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Resting-state functional connectivity (FC) studies have predominantly centered on gray matter (GM),
largely overlooking the functional contributions of white matter (WM). However, emerging evidence
indicates WM blood-oxygen-level-dependent (BOLD) signals actively shape large-scale brain
networks. Current methods to integrate WM face limitations, including challenges in assessing global
network properties from bipartite GM-WM connections or the nascent stage of unified connectome
models. Here, we introduce the Gray-White Matter Heterogeneous Fusion Network (GWM-HFN), a
framework that definesGM-GM functional links via the covariance of their interaction profileswithWM
bundles defined by a standardized atlas. Validated across six independent datasets, GWM-HFN
demonstrates fair short-term (ICC ~ 0.36) and slight-to-fair long-term (ICC ~ 0.20) test-retest
reliability, comparable to conventional GM-based FC. GWM-HFN exhibits distinct topological
features, including small-worldness and enhanced modular segregation compared to GM-GM
networks, capturing over 40% unique variance and a unique sensitivity to the connectivity patterns
that differentiate individuals. Lifespan analyses reveal global linear declines and complex non-linear
age effects in GWM-HFN connectivity, with peak connectivity in early adulthood ( ~ 34 years).
Clinically, individuals with autism spectrum disorder (ASD) show GWM-HFN-specific
hyperconnectivity, which correlates with symptom severity and offers greater sensitivity than GM-GM
FC. Furthermore, GWM-HFN connectivity patterns predict individual differences in cognitive
performance, notably in language tasks. The GWM-HFN framework provides a robust and more
comprehensive approach to understanding WM-mediated neural communication, integrating
functional signals across both GM and WM, and offers promising avenues for developing
neuroimaging biomarkers for aging and neuropsychiatric disorders.

Over the last twenty years, resting-state functional magnetic resonance
imaging (rs-fMRI) has emerged as a pivotal tool for mapping synchronized
neural activity across various brain regions, mapping synchronized neural
activity, commonly termed functional connectivity (FC)1,2. This innovative
imaging technique has significantly enriched our understanding of the
brain’s functional connectome, which provides a network-level perspective
on the interconnections among brain regions. As a result, researchers have
gained deeper insights into the large-scale organizational structure of the
brain, the trajectories of development and aging, and the alterations asso-
ciated with neuropsychiatric disorders3–6.

Historically, the majority of studies focusing on the functional con-
nectome have centered on gray matter (GM), where it is commonly
assumed that neural activity drives blood-oxygen-level-dependent (BOLD)
signals. This GM-centric focus has inadvertently led to a relative neglect of
white matter (WM) in connectivity analyses, primarily due to its lower
BOLD signal amplitude and its traditional classification as amere structural
conduit facilitating communication between GM regions7–9. However, a
growing body of evidence is challenging this long-held perspective. The
successful detectionofWMfunctional signals, despite their lower amplitude
compared to GM signals, is largely attributable to recent methodological
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advancements. These include specialized preprocessing pipelines that, for
instance, apply separate spatial smoothing toWMandGMtoprevent signal
leakage, and avoid regressing out the WM signal as a nuisance variable10,11.
Such techniques have enabled the reliable characterization of WM func-
tional networks, suggesting that WM plays a more active role in the
dynamics of functional networks than previously acknowledged10,12–16.

Recent research, aiming to incorporate WM, has explored several
avenues, including WM-only networks, GM-WM interactions, and more
unifiedconnectomes, eachwith its own set of advancements andunresolved
challenges. The first approach investigates WM-only functional networks,
treating WM parcels as independent nodes and analyzing their intrinsic
functional interactions. These studies have demonstrated that WM pos-
sesses unique functional connectivity patterns, establishing stable networks
that are comparable to those found in GM13. Moreover, alterations in WM
functional connectivity have been identified in various neurological and
psychiatric disorders, such as schizophrenia17 and nicotine dependence18.
However, analyzingWM in isolationmay obscure its broader contributions
to the coordination of large-scale brain communication. To address this
limitation, researchers have introduced a GM-WM network approach,
which explicitly models the functional interactions between GM and WM
nodes, each defined by distinct atlases14,19. This paradigm has revealed sig-
nificant functional disruptions in psychiatric populations20,21, while also
providing new insights into how WM contributes to the dynamics of GM
networks22.Nevertheless, these networks remain structurally constrained, as
they primarily capture GM-to-WM connections and lack closed-loop
interactions23. This structural limitation complicates the application of
conventional network analyses, such as assessments of global efficiency or
modularity. Additionally, differences in signal amplitude and dynamic
properties between WM-WM and GM-GM connections can lead to
inconsistencies12 when analyzed within a unified framework, ultimately
affecting the biological interpretation of network topology.

To overcome these challenges, a third approach—the unified func-
tional connectome—has emerged, aiming to integrate both GM and WM
connectivity into a cohesive framework that can capture closed-loop
interactions and elucidate comprehensive mechanisms of network
integration24–26. However, this area of research is still in its infancy, lacking a
standardizedmodelingparadigm. Several promisingmethodshavebeenput
forth, each presenting unique advantages while grappling with methodo-
logical hurdles. For instance, Gao et al. introduced a projection-based
mapping strategy that mathematically transforms GM-WM functional
connections into an equivalent GM-only network, termed the “WM-
mediated GM functional connectivity network.” By calculating its global
efficiency, theydiscovered anegative correlationbetweennetwork efficiency
and age24 as well as a reduction in efficiency among individuals with pre-
clinical Alzheimer’s disease27. This innovative approach partially addresses
the absence of triangular pathways in bipartite GM-WM networks and
highlights distinct topological properties. While this innovative approach
enables the calculation of global properties like efficiency, the resulting
network is directed and non-reciprocal (i.e., the connectivity from region A
to B is not equal to that from B to A), which creates considerable inter-
pretational ambiguity from both methodological and neurobiological
standpoints. Another avenue of research has focused on the modulation of
GM network organization by WM. Wang et al. developed an edge-centric
network analysis approach that illustrates how WM signals significantly
regulate GM functional organization, with evidence suggesting that this
modulation is impaired in disease populations26. Although this elegantly
quantifies WM’s modulatory influence, it does not produce an explicit,
integrated connectome that can be subjected to further network analysis.
More recently, Zu et al. proposed a three-way correlation model that treats
WMBOLD signals as a third component within traditional GM functional
networks, therebyproviding amore comprehensive representationofWM’s
mediation of GM interactions25. While this offers a rich depiction of the
underlying architecture, its three-dimensional structure is incompatible
with the vast majority of standard graph-theoretical toolboxes, which
require a 2D adjacency matrix, and thus does not resolve the fundamental

challenge of analyzing network topology inGM-WMsystems;moreover, its
mathematical complexitymay pose a barrier to broader clinical application.
As research in this area continues to evolve, the integration of GMandWM
connectivity promises to enhance our understanding of the brain’s complex
functional dynamics, ultimately paving the way for improved insights into
neuropsychiatric conditions and their underlying mechanisms.

To address these distinct limitations, we propose the Gray-White
Matter Heterogeneous Fusion Network (GWM-HFN). This framework
constructs a unified and weighted GM-GM connectome by defining the
functional connectivity between any two GM regions as the covariance of
their respective interaction profiles with all WM bundles. This approach
uniquely produces a symmetric, intuitive, and fully analyzable 2D network
matrix that retains critical information about WM-mediated communica-
tion, thereby bridging the gap between descriptivemodels ofWM influence
and the practical need for a topologically coherent connectome. To validate
our framework, our study rigorously examines the test-retest reliability and
topological organization of the GWM-HFN. We juxtapose our findings
against those derived from conventional GM-GM connectivity analyses,
providing a comprehensive comparison that highlights the unique con-
tributions of our model. Furthermore, we delve into the practical implica-
tions of GWM-HFN by investigating age-related changes in connectivity
patterns, assessing its clinical relevance, and exploring its correlations with
various cognitive and behavioral measures. Through these multifaceted
analyses, we aspire to establish a robust and comprehensive framework that
not only enhances our understanding of the brain’s functional architecture
but also effectively bridges the existing divide between traditional GM-
centricmethodologies and the active, communicative role ofwhitematter in
inter-regional connectivity.

Results
General description of analytical methods, datasets and
research questions
In this research, we presented GWM-HFN, a network framework aimed at
merging functional data from two heterogeneous brain structures (GM and
WM) by deliberately integrating WM signals into rs-fMRI connectivity
evaluations. Figure 1 illustrates a schematic representation of this method.
In summary, following preprocessing, time-series signals were gathered
from 90 GM regions (Anatomical Automatic Labeling, AAL atlas; refer to
Supplementary Table 1 for specifics) and 48 WM bundles (JHU-ICBM 48
atlas; refer to Supplementary Table 2 for specifics). Subsequently, we
developed a bipartite GM-WM correlation matrix, where each row repre-
sents the functional connectivity profile of a GM region with various WM
bundles. Considering that WM acts as the main pathway for long-distance
communication between GM regions, we also calculated the covariance of
GM-WM connectivity profiles, converting the bipartite matrix into a GM-
centered representation that indirectly reflects WM-mediated interactions.
The resulting GWM-HFN encapsulates the functional communication
strength among GM regions, which is informed by the covariance of their
interaction profiles with the brain’sWMbundles. This modification retains
WM-derived functional information within a GM-aligned network fra-
mework, allowing for the exploration of both global and local network
characteristics while incorporating the impact of WM functional con-
nectivity profiles on brain activity.

We meticulously assessed GWM-HFN through various independent
datasets to evaluate its dependability, network characteristics, and func-
tional significance, which encompassed test-retest reliability (TRT), struc-
tural organization, comparisons to GM-GM connectivity, age-related
variations, clinical significance, and cognitive/behavioral associations. In
particular, the Southwest University Longitudinal Imaging Multimodal
(SLIM) dataset (https://doi.org/10.15387/fcp_indi.retro.slim) was utilized
to analyze network patterns, structural organization, and long-term relia-
bility, while the Beijing Normal University (BNU-3) (https://doi.org/10.
15387/fcp_indi.corr.bnu3) offered measurements for short-term reliability.
The Southwest University Adult Lifespan (SALD) dataset (https://
fcon_1000.projects.nitrc.org/indi/retro/sald.html) was employed to
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Fig. 1 | Schematic overview of the study framework. A Development of the gray-
whitematter heterogeneous fusion network (GWM-HFN). This phase initiated with
the extraction of gray matter (GM) and white matter (WM) signals from pre-
processed rs-fMRI datasets to create a GM-WM connectivity matrix B. Following
this, the values were standardized row-wise to generate a Z-score matrix, high-
lighting the relative interaction profile of each region within its connectivity fra-
mework. Ultimately, the covariance matrix C, which was obtained from Z,
functioned as aGMFCmatrixmediated byWM, also referred to as the GWM-HFN.
B Analysis of GWM-HFN Characteristics. The research evaluated the test-retest

reliability of the GWM-HFN network alongside its topological characteristics using
graph theoretical metrics. Additionally, comparative assessments between GWM-
HFN and conventional GM-GM connectivity networks were carried out.
C Utilization of GWM-HFN. The practical relevance of the GWM-HFN was
investigated across three areas. First, examining its age-related trends, which
included both linear and quadratic effects; second, evaluating its use in clinical
settings; and third, applying partial least squares (PLS) regression to assess its pre-
dictive ability for cognitive and behavioral outcomes. Icon elements in this figure
were sourced from iSlide (islide.cc) and Freepik.com.
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examine age-related trajectories of GWM-HFNconnectivity within a cross-
sectional population. To investigate clinical relevance, we focused on
disorder-specific changes in GWM-HFN using the Autism Brain Imaging
Data Exchange II (ABIDE-II) project (https://fcon_1000.projects.nitrc.org/
indi/abide/abide_II.html), with an emphasis on autism spectrum disorder
(ASD). Lastly, the Brain Genomics Superstruct Project (BGSP) dataset
(https://www.neuroinfo.org/gsp/) facilitated partial least squares (PLS)
regression to connect GWM-HFN connectivity with cognitive and beha-
vioral metrics. A comprehensive description of these datasets is
available in the Supplementary information (the “Study Datasets” section),
with Supplementary Table 3 providing a summary of essential
demographic details.

