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The neonatal period is critical for brain development, yet the mechanisms linking structural
differentiation to functional reorganization remain poorly understood. Using multi-modal MRI data
from 399 neonates (348 term-born, 51 preterm-born), here we characterize the dynamic structure-
function coupling (SFC) across macroscale brain networks and examine its associations with cortical
microstructure (indexed by the T1w/T2w ratio) and network flexibility. We show that the dynamic SFC
varies markedly across the neocortex and increases with postmenstrual age, particularly within the
default mode network (DMN). Notably, the dynamic SFC in the posterior DMN mediates the
relationship between the T1w/T2w ratio and network flexibility. Preterm infants exhibit a significantly
reduced dynamic SFC relative to term-born peers, along with an altered developmental trajectory of
DMN linked to premature extra-uterine exposure. These findings establish dynamic SFC, especially
within the DMN, as a potential biomarker for neonatal brain maturation, offering insight into the early
emergence of internally directed cognition and its vulnerability to early-life adversity.

The neonatal period is a critical phase of brain development, characterized
by rapid maturation of anatomical architecture and extensive reorganiza-
tion of functional networks"’. Advances in neuroimaging have greatly
expanded our understanding of the development of the brain connectome
in early life*™. Specifically, diffusion-weighted imaging (DWTI) has revealed
the heterogeneous maturation of white matter tracts, with substantial pro-
gress observed in key pathways such as the corpus callosum and the corti-
cospinal tracts from late gestation to early infancy’’. Concurrently,
functional magnetic resonance imaging (fMRI) has shown the presence of a
hierarchical organization of functional networks at birth, in which primary
systems mature earlier and more robustly than higher-order systems like the
default mode and executive control networks™'’. These developmental
trajectories align with the established ‘bottom-up’ and ‘posterior-to-ante-
rior’ hypothesis, wherein early maturation of primary cortices lays a
groundwork for the subsequent development of higher-order cortices'"™".
Despite these insights, previous studies have mainly focused on either
structural or functional connectome patterns alone. How the structural
maturation of the neonatal brain drives its functional reorganization
remains largely unexplored. Revealing the precise relationship between
these two elements is crucial for elucidating the mechanisms underlying
early typical and atypical brain development.

The white matter architecture of the brain constrains and facilitates
synchronization among neuronal clusters, giving rise to a rich repertoire of
complex functional activities'*". Structure-function coupling (SFC) refers
to the statistical correspondence between structural and functional con-
nectomes, offering a simplified framework to examine how the anatomical
wiring of the brain shapes its functional communication'®”. In adults, SFC
is typically stronger in unimodal cortices and weaker in transmodal cortices,
reflecting a fundamental principle of brain organization'*". SFC variations
are linked to individual differences in cognitive performance across multiple
domains, including working memory, inhibitory control, and mental
flexibility’**>. More importantly, SFC is not static but fluctuates over time.
Dynamic SFC measures the time-varying interplay between structural and
functional connectomes, offering novel insights beyond static models by
capturing subtle temporal variations”. Previous studies in adults have
demonstrated that dynamic SFC mediates the balance between functional
segregation and integration, and exhibits an increase in temporal variability
along the cortical hierarchy—from unimodal to transmodal cortices—with
higher-order association areas exhibiting greater fluctuations over time***.
In our previous work, we identified that aberrant dynamic SFC patterns are
associated with clinical symptoms in neuropsychiatric conditions, high-
lighting the potential of dynamic SFC as a sensitive marker for atypical
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neurodevelopment™*”’”. However, how SFC varies dynamically across time
in the neonatal brain is poorly understood. Moreover, the underlying bio-
logical mechanisms of dynamic SFC during this critical period of devel-
opment, and its potential influence on the emergence of cognitive functions
as well, require further investigation.

Recent evidence suggests that myelination is a key biological substrate
influencing the variable expression of SFC across the cortical hierarchy™.
Brain regions with higher myelination (indexed by the T1w/T2w ratio),
such as primary sensory cortices, tend to exhibit more stable patterns of
temporal SFC variance due to stronger structural constraints. In contrast,
brain regions with lower myelination, such as transmodal cortices, display
greater variability throughout the entire scan duration®. However, because
intracortical myelination is largely absent at birth, the neonatal cortical T1w/
T2w signal ratio is considered a microstructural proxy sensitive to pre-
myelination processes (e.g., oligodendrocyte lineage proliferation, glial
density)””. Consistent with developmental gradients, this proxy exhibits a
well-documented primary-to-transmodal pattern, providing a structural
antecedent that shapes the spatial distribution of dynamic SFC at birth.
Furthermore, dynamic SFC has been linked to flexible cognition, and higher
network flexibility is believed to support improved cognitive
performance’*. In neonates, a recent fMRI study demonstrated that six
transient connectivity states are already present at birth; importantly, the
occupancy, dwell times, and transition structure of these states—indices of
short-timescale network flexibility—are altered in preterm infants and
prospectively associated with early-childhood neurodevelopmental
outcomes’. Accordingly, within a developmentally motivated statistical
framework, we hypothesize that regional variation in pre-myelination
microstructure (T1w/T2w ratio) is associated with tighter alignment of
functional co-fluctuations to the structural scaffold (i.e., higher, more stable
dynamic SFC), which in turn is associated with a narrower repertoire of
short-timescale community states (i.e., lower network flexibility).

