o

; 10


 �

ð6Þ
Delaunay triangulation is executed on the local maximum in Ed

(potential cell centers), where the edge eij between vertices i and j is assigned
a weight by accumulating the Ed values along eij:

Weij
¼

X
x;y;zð Þ2eij

Ed x; y; z
� �

ð7Þ

Here, vertices with an edge having a W value below a threshold
(numerical value: 10, with a unit of pixel in the resized 3D image, corre-
sponding to a length of 1.8 μm in reality; empirically customized for C.
elegans embryonic images by previous independent research42) are clustered
as the centers inside the same cell. The vertice clusters (seeding points) and
the Euclidean distance map are inputted into the watershed algorithm107,
marking both foreground (cell interior) and background (cell exterior)
regions. It is worth pointing out that the localmaximum is used tofind seeds
rather than the traced cell nucleus position, which makes EmbSAM seg-
mentation fully independent of the cell nucleus fluorescence and allows for
future adaptation to an alternative fluorescent label (replacing the cell
nucleus fluorescence channel in microscopy) on amolecule of interest (e.g.,
E-cadherin or HMR-1 that controls cell adhesion), enabling quantification
of its spatiotemporal dynamics on top of the segmented 3D cell shapes45.
Upon completion of these steps, the binary image with only the embryo
interior and exterior is converted into the one with distinct 3D cell regions
(Fig. 1, Supplementary Fig. 37). For each z slice in a pre-segmented 3D cell
region, the rectangle enclosing its 2D cell region (represented as
½xmin : xmax; ymin : ymax; zi�) forms a series of 2D bounding box promoters
for the following SAMmodule.

Segment Anything Model
For each time point, both the denoised 2D images (automatically disassembled
from the denoised volume along z-axis) and all the 2D bounding boxes
surrounding a specific cell outputted by the watershed module were fed into
the pre-trained zero-shot SAM (base vision model named vit_b)30. The
segmentation output of SAM is a 3D cell region comprising both back-
ground (0, cell exterior) and foreground (1, cell interior). Theworkflowof step-
by-step data processing in this module is detailedly described in Supplemen-
tary Fig. 10.

When performing cell segmentation, the SAMmodule might generate
multiple potential 2D regions within the same area, including noises, the
target cell, or its neighboring cells. Here, we selected the largest area as the
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target cell region. Additionally, unreasonable irregular regions such as dis-
persed coralloid or starlike shapes need to be filtered, especially around the
embryo’s top and bottom cell periphery where noise is higher (since the
membrane lies parallel to the confocal plane and has only one single
fluorescent layer) (Supplementary Fig. 38). To this end, we calculated the
nondimensional irregularity of each 2D cell region, η ¼ cffiffi

s
p , where c and s

represent its circumference and surface area respectively. For calculating a
2D cell region’s perimeter, we used the Douglas–Peucker algorithm for
contour approximation, with the approximation coefficient set as 0.01108. By
analyzing the irregularity of 265,704 manually annotated 2D cell regions in
two previous independent research8,40,90,96, a threshold (numerical value:
9.02, with no unit) was obtained for establishing a reasonable range for 2D
cell irregularity at the 99% confidence (Supplementary Fig. 39). After slice-
by-slice filtering by the cell irregularity threshold, all the remaining reliable
2D regions of a target cell are assembled into 3D, reconstructing cell-
identity-resolved shapes with their cell-lineage-tracing information.

Cell segmentation performance evaluation
To systematically assess the similarity between the cell segmentation results
and their ground truth annotations, we adopted two widely recognized
metrics for 3D object comparison109,110:
• Dice score: The ratio of the overlapping volume to the total volume of

two 3D objects.
• Hausdorff distance: The maximum distance calculated from every

voxel in one 3D object to its nearest voxel in another 3D object.

In theory, a largerDice score and a smallerHausdorff distance indicate
a higher consistency between the cell segmentation results and their ground
truth annotations.

3D cell shape descriptor
The characteristics of cell shapes enclosed by their segmented cell mem-
branes can be quantitatively described by a series of 3D shape descriptors
with explicit geometric significance. Here, we adopted three 3D cell shape
descriptors from our previous work as follows57.

• Taking a perfect sphere with the same volume as the cell, “general
sphericity” is defined as the ratio of its surface area to that of the cell, in
other words, it describes the similarity of the cell to a perfect sphere111,112:

General Sphericity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
36πV23

p

S
ð8Þ

whereV and S are the volume and surface area of the cell respectively
• While “general sphericity” assesses the gross shape of a cell, “Hayakawa

roundness” specifically assesses the sharpness of edges and corners, as
well as the presence of the convexities and concavities on the cell
surface112,113:

Hayakawa Roundness ¼ V

S
ffiffiffiffiffiffiffi
abc3

p ð9Þ

where a, b and c are the length of the long, intermediate, and short
axes of the oriented bounding box (OBB) of the cell, respectively,
estimated by principal component analysis112,114.

• Derived from a 2D definition, “spreading index” reflects the degree to
which the convex hull of a cell resembles a perfect sphere, i.e., the
spreading of the cell shape115,116:

Spreading Index ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36πV2

convex
3
p

Sconvex
ð10Þ

where Vconvex and Sconvex are the volume and surface area of the
convex hull enclosing the cell, respectively.