To facilitate cross-network comparisons and interpretability, GM
nodes were organized into seven functional networks. This was achieved by
adapting theYeo-7 cortical parcellationusing a “winner-takes-all”mapping,
followed by adjustments based on established anatomical and functional
literature. Within this framework, key subcortical regions such as the hip-
pocampus and amygdala were assigned to the Limbic Network (LN) based
on established anatomical and functional literature28, while the caudate,
putamen, pallidum, and thalamus were grouped into a distinct Basal
Ganglia Network (BGN). The final seven networks include the Visual
Network (VN), Sensorimotor Network (SMN), Attention Network (AN),
LN, Frontoparietal Network (FPN), Default Mode Network (DMN), and
BGN (Fig. 2A, Supplementary Table 1). This categorization facilitated a
more structured evaluation of GWM-HFN connectivity trends among
functionally diverse systems. Additional information regarding node

assignments and the relevantmethods canbe accessed in theSupplementary
information (the “Mapping AALAtlas toMacroscopic Networks” section).

Gray-White Matter heterogeneous fusion network patterns
(SLIM Dataset)
For every one of the 572 younger healthy individuals (ages 17–27) from the
SLIM dataset (baseline), we developed GWM-HFN and traditional GM-
GM networks. Figure 2B illustrates the mean connectivity matrices at the
group level for the constructed GWM-HFN and traditional GM-GM net-
works. Generally, the connectivity matrices revealed consistently higher
intra-network connectivity among large-scale functional subnetworks (such
as visual and frontal-parietal networks) and moderately strong inter-
network connections, regardless of whether GWM-HFN or GM-GM was
analyzed. A visual inspection of the group-average connectivity matrices
suggests that the GWM-HFN framework captures connections—both
within and between networks—that appear stronger in magnitude com-
pared to those in the GM-GM framework. Rigorous statistical comparisons
of networkproperties derived fromthesematrices are detailed inSection2.5.
This suggests a fundamental difference in the network topology captured by
the two methods.

Multi-level test-retest reliability assessment (BNU-3 and SLIM
Datasets)
The BNU-3 dataset was used to assess short-term TRT reliability, with each
participant undergoing three scanning sessions within a single day. In
contrast, the SLIM dataset was employed to evaluate long-term TRT

Fig. 2 | Network parcellation and group-level mean connectivity matrices. A A
schematic representation of the division of 90 brain regions into seven large-scale
networks; B Group-level mean GM-GM connectivity strength matrix

(r-valuematrix) andGWM-HFN connectivity strengthmatrix, both normalized to a
range of 0–1 for comparability.
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reliability. Participants in this dataset underwent up to three scanning ses-
sions, although only a subset completed the second and third sessions. For
the purposes of this study, only the first two time points—separated by an
average interval of 304.14 days—were used to assess long-term TRT relia-
bility. To provide a comprehensive evaluation and a direct comparisonwith
conventional methods, we assessed reliability using three distinct approa-
ches: (i) pattern similarity via Pearson correlation, (ii) conventional edge-
wise reliability via the Intraclass Correlation Coefficient (ICC), and (iii) a
more advanced connectome-level identifiability framework.

Pattern similarity using pearson correlation. As illustrated in Fig. 3A, B,
the GWM-HFN exhibited stable and consistent connectivity patterns across
time points at the group level in both datasets. Group-averaged connectivity
networks showed strong correlations across sessions, with a mean Pearson
correlation of r = 0.955 for short-term reliability (BNU-3) and r= 0.897 for
long-term reliability (SLIM). However, this high group-level consistency

masks considerable variance at the individual level, where correlations were
more modest. In the SLIM dataset, the average individual-level correlation
was 0.37 (±0.13), as shown in the lower-right corner of Fig. 3A. Similarity,
the BNU-3 dataset, the average correlation across time points was
approximately 0.53 (r1;2 ¼ 0:57; r1;3 ¼ 0:52; r2;3 ¼ 0:50), as shown in the
lower-right corner of Fig. 3B. This discrepancy highlights the necessity of
individual-level reliability analyses, as high group-level stability does not
guarantee that individual-specific connectivity patterns are reliably captured.

Edge-wise Reliability using Intraclass Correlation Coefficient (ICC).
We quantified the TRT reliability of individual connections using the
ICC. To benchmark our method, we compared the edge-wise ICC of
GWM-HFNwith that of the conventional GM-GMnetwork (Fig. 3C, D).
First, we observed a significant positive correlation between the edge-wise
ICC values from the two methods across both datasets (see Fig. 3E),
suggesting a shared spatial pattern of reliability. Following this, as shown

Fig. 3 | Comprehensive multi-level and multi-method assessment of test-retest
reliability. A, B Group-level pattern stability versus individual-level similarity for
the GWM-HFN. The main scatterplots show the high correlation between group-
averaged GWM-HFN connectivity strengths across two sessions for the long-term
(A, SLIM dataset) and short-term (B, BNU-3 dataset). The red line indicates the
identity line (y = x), and dot color indicates the density of overlapping points. The
inset raincloud plot in each panel illustrates themoremodest distribution of Pearson
correlation coefficients calculated at the individual subject level. C, D Edge-wise
Intraclass Correlation Coefficient (ICC) matrices. Heatmaps display the ICC value
for every connection for both the GWM-HFN (left) and the conventional GM-GM
(right) network. Results are shown for the long-term (C, SLIM dataset) and short-
term (D, BNU-3 dataset) reliability assessments, with brighter colors indicating
higher reliability. E Direct comparison of edge-wise ICC values between methods.

Scatterplots compare the ICC of each edge from the GWM-HFN (y-axis) against the
GM-GM network (x-axis) for the SLIM (left) and BNU-3 (right) datasets. The
dashed black line is the identity line, and the red line is the linear fit. The inset violin
plots provide a summary comparison of the ICC distributions, confirming the sig-
nificantly higher mean ICC for the GM-GM method in both datasets.
F Connectome-level assessment using the identifiability framework. Box plots
compare the GWM-HFN and GM-GM networks on three key metrics: mean intra-
individual similarity (Reliability, μintra), mean inter-individual similarity (Uni-
formity, μinter), and the summary Identifiability Score. Asterisks denote statistically
significant differences (paired t-tests for Reliability and Uniformity; bootstrap test
for Identifiability). n = 237 biologically independent participants for the SLIM test-
retest dataset and n = 46 biologically independent participants for the BNU-3
dataset.
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in Fig. 3E, the GM-GM network exhibited a significantly higher mean
edge-wise ICC in both short-term (GM-GM: 0.44 ± 0.11; GWM-HFN:
0.36 ± 0.12; t(4004) = 57.52, p < 2.2 × 10-16) and long-term datasets (GM-
GM: 0.24 ± 0.08; GWM-HFN: 0.20 ± 0.08; t(4004) = 42.19, p < 2.2 × 10-
16). These results indicate that conventionalGM-GMconnectivity ismore
stable at the single-edge level, likely reflecting its sensitivity to strong,
generic signals from primary sensory-motor regions that are highly
consistent within and across individuals. Notably, and consistent with
previous observations, long-term reliability was generally lower than
short-term reliability, likely due to increased variability introduced by
longer intervals between measurements (e.g., physiological changes and
day-to-day fluctuations)29,30.

Connectome-level assessment using the identifiability framework.
To provide amore comprehensive assessment of individual-level stability
and uniqueness, as suggested by recent literature31, we implemented an
identifiability framework, which evaluates a connectome’s stability
(Reliability, μintra), its distinctiveness from others (Uniformity, μinter),
and its overall utility for individual identification (Identifiability). This
analysis revealed a critical trade-off between stability and individual
specificity (Fig. 3F).

Consistent with the ICC results, the GM-GM network showed higher
Reliability (mean intra-individual similarity) in both long-term (GM-GM:
0.64 vs. GWM-HFN: 0.40; t(571) = 44.26, p < 2.2 × 10-16) and short-term
datasets (GM-GM:0.71vs.GWM-HFN:0.53; t(45) = 21.86, p < 2.2 × 10−16).
However, the GWM-HFN demonstrated a striking advantage in Uni-
formity, exhibiting significantly lower mean inter-individual similarity
(μinter) in both long-term (GM-GM: 0.54 vs. GWM-HFN: 0.30;
t(571) = 490.77, p < 2.2 × 10−16) and short-term datasets (GM-GM: 0.55 vs.
GWM-HFN: 0.34; t(45) = 129.74, p < 2.2 × 10−16). This indicates that while
GM-GM networks are more stable on average, GWM-HFN networks are
more sensitive to the unique connectivity patterns that differentiate one
individual from another. Finally, we computed the overall Identifiability
scores for bothmethods. The GM-GMnetwork yielded significantly higher
identifiability scores in both the long-term (GM-GM: 1.59 vs. GWM-HFN:
1.12; p = 0, bootstrap test) or short-term datasets (GM-GM: 2.30 vs. GWM-
HFN: 1.86; p = 0, bootstrap test). This indicates that the greater stability
(μintra) of theGM-GMnetwork provides it with an advantage in this specific
composite metric. Taken together, these results reveal a nuanced reliability
profile, which will be interpreted in the Discussion.

Topological Organization of the GWM-HFN (SLIM dataset)
For the GWM-HFNs derived from the 572 younger healthy participants
from the SLIM time1 dataset, we calculated a set of graph-based network
measures across varying sparsity thresholds (0.10–0.34, step = 0.01) to study
their topological organization, including small-world organization, mod-
ularity architecture, degree distribution, and hubs.

Small-world properties andmodularity. The GWM-HFN consistently
demonstrated characteristics indicative of a classic small-world network
configuration. This was evidenced by normalized clustering coefficients
exceeding 1, alongside characteristic path lengths approximating 1, as
illustrated in Fig. 4A. Such properties suggest a network topology that
facilitates efficient information transfer and integration among disparate
brain regions. Moreover, the modularity coefficient (Q) consistently
remained above 0.3 across a wide threshold range (Fig. 4B), suggesting
that explicit WM inclusion produces well-segregated community struc-
tures that may capture local clustering mechanisms.

Hub distribution and degree. The degree distribution observed in the
group-level mean GWM-HFN was best represented by an exponentially
truncated power law model, achieving a high goodness-of-fit
(R² = 0.959), as shown in Fig. 4C. This particular form of degree dis-
tribution is indicative of the presence of highly connected regions,
commonly referred to as hubs, within the GWM-HFN. To identify

central regions, we defined hubs as the top 15% of nodes with the highest
degree32,33. This data-driven approach identified 14 hub nodes. The
specific anatomical locations and network affiliations of these 14 hubs are
detailed in Supplementary Table 4 and visualized in Fig. 4D. These hubs
are predominantly located in higher-order association cortices and pri-
mary sensory areas, including key regionswithin the defaultmode, visual,
and limbic networks.

Comparison with traditional GM-GM Networks (SLIM Dataset)
Similarity assessment. To evaluate the added value of incorporating
white matter in connectivity modeling, we compared the GWM-HFN
with traditional GM-GMnetworks at the edge, network, and global levels
using the SLIMdataset. At the edge level, the two network types exhibited
strong similarity, with an average Pearson correlation coefficient of 0.77
(±0.038). As shown in Fig. 5FA, a representative participant’s data
revealed a high correlation between GWM-HFN and GM-GM connec-
tion strengths (r = 0.743, p < 2.2 × 10−16). Nevertheless, this suggests that
more than 40% of the variance remains unique to each network type. To
better understand these differences, we identified the 5%of edgeswith the
highest and lowest correlations between the two networks, illustrated in
Fig. 5B, C. Edges with low correlations were primarily intra-network
connections within specific functional systems such as the VN, FPN, and
DMN. In contrast, highly correlated edges were predominantly inter-
network connections, especially between the BGN and other systems like
the VN, SMN, LB, and DMN. This trend was consistent at the network
level: inter-network correlations across large-scale functional networks
were stronger (mean r = 0.84) than intra-network correlations (mean
r = 0.79), as depicted in Fig. 5D. At the global level, GWM-HFN andGM-
GM connectivity profiles showed robust consistency across participants,
with a global correlation coefficient of 0.857 (p < 2.2 × 10−16). Thus, these
findings collectively reveal a critical pattern: while the twomethods agree
on broad, inter-system communication, the key contribution of GWM-
HFN lies in uncovering a more divergent topological structure within
functional systems, providing complementary insights intowhitematter-
mediated integration.

