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Single-cell and spatial transcriptomic
profiling reveals distinct tumor
microenvironment dynamics in cervical
adenocarcinoma and squamous cell
carcinoma
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Cervical cancer (CC), aleading cause of cancer-related deaths among women worldwide, is primarily
driven by high-risk human papillomavirus (HPV) infections and comprises two major histological
subtypes: adenocarcinoma (AC) and squamous cell carcinoma (SCC). Despite advances in prevention
and treatment, the molecular and cellular heterogeneity of these subtypes poses significant
challenges to achieving optimal clinical outcomes. Here, we integrate single-cell RNA sequencing
(scRNA-seq) and spatial transcriptomics (ST) to dissect the cellular and spatial heterogeneity of AC
and SCC, uncovering distinct tumor microenvironment (TME) dynamics that underlie their divergent
clinical behaviors. Our scRNA-seq analysis reveals that AC is enriched in epithelial cells, while SCC
exhibits a more immunogenic TME with elevated plasma cells and NK/T cells. Spatial transcriptomics
further highlights robust interactions between CD8 + T cells and epithelial subtypes in SCC,
contrasting with the stromal-rich, immune-cold phenotype of AC. We identify subtype-specific
immune and stromal features, including ICOS+ Tregs, IDO1+ cancer-associated fibroblasts (CAFs),
and PLVAP+ endothelial cells, which may drive immune evasion, angiogenesis, and metastasis.
These findings provide a comprehensive framework for understanding CC heterogeneity and offer
actionable insights for developing subtype-specific therapeutic strategies, such as combining
immune checkpoint inhibitors with stromal-targeting agents. This study underscores the potential of
spatial multi-omics technologies to advance precision oncology and improve outcomes for cervical
cancer patients.

Cervical Cancer (CC) remains a significant global health challenge, ranking  preventive measures is limited'”. The disease is primarily caused by per-
as one of the most common malignancies affecting women worldwide. Itis  sistent infection with high-risk human papillomavirus (HPV) strains, which
the fourth leading cause of cancer-related deaths among women, particu-  drive the transformation of cervical epithelial cells into malignant
larly in low- and middle-income countries where access to screening and ~ phenotypes™. Two primary histological subtypes, cervical adenocarcinoma
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(AC) and squamous cell carcinoma (SCC), account for the majority of
cervical cancer cases’. While SCC is more prevalent, AC has been increas-
ingly diagnosed in recent years and is often associated with poorer prognosis
due to its deeper location within the cervix and resistance to conventional
therapies’. Despite significant advances in diagnosis, prevention (e.g., HPV
vaccination), and treatment modalities such as surgery, radiotherapy, and
chemotherapy, the molecular and cellular heterogeneity of these subtypes
poses a major challenge to achieving optimal clinical outcomes. Under-
standing the distinct molecular and cellular landscapes of AC and SCC is
therefore essential for developing more effective, subtype-specific ther-
apeutic strategies and improving patient survival rates.

Recent developments in single-cell RNA sequencing (scRNA-seq) and
spatial transcriptomics (ST) have revolutionized our ability to study tumor
biology at an unprecedented resolution. These cutting-edge technologies
provide detailed insights into the complex cellular ecosystems within
tumors, enabling researchers to dissect the heterogeneity of the tumor
microenvironment (TME) and uncover the mechanisms driving tumor
progression, immune evasion, and therapy resistance”’. scRNA-seq offers a
powerful approach to characterize the heterogeneity within the TME by
analyzing gene expression profiles at the single-cell level. This technology
has revealed diverse cell states, rare cell populations, and dynamic interac-
tions between tumor cells, immune cells, stromal cells, and other compo-
nents of the TME.

Complementing scRNA-seq, spatial transcriptomics (ST) technology
provides critical spatial context by mapping gene expression data to the
physical locations of cells within the tissue architecture™'’. This technology
allows researchers to visualize the spatial organization of cell types, identify
cellular neighborhoods, and study the interactions between tumor cells and
their surrounding microenvironment. By integrating scRNA-seq and ST,
researchers can achieve a comprehensive understanding of both the cellular
composition and spatial organization of tumors, uncovering critical insights
into tumor architecture, cellular interactions, and potential therapeutic
targets. Together, these technologies have the potential to transform our
understanding of cervical cancer biology and pave the way for precision
medicine. Additionally, they can elucidate mechanisms of therapy resis-
tance and inform the development of combination therapies that target both
tumor cells and their supportive microenvironment. As these technologies
continue to evolve, they hold great promise for improving the diagnosis,
treatment, and prognosis of cervical cancer, ultimately reducing its global
burden and improving the lives of affected women.