• During cytokinesis, the mother cell nucleus divides into two daughter
cell nuclei with locations ðxnuc1; ynuc1; znuc1Þ and ðxnuc2; ynuc2; znuc2Þ;
almost at the same time, the cellmembraneelongateswith the equatorial
plate ingressing as a contractile ring, whose diameter keeps shrinking117.
The equatorial platewith a contractile ring is presumedasperpendicular
to the line between the two daughter cell nuclei. Hence, the plane
equation is described by ðAx þ By þ Cz þ D ¼ 0Þ, where A;B;Cð Þ ¼
ðxnuc2 � xnuc1; ynuc2 � ynuc1; znuc2 � znuc1Þ is its normal vector defined
by the positions of the two daughter cell nuclei andD is determined as
follows. All pixels with a distance to the plane smaller than 0.5 pixels
form an approximate cylinder with a height of 1 pixel, by which the
diameter of the contractile ring can be derived from its surface area:

Diameter ¼ 0:18 μm×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Scylinder

π

r
� 1

 !
ð11Þ

where Scylinder is the surface area of the convex hull enclosing the
cylinder and D is determined by searching the smallest Scylinder.

Statistics and reproducibility
The time-lapse 3Ddata studied for statistics and reproducibility in thiswork
was produced by an experimental-computational pipeline, which incor-
porates time-lapse 3D fluorescence imaging, cell-nucleus-based lineage
tracing50–52, cell-membrane-based shape reconstruction, and 2D-
irregularity-based region filter for C. elegans embryos (Methods). No data
were excluded in the following quantitative analyzes.

Three groups of C. elegans embryo samples with time-lapse 3D shape
reconstruction were used for statistics and reproducibility study: com-
pressed embryos imaged at 1.41-min intervals (“Emb1” and “Emb2”),
compressed embryos imaged at 10-s intervals (“Emb4” to “Emb7”),
uncompressed embryos imaged at 10-s intervals (“Emb8” and “Emb9”).
Wherever statistics or reproducibility is studied, data from all embryos
within each group were used systematically and unbiasedly.

All quantitative results are supported by significance values for statis-
tics and at least two replicates for reproducibility, corresponding to the
sample size used in previous developmental biology and spatial patterning
research118,119.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Source data for quantitative and statistical analyses in Fig. 2B (Supple-
mentary Data 5), Fig. 2C (Supplementary Data 6), Fig. 3B (Supplementary
Data 7), Fig. 3C (Supplementary Data 8), Fig. 4C (Supplementary Data 9),
Fig. 4D (SupplementaryData 10), Fig. 5C (SupplementaryData 11), Fig. 5D
(Supplementary Data 12), Fig. 5E (Supplementary Data 13), Fig. 6C (Sup-
plementary Data 14), Fig. 6D (Supplementary Data 15), Supplementary
Fig. 4 (Supplementary Data 16), Supplementary Fig. 7 (Supplementary
Data 17), Supplementary Fig. 8 (Supplementary Data 18), Supplementary
Fig. 9 (Supplementary Data 19), Supplementary Fig. 14 (Supplementary
Data 20), Supplementary Fig. 20 (Supplementary Data 21), Supplementary
Fig. 23 (Supplementary Data 22), Supplementary Fig. 24 (Supplementary
Data 23), Supplementary Fig. 26 (Supplementary Data 24), Supplementary
Fig. 27 (Supplementary Data 25), Supplementary Fig. 35 (Supplementary
Data 26), and Supplementary Fig. 39 (SupplementaryData 27) are provided
in Supplementary Data (accessible via https://doi.org/10.6084/m9.figshare.
29064530). The raw, manually annotated, and processed images, as well as
all the reconstructed time-lapse 3D cell shapes at 10-second intervals and
calculated shape features (incl., cell volume, cell surface area, and cell-cell
contact relationship and area) in the readable data format of software ITK-
SNAP-CVE, are accessible via https://doi.org/10.6084/m9.figshare.
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29064530; the software ITK-SNAP-CVE is also accessible via https://doi.org/
10.6084/m9.figshare.29064530. Alternatively, these equivalent recon-
structed cell shape data can be browsed using the online website https://bcc.
ee.cityu.edu.hk/cmos/embsam. Supplementary Movie 3 and Supplemen-
tary Movie 4 provide instructions for using the local software ITK-SNAP-
CVE and online website https://bcc.ee.cityu.edu.hk/cmos/embsam to
browse the EmbSAM dataset respectively.

Code availability
Cell lineage tracing is conducted on public StarryNite (https://doi.org/10.
1038/nprot.2006.222), AceTree (https://doi.org/10.1186/1471-2105-7-275),
and Python (3.11.0). The Python (3.11.0) code for EmbSAM framework,
including cell shape reconstruction, calculating cell volume, cell surface area,
and cell-cell contact relationship and area from segmented 3D cell regions,
and generating figures, is reposited at GitHub and Google Colab, accessible
via https://doi.org/10.6084/m9.figshare.29064530.
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