Variability assessment. To compare the inter-individual variability
captured by each frameworkwhile accounting for potential differences in
signal quality, we applied variance decomposition method proposed by
the Mueller et al. using our test-retest SLIM dataset34. This approach
models the observed between-subject variability (Y) as a function of the
intra-subject (session-to-session) variability (N), thereby allowing us to
derive a residual measure of inter-subject variability that has been sta-
tistically corrected for measurement noise.

The analysis revealed thatwhile the rawbetween-subject variabilitywas
initially higher in the GWM-HFN framework (mean Y = 0.711) than in the
GM-GM framework (mean Y = 0.454), this was largely explained by a
correspondingly higher level of intra-subject variability (i.e., noise; mean
N = 0.631 vs. 0.368). After rigorously correcting for this intra-subject
variability, the remaining “true” inter-subject variability was not sig-
nificantly different in magnitude between the two frameworks (Wilcoxon
signed-rank test, p = 0.73, Fig. 5E).

Despite this comparable overall magnitude, the spatial topographies of
this true variability were largely distinct. The node-wise variability maps
were only moderately correlated (r = 0.479, 95% CI [0.302, 0.624],
p = 1.80 × 10⁻⁶, Fig. 5F), and the overlap between the top 20%most variable
nodes was minimal (4 of 18 nodes; Jaccard index = 0.125, Fig. 5G). Neu-
roanatomically, GWM-HFN’s high-variability nodes were concentrated in
the DMN and SMN networks. In contrast, the GM-GM framework’s
variability was highest in higher-order association systems, including the
AN and FPN.

Network organization assessment. To evaluate the organizational
similarity between GWM-HFN and GM-GM networks, we computed
Jaccard coefficients across a range of sparsity thresholds (0.01–0.50). The
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average coefficients ranged from 0.39 to 0.66, with values increasing at
higher sparsity levels (Fig. 5H), indicating greater structural alignment at
higher network densities. At lower sparsity thresholds, notable dis-
crepancies emerged, reflecting amplified structural differences between
the two network types. This pattern was further nuanced across func-
tional modules (Supplementary Fig. 1). Specifically, inter-network con-
nections demonstrated lower baseline similarity, which progressively
increased with sparsity, while intra-network connections showed higher
baseline similarity but followed a U-shaped trajectory, reaching a mini-
mum around 0.05 sparsity. These results suggest that WM-mediated
interactions introduce distinct network architectural features, particu-
larly in sparse functional networks, emphasizing the complementary
contributions of GWM-HFN connectivity to traditional gray matter-
based analyses.

To more comprehensively assess topological differences, we per-
formed a graph-theoretical analysis using area under the curve (AUC)
metrics calculated from the 0.10–0.34 sparsity range, with statistical
comparisons based on paired t-tests. Results revealed that GWM-HFN
networks are topologically distinct, exhibiting enhanced modular seg-
regation but reduced global integration compared to GM-GM networks.
GWM-HFNnetworks showed significantly higher ClusteringCoefficient
(Cp) and Assortativity, reflecting increased local cohesiveness and node-
type homogeneity (Fig. 5I). Specifically, after correcting for multiple
comparisons, Nodal Clustering Coefficient and Subgraph Centrality in
the GWM-HFN framework were significantly higher across amajority of
brain areas. We found that 60 of 90 nodes for Clustering Coefficient and
76 of 90 nodes for Subgraph Centrality showed significantly greater

values (paired t-test, PFDR < 0.001), with detailed node-wise results pre-
sented in Supplementary Fig. 2. Lower Participant Coefficient in GWM-
HFN networks suggested stronger modular boundaries, implying that
white matter-informed connectivity preserves distinct community
structures more rigidly (Supplementary Fig. 2). In contrast, GWM-HFN
networks demonstrated significantly longer Characteristic Path Lengths
(Lp) and lower Global Efficiency (Eglob), consistent with reduced
capacity for rapid and efficient global information transfer (Fig. 5I). This
was associated with reduced Small-Worldness (Sigma), reflecting a
diminished balance between segregation and integration. While
Betweenness Centrality was significantly elevated in many GWM-HFN
nodes, indicating increased control over information flow, other metrics
—including Degree, Eigenvector Centrality, PageRank Centrality, and
Nodal Efficiency—exhibited bidirectional changes across brain regions,
suggesting a complex reorganization of functional hubs and peripheral
nodes (Supplementary Fig. 2). Collectively, these findings demonstrate
thatGWM-HFNnetworks encode a distinct functional topology,marked
by heightened modularity and segregation but less efficient global inte-
gration, suggesting a functional architecture that prioritizes specialized,
modular processing over efficient global integration.

To directly compare the central network architectures, we applied
the identical hub identification procedure (top 15% degree) to the con-
ventional GM-GM networks (Fig. 4E). As detailed in Supplementary
Table 4, this comparison revealed a substantial overlap, with 11 hubs
being common to both methods (Dice coefficient = 0.786). These com-
mon hubs, including key regions in the bilateral middle temporal gyrus
and lingual gyrus, form a robust core set of highly connected nodes

Fig. 4 | Topological characterization of the Gray-White Matter Heterogeneous
Fusion Network (GWM-HFN). A Small-world properties—sigma (σ), normalized
clustering coefficient (γ), and normalized characteristic path length (λ)—of the
GWM-HFN across a range of sparsity thresholds, presented as mean ± standard
deviation. BModularity coefficient (Q) of the GWM-HFN across varying sparsity
thresholds, also shown as mean ± standard deviation, indicating robust modular
organization. C Degree distribution of the group-averaged GWM-HFN, best fitted

by an exponentially truncated power-law model, revealing the existence of highly
connected brain regions.D Identification of 14 hubnodeswithin the group-averaged
GWM-HFN, highlighting their central roles in the brain’s functional connectivity
architecture. E Hub nodes identified in the benchmark group-averaged GM-GM
network, allowing for a direct comparison of the central network architecture
revealed by each framework. n = 572 biologically independent participants (SLIM
dataset).
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identifiable by both approaches. Critically, the analysis also revealed
method-specific hubs. The GWM-HFN uniquely identified three hubs in
higher-order association areas: the right inferior frontal orbital gyrus
(ORBinf.R), the left superior temporal gyrus (STG.L), and the right
superior temporal pole (TPOsup.R). Conversely, the conventional GM-
GMmethod uniquely identified three hubs located primarily in primary
sensory and attention networks: the right superior frontal gyrus
(SFGdor.R), the left calcarine cortex (CAL.L), and the right fusiform
gyrus (FFG.R). In summary, this direct comparison demonstrates that
while both frameworks identify a core set of shared hubs, they also reveal
distinct topological priorities, with GWM-HFN highlighting unique
hubs in higher-order association cortices and the conventionalmethod in
sensory and attention networks.

Age-related patterns in GWM-HFN (SALD datasets)
Using the SALD datasets, which include a broad adult age range from 19 to
80 years, we examined how GWM-HFN connectivity evolves across the
adult lifespan. To comprehensively evaluate the unique characteristics of
GWM-HFN, we benchmarked our findings against a parallel analysis of
traditional GM-GM functional connectivity. Linear and quadratic regres-
sion models were applied to assess the relationship between age and con-
nectivity strength, with headmotion and sex controlled as covariates. At the
global level, GWM-HFN connectivity showed a significant negative linear
associationwith age (r =−0.252,p = 1.0 × 10-07; Fig. 6A),while thequadratic
termwas not statistically significant (p = 0.296), indicating a predominantly
linear age-related decline. In contrast, the benchmark GM-GM analysis
revealed a significant inverted U-shaped quadratic relationship with age at

Fig. 5 |Comparative analysis ofGWM-HFNandGM-GMNetworks.A Scatterplot
illustrating the relationship between GWM-HFN and GM-GM connection
strengths for a representative participant, showing a high correlation (r = 0.743).
B, C Heatmaps highlighting edges with the lowest (<5th percentile) and highest
(>95th percentile) correlations between the two network types, respectively.
D Network-level correlation analysis revealing stronger inter-network correlations
(mean r = 0.84) than intra-network correlations (mean r = 0.79) between GWM-
HFN and GM-GM connectivity. E Violin plots comparing the magnitude of “true”
inter-subject variability between the two frameworks after correcting for intra-
subject measurement noise (N). No significant difference was found (Wilcoxon
signed-rank test, p = 0.73). F Scatter plot illustrating the moderate correlation of
node-wise “true” inter-subject variability between theGWM-HFN (y-axis) andGM-
GM (x-axis) frameworks across 90 brain regions. The dashed line represents identity

(y = x), and the solid red line is the linear regressionfit.GLateral views of the top 20%
(18 out of 90) nodes with the highest “true” inter-subject variability for the GWM-
HFN framework (top row) and the GM-GM framework (bottom row). Theminimal
overlap (Jaccard index = 0.125) highlights the distinct spatial topographies of
variability captured by each method. H Line plot of average Jaccard coefficients
across sparsity thresholds (0.01–0.50), with shaded regions representing standard
deviation, demonstrating consistency across thresholds. I Box plots comparing the
area under the curve (AUC) for global topological properties—including clustering
coefficient, assortativity, characteristic path length, global efficiency, and small-
worldness—across the 0.10–0.34 sparsity range, indicating significant differences
between GWM-HFN and GM-GM networks. n = 572 biologically independent
participants (SLIM dataset).
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the global level (βqud =−0.017, p = 0.030; Fig. 6D), with peak age of
37.2 years.

At the edge level, our GWM-HFN framework identified that over half
of all connections (2044 out of 4005; 51.04%) were significantly modulated
by age after FDR correction ðPFDR < 0:05Þ. Notably, 78.47% of these age-
sensitive edges (1604 connections) exhibited negative linear associations,
suggesting widespread weakening of GWM-HFN connectivity with aging.
A smaller proportion (1.96%, 40 edges) showed positive linear trends,
indicating a limited set of connections that strengthenover time (Fig. 6B, left
panel). In addition to linear effects, quadratic age-related patterns were
identified in 400 edges (19.57%). Of these, 96% (384 edges) followed
inverted U-shaped trajectories, peaking before declining, whereas 4% (16
edges) followed U-shaped curves with initial decline followed by later-life
increases (Fig. 6B, right panel). The average peak age for connections with
significant quadratic effects was 33.84 years, suggesting a critical window of
maximal GWM-HFN in early adulthood. At the large-scale functional

network level, we further investigated whether age-related effects pre-
ferentially targeted connections within or between functional networks by
comparing the proportions of affected edges in each category. Overall, we
observed that a substantial proportion of both within-network (55.4%) and
between-network (51.5%) connectionswere significantlymodulated by age,
indicating a widespread impact. However, the analysis revealed network-
specific patterns. For instance, the SMNandLB showed a higher proportion
of affected within-network connections (62.6% and 61.7%, respectively)
compared to their between-network counterparts (49.6% and 61.1%).
Conversely, the AN exhibited a greater proportion of affected between-
network connections (50.4%) relative to its within-network connections
(42.2%). These findings, detailed in Fig. 6C, suggest a heterogeneous pattern
of age-related changes across the connectome rather than a uniform tar-
geting of between-network links.