In this study, we investigated the dynamic SFC pattern and its asso-
ciations with cortical microstructural maturation and network flexibility in
the neonatal brain. We utilized a large cohort comprising 399 infants (348
term-born and 51 preterm-born) from the Developing Human Con-
nectome Project (dHCP). These infants underwent multimodal MRI scans
at term-equivalent age, ranging from 37 to 44 weeks postmenstrual age
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Fig. 1| Analysis flowchart of studying dynamic structure-function coupling. Four
major steps were included: a use multimodal parcellation template with 210 cortical
parcels and categorized these parcels into 5 resting-state networks (RSNs), including
the sensorimotor network (SMN), visual network (VN), high-level visual network
(HVN), ventral attention network (VAN), and default mode network (DMN);

(PMA). We developed a novel quantitative framework to examine dynamic
SFC in macroscale brain networks, capturing the moment-to-moment
interplay between structural differentiation and functional reorganization
across the neocortex. The basic flow of studying dynamic SFC is depicted in
Fig. 1. We further conducted mediation analyses to explore how dynamic
SEC influences the relationship between the T1w/T2w ratio and the flexible
reconfiguration of functional networks. Finally, we compared dynamic SFC
patterns between term-born and preterm-born infants to elucidate the
potential impact of prematurity on the early development of the brain.

Results

Dynamic SFC pattern in term-born infants

We found that the group-averaged dynamic SFC pattern in term-born
infants was characterized by stronger SFC co-fluctuations (i.e., more robust
connections) within each resting-state network (RSN), and weaker SFC co-
fluctuations (ie., sparse connections) between RSNs (Fig. 2a). We also
observed considerable variation in regional mean dynamic SFC across the
neocortex, with the visual and default mode regions displaying notably high
levels of co-fluctuation (Fig. 2b). The visual network (VN) exhibited the
highest intra-network dynamic SFC (F(4, 1388) =1211.5, P <0.001, Ken-
dall's W=0.49, Friedman ANOVA) and the strongest inter-network
dynamic SFC with other RSNs (F(4, 1388) =228.7, P<0.001, Kendall’s
W =0.16, Friedman ANOVA) at the subnetwork level (Fig. 2¢, d). It is noted
that a positive association between PMA and intra-network dynamic SFC
was identified within the default mode network (DMN) (r=0.13, P=0.017,
FDR-corrected; Fig. 2¢). As the brain matured during early development
(37-44 weeks), increases in PMA were linked to more stable and mature
SFC co-fluctuations within the DMN (Supplementary Fig. 1). We next
asked whether dynamic SFC carries a generalizable age signal. Using the
connectome-based predictive modeling (CPM) framework, we found a
strong correlation between predicted and actual ages (r=0.27, P <0.001;
Fig. 2f, g). The most significant dynamic SFC features for PMA prediction
are highlighted in Fig. 2h. We observed that DMN-centered features are
among the most important contributors to the predictive signal. These
results remained consistent across varying lengths of sliding window and
increment steps (Supplementary Figs. 2-5). Additionally, we calculated the
conventional static SFC, but no meaningful associations with PMA were
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b construct dynamic functional network connectivity with sliding window
approach; ¢ construct structural network connectivity and compute the corre-
sponding Euclidean distance (euc), path length (pl), and communicability (comm)
networks; and d estimate dynamic structure-function coupling (SFC) with a mul-
tilinear regression model and Pearson’s correlation analysis.
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Fig. 2 | Dynamic SFC pattern in term-born infants. a Group averaged dynamic
SFC matrix in term-born infants. b Regional dynamic SFC maps, which vary
markedly across the neocortex. ¢ Subnetwork-level dynamic SFC. d Violin plots
showing intra-network dynamic SFC of each RSN. e Scatter plot showing the rele-
vance between postmenstrual age and intra-network dynamic SFC of the RSNs.

f Scatter plot depicting the correlation between the actual and predicted

——— Positive features Negative features

postmenstrual ages. g Statistical significance via permutation tests. h Circle plot
visualization of the most prominent positive and negative dynamic SFC features
(left) and RSN-by-RSN aggregation across the full Connectome-based Prediction
Model (CPM)-selected feature set (right). f-h illustrate postmenstrual age predic-
tion using the dynamic SFC features and CPM models. *P < 0.05,

*¥*P<0.01, ***P < 0.001.

detected (Supplementary Fig. 6). These findings underscore the sensitivity
and effectiveness of dynamic SFC in detecting early stages of brain devel-
opment and organization in newborns, which are less discernible with
traditional static SFC measures.