In this study, we aim to compare cervical adenocarcinoma and squa-
mous cell carcinoma combining scRNA-seq and ST, especially focusing on
characterization of distinct cellular populations and states within AC and
SCC, as well as deciphering the spatial distribution and interactions of these
populations within distinct tumor microenvironment. Qur analysis pro-
vides a comprehensive framework for understanding the cellular and spatial
features that differentiate AC and SCC, offering a foundation for persona-
lized therapeutic strategies and advancing the field of cervical cancer
research.

Results
Single-cell and spatial transcriptomics profiling of different his-
tological subtypes of cervical cancer
In this study we collected samples from three histological subtypes of cer-
vical cancer patients with similar stages (Fig. 1a, Supplementary Data 1),
including adenocarcinoma (AC), squamous cell carcinoma (SCC), and
adenosquamous carcinoma (ASC), and then performed single-cell RNA
sequencing (scRNA-seq) as well as Xenium spatial in situ hybridization
assay on those samples to investigate the contribution of tumor micro-
environment to different cancer types (Fig. 1b).

The scRNA-seq was performed by using fresh tumor specimens from
16 patients, including 8 AC, 6 SCC, and 2 ASC cases. After removing low-
quality cells and the batch correction process, we performed dimensionality
reduction on the data including a total of 150,798 single cells (Fig. 1c),
followed by cell annotation based on expression of cell-type-specific marker

genes, leading to identification of different major cell types, including epi-
thelial/tumor cells, endothelial cells, fibroblasts and so on (Fig. 1d). The
proportions of three major cell types varied significantly between AC and
SCC samples: AC samples exhibited a higher proportion of epithelial cells,
while SCC group was enriched in plasma cells and NK/T cells (Fig. 1e).
These differences indicated distinct cell compositions in the tumor micro-
environment between AC and SCC. The hierarchical clustering based on the
proportions of all cell types in different samples can distinguish the SCC
samples from AC samples, indicating obvious difference in cell composi-
tions between SCC and AC (Fig. 1f, Supplementary Data 2).

The Xenium spatial in situ hybridization assay was performed using
paraffin-embedded sections from 22 patients, including 9 AC, 10 SCC,
and 3 ASC samples (Supplementary Data 1). Using the Xenium data
only, we were also able to perform dimensionality reduction on the data
including a total of 1,963,636 single cells (Fig. 1g), and then clustered
different cell types based on the transcriptome profiles of the 430 genes
included in our Xenium gene panel (Supplementary Data 3) and then
annotated those cell types based on related marker genes. We were able
to identify most major cell types using the 430 gene panel, such as
epithelial/cancer cells, endothelial cells/pericytes, fibroblasts, B cells,
plasmablasts, myeloid cells, mast cells and NK/T cells (Fig. 1h). However,
there was no significant proportional difference of these cells between AC
and SCC samples (Fig. 1i, j, Supplementary Data 4); the inconsistency
with scRNA-seq data may be due to biased sampling of the spatial
transcriptomic platform without homogenization of the materials. By
integrating spatial coordinates for individual cells, we reconstructed a
two-dimensional tissue map that precisely localized all identified cell
types within their native architectural context (Supplementary Fig. 1).

We also integrated the scRNA-seq data and Xenium data and projected
the Xenium single cells into the scRNA-seq data UMAP (Supplementary
Fig. 2a, b). Annotation of majority of the cell types from both datasets was
consistent, with epithelial and endothelial cells the highest consistency and
mast cells the lowest consistency (Supplementary Fig. 2¢), indicating that the
Xenium data had similar sensitivity to identify those cell types although with
a small set of gene panels.