The benchmarkGM-GManalysis, in turn, identified 1550 connections
with significant age-related effects (PFDR < 0:05), as illustrated in Fig. 6E. Of

Fig. 6 | Age-related patterns of GWM-HFN and GM-GM connectivity and their
direct comparison. A, D Scatter plot illustrating the negative linear correlation
between mean GWM-HFN connectivity and age (r = -0.252, p = 1.0 × 10⁻07), while
(D) shows the contrasting inverted U-shaped quadratic relationship for the
benchmark GM-GM network. In both plots, each dot represents an individual, and
its color indicates the density of overlapping data points. The red line depicts the
fitted linear regression, and the shaded region represents the 95% confidence interval
of the linear fit. B, E Circular connectograms depicting edge-level age effects for
GWM-HFN and GM-GM networks, respectively. For each, the left panel shows
linear effects (blue: negative, red: positive), and the right panel shows quadratic
effects (green: inverted U-shaped, purple: U-shaped), with line thickness repre-
senting effectmagnitude. Brain regions are color-coded according to their associated
functional networks. C Clustered bar chart showing the proportion of significant

age-related edges for the GWM-HFN framework, distributed across the seven
functional networks and separated into within-network and between-network
connections. F Heatmap illustrating the overlap of significant age-sensitive edges
between the two frameworks. Red indicates edges significant in both methods
(overlap), yellow indicates edges specific to GWM-HFN, and green indicates edges
specific to GM-GM. G Scatterplots showing the significant positive correlation
between the effect sizes (t-values) of overlapping age-sensitive edges for negative
linear effects (left panel) and inverted U-shaped quadratic effects (right panel).
H Scatter plot showing the positive correlation between age and the similarity of
GWM-HFN and GM-GM connectivity patterns (r = 0.311, p = 3.0 × 10⁻11), indi-
cating greater convergence between the two methods in older individuals. n = 440
biologically independent participants (SALD dataset).
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these, 656 edges showed a linear relationship (499 negative, 157 positive),
while a larger proportion (894 edges) followed a quadratic trajectory (889
invertedU-shaped, 5 U-shaped), with an average peak age of 38.44 years. A
direct comparison of the age-sensitive edges identified by both methods
revealed a substantial overlap of 938 connections (Jaccard index = 0.3532;
Fig. 6F). Within this overlap, consistency was high: 412 edges were linear
(with 411, or 99.8%, showing the same direction of association) and 287
were quadratic (all sharing the same shape). Furthermore, the effect sizes of
these common connections were significantly correlated between the two
frameworks for both negative linear (r = 0.553, p = 1.1 × 10-33) and inverted
U-shaped effects (r = 0.467, p = 7.2 × 10-17; Fig. 6G). When categorizing
effects more broadly into declining (negative linear, inverted-U) versus
inclining (positive linear, U-shape) patterns, we found that 921 of the 938
overlapping edges (98.2%) showed this general consistency, indicating that
when both frameworks detect an age-related change, they are often cap-
turing a shared underlying biological process.

Finally, beyond the specific overlap in age-sensitive edges,we examined
the overall similarity between the two connectome types across all subjects.
We observed a high correlation between GWM-HFN and traditional GM-
GM connectivity across subjects (mean r = 0.735), which intensified with
increasing age (r = 0.311, p = 3.0 × 10−11; Fig. 6H). This finding suggests that
the convergence between GWM-HFN and gray matter-based functional
networks becomes more pronounced in older individuals.

Clinical relevance: insights from patient cohorts
To test the clinical utility of the GWM-HFN framework, ASD was selected
as the primary clinical exemplar for this study. This choicewasmotivated by
several key theoretical and empirical considerations. First, ASD has long
been conceptualized as a disorder of atypical brain connectivity, or a ‘dis-
connection syndrome,’ with numerous studies reporting altered functional
connectivity patterns during tasks related to complex cognitive and social
processing35. Second, there is extensive andwell-documented evidence from
neuroimaging studies demonstratingwidespread alterations inwhitematter
microstructure in individuals with ASD36,37. These established structural
abnormalities provide a strong a priori basis for hypothesizing that WM-
mediated functional connectivity, as captured by GWM-HFN, would also
be affected. Finally, the publicly available ABIDE-II project offers a large-
scale, multi-site dataset with rich clinical phenotyping, providing the
necessary statistical power for a robust validation of our method and for
exploring crucial brain-behavior relationships. To assess these potential
alterations, we constructed networks for individuals with ASD and TC
individuals using the ABIDE-II dataset, a large-scale, multi-site repository
that integrates neuroimaging data from diverse international cohorts.

Prior to analysis, we applied the ComBatmethod for harmonization to
minimize the impact of sites38.While a visual inspection of the distributions
before and after harmonization suggests a reduction in site-related variance
(Fig. 7A), we performed a rigorous quantitative analysis to confirm the
complete removal of site effects. Before harmonization, a Type III ANOVA
revealed a highly significant site effect on global mean connectivity (F(12,
623) = 9.65, p < 2.2 × 10−16). At the edge-level, 93.8% of all connections
showed a significant site effect (PFDR < 0:05), with a median effect size
(partial η2) of 0.086. After ComBat harmonization, the site effect was no
longer significant at the global level (F(12, 623) = 0.67, p = 0.783). Critically,
at the edge level, the proportion of connections with a significant site effect
dropped to 0, and the median partial η2 was reduced to 0.002. These
quantitative results confirm that the ComBat procedure effectively and
comprehensively removed site-specific biases from our data.

We first conducted group comparisons, controlling for age, sex, and
meanFDas covariates. Results revealed that individualswithASDexhibited
significantly stronger global mean GWM-HFN connectivity compared to
TC (t ¼ 2:020; p ¼ 0:044). In contrast, no significant differences were
observed in mean GM-GM connectivity between the groups, as illustrated
in Fig. 7B. At the edge level, 310 GWM-HFN connections showed sig-
nificant group differences, all indicating increased connectivity in the ASD
group (Fig. 7C). In comparison, theGM-GMconnectivity network revealed

only 106 significant edges, of which 102 also showed stronger connectivity
inASD.Remarkably, about 80% (83out of 106) of these significantGM-GM
connections overlapped with the GWM-HFN connections (Fig. 7D, E),
underscoring both the heightened sensitivity and the convergent validity of
GWM-HFN in detecting ASD-related alterations. To confirm that these
findings were not solely driven by the younger participants in this wide age-
range cohort, we performed a validation analysis on a subsample of ado-
lescents and adults (age ≥ 16). The spatial pattern of edge-wise group dif-
ferences in this older subsample was highly correlated with that of the full
sample (r = 0.719, p < 2.2 × 10-16; see Supplementary Fig. 3), and over half of
the significant edges from the full analysis were replicated despite the
reduced statistical power. This confirms that the observed hyperconnec-
tivity pattern is a stable feature across adolescence and adulthood.

Subsequently, we compared the proportions of significant connections
to provide an unbiased assessment of within- versus between-network
effects. This analysis revealed that ASD-related abnormalities were not
predominantly between-network, but were instead highly concentrated
within specific functional systems. This patternwasmost pronounced in the
BGN, where the proportion of affected intra-network connections was
dramatically higher than between-network connections for both GWM-
HFN (60.7% vs. 31.1%) and GM-GM networks (46.4% vs. 12.3%). These
findings indicate that ASD-related hyperconnectivity is primarily char-
acterized by a disruption of intra-network integrity, particularly within the
basal ganglia—an effect to which the GWM-HFN framework showed
heightened sensitivity (Fig. 7F).

Finally, we investigated whether the identified significant connections
were associated with the severity of autistic symptoms, as measured by the
Autism Diagnostic Observation Schedule-Generic (ADOS-G). Specifically,
we calculated the correlation between the total ADOS-G score
(ADOS_G_TOTAL) and the mean connectivity strength of the identified
GWM-HFN andGM-GM connections. This association was significant for
the GWM-HFN framework (r =−0.154, p = 0.042) and was notably more
robust for the conventional GM-GM network (r =−0.255, p = 72 × 10-06),
as illustrated in Fig. 7G.

GWM-HFN correlations with cognitive and behavioral measures
The BGSP dataset included a broad array of behavioral and cognitive
measures, enabling exploration of phenotypic correlates of GWM-HFN
connectivity. To investigate these associations, we employed PLS regression
to evaluate whether GWM-HFN connectivity could explain interindividual
differences in four cognitive-behavioral phenotypes: Shipley vocabulary
score,matrix reasoning scores, and estimated IQderived fromboth Shipley-
Hartford T-scores and the OPIE3 formula. A parallel PLS analysis was
conducted using the conventional GM-GM networks as a direct baseline
comparison.

Our analysis focused on the first PLS component (PLS1), which
represents the linear combination of GWM-HFN connectivity features
most strongly associated with the behavioral data. Using permutation
testing with 10,000 permutations, we found that PLS1 scores explained a
significantproportionof variance inboth theShipley-Hartford estimated IQ
(9:09%; Ppermutation ¼ 0:0186, Fig. 8A) and the Shipley vocabulary task
(8:95%; Ppermutation ¼ 0:0229, Fig. 8B). For the benchmark GM-GM ana-
lysis, PLS1 scores showed a significant association only with the Shipley
vocabulary task (13:05%; Ppermutation ¼ 0:0060, Fig. 8C). No significant
associations were found for the matrix reasoning score or IQ estimated
using the OPIE3 formula for either framework. Notably, the GWM-HFN
was unique in identifying a significant link to the Shipley-Hartford esti-
mated IQ, an association that was not detected by the conventional GM-
only analysis.

To identify the most robust connectivity patterns driving these effects,
we examined the standardized PLS1 weights and assessed the stability of all
edge weights using a bootstrap analysis. For subsequent interpretation and
visualization, we focused on high-weight connections (absolute standar-
dized weight ( | z | > 3σ) that were also confirmed to be highly stable
(Bootstrap Ratio |BSR | > 2). For the GWM-HFN framework, the stable,
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high-weight connectivity patterns underlying both the Shipley vocabulary
and the Shipley-Hartford estimated IQ associations were remarkably con-
sistent (Fig. 8D, E). They were characterized by predominantly negative
weights within the DMN and positive weights between the DMN and the
VN, with a high overlap between the contributing edges for both measures
(Jaccard index = 0.62). Intriguingly, the benchmark GM-GM network’s
significant association with vocabulary was driven by the same neurobio-
logical pattern—negative intra-DMN and positive DMN-VN connectivity

(Fig. 8F). A direct comparison revealed that half (5/10) of the high-weight
edges fromthisGM-GManalysiswere also identifiedby theGWM-HFNfor
the vocabulary task, indicating a shared substrate capturedbybothmethods.

To further validate these associations, we applied the brain bias set
(BBS) modeling method39 to predict individual scores in the cognitive
domains identified as significant in the PLS analysis. Briefly, this approach
uses principal component analysis to reduce the dimensionality of the
connectivity data before fitting a linear regression model within a cross-

https://doi.org/10.1038/s42003-025-09231-0 Article

Communications Biology |          (2025) 8:1825 11

www.nature.com/commsbio


validation framework. Results showed that GWM-HFN connectivity sig-
nificantly predicted individual scores in the Shipley vocabulary task
(meanr ¼ 0:0785; Ppermutation ¼ 0:0327, Fig. 8G), while no significant
prediction was found for IQ estimated using the Shipley-Hartford T-scores.
The benchmark GM-GM network also significantly predicted vocabulary
scores (meanr ¼ 0:124;Ppermutation ¼ 0:0017). Finally, we visualized the
connectivity patterns with the highest contributions ( | z | > 3σ) to these
significant predictions for the GWM-HFN and GM-GM frameworks, as
depicted in Fig. 8H, I, respectively.

Discussion
This study introduces and rigorously validates the GWM-HFN, a frame-
work that reliably integratesWMBOLDsignals into functional connectome
analysis. Our multi-dataset validation demonstrates GWM-HFN’s robust
test-retest reliability, distinct topological features, and relevance in capturing
age-related and clinical alterations. Such comprehensive characterization
across reliability, topology, and diverse applications addresses a critical need
in the evolving field of unified GM-WM functional connectomics, where
extensive validation of emergingmodels24,25 is still developing. By providing
a validated means to incorporate WM’s functional contributions, GWM-
HFNdirectly challenges the traditionalGM-centric view inneuroimaging2,7.
Specifically, its GM-centered representation, derived from GM-WM cov-
ariance, overcomes limitations of WM-only approaches13,17 and bipartite
GM-WMmodels that hinder conventional global network analyses due to
absent closed-loop interactions24. GWM-HFN therefore offers a more
holistic and interpretable model of whole-brain functional architecture,
significantly advancing our capacity to map complex neural
communication.