Relationships among dynamic SFC, T1w/T2w, and network
flexibility in term-born infants

To identify the structural substrates underlying dynamic SFC, we assessed
T1w/T2w ratio mapping, a key indicator for microstructural maturation.
The regional cortical T1w/T2w ratio maps revealed high levels of intensity in
sensorimotor, calcarine, and posterior superior temporal regions (Fig. 3a).
At the subnetwork level, intra-network cortical T1w/T2w ratio exhibited a
hierarchical organization, spanning from unimodal to transmodal cortices

(F(4, 1388) = 1234.9, P<0.001, Kendall’s W =0.89, Friedman ANOVA;
Fig. 3b). No significant correlation was found between cortical T1w/T2w
ratio and dynamic SFC across the whole neocortex (P> 0.05; Fig. 3c).
Moreover, we observed positive correlations between intra-network cortical
T1w/T2w ratio and dynamic SFC within the SMN (r = 0.11, P = 0.047, FDR-
corrected), VN (r=0.12, P=0.030, FDR-corrected), VAN (r=0.12,
P =0.024, FDR-corrected), and DMN (r = 0.14, P = 0.008, FDR-corrected;
Fig. 3d), indicating that the matured microstructure within these networks
supports stronger SFC co-fluctuations during early brain development.
Additionally, we found intra-network T1w/T2w ratio showed a significant
increase with PMA (all P < 0.001, FDR-corrected; Fig. 3e)
We also explored the relationship between dynamic SFC and network
flexibility, a metric reflecting the capacity for large-scale brain network
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Fig. 3 | Association between dynamic SFC and T1w/T2w ratio in term-born
infants. a Regional T1w/T2w ratio maps, which vary markedly across the neocortex.
b Violin plots showing the intra-network T1w/T2w ratio of each RSN. ¢ Scatter plot
showing the correlation between mean regional T1w/T2w ratio and the dynamic
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SEC of all term-born infants across the neocortex. d Scatter plot showing the rele-
vance between intra-network T1w/T2w ratio and intra-network dynamic SFC of the
RSNEs. e Scatter plot showing the relevance between postmenstrual age and intra-
network T1w/T2w ratio of the RSNs. *P < 0.05, **P < 0.01, ***P < 0.001.

reconfiguration. Group-averaged network flexibility was calculated for each
brain region and correlated with dynamic SFC. Network flexibility varied
considerably across the neocortex, with higher flexibility in attention-related
regions and lower flexibility in sensorimotor regions (Fig. 4a). In contrast to
the hierarchical gradient observed in T1w/T2w, intra-network flexibility
showed a decreasing gradient from the VN to the sensorimotor network
(SMN) (F(4, 1388)=278.6, P<0.001, Kendall's W=0.20, Friedman
ANOVA,; Fig. 4b). We observed a negative correlation between dynamic
SFC and network flexibility across the whole neocortex (r=—0.20,
P=0.003, FDR-corrected; Fig. 4c), indicating that regions with stronger
dynamic SFC tend to have lower flexibility. Notably, dynamic SFC was
negatively correlated with flexibility within each RSN (all P < 0.05, FDR-
corrected; Fig. 4d), suggesting that higher dynamic SFC may be associated
with more stable, rather than flexible, configurations. We further found that
network flexibility within the SMN (r = 0.13, P = 0.020, FDR-corrected) and
VN (r=0.16, P=0.005, FDR-corrected) increased with PMA (Fig. 4e).

To better understand the relationship between cortical microstructure,
dynamic SFC, and network flexibility, we performed a mediation analysis
for each RSN. We tested whether dynamic SFC mediated the effect of T1w/
T2w ratio on network flexibility in term-born infants. We revealed that the
direct effect was not statistically significant in any RSN. However, in the
DMN, we observed a significant indirect effect whereby a higher T1w/T2w
ratio reduced flexibility via increased dynamic SFC (Fig. 5 and Supple-
mentary Fig. 7). Specifically, cortical T1w/T2w ratio was positively asso-
ciated with dynamic SFC (a path), which, in turn, was negatively associated
with network flexibility (b path). The indirect effect (ab path) of T1w/T2w

ratio on network flexibility through dynamic SFC was significant
(B =—0.03, P=0.007, CI: [—0.054, —0.007], bootstrap). More importantly,
we found that this mediation effect was only significant within the posterior
but not the anterior part of the DMN (= —0.02, P =0.030, CI: [—0.052,
—0.002], bootstrap), indicating that dynamic SFC within the posterior
DMN plays a mediating role in the relationship between microstructural
maturation and network flexibility. We further performed mediation ana-
lysis with static SFC as the mediator and found no significant indirect effects
across all RSN (all P> 0.05; Supplementary Fig. 8).

Dynamic SFC pattern in preterm-born infants

We addressed the dynamic SFC pattern of preterm-born infants and
compared the dynamic SFC pattern with that of term-born infants to
identify the potential effects of prematurity on brain organization. Given the
unbalanced sample sizes of infants (51 for preterm-born versus 348 for
term-born), we created a matched subset of term-born infants (n = 51) with
similar PMA to the preterm-born group (40.92+ 1.87 vs. 40.90 £ 1.91
weeks; t=0.06, P>0.95; Fig. 6a). Specifically, for each preterm infant, a
term-born infant with the closest PMA at scan was selected from the larger
cohort using a one-to-one nearest-neighbor matching algorithm without
replacement, resulting in a subset that was well-matched for age. While the
term-born infants had a significantly higher gestational age (GA) at birth
(39.96 +1.40 vs. 31.98 £ 3.32 weeks, P <0.001), they had a much shorter
postnatal time (PT) relative to the preterm-born infants (0.96 + 1.13 vs.
8.91 +4.42 weeks, P < 0.001). Significant differences in dynamic SFC were
detected between the two groups (Fig. 6b). At sub-network level, the
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preterm-born infants exhibited a lower dynamic SFC within the ventral
attention network (VAN) and DMN, as well as between SMN and VAN (all
P <0.05; Fig. 6¢). We also examined the relationship between the dynamic
SFC and PMA within each group. Consistent with the findings from the full
group of term-born infants, the dynamic SFC within the DMN was also
significantly positively correlated with PMA (r=0.30, P=0.032) in the
subset of term-born infants. However, such association was not seen in the
preterm-born infants (r=—0.01, P=0.932; Fig. 6d), implying that pro-
longed time spent ex utero may negatively affect the development of SFC co-
fluctuations in this network. Finally, we performed the mediation analysis to
the preterm cohort and to the subset of term-born infants. Neither analysis
yielded a significant indirect effect of T1w/T2w on network flexibility via
dynamic SFC in the DMN (matched term: ab $=0.05, P=0.266, CL
[—0.162, 0.039], bootstrap; preterm: ab = 0.01, P=0.958, CI: [—0.052,
0.060], bootstrap; Supplementary Fig. 9).