Deciphering the tumor and immune cell heterogeneity between
AC and SCC cervical cancer subtypes using scRNA-seq data
Next, to systematically explore the cellular heterogeneity underlying the
distinct biological behaviors of AC and SCC, we subclustered the tumor cells
and immune cells independently, as they exhibited marked compositional
disparities between the two tumor subtypes. For epithelial tumor cell
compartment analysis, we applied the same method, unsupervised
dimensionality reduction combined with graph-based clustering algorithms
to the epithelial cluster from the scRNA-seq data. This approach further
resolved the epithelial cell population into 11 clusters (Fig. 2a). Three sub-
clusters demonstrated statistically significant proportional imbalances
between AC and SCC, with Cluster 1 exhibiting pronounced enrichment in
SCC samples (Fig. 2b, Supplementary Data 5). This SCC-predominant
cluster displayed robust expression of canonical squamous lineage markers,
including KRT5 and KRT6A (Fig. 2¢, Supplementary Data 6), which were
hallmark genes for stratified epithelial differentiation'"". Intriguingly, this
cluster also showed elevated expression of SI00A9 (Fig. 2c, Supplementary
Data 6), a pro-inflammatory alarmin linked to myeloid cell recruitment and
tumor-stroma crosstalk'*"’, suggesting a potential interplay between SCC-
specific tumor subpopulations and immune modulation. For the other two
clusters which were more abundant in AC samples, cluster 0 overexpressed
many histone family genes such as HISTIH3A and HIST1H4B (Supple-
mentary Fig. 3a, Supplementary Data 7), indicating high DNA damage
response in those cells'®; cluster 2 overexpressed genes such as tetraspanin
family genes TSPAN1/3/8 (Supplementary Fig. 3b, Supplementary Data 8),
the roles of which were controversial in cancer'"". These findings highlight
the intrinsic molecular divergence between AC and SCC at the tumor cell
level, with AC and SCC-enriched subclusters potentially driving subtype-
specific microenvironmental compositions and clinical behaviors.
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Fig. 1 | Single-cell and spatial transcriptomic analyses performed on different
histological types of cervical cancer (CC) specimens. a, b Schematic illustrations of
experimental workflows for single-cell transcriptomic profiling and spatial tran-
scriptomics analysis performed on cervical cancer (CC) specimens. ¢ Two-
dimensional UMAP visualization of single-cell RNA sequencing (scRNA-seq) data
depicting cell types within CC tissues. Colors in UMAP indicate different cell types.
d Quantitative analysis of major cell type proportions derived from scRNA-seq
between two histopathological classifications of CC: AC and SCC; Student’s ¢ test
was used to perform statistical analysis, and “*” means statistical p value < 0.05,
“*HFE” means statistical p value < 0.001. e Comparative heatmap visualization dis-
playing expression levels of lineage-specific marker genes among identified cell
clusters in scRNA-seq datasets. f Sample-specific distribution patterns of cellular
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subpopulations identified through scRNA-seq analysis. Colors in the histograms
indicate the major cell types; triangles with different colors at the bottom indicate AC
or SCC cancer subtypes. g Two-dimensional UMAP visualization of Xenium spatial
transcriptomic data depicting major cell types within CC tissues, with different
colors indicating specific cell types as in (c). h Histopathological subtype-dependent
cellular composition quantification using Xenium in situ sequencing platforms in
CC specimens, there was no statistical difference for any cell types between AC and
SCC samples. i Comparative heatmap visualization displaying expression levels of
lineage-specific marker genes among identified cell clusters in Xenium datasets.

j Sample-specific distribution patterns of cellular subpopulations identified through
Xenium data analysis. Colors in the histograms indicate the major cell types; tri-
angles with different colors at the bottom indicate AC or SCC cancer subtypes.

We performed hierarchical clustering of the AC and SCC samples
based on the frequency distribution of the 11 epithelial subclusters
(Fig. 2d, Supplementary Data 5). The SCC samples did not form distinct
clusters separate from the AC samples, suggesting that these tumor types
could not be distinguished based on epithelial cell subclustering. Besides,
we integrated the scRNA-seq data with Xenium spatial transcriptomic
data to identify consistent marker genes of the subclusters for both
datasets. However, only two subclusters from the scRNA-seq UMAP
analysis—S100A9+ epithelial cells and MKI67+ epithelial cells—showed
consistency between the two datasets (Fig. 2c, Supplementary Fig. 3c—e).
The observed discrepancies may stem from the inherent genomic
instability, heterogeneous transcriptomic profiles of tumor cells, and the
diverse genetic backgrounds of individual patients, which could lead to