A cornerstone of establishing the GWM-HFN framework’s utility lies
in its methodological viability, particularly its test-retest reliability. Our
analyses yieldedmean edge-wise ICCs of approximately 0.36 for short-term
(BNU-3 dataset) and 0.20 for long-term (SLIM dataset) GWM-HFN con-
nectivity. According to benchmarks such as those proposed by Landis and
Koch40, these ICCs position GWM-HFN reliability in the ‘fair’
(ICC = 0.21–0.40) and ‘slight’ to ‘fair’ (ICC ≈ 0.20) categories, respectively.
These valuesmust be interpreted within the challenging context of rs-fMRI
research, where achieving high test-retest stability for any individual FC
measure is non-trivial due to inherent physiological noise, ongoing
unconstrained cognitive processes, and cross-study analytical variability29,30.

Our comprehensive validation now provides crucial context for these
values through a direct comparison with conventional GM-GM networks.
We found that the ICCs for GWM-HFN, while within the spectrum
reported for many GM-based connectivities29, are significantly lower than
those of the GM-GM network. To understand the implications of this
finding, we adopted a more comprehensive assessment framework31 which
revealed a critical trade-off between raw stability and individual specificity.
While the GM-GM network demonstrated higher raw stability (i.e., higher
ICC and Reliability, μintra), our GWM-HFN framework showed a marked
advantage in its ability to capture individual uniqueness. Thiswas evidenced

by its significantly lower Uniformity (μinter), indicating that GWM-HFN
connectomes are more distinct from one another across the population.
Although the superior stability of the GM-GM network resulted in a sig-
nificantly higher overall Identifiability score, this finding highlights a critical
neurobiological trade-off.

We propose that the superior stability of GM-GM networks is largely
driven by strong, generic signals from primary sensory-motor regions that
are highly consistent bothwithin and across individuals. In contrast, GWM-
HFN, by design, leverages the covariance of interactionprofileswith allWM
bundles, a method that is more sensitive to the subtle and variable—yet
more individually-specific—connectivity patterns of higher-order associa-
tion networks. The assessment of reliability inmethodologies incorporating
WM signals is an area of active development. For instance, Wang et al.
investigated the robustness and reliability of direct WM functional
connectivity41, finding that while static FC in GM networks was stronger
than in WM networks, WM networks exhibited greater dynamism. The
GWM-HFN approach, by deriving connectivity from sharedWM bundles
utilization, possesses distinct reliability characteristics. Our findings suggest
that its strength lies not in maximizing raw signal stability, but in its
enhanced sensitivity to the trait-like, neurobiological variations that dif-
ferentiate individuals.

Furthermore, the pursuit of enhanced reliability underscores the cri-
tical importance of standardized preprocessing pipelines, as highlighted by
the development of specialized toolboxes like WhiFuN11. Therefore, the
reliability profile demonstrated by GWM-HFN is a crucial validation. It
establishes that our framework, while exhibiting lower raw stability than
GM-GMnetworks, successfully captures a rich source of individual-specific
variance.This superior ability to characterize individual differencesprovides
a necessary foundation for employing GWM-HFN in longitudinal studies
and for investigating its potential inbiomarker development,where tracking
unique individual features is paramount10,14,15.

The GWM-HFN framework not only demonstrates reliability but also
unveils a unique topological signature for WM-mediated functional net-
works. These networks inherently possess characteristics of efficient orga-
nization, such as small-worldness, modularity, and hub structures, as
established by our graph-theoretical analyses. More critically, when con-
trasted with conventional GM-GM networks, GWM-HFNs exhibit a dis-
tinct profile: enhanced functional segregation alongside reduced global
integration efficiency. This topological shift is a direct consequence of the
GWM-HFN methodology, which defines GM-GM functional links based
on their shared covariance profiles with WM tracts. Such an approach
naturally groupsGMregions that functionally ‘resonate’with the sameWM
bundles, thereby strengthening intra-modular cohesion and revealing a
functional architecture more explicitly sculpted by the brain’s WM
scaffolding42–44. The resulting increase in modularity and local clustering
suggests that GWM-HFN can delineate functional communities whose
integrity is fundamentally tied to specific WM conduits.

The observed reduction in global efficiency and increased path length
inGWM-HFNs, relative toGM-GMnetworks, likely signifies themulti-step

Fig. 7 | Comparative analysis of GWM-HFN connectivity between ASD and TC
groups. A Boxplot illustrating the global mean GWM-HFN connectivity across 13
acquisition sites before and after harmonization. The red diamond indicates the
mean connectivity within each site, while the gray line represents the overall mean
connectivity across all sites.BRaincloud plot comparing the global-averagedGWM-
HFN and GM-GM connectivity strengths between the ASD and TC groups. C Left
panel: Brain network depicting the significantly different GWM-HFN connections
identified between the ASD and TC groups, with all significant connections showing
greater connectivity in the ASD group (ASD > TC), indicated by red. Right panel:
Brain network illustrating the significantly different GM-GM connections identified
between theASDandTCgroups, with themajority of connections exhibiting greater
connectivity in the ASD group (ASD > TC), indicated by red. Connections showing
decreased connectivity in the ASD group (ASD < TC) are indicated by blue. Line
thickness corresponds to the magnitude of the effect size. D Scatterplot comparing
the p-values of group differences for GWM-HFN and GM-GM functional

connections. The two red dashed lines indicate the threshold for significance after
FDR correction (PFDR < 0:05). Data points are color-coded based on the significance
of the connection: light yellow for connections significant in both the GWM-HFN
and GM-GM analyses, light red for connections significant only in the GWM-HFN
analysis, and light blue for connections significant only in the GM-GM analysis.
E Brain connectivity map visualizing connections that were significant only in the
GWM-HFN analysis, significant only in the GM-GM analysis, and significant in
both analyses. F Bar plots quantifying the distribution of significant edges from the
ASD versus TC group comparison, comparing the number of altered within-
network and between-network connections for both the GWM-HFN and GM-GM
frameworks. G Scatterplot showing the significant negative Pearson correlation
between the mean connectivity strength of the altered edges and the ADOS-G total
scores for both the GWM-HFN and GM-GM frameworks. The red line depicts the
fitted linear regression, and the shaded region represents the 95% confidence interval
of the linear fit. n = 368 TC and n = 272 ASD biologically independent participants.
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nature of WM-mediated communication (GWM-HFN paths) versus
potentially more direct GM-GM BOLD synchrony. This implies that while
WM bundles facilitate specific and organized communication, the overall
information transfer across the entire GWM-HFNmight appear less direct
or rapid when primarily channeled through these anatomically constrained
routes24,25. This trade-off results in a modified small-world architecture,
potentially favoring specialized processing within modules at the cost of
global broadcasting efficiency.

Furthermore, the GWM-HFN framework reshapes the functional
importance of nodes; our direct comparison revealed that while both fra-
meworks identify a core set of shared hubs in regions like the middle
temporal gyrus, GWM-HFN uniquely identified hubs in higher-order
association areas (e.g., inferior frontal orbital gyrus) that were not promi-
nent in the GM-GM network. Conversely, the conventional method

highlightedhubs primarily in sensory and attention networks. This suggests
that the elevated betweenness centrality of certain GWM-HFN hubsmakes
them critical control points for inter-modular communication specifically
within thisWM-mediated system, distinct fromhubs identified inGM-GM
networks that may simply reflect high overall synchrony. Thus, the topo-
logical characteristics of GWM-HFN provide a more mechanistic view of
functional organization, emphasizing how WM bundles structure and
constrain neural communication.

While the GWM-HFN framework introduces a distinct perspective by
incorporating WM signals, its relationship with traditional GM-GM func-
tional connectivity provides crucial context. Our findings indicate a con-
siderable overlap (mean edge-level r ≈ 0.77, SLIM dataset), affirming that
GWM-HFN captures fundamental patterns of synchronous neural activity.
However, the more than 40% of unique variance captured by GWM-HFN

Fig. 8 | Association between GWM-HFN connectivity and Behavior and Cog-
nition measures. A–C Scatterplots illustrating the significant correlations between
PLS1 scores and cognitive measures. A Correlation between GWM-HFN
PLS1 scores and the estimated IQ derived from Shipley-Hartford Age-Corrected
T-Scores. B Correlation between GWM-HFN PLS1 scores and the Shipley voca-
bulary task scores. C Correlation between the benchmark GM-GM PLS1 scores and
the Shipley vocabulary task scores. The color of the data points in the scatterplots
indicates the density of overlapping points, with warmer colors representing higher
density. D–F Brain visualizations of the stable, high-weight connectivity patterns
driving the significant PLS associations shown inA–C, respectively. Edges displayed

are those with absolute standardized PLS1weights exceeding 3σ and confirmed to be
stable via bootstrap analysis. G Density plots of 10,000 permutation tests for the
correlation coefficient (r) between connectome data and Shipley vocabulary task
scores using the BBS modeling method. The results demonstrate significant
individual-level prediction for both the GWM-HFN (left panel) and GM-GM (right
panel) frameworks. Circos plots visualizing the key connectivity patterns with the
highest contributions ( | z | > 3σ) to the significant BBS predictions for the GWM-
HFN (H) andGM-GM(I) vocabularymodels. Positive weights are shown in red, and
negative weights are in blue. n = 1564 biologically independent participants from the
BGSP dataset.
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underscores its capacity to reveal aspects of functional organization not
apparent in GM-only analyses. This is particularly evident in the divergent
similarity patterns between the two frameworks across network sparsity
thresholds. TheU-shaped similarity for intra-network connections suggests
that while both methods capture the strongest ‘core’ links, they diverge on
moderately-strong connections. In contrast, the progressive increase in
inter-network similarity suggests that the frameworks converge on cap-
turing broader patterns of inter-system communication after initially dif-
fering on the most specific long-range links. This highlights GWM-HFN’s
unique sensitivity to specificWM-mediated pathways, particularly at sparse
network densities.

A key contribution of GWM-HFN lies in its ability to capture distinct
patterns of inter-individual variability. Our initial analyses suggested
heightened variability inGWM-HFN, particularly in connections involving
the basal ganglia and limbic system. However, a more rigorous variance
decomposition analysis, which corrected for session-to-session measure-
ment noise, revealed a more nuanced picture34. After accounting for noise,
the overallmagnitude of “true” inter-subject variability was not significantly
different between the GWM-HFN and GM-GM frameworks. Critically,
though, the spatial topographies of this true variability were largely distinct.
GWM-HFN’s high-variability nodes were concentrated in the DMN and
SMN, whereas the GM-GM framework’s variability was highest in higher-
order association systems like the AN and FPN. This finding strongly
suggests that the unique variance captured by GWM-HFN is not simply
attributable to higher noise but rather taps into a genuine and spatially
distinct source of biological differences related to individuals’ WM-
mediated communication profiles45–47. Such sensitivity is paramount for
fields like developmental neuroscience and clinical research, where under-
standing individual trajectories and susceptibility is key48.

These differences in captured variance and sensitivity to individual
differencesare also reflected in thedistinctnetwork topologyofGWM-HFN
compared to GM-GMnetworks, as detailed previously (enhancedmodular
segregation and reduced global integration efficiency). Such topological
distinctions are a natural consequence of a network model that explicitly
accounts for WM-mediated interactions, aligning with emerging perspec-
tives that WM signals actively contribute to the organization and potential
‘rewiring’ofGMfunctional communities26. Thus,GWM-HFNprovides not
just a similar picture to GM-GM networks but a complementary one,
enriched by the functional information carried by WM functional con-
nectivity profiles and offering amore nuanced understanding of brain-wide
communication.

Applying the GWM-HFN framework across the adult lifespan (SALD
dataset) revealed significant age-related dynamics, predominantly char-
acterized by a linear decline in global mean connectivity strength. This
overarching negative trajectory aligns well with the established literature
documenting widespread age-related degradation in both structural WM
integrity49,50 and conventionalGM functional connectivity5. It also resonates
with findings from related WM-GM network models, such as the reduced
global efficiency observed with increasing age in bipartite WM-GM
networks24. This contrasts with the benchmark GM-GM analysis, which
revealed an inverted U-shaped global trajectory, suggesting that WM-
mediated connectivity may follow amore direct path of age-related decline.