Discussion

In this study, we systematically characterized dynamic SFC across macro-
scale brain networks in a large neonatal cohort from the dHCP. By inte-
grating multimodal neuroimaging measures, we developed a robust
quantitative framework capturing intricate moment-to-moment interac-
tions between structural maturation and functional reorganization. We
further explored how cortical microstructure relates to network flexibility
via dynamic SFC. Our findings offer a novel insight into the intricate
structural-functional interplay underlying early brain maturation, particu-
larly highlighting the pivotal role of the DMN.

We observed marked spatial variability in dynamic SFC across cortical
regions, with primary sensory networks, particularly the VN, exhibiting the
highest dynamic coupling. In contrast, static SFC recapitulated the cano-
nical unimodal-to-transmodal gradient (SMN highest, DMN lowest),
consistent with baseline (tonic) structural tethering in early-maturing sen-
sorimotor systems™. These metrics are therefore complementary rather
than interchangeable: static SFC reflects hierarchical wiring priorities,
whereas dynamic SFC indexes the propensity for transient, moment-to-
moment alignment with anatomy in early life**. The prominence of the VN
in the dynamic regime aligns with previous evidence indicating a rapid and
pronounced maturation of primary sensory cortices relative to higher-order
association regions during early infancy””. Early sensory experiences sig-
nificantly shape structural and functional brain networks, as sensory
pathways rapidly mature due to frequent and intense environmental sti-
mulation immediately post-birth®. Particularly, the VN undergoes rapid
structural and functional maturation driven by visual inputs that are con-
sistently available shortly after birth””. These sensory-driven experiences
facilitate synaptic strengthening and pruning processes, optimizing neural
pathways for efficient signal processing and communicating™. Therefore,
the robust co-fluctuation of SFC observed within the VN likely reflects
structural constraints optimized for the rapid and efficient processing of
visual stimuli. Importantly, we found a significant positive correlation
between PMA and dynamic SFC within the DMN, highlighting the sur-
prising emergence and maturation of higher-order cognitive networks
during early infancy™.

Communications Biology| (2026)9:35


www.nature.com/commsbio

https://doi.org/10.1038/s42003-025-09300-4

Article

a .
DMN regions
Anterior part [ Posterior part
C anterior DMN

Dynamic SFC

a:8=0.10 (0.05), p = 0.071 b: B=-0.19 (0.05), p < 0.001***

¢:B=0.06 (0.05), p = 0.289
Cl: [-0.057, 0.171]

T1w/T2w ratio Network flexibility

Indirect effect (ab): 3 = -0.02 (0.01), p = 0.090
Cl: [-0.048, 0.003]

Fig. 5 | Mediation analysis. a The anterior and posterior areas of the default mode
network (DMN). b Mediation analysis in the DMN. ¢ Mediation analysis in the

anterior DMN. d Mediation analysis in the posterior DMN. T1w/T2w ratio was set
as an independent variable, while the network flexibility was a dependent variable,

b DMN

Dynamic SFC

a:8=0.16 (0.05), p = 0.004** b: 8=-0.17 (0.05), p = 0.001**

¢:B=0.03(0.05), p = 0.619

. Cl: [-0.080, 0.138]
T1w/T2w ratio

Network flexibility

Indirect effect (ab): 3 = -0.03 (0.01), p = 0.007**
Cl: [-0.054, -0.007]

d posterior DMN

Dynamic SFC

a:8=0.11 (0.06), p = 0.040* b: B =-0.20 (0.05), p < 0.001***

¢:B=-0.03 (0.05), p = 0.604
Cl: [-0.131, 0.088]
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and the dynamic SFC was the mediated variable. Mediation results are reported as
standardized regression coefficients, and statistical significance was assessed using
95% bootstrapped confidence intervals. Standard errors are provided in parentheses.
*P<0.05, ¥**P<0.01, ¥***P<0.001.
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Fig. 6 | Altered dynamic SFC patterns in preterm-born infants. a Bar plots
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Cognitive networks such as the DMN are considered to undergo
maturation relatively later than primary sensory and motor networks""*.
Our findings challenge this traditional view by suggesting that dynamic
structural-functional interplay supporting higher-order cognitive functions
begins forming much earlier. And these early foundational architectures
may play a critical role in supporting internal mentation and cognitive
integration, setting the groundwork for future complex cognitive and socio-
emotional development***. Indeed, accumulating data suggest that the
DMN has a significant structural and functional integration even at very
early stages of development, which facilitates crucial sensory and cognitive
integration for complex tasks and social cognition®”. Additionally, this
positive correlation was uniquely identified using our dynamic SFC
approach rather than typical static analysis, demonstrating its sensitivity in
capturing subtle progressions of neurodevelopment™. Moreover, the ability
of dynamic SFC features to accurately predict PMA further emphasizes their
potential as robust biomarkers for assessing early neurodevelopment.

Our investigation revealed that dynamic SFC within the SMN, VN,
VAN, and DMN was positively associated with the T1w/T2w ratio. This
suggests that cortical microstructural maturation may enhance the effi-
ciency of neural information transmission and support more stable and

coherent functional activity within cognitive networks™. Higher T1w/T2w
likely indexes greater microstructural maturity, which can increase con-
duction reliability and temporal precision, thereby tightening short-
timescale alignment of functional co-fluctuations to the structural scaffold
—observed here as stronger dynamic SFC”*’. Consequently, our findings
suggest that premyelination-driven enhancement in microstructural
integrity substantially supports stable and robust functional configurations
that underlie separated cognitive processing in neonates”. Notably, our
findings—higher T1w/T2w associated with greater dynamic SFC in trans-
modal networks—contrast with previous studies in adults linking myeli-
nation to reduced SFC variability. We propose that, in early life, increasing
microstructural maturity enables coherent yet adaptable SFC co-
fluctuations. With continued development, stronger structural constraints
progressively stabilize interactions, producing the lower variability observed
later™***. Accordingly, the direction of cortical microstructure-dynamic
SEC associations is likely phase-dependent across development. Therefore,
multimodal and longitudinal data are needed to determine whether this
association persists, attenuates, or reverses with maturation and to reconcile
neonatal-adult differences. We also observed a significant negative corre-
lation between dynamic SFC and network flexibility within each RSN.
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Notably, network flexibility varied markedly across the cortical hierarchy,
displaying relatively lower flexibility in primary sensory cortices but
increased flexibility in attention-related areas. This hierarchical organiza-
tion may reflect a critical neurobiological mechanism balancing neural
stability and adaptability across cortical areas’". Stability within RSN's sup-
ports consistent and reliable information processing, whereas adaptability
enables flexible responses to dynamic cognitive demands and environ-
mental variability’>”. Thus, the observed negative correlation between
dynamic SFC within each RSN and network flexibility suggests an intrinsic
trade-off, where networks optimized for stable functional interactions
inherently exhibit reduced dynamic flexibility, and vice versa. This balance is
essential for adaptive cognition and efficient dynamic cognitive control'**.
Taken together, these results indicate an intrinsic interplay among structural
maturation, functional stability, and adaptability.

Our mediation analyses revealed the complex relationships among
cortical microstructure, dynamic SFC, and network flexibility. Specifically,
we observed a robust indirect-only mediation pathway evident in the DMN,
suggesting that microstructural variation appears to relate to flexibility
primarily through dynamic SFC rather than a direct route. More impor-
tantly, we found that dynamic SFC within posterior but not anterior DMN
regions significantly mediated the relationship between T1w/T2w ratio and
network flexibility. This regional specificity highlights a clear posterior-to-
anterior gradient of maturation within the DMN, aligning with theories
proposing posterior DMN regions as foundational hubs for integrating
structural maturation with flexible network reorganization®”. This pos-
terior emphasis is consistent with the developmental pattern that posterior
cortical areas mature earlier, providing essential structural and functional
scaffolding for the subsequent development of advanced perception and
cognition®*”’. Additionally, the absence of mediation by static SFC indicates
that, in early life, it is the moment-to-moment alignment to the structural
scaffold—rather than time-averaged coupling—that links cortical micro-
structure to flexibility.

Comparative analyses between term-born and preterm-born infants
further elucidated potential neurodevelopmental disruptions associated
with premature birth. Our recent studies have shown widespread alterations
of both structural and functional brain networks in preterm-born
infants”**®. Here, we extended these works to find disruptions specifi-
cally in dynamic SFC patterns, capturing the intricate interplay between
structural rewiring and functional reorganization over time. Our findings
suggest that preterm-born infants are particularly vulnerable to disruptions
in structural-functional relationships within and between key RSNs. These
alterations likely reflect the adverse impact of premature exposure to the
extrauterine environment, which may interrupt the typical trajectories of
neurodevelopment®*”>. Notably, the robust PMA-related increase in
dynamic SFC identified within the DMN of term-born infants was absent in
preterm infants. Such divergence implies that the protracted extrauterine
developmental environment negatively impacts typical maturation pro-
cesses of structural and functional brain networks, particularly those
involved in higher-order cognitive functions crucial for complex cognition
and socio-emotional development®**. These findings align with existing
literature showing that accelerated structural-functional maturation pre-
dominantly occurs in utero, thereby emphasizing developmental vulner-
abilities associated with premature birth'. Collectively, our findings
highlight the urgent need for targeted interventions specifically designed to
mitigate developmental disruptions and optimize cognitive trajectories
among preterm-born infants®. Further longitudinal studies tracking infants
from the neonatal period into early childhood are essential to understand
how early dynamic SFC patterns evolve and influence subsequent cognitive
and behavioral outcomes®. Additionally, exploring the effects of environ-
mental and experiential factors, such as early sensory stimulation, caregiver
interactions, and nutritional status, could provide critical insights into the
neuroplastic mechanisms underpinning early brain development and
highlight intervention points to mitigate developmental vulnerabilities” .