Beyond this global trend, GWM-HFN demonstrated sensitivity to
more complex, edge-specific age trajectories. While the majority of affected
connections exhibited linear decreases, reinforcing the theme of age-related
weakening, a notable subset displayed inverted U-shaped quadratic pat-
terns, despite the global quadratic term being non-significant. These con-
nections typically peaked in early adulthood (mean peak age ~34 years)
before declining. The complexity of WM age-related changes is further
highlighted by recent studies that reported both U-shaped patterns in static
WM network connectivity strength and inverted U-shapes in the temporal
variability of WM-GM connectivity across the adult lifespan22. This non-
linear pattern is particularly compelling, as this peak age roughly coincides
with the culmination of protracted maturation processes for certain cog-
nitive functions and for WM microstructural properties, such as

myelination51. The GWM-HFNmay thus be capturing a critical window of
maximal efficiency in WM-mediated functional communication during
early to middle adulthood, followed by senescence potentially linked to the
known microstructural deterioration of WM pathways later in life50. This
finding supports the notion that certain localized functional systems
undergo distinct developmental trajectories, a critical neurodevelopmental
process that is obscured by global-level metrics.

Intriguingly, our findings (SALD dataset) also indicated that GWM-
HFN and traditional GM-GM connectivity patterns become significantly
more similar with advancing age52. This convergence could reflect several
underlying processes.One possibility is age-related neural dedifferentiation,
where diminished functional specialization of brain networks53,54 blurs the
distinctions between connectivity reflectingdirectGMsynchrony andWM-
mediated interactions, perhaps due to reduced specificity of WM-guided
pathways or compensatory, more diffuse brain activity55. Alternatively, a
‘shared vulnerability’ scenario might explain this convergence, whereby
common aging mechanisms like vascular or metabolic decline, and diffuse
microstructural wear in both GM and WM24,49,50, could globally degrade
both direct GM coupling and WM-pathway integrity, causing their func-
tional signatures to appear more alike. Disentangling these potential con-
tributors requires further research, but theGWM-HFN’s capacity to capture
this age-related shift in network relationships, alongside broader linear
declines and nuanced non-linear trajectories, highlights its value in com-
prehensively studying age-related functional brain changes and the evolving
role of WM-mediated communication.

This observed GWM-HFN functional hyperconnectivity likely relates
to the atypical WM neurodevelopment and microstructure frequently
reported in ASD56,57. While diffusion MRI studies often indicate reduced
microstructural integrity (e.g., lower FA) across widespread WM tracts58,59,
andmorphometric analyses showheterogeneity butpotential aggregationof
volume reductions in common pathways60, the relationship between these
structural characteristics and functional connectivity is intricate. The
functional hyperconnectivity captured by GWM-HFN might signify com-
pensatorymechanisms attempting to overcome less efficient signaling along
structurally atypical pathways, or perhaps reflect altered excitatory/inhibi-
tory balances specific toWM-mediated communication routes. The validity
of these findings is strengthened by two key observations. First, these
hyperconnectivity patterns show high convergence with those identified by
conventional GM-GM methods, indicating that GWM-HFN captures a
core, recognized aspect of ASD pathophysiology. Second, our validation
analysis on an adolescent and adult subsample confirmed that this hyper-
connectivity pattern is a stable feature across development and not merely
an effect driven by younger participants. This demonstrates the robustness
of the GWM-HFN framework and its ability to capture core, age-invariant
biological signatures of the disorder, even within a highly heterogeneous
cohort. The additional alterations uniquely detected by GWM-HFN can
thus be interpreted as complementary insights into the WM-mediated
aspects of the condition. The prominent involvement of BGN connections
in ourGWM-HFNfindings alignswith reports of altered structural network
topology involving the BGN even in preschool ASD61, hinting at early
developmental atypicalities in cortico-striatal circuits relevant to ASD
symptomatology62,63.

Crucially, the clinical relevance of these GWM-HFN alterations was
substantiated by a significant negative correlation between the mean
hyperconnectivity strength and total ADOS-G scores. While seemingly
counterintuitive, this complex relationship (greater GWM-HFN hyper-
connectivity associating with less severe symptoms)may reflect a successful
compensatory mechanism rather than a primary pathological feature.
Given the well-documented structural WM deficits in ASD58,59, this
increased functional coupling could represent an adaptive neural response
to overcomeunderlying inefficiencies. In this context, individualswithmore
severe symptoms may be those who fail to mount this compensatory
response, a possibility consistent with the profound heterogeneity of the
disorder60. Further research is needed to explore this connection across
different symptom domains and developmental stages59.
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While our current study focused on ASD, the established vulnerability
of WM pathways across a range of psychiatric disorders45 suggests that
sensitive functional probes like GWM-HFN could be valuable more
broadly. For ASD specifically, GWM-HFN’s ability to detect robust func-
tional alterations potentially missed by GM-GM analysis, coupled with its
association with clinical severity, highlights its promise for complementing
structural MRI and advancing our understanding of WM network dys-
function in this complex condition.

The functional significance ofGWM-HFNwas further underscored by
its ability to explain interindividual variance in cognitive performance
within the BGSP dataset. Initial PLS regression analyses revealed that
GWM-HFNconnectivity patternswere significantly associatedwithShipley
vocabulary scores and Shipley-Hartford estimated IQ. In a direct bench-
mark comparison, the conventional GM-GM network also showed a sig-
nificant association with vocabulary but failed to detect a link to estimated
IQ, highlighting the unique sensitivity of our WM-informed framework.

For the GWM-HFN framework, the stable, high-weight connectivity
patterns underlying both associations were remarkably consistent. They
were characterized bypredominantly negativeweightswithin theDMNand
positiveweights between theDMNand theVN,with ahighoverlap between
the contributing edges for both measures (Jaccard index = 0.62)64–66. Intri-
guingly, the benchmark GM-GM network’s significant association with
vocabularywas driven by the same neurobiological pattern—negative intra-
DMN and positive DMN-VN connectivity. This indicates that both
methods capture a shared, fundamental substrate for language-related
cognition, while GWM-HFN provides additional sensitivity to broader
cognitive functions like IQ.

To more rigorously test these brain-behavior relationships at an
individual level, we employed the BBS modeling method, an approach
designed to assess the predictive capacity of connectomic features for
individual phenotypes39. Our application of BBSmodeling provided crucial
nuanced validation: GWM-HFN connectivity significantly predicted indi-
vidual Shipley vocabulary scores, identifying specific edge contributions.
This robust individual-level prediction for vocabulary, surviving cross-
validation, strongly suggests that certain WM-mediated functional path-
ways captured by GWM-HFN are indeed tightly linked to this specific
cognitive skill.

Interestingly, while the initial PLS analysis indicated an association
with Shipley-Hartford estimated IQ, this did not translate into significant
individual-level prediction under the BBS framework. This divergence is
informative. PLS identifies broad patterns of covariance at the group level,
whereas BBS provides a stricter test of individualized predictive utility. The
lack of significant IQ prediction via BBS could suggest that either the true
effect size for this particular IQ measure, while detectable by PLS, is insuf-
ficient for robust individual predictionwith the currentGWM-HFN feature
set, or that the relationship between GWM-HFN connectivity and this IQ
estimate ismore complex andperhaps less directly linear than that observed
for vocabulary. Sripada et al. themselves discuss how resting-state con-
nectomes contribute to inter-individual variation39; it’s plausible that
GWM-HFN features relevant to IQ are more diffusely represented or
interact in a manner not fully captured by the specific BBS implementation
used. Nevertheless, the successful individual prediction of vocabulary scores
via GWM-HFN strongly indicates that this framework captures behavio-
rally relevant variance tied to specific WM-mediated communication
pathways, highlighting its potential beyond group-level associations and
underscoring thatWM functional signals, as integrated byGWM-HFN, are
indeed meaningfully related to cognitive function.

Several limitations should be acknowledged when interpreting these
findings. First, while we utilized longitudinal data for reliability assessment,
the age-related and clinical analyses were primarily cross-sectional, pre-
cluding definitive inferences about developmental trajectories or causal
relationships between network changes and clinical status. Future long-
itudinal studies employing GWM-HFN are warranted. Second, the BOLD
signal in WM is inherently weaker and potentially more susceptible to
physiological noise and partial volume effects than in GM. Although

rigorous preprocessing steps, including WM-specific smoothing and nui-
sance regression strategies, were implemented, residual influences cannot be
entirely excluded11. Continued methodological refinement for optimizing
WM signal extraction and denoising remains important10. Third, our ana-
lysis focused on static functional connectivity. Exploring the dynamic
fluctuationsofGWM-HFNconnectivity and its interplaywithdynamicGM
connectivity could offer further insights into how WM shapes transient
neural coordination22. Finally, several methodological choices should be
noted. Our use of anatomically-defined atlases (AAL, JHU-ICBM 48)
represents a key methodological choice67. While this approach was delib-
erately chosen to ensure robustness and comparability across our several
diverse datasets, we acknowledge that modern, functionally-defined par-
cellations, such as the Schaefer atlas68, may better align with the brain’s
intrinsic functional organization. To address this, we performed a targeted
validation analysis using the Schaefer-100 atlas, which confirmed that the
fundamental topological properties of the GWM-HFN are robust to the
choice of parcellation (see Supplementary Fig. S4). Nevertheless, a full
replication of all our findings—including the lifespan, clinical, and cognitive
analyses—using different parcellation schemes is an important avenue for
future investigation. Furthermore, the GWM-HFN construction itself
represents one specific approach to integrating heterogeneous signals.
While our study provides a comprehensive benchmark against the tradi-
tional GM-only approach, a direct quantitative comparison with other
emerging GM-WM network construction methods was not performed24,25.
Establishing a fair comparison is complicatedby the fundamentally different
outputs of these alternative frameworks (e.g., directed graphs from bipartite
projections, or three-dimensional tensors from three-way correlations) and
remains a critical direction for future research. Similarly, we did not directly
compare theGWM-HFNwith structural connectivitymetrics derived from
diffusion MRI. Investigating the relationship between WM-mediated
functional connectivity and the underlying anatomical connectome, to
quantify the unique variance captured by each modality, remains a critical
direction for future research.

In conclusion, this study introduces and comprehensively validates the
GWM-HFN as a reliable and neurobiologically insightful approach that
transcends the traditional GM-centric view by explicitly integrating WM
functional signals. Our findings robustly demonstrate that GWM-HFN not
only captures a distinct topological organization reflecting WM-mediated
interactions42,44 but also exhibits a unique ability to resolve the unique,
individual-specific connectivity patterns that differentiate individuals,
alongside significant relevance to lifespan changes, clinical conditions like
ASD, and cognitive performance. By providing a validated lens on WM-
mediated functional communication, the GWM-HFN framework offers a
robust approach to better integrate the brain’s gray and white matter
functional signals, thereby providing a more comprehensive model of
whole-brain functional architecture. It thereby encourages a more holistic
understanding of brain-wide communication, paving the way for refined
investigations into the integral role of white matter in shaping the human
connectome in both health and disease.

Methods and materials
Datasets
To comprehensively evaluate the constructed GWM-HFN, we employed
several independent datasets and conducted a systematic investigation from
multiple perspectives. These analyses aimed to assess the networks’ test-
retest reliability, elucidate their organizational principles, compare them
with traditional GM-GM networks, and examine their associations with
aging trajectories, clinical relevance, andbehavioral and cognitive correlates.

Specifically, the Southwest University Longitudinal Imaging Multi-
modal dataset (https://doi.org/10.15387/fcp_indi.retro.slim) was employed
to investigate long-term TRT reliability and network topology, while the
Beijing Normal University dataset (https://doi.org/10.15387/fcp_indi.corr.
bnu3) was used to assess short-term TRT reliability. The Southwest Uni-
versity Adult Lifespan dataset (https://fcon_1000.projects.nitrc.org/indi/
retro/sald.html were utilized to examine age-related trajectories in GWM-
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HFN. The Autism Brain Imaging Data Exchange II project (https://
fcon_1000.projects.nitrc.org/indi/abide/abide_II.html) was analyzed to
assess the clinical relevance of these networks. The Brain Genomics
Superstruct Project dataset (https://www.neuroinfo.org/gsp/) was used to
examine Behavioral andCognitiveCorrelates ofGWM-HFN. For a detailed
description of these datasets, please refer to the Supplementary information
(see “Study Datasets” section). Supplementary Table 3 provides a summary
of the demographic details for each dataset.

This study was approved by the Ethics Committee of the Guangdong
University of Foreign Studies. Informed consent was obtained from all
individual participants included in the study. All ethical regulations relevant
to human research participants were followed.

Neuroimaging preprocessing
Functional MRI images in all the datasets underwent the same analytical
pipeline to construct GWM-HFN unless stated otherwise. All acquired
images were subjected to preprocessing using a combination of the SPM12
toolbox (http://www.fil.ion.ucl.ac.uk/spm/software/spm12), DPARSF
toolboxes.

Firstly, the individual T1 images were segmented into WM, GM, and
cerebrospinal fluid using SPM12’s New Segment algorithm and then nor-
malized to the Montreal Neurological Institute (MNI) template. The rs-
fMRI were removed the initial several time points, corrected for slice timing
and head motion effects, and co-registered with the anatomical image.
Subsequently, 24 motion-related parameters, the mean CSF signal and
motion spikes were regressed out. Consistent with recommendations for
studies investigating whitematter function, global signal regression was not
performed, as this procedure could artificially remove or distort the
meaningful WM BOLD signals that are central to our analytical
framework10. The data were detrended and temporally filtered with a
passband frequency of 0.01–0.15 Hz. Then, spatial smoothing was per-
formed separately in theWM andGMusing a kernel with 4mm full-width
half-maximum (FWHM). Finally, the processed imageswere normalized to
the standard MNI template and resampled to 3mm³ voxels.

A manual quality control procedure was performed after preproces-
sing. The following criteria were used to assess data quality: (1) successful
generation of all preprocessed results, (2) mean framewise displacement
(FD)below0.2mm, and (3) visual inspection confirming satisfactory spatial
normalization.

Construction of GWM-HFN functional connectome
As depicted in Fig. 1, using the widely recognized AAL and JHU-ICBM 48
atlases, time series were extracted from 90 cortical GM regions (denoted as
gi; i ¼ 1; 2; :::; 90) and 48WM fiber bundles (denoted as
wj; j ¼ 1; 2; :::; 48), derived from preprocessed functional imaging data. A
90 × 48GM-WMfunctional correlationmatrixwas computed, representing
the interaction between GM regions and WM tracts. In graph-theoretical
terms, this GM-WM correlation matrix forms a bipartite graph
G ¼ fG;W; E;Bg, consisting of twodistinct sets of nodes (gi 2 G;wj 2 W)
where edges only connect nodes from different groups (with E representing
the set of edges and B representing the edge weights). The lack of within-
group connections (i.e., no WM-WM or GM-GM links) results in the
absence of closed triangular paths, which complicates the evaluation of
important network properties such as global efficiency23. To overcome this
limitation, we propose a method that projects the original bipartite GM-
WMnetwork into a weighted unipartite network where only GMnodes are
explicit, and WM nodes are implicit—referred to as the GWM-HFN.

Specifically, for each participant, the GM-WM correlation matrix

(denoted as B ¼ bij
� �

90 × 48
) is a 90 × 48 matrix where each row represents

the functional connectivity of a GM region with multiple WM regions. To
account for variability in connectivity strength and ensure comparability
across different GM regions, we applied row-wise Z-score normalization to
B, to normalize for overall connectivity strength differences across GM
regions, yielding a normalized matrix Z. This normalization is grounded in

the biological principle that GM regions exhibit different levels of overall
connectivity. By standardizing these values, the analysis emphasizes how
each region interacts relative to its own connectivity profile, offering a
clearer representation of the brain’s functional organization. Next, we
computed the covariance matrix C of Z′ to represent the functional con-
nectivity between GM regions mediated by WM bundles. Each element of

the resulting 90×90 matrix C ¼ cij
� �

90 × 90
¼ Z � Z0 quantifies the com-

munication strength between cortical region i and cortical region j via
shared WM connections. Thus, C serves as a GM FC matrix mediated by
WM, also known as the GWM-HFN FC. This approach highlights the
relative FC between GM regions, allowing for the detection of subtle
interactions while accounting for variations in connectivity magnitude. It
facilitates deeper insights into network properties and the investigation of
clinically relevant connectivity changes.

Multi-level test-retest reliability analysis (BNU-3 and SLIM
datasets)
To evaluate the reliability of GWM-HFN FC, both short-term and long-
term TRT reliability were assessed using the SLIM and BNU-3 datasets,
respectively. To provide a comprehensive benchmark against conventional
methods, all reliability analyses described below were performed in parallel
for both the GWM-HFN and a standard GM-GM functional connectome.

First, we assessed the stability of the overall connectivity patterns. At
the group level, we calculated the Pearson correlation between the group-
averaged connectivitymatrices from different time points. At the individual
level, for each participant, we computed the Pearson correlation coefficients
between their vectorized connectivity matrices from different time points
and then averaged these coefficients across the group. This analysis
addresses the discrepancy between group-level stability and individual-level
consistency.

Furthermore, to quantify the reliability of individual connections, we
utilized the intraclass correlation coefficient. A two-way random-effects
model for single-measure agreement, ICC(2, 1), was employed, accounting
for both individual variability and measurement consistency across time.
Formally, for each edge in the GWM-HFN, the ICC was calculated as:

ICCð2; 1Þ ¼ MSb �MSr
MSb þ ðk� 1ÞMSr þ kðMSe �MSrÞ=n

ð1Þ

where MSb is the mean square between subjects, MSr is the mean square
betweenmeasurements (time points),MSe is themean square error, k is the
number of scans per subject (2 for SLIM dataset and 3 for BNU-3), and n is
the number of subjects. The resulting distributions of edge-wise ICC values
for the GWM-HFN and GM-GM networks were then statistically
compared using a paired t-test.

Finally, to provide a more comprehensive assessment of individual-
level stability and uniqueness, as suggested by recent literature31, we
implemented a connectome identifiability framework. This analysis yields
three keymetrics: (1) Reliability (μintra): Definedas themean similarity of an
individual’s connectomewith their ownconnectomeacross two timepoints.
This was calculated by taking the mean of the diagonal elements of the
subject-by-subject similaritymatrix (Session 1 vs. Session 2). (2)Uniformity
(μinter): Defined as the mean similarity of an individual’s connectome with
the connectomes of all other individuals. This was calculated by taking the
mean of the off-diagonal elements of the similaritymatrix. (3) Identifiability
Score: Defined as the effect size of the difference between the intra- and
inter-individual similarity distributions, calculated as:
Identifiability = (μintra−μinter)/spooled, where spooled is the pooled standard
deviation of the two distributions. These three metrics were calculated for
both GWM-HFN and GM-GM networks. The Reliability and Uniformity
scores were compared betweenmethods using paired t-tests. The statistical
significance of the difference in Identifiability scores was assessed using a
bootstrap procedure (10,000 iterations).

https://doi.org/10.1038/s42003-025-09231-0 Article

Communications Biology |          (2025) 8:1825 16

https://www.neuroinfo.org/gsp/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://rfmri.org/DPARSF
www.nature.com/commsbio


Topological analysis of GWM-HFN (SLIM dataset)
Before analyzing the topological properties of the GWM-HFN, a sparsity-
based thresholding procedurewas applied to convert theweighted networks
into binary representations. Sparsity is defined as the ratio of actual edges to
the maximum possible edges in the network. By applying subject-specific
thresholds, this procedure ensures a consistent number of edges across
participants and sessions under different analytical approaches. Given the
absence of a definitive sparsity standard, we adopted a range of [0.10, 0.34]
with an interval of 0.01, following the default settings in DPABINet69. This
specific range was chosen because it ensures that the resulting networks are
both sparse enough to minimize spurious connections and sufficiently
dense to maintain full network connectivity, allowing for the stable esti-
mation of small-world properties70,71. Subsequently, various graph-based
network measures, including small-world properties, modularity, and
degree,were calculatedusing theDPABINet toolbox.Detailed formulas and
interpretations of these measures are available in the relevant literature72.
For this analysis, we utilized the SLIM time1 dataset.

Firstly, to determine whether the GWM-HFN exhibits small-world
properties, commonly observed in brain networks, we calculated key small-
world metrics such as the clustering coefficient and characteristic path
length for each subject’s connectivity network. These global measures were
normalized by comparing them to themeanvalues of 100 randomly rewired
networks generated using the degree-preserving rewiring algorithm
implemented in the Brain Connectivity Toolbox within DPABINet. This
algorithm randomizes the network’s topology by iteratively swapping pairs
of edges while precisely preserving the number of nodes, edges, and, cru-
cially, the degree distribution of the original network. This ensures that the
null models serve as a rigorous benchmark, differing only in their topolo-
gical organization, not in their basic degree structure. The observed clus-
tering coefficient (Cp) and characteristic path length (Lp) of the actual
network were then normalized by dividing them by the mean Cp,rand and
Lp,rand from the 100 corresponding random networks. This yields the
normalized metrics gamma (γ =Cp/Cp,rand) and lambda (λ = Lp/Lp,rand). A
network is considered to exhibit small-world properties if it meets the cri-
teria of γ > 1 and λ ≈ 1, indicating that it is significantlymore clustered than
a random network but has a similarly efficient path length.

We also calculated the modularity coefficient Q, which quantifies the
degree to which a network can be divided into distinct modules or com-
munities. The Q value is between 0 ~ 1 and the real network modularity
function value is generally between 0.3 and 0.773.Higher values ofQ indicate
a more pronounced modular structure, suggesting that the network is
composed of tightly connected clusters with relatively sparse connections
between them.

To investigate the roles of individual nodes in GWM-HFN, we cal-
culated the nodal degree for GWM-HFN across a range of sparsity
thresholds. In the context of brain networks, degree distributions often
follow power-law-like distributions, suggesting a scale-free organization74.
Therefore, after averaging the nodal degree across participants and sparsity
levels, we applied different models (power law, exponential, and exponen-
tially truncated power law) to fit the degree distribution of the GWM-HFN.
Regions with average nodal degrees in the top 15% were classified as hubs.

Comparison ofGWM-HFN andGM-GMnetworks (SLIMDataset)
The GM-GM network captures direct functional interactions between GM
regions,whereas theGWM-HFN incorporatesWMfunctional connectivity
profiles, thereby representing a more complex and indirect connectivity
structure. It is crucial to determine whether the GWM-HFN provides
unique information that offers additional value beyond the GM-GM net-
work. To this end, we conducted a series of analyses across multiple
dimensions, including edge-level correlations, population variability, and
network organization, highlighting their similarities and differences.

We first evaluated the similarities between the two networks through
Pearson correlation analyses at three levels: edge, network, and global.At the
edge level, Pearson correlation coefficients were calculated for each con-
nection, comparing the connectivity values derived from GWM-HFN and

GM-GM networks. At the network level, we computed the average intra-
network and inter-network connectivity strengths across seven functional
subnetworks for bothmethods and analyzed their correlation. Finally, at the
global level, themean connectivity values across all edgeswere calculated for
each participant, and the correlation coefficients across participants were
determined to assess the overall consistency between the two approaches.

To quantitatively compare the spatial topographies of inter-individual
variability between the GWM-HFN and GM-GM frameworks, we imple-
mented the variance decomposition method developed by Mueller et al.34.
This method was applied to our test-retest SLIM dataset to distinguish
“true” biological inter-subject variability from session-to-session measure-
ment noise (i.e., intra-subject variability). The model posits that the
observed between-subject variability in a given brain node (Y) is a linear
combination of the true, underlying inter-subject variability (X) and the
intra-subject variability, or noise (N). By estimating Y and N directly from
the test-retest data for each of the 90 brain nodeswithin each framework, we
could derive a residual measure of the true inter-subject variability (X) that
has been statistically corrected for measurement noise.