Several methodological considerations must be acknowledged when
interpreting our findings. First, despite rigorous motion correction and

regression techniques being implemented, residual motion artifacts inher-
ent to neonatal imaging remain potential confounds™. Infants, particularly
preterm-born neonates, are more prone to motion artifacts due to the
natural restlessness and variability in sleep states during scanning, poten-
tially impacting data quality and the reliability of connectivity estimates.
Second, parallel mediation analyses in the preterm cohort and in the subset
of term-born infants (each n = 51) detected no significant indirect effect of
T1w/T2w on network flexibility via dynamic SFC in the DMN. This null
result is compatible with either insufficient statistical power or a genuine
absence/alteration of the pathway in prematurity; with the current sample
size, we cannot adjudicate between these alternatives. Larger preterm
cohorts are needed to achieve adequate power and obtain precise indirect-
effect estimates in the future. Third, the present study investigated dynamic
SEC specifically within the gray matter of the neonatal brain, leaving the
white matter largely unexplored. Emerging evidence indicates that white
matter exhibits intrinsic functional activity comparable to that observed in
gray matter””’, as reflected by blood-oxygenation-level-dependent (BOLD)
signals. Recent studies have demonstrated aberrant white matter SFC linked
to clinical symptom severity in various neuropsychiatric conditions””".
Therefore, future research should examine dynamic SFC within neonatal
white matter, expanding our understanding of early structural-functional
network integration and its potential implications for developmental
outcomes.

In conclusion, the present study provides a detailed characterization of
dynamic structure-function interactions during early neonatal brain
development, highlighting the essential role of dynamic SFC—particularly
within the DMN—in early internal mentation and cognitive integration.
The identified disruptions in preterm-born infants underscore the urgent
need for targeted interventions during critical developmental periods. A
deeper understanding of dynamic SFC mechanisms will be crucial for
clarifying the neurobiological basis of cognitive development and addres-
sing neurodevelopmental vulnerabilities in the early stages of life.

Materials and methods

Participants

This study utilized minimally preprocessed neuroimaging data from the
third release of the Developing Human Connectome Project (http://
developingconnectome.org/)”. Neonates with failed quality control or
substantial imaging artifacts, as flagged by the dHCP preprocessing pipe-
lines, were excluded. The final sample comprised 399 neonates, including
348 term-born and 51 preterm-born infants. Term neonates were defined as
those born at >37 weeks of gestation; preterm neonates were born at
<37 weeks. The median gestational age (GA) at birth among term-born
neonates was 40.36 weeks (range: 37.00-42.29 weeks; interquartile range
[IQR]: 2.43 weeks), and the median postmenstrual age (PMA) at scan was
40.43 weeks (range: 37.43-44.71 weeks; IQR: 4.00 weeks). For the preterm-
born group, the median GA at birth was 32.50 weeks (range:
23.71-36.86 weeks; IQR: 6.14 weeks), and the median PMA at scan—per-
formed at term-equivalent age—was 41.14 weeks (range:
37.00-44.29 weeks; IQR: 3.29 weeks). Details regarding the inclusion/
exclusion criteria and attrition at each processing step are illustrated in
Supplementary Fig. 10. Ethical approval was granted by the appropriate
institutional review boards (UK REC reference 14/L0O/1169), and written
informed consent was obtained from all infants’ parents or legal guardians
prior to data acquisition. All ethical regulations relevant to human research
participants were followed.

MRI acquisition

Imaging was conducted at the Evelina Newborn Imaging Centre, Evelina
London Children’s Hospital, using a 3 Tesla Philips Achieva scanner
equipped with a custom-built 32-channel neonatal head coil and a dedicated
neonatal imaging system”. Infants were scanned during natural, unsedated
sleep in an environment optimized for comfort and acoustic protection. The
total scan time was approximately 63 minutes. High-resolution structural
MRI included both T1w and T2w images acquired using a multi-slice fast
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spin-echo sequence. T1w images were acquired with TR = 4795 ms, TE =
8.7 ms, TI = 1740 ms, slice thickness = 1.6 mm, matrix = 256 x 256, field of
view (FOV)=145 x 122 x 100 mm, and in-plane resolution = 0.8 x
0.8 mm’. T2w images were acquired with TR = 12,000 ms, TE = 156 ms,
slice thickness = 1.6 mm, matrix = 256 x 256, FOV = 145 x 145 x 108 mm,
and in-plane resolution = 0.8 x 0.8 mm’. Parallel imaging acceleration
factors (SENSE) were 2.27 for T1w and 2.11 for T2w sequences. Diffusion-
weighted imaging (DWI) was performed using a single-shot echo-planar
imaging sequence with multiband acceleration (factor = 4). Diffusion sen-
sitizing gradients were applied at b-values of 0, 400, 1000, and 2600 s/mm>
across 20, 64, 88, and 128 directions, respectively. Imaging parameters
included TR = 3800 ms, TE = 90 ms, slice thickness = 3 mm with a 1.5 mm
overlap, and in-plane resolution = 1.5 x 1.5 mm?®. Resting-state functional
MRI (rs-fMRI) was acquired using a multiband-accelerated echo-planar
imaging sequence (multiband factor = 9) with TR = 392 ms, TE = 38 ms, flip
angle = 34°, and isotropic spatial resolution of 2.15 mm. A total of 2300
volumes were collected per session. All sequences followed protocols opti-
mized for neonatal neuroimaging and are described in detail in the dHCP
release documentation.

Data preprocessing

Anatomical preprocessing employed super-resolution reconstruction to
produce high-resolution 3D T1-weighted and T2-weighted volumes. The
T1w images were rigidly aligned to T2w volumes and subjected to bias field
correction and brain extraction. Tissue segmentation was performed on
T2w volumes using the neonatal-specific DRAW-EM algorithm™. Cortical
surfaces were extracted and registered using the dHCP surface processing
pipeline, and T1w/T2w ratio maps were obtained directly from the
release data.

DWI preprocessing included skull stripping, susceptibility distortion
correction using fieldmaps™, eddy-current and motion correction using
EDDY, and up-sampling to 1.5 mm isotropic resolution””. b0 images least
affected by motion were selected for correction’. Boundary-based regis-
tration aligned DWI data to individual T2w images, followed by non-linear
transformation to the 40-week symmetric dHCP neonatal template ({HCP-
40_week_template) to allow for atlas-based analyses”.

Resting-state fMRI preprocessing was implemented using DPARSF
and custom MATLAB scripts*. Approximately 70% of the volumes with
minimal head motion (~1600 volumes) were selected per infant”. Volumes
were aligned to individual T2w images using FSL’s FLIRT®'. Further pre-
processing included linear detrending, nuisance regression (24 motion
parameters, white matter, CSF, and global signal), and temporal bandpass
filtering (0.01-0.08 Hz). Functional data were projected onto the cortical
surface and registered to the 40-week symmetric dHCP template using
multimodal surface matching (MSM). Final surface-based data were
smoothed using a 2 mm full-width-at-half-maximum (FWHM) Gaussian
kernel™.

Anatomical ROIs

Cortical parcellation was defined using our neonatal-specific, multi-
modal brain atlas consisting of 210 cortical regions, optimized for
developmental neuroimaging and tailored to the unique anatomical
and functional characteristics of the neonatal brain®. This template
was derived using Tlw, T2w, DWI, and fMRI features, ensuring
anatomical symmetry and functional homogeneity between adjacent
regions. Following prior approaches™, parcels were assigned to five
canonical resting-state networks (RSNs): the sensorimotor network
(SMN, 50 ROIs), visual network (VN, 14 ROIs), high-level visual
network (HVN, 42 ROIs), ventral attention network (VAN, 68 ROIs),
and default mode network (DMN, 36 ROIs). These networks repre-
sent important functional domains in the neonatal brain, reflecting
mergent macroscale brain organization. Detailed information
regarding the parcellation of these RSNs and their corresponding
regions is provided in Supplementary Data 1 and Supplemen-
tary Fig. 11.

Dynamic functional network construction

Dynamic functional connectivity networks were estimated using a validated
tapered sliding window approach, following established protocols***. The
BOLD time series from each ROI was segmented into overlapping windows
of 39.2 seconds (100 TRs), with a step size of 3.92 seconds (10 TRs), yielding
a total of 160 windows per infant. This window length was chosen based on
prior work demonstrating that durations within the 30-60 second range
offer an optimal trade-off between temporal resolution and the reliable
estimation of covariance structures®. Within each window, we computed
the covariance matrix across 210 cortical ROIs, resulting in a dynamic
sequence of connectivity matrices with dimensions 210 x 210 x 160. This
approach enabled time-resolved tracking of functional brain network
dynamics throughout the scan duration”.

Structural network construction

Structural brain networks were constructed by performing whole-brain
probabilistic tractography to map white matter pathways between cortical
ROIs. The 210-ROI parcellation, defined in the 40-week dHCP neonatal
template space, was non-linearly registered to each subject’s native diffusion
space. The tractography pipeline was implemented using the MRtrix3
toolkit and incorporated neonatal-specific protocols optimized for the
unique challenges of the infant brain, such as low myelination and high
partial volume effects™**. Specifically, voxel-wise fiber orientation dis-
tributions (FODs) were estimated using multi-shell, multi-tissue con-
strained spherical deconvolution (CSD), which models signal contributions
from white matter, gray matter, and cerebrospinal fluid to improve fiber
tracking accuracy in partially myelinated tissue®. Tissue response functions
were estimated using the msmt_5tt method. Given the intrinsically low
fractional anisotropy (FA) in the neonatal brain, a specific FA threshold of
0.2 was applied to ensure a robust and representative white matter response
function was estimated. A log-domain intensity normalization method was
used to standardize signal intensities across subjects”. Streamlines were
initiated from the gray-white matter interface to maximize cortical coverage,
a more robust seeding strategy for neonatal data. The iFOD2 algorithm was
used to generate 2 million streamlines per subject with the following
parameters: a step size of 0.75 mm, minimum and maximum lengths of
20 mm and 200 mm, respectively, and termination thresholds based on an
FOD amplitude <0.05 or an angular deviation >45°. The structural con-
nectome was defined by a weighted 210 x 210 matrix in which edge weights
corresponded to the streamline count between ROI pairs, corrected for
ROl size.