Following this decomposition, we conducted three statistical analyses
to compare the properties of the true variability maps between the two
frameworks: (1) Magnitude Comparison: To test whether the overall
magnitude of true inter-individual variability differed between the frame-
works, we performed a paired comparison on the 90 node-wise variability
values using a non-parametric Wilcoxon signed-rank test. (2) Spatial
Similarity Assessment: To quantify the degree of similarity in the spatial
patterns of variability, we calculated the Pearson correlation coefficient
between the 90-node true variability maps derived from the GWM-HFN
andGM-GMframeworks.A95%confidence interval for the correlationwas
also estimated. (3) Topographical Overlap Analysis: To further investigate
the divergence in the spatial distribution of high-variability regions, we first
identified the set of nodes constituting the top 20%most variable regions for
each framework separately. We then computed the Jaccard index to
quantify the spatial overlap between these two sets of high-variability nodes.

Lastly, we explored the differences in network organization between
the twomethods. The Jaccard indexwas employed tomeasure the structural
similarity between GWM-HFN and GM-GM FC networks for each parti-
cipant across a range of sparsity thresholds (0.01–0.50, with a step size of
0.01).Additionally,we computedglobal and local graph-theoreticalmetrics,
including multiple global and local indices, using the DPABINet toolbox69.
Network comparisons were primarily based on paired t-tests performed on
the AUCderived from the 0.10–0.34 sparsity range. Thesemetrics provided
a detailed comparison of the topological features of the two networks,
revealing unique organizational properties attributable to the inclusion of
WM functional connectivity profiles in the GWM-HFN.

Age-related patterns of GWN-FHN (SALD Dataset)
To investigate age-related patterns and understand how the GWM-HFN
evolves over time,we employed linearmodels to analyze the trajectory of the
GWM-HFN throughout adulthood using the SALD dataset. To compre-
hensively evaluate the unique characteristics of GWM-HFN, we bench-
marked our findings against a parallel analysis of traditional GM-GM
functional connectivity. The models considered both linear (in Eq. (1)) and
quadratic terms (in Eq. (2)) to capture potential non-linear relationships as
shown in the following formula, including sex and head motion (measured
by mean FD) as covariables,

y ¼ βlin0 þ βlin1 ×Ageþ βlin2 × Sex þ βlin3 ×meanFDþ ε ð2Þ

y ¼ βqua0 þ βqua1 ×Ageþ βqua2 ×Age2 þ βqua3 × Sexþ βqua4 ×meanFDþ ε

ð3Þ
in which dependent variable is GWM-HFN connectivity strength. The
model selection was based on the best description of the trajectory of these
measures throughout adulthood, determined by the Akaike Information
Criterion (AIC). The significance tests of βlin1 or βqua2 were conducted by
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t-tests. In the results section, we reported standardized coefficients of βlin1 or
βqua2 for the best-fit model. Additionally, for models exhibiting a significant
quadratic effect of age, the peak age was calculated using the formula for the
axis of symmetry in a quadratic function:

Agepeak ¼ � βqua1

2βqua2

ð4Þ

Clinical correlates of GWM-HFN (ABIDE-II Datasets)
To evaluate the clinical relevance of theGWM-HFN framework, we utilized
the ABIDE-II dataset, comparing individuals with ASD against TC. Given
the multi-site nature of ABIDE-II, we first applied a harmonization pro-
cedure to mitigate potential site-related biases. Specifically, the ComBat
algorithm38, implemented via the neuroCombat R package (https://github.
com/Jfortin1/neuroCombat_Rpackage/), was used to harmonize the raw
GM-WM FC values across acquisition sites before constructing the final
GWM-HFN matrices for each participant. ComBat is an empirical Bayes
method that adjusts for such ‘batch effects’ bymodeling and removing site-
specific shifts in both the data’s mean (additive effects) and variance
(multiplicative effects). Crucially, by including age, sex, and mean FD as
biological covariates in themodel, ComBat preserves the variance associated
with these variables of interest while harmonizing the data across sites. This
technique effectively corrected for potential biases in GWM-HFN con-
nectivity. To rigorously confirm the efficacy of the ComBat harmonization,
we conducted a comprehensive quantitative validation. We assessed site
effects both before and after harmonization using two approaches: (1) A
Type III ANOVA was performed on the global mean connectivity (mean
Fisher’s z-transformed correlation)with site as a factor,while controlling for
age, sex, mean FD, and diagnosis. (2) At the edge level, we employed nested
linear models to calculate the proportion of connections showing a sig-
nificant site effect (PFDR < 0:05) and to quantify themedian effect size of the
site variable using partial eta-squared (η2).

Subsequent group comparisons between ASD and TC participants
were conducted on the harmonized GWM-HFN data. First, we compared
the global mean connectivity strength between the two groups using a two-
sample t-test, including age, sex, and mean FD as covariates. Second, edge-
wise group differences were assessed using two-sample t-tests for each
connectionwithin theGWM-HFN, again accounting for age, sex, andmean
FD. Significance levels for edge-wise comparisons were determined after
applying FDR correction for multiple comparisons across all edges. The
anatomical distribution of significantly altered connections was summar-
ized by quantifying their membership within seven established functional
subnetworks. To benchmark the sensitivity of GWM-HFN against con-
ventional methods, the identical analysis pipeline—including global mean
comparison, edge-wise t-tests with covariate control and FDR correction,
and network distribution summary—was repeated using traditional GM-
GM functional connectivity networks derived from the same participants.

Finally, we investigated the relationship between GWM-HFN con-
nectivity alterations and clinical symptom severity in the ASD group. Spe-
cifically, we calculated the Spearman rank correlation between the mean
connectivity strength of the GWM-HFN edges showing significant group
differences and the participants’ total scores on the ADOS_G_TOTAL.

Behavioral and cognitive correlates of GWM-HFN (BGSP
Dataset)
The BGSP dataset included a broad range of behavioral and cognitive
measures, which allowed examining phenotypic correlates of GWM-HFN.
To provide a direct benchmark, a parallel analysis was conducted on con-
ventional GM-GM networks. Specifically, we used the PLS regression to
examine the ability of each connectome to explain interindividual variance
in 4 behavioral and cognitive phenotypes, including shipley vocabulary
score, matrix reasoning scores, shipley and matrix reasoning estimated IQ.
In the PLS regression model, the response variable was behavioral and
cognitive data for a certain domain and the predictor variableswere all edges

in the respective connectome. Only the first component of the PLS model
(i.e., PLS1)was examined,whichwas the linear combinationofGWM-HFN
connections that exhibited the strongest correlationwith the behavioral and
cognitive data. Significance levels of the correlations were estimated by
randomly shuffling the behavioral and cognitive data among participants
(10,000 times). For each significant correlation, the contribution of a
given edge was defined as its weight to form the PLS1. Furthermore, to
ensure the robustness of these findings, we employed a bootstrap
procedure (with 10,000 resamples) toassess the statistical stability of thePLS
feature weights.

Formeasures that showed significant associations in the precedingPLS
analyses, we further employed the BBS modeling method39 to evaluate the
predictive capacity of both the GWM-HFN and the conventional GM-GM
networks for individual scores. The same analytical pipeline was applied
independently to each network type. First, principal component analysis
was used for dimensionality reduction by retaining components that
explained 80% variance in interregional morphological similarity. Then, a
linear regression model was fitted between the expression scores of the
retained components and behavioral and cognitive data, which was further
used to predict behavioral and cognitive outcomes for unseen participants.
Finally, the Pearson correlation between actual scores and predicted values
was calculated for each behavioral and cognitive domain. To assess the
performance of the BBS model, a ten-fold cross-validation procedure was
used. Since a single cross-validationmight be sensitive to a particular split of
the data into folds75, the ten-fold cross-validation procedure was repeated
100 times and the resulting mean Pearson correlation coefficient was
reported for each behavioral and cognitive domain. To test whether the
Pearson correlation coefficients were significantly higher than random
operations, a nonparametric permutation testing procedure was performed
by reshuffling the behavioral and cognitive data and repeating the ten-fold
cross-validation procedure (10,000 times). For each significant correlation,
the contribution of a given edge was calculated as the mean value of the
product of the coefficient in principal component analysis with the beta
value in the linear regression model across all folds and repetitions. For the
visualization of these contributing connectivity patterns, we selected edges
with absolute standardized weights exceeding 3 standard deviations
( | z | > 3σ). This stringent thresholdwas chosen to ensure that only themost
robustly contributing edges were displayed, thereby enhancing the inter-
pretability of the underlying neurobiological pattern.

Statistics and reproducibility
All statistical analyses were performed using custom scripts in combination
with publicly available toolboxes, including SPM12, DPARSF, and DPA-
BINet, and the neuroCombat R package. Unless otherwise specified, a two-
tailedP < 0.05was considered statistically significant. For analyses involving
multiple comparisons across network edges or nodes, the FDR was used to
correct P-values, with a significance threshold of PFDR < 0.05.

The topological properties of the GWM-HFN, such as small-world-
ness, were statistically validated by comparing network metrics against an
ensemble of 100null networks generatedusing a degree-preserving rewiring
algorithm. Test-retest reliability was assessed at multiple levels: edge-wise
reliability was quantified using the Intraclass Correlation Coefficient
(ICC(2,1)), and connectome-level stability and uniqueness were evaluated
using an identifiability framework, with statistical significance of differences
between frameworks (GWM-HFN vs. GM-GM) assessed via paired t-tests
or bootstrap procedures (10,000 iterations).

Inter-individual variability was compared between frameworks using
theMueller et al. variance decompositionmethod to separate true biological
variance from measurement noise, with statistical comparisons performed
using non-parametricWilcoxon signed-rank tests, Pearson correlation, and
the Jaccard index. Age-related trajectories were modeled using linear and
quadratic regression, controlling for sex and head motion, with model
selection based on theAkaike InformationCriterion.Group comparisons in
the clinical analysis (ASD vs. TC) were conducted using two-sample t-tests
on ComBat-harmonized data, controlling for age, sex, and mean FD. The
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efficacy of harmonization was quantitatively validated using Type III
ANOVA and partial eta-squared effect sizes.

Brain-behavior relationships were assessed using two multivariate
approaches. Partial least squares regressionwasused to identify connectivity
patterns associatedwith cognitive domains,with significance determinedby
permutation testing (10,000 permutations) and feature stability assessed via
bootstrapping (10,000 resamples). The predictive utility of these patterns for
individual scores was then validated using a brain bias set modeling
approach within a repeated (100 times) ten-fold cross-validation frame-
work, with prediction significance also assessed via permutation testing
(10,000 permutations).

Reproducibility of the findings was ensured through rigorous valida-
tion across six large-scale, independent, and publicly available datasets
(SLIM, BNU-3, SALD, ABIDE-II, BGSP, and the validation analysis on the
Schaefer atlas with the SLIM dataset), with specific sample sizes for each
analysis detailed in the relevant sections and Supplementary Table 3. The
use of both short-term (BNU-3 dataset) and long-term (SLIM dataset) test-
retest data provided a robust assessment of the reliability of the proposed
GWM-HFN framework.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All MRI data used in this study were derived from publicly available
resources, including: the Southwest University Longitudinal Imaging
Multimodal dataset, available at https://doi.org/10.15387/fcp_indi.retro.
slim76; the BeijingNormalUniversity dataset, available at https://doi.org/10.
15387/fcp_indi.corr.bnu377; the Southwest University Adult Lifespan
dataset, available at https://fcon_1000.projects.nitrc.org/indi/retro/
sald.html78; the AutismBrain ImagingData Exchange II project, available at
https://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html79; and the
Brain Genomics Superstruct Project dataset, available at https://www.
neuroinfo.org/gsp/80. The numerical source data for graphs and charts
presented in the main figures are available in the Supplementary Data file.

Code availability
The analyses were performed using custom scripts in combination with
publicly available toolboxes, including SPM12 (http://www.fil.ion.ucl.ac.uk/
spm/software/spm1281), DPARSF (http://rfmri.org/DPARSF82), and
DPABINet69. The custom code used for the GWM-HFN construction and
subsequent statistical analyses in this study is available from https://github.
com/LenJKiang/GWM-HFN83.
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