Dynamic structure-function coupling estimation

A multilinear regression model was fitted to estimate the regional, ROI-wise
SEC for each ROI separately™. We derived three predictor matrices from
each SC matrix: (i) Euclidean distance, indexing geometric/wiring and
temporal cost, with Dy = |lr; — 1;ll 5 between region centroids; (ii) shortest-
path length, capturing routing efficiency along optimal polysynaptic routes,
computed as L = LY ien %, where dj; is the shortest weighted
length of path between i and j; and (iii) Communicability, modeling dif-
fusive, multi-path exchange, defined as C;; = (exp(D~'/2wD~V ?));j> where
W is the weighted adjacency and D = diag(s;) with strengths
5= Zszl W,”". These predictors instantiate geometry-limited, routing-
based, and diffusion-based communication regimes with established rele-
vance for SFC and its temporal variance'®*. For a given ROJ, the response is
the FC between the ROI and all other ROIs, while the predictors were
Euclidean distance, path length, and communicability between the ROI and
all other ROIs. The level of SFC was measured using ROI-wise R’ from the
multilinear model. We fitted the multilinear model across the ROIs within
each window and resulting in a matrix (210 x 160) for each infant. Every row
of the matrix depicts the SFC fluctuations over time. To estimate dynamic
SEC, Pearson’s correlation coefficients of SEC fluctuations between all ROI
pairs were further calculated to construct the covariance matrices (210 x
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210) for each infant. To assess distinct versus shared variance among these
structural predictors, we also estimated SFC for single, pairwise, and com-
bined models. Group-mean R* increased from single to paired models and
peaked when all three predictors were included, indicating partially non-
overlapping contributions (Supplementary Fig. 12).

Individualized prediction analysis

A CPM framework was employed to predict PMA from dynamic SFC
patterns’”. We implemented a 10-fold cross-validation procedure to ensure
robust and unbiased performance estimation. In each fold, the dataset was
partitioned into a training set (90%) and a held-out test set (10%), with each
subject serving as test data once. Within each training set, dynamic SFC
features were correlated with PMA using non-parametric Kendall’s Tau
correlations. Features showing significant associations (p <0.01) were
retained to generate a binary feature mask. For each subject, the retained
features were then averaged into a single summary score. A linear regression
model was fitted between these summary scores and PMA values in the
training set, after regressing out potential confounding variables, including
head motion, sex, and birth weight. The trained model was subsequently
applied to the test set to predict PMA using the same feature mask and
summary procedure. This process was repeated across all folds, yielding out-
of-sample PMA predictions for each participant.

Network flexibility

Network flexibility was quantified using the GenLouvain community
detection algorithm applied to multilayer functional connectivity matrices™.
Specifically, temporal communities were identified via modularity max-
imization across sliding windows, enabling the detection of community
affiliations for each ROI at each time point. Regional flexibility was defined
as the proportion of windows in which a given ROI switched its community
assignment, normalized by the total number of possible transitions™. This
measure reflects the extent to which each node dynamically reconfigures its
functional affiliations over time, distinguishing rigid temporal cores (low
flexibility) from peripheral, highly adaptive regions (high flexibility). Given
the stochasticity inherent in modularity optimization, the community
detection process was repeated 50 times per subject. Flexibility scores were
computed for each run and subsequently averaged to obtain robust, subject-
level estimates of regional network flexibility.

Statistics and reproducibility

Between-group comparisons and correlations were evaluated using non-
parametric permutation testing (10,000 iterations) and Spearman’s corre-
lation. Friedman nonparametric one-way analysis of variance (ANOVA)
was used to compare brain metric (dynamic SFC, T1w/T2w ratio, and
network flexibility) differences between RSNs. Mediation analyses were
conducted to test whether dynamic SFC mediated the relationship between
T1lw/T2w ratio and network flexibility. Specifically, T1w/T2w ratio,
dynamic SFC, and flexibility were entered as independent, mediator, and
dependent variables, respectively. False discovery rate (FDR) correction was
applied to control for multiple comparisons, with statistical significance
defined at FDR-corrected p < 0.05. To evaluate the reproducibility of our
findings, we performed sensitivity analyses using alternative window lengths
(80-120 TRs) and step sizes (5-20 TRs), confirming the stability of the
observed dynamic SFC patterns across a broad parameter space.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The data used in the current study are provided by the developing Human
Connectome Project and can be downloaded through their website (http://
www.developingconnectome.org/). Other data underlying the graphs and
charts in the main and Supplementary Figs. are available at https://github.
com/zztute/Dynamic-SFC.git.

Code availability

Diffusion-weighted imaging (DWI) data were preprocessed using FMRIB
Software Library (FSL; https://fsl.fmrib.ox.ac.uk/fsl) and MRtrix3 (https://
www.mrtrix.org). Resting-state fMRI data were preprocessed using SPM12
(Welcome Department of Cognitive Neurology, London, UK; www.fil.ion.
ucl.ac.uk/spm), Data Processing & Analysis for (Resting-State) Brain Ima-
ging (DPABI) toolbox 4.3 version, DynamicBC toolbox 2.2 version (http://
restfmri.net/forum/DynamicBC), and GenLouvain (http://netwiki.amath.
unc.edu/GenLouvain) implemented in the MATLAB 2022b (Math Works,
Natick, MA) platform. Mediation analyses were performed in R package
bruceR. Other data processing and analysis code are available on our
GitHub repository (https://github.com/zztute/Dynamic-SFC.git).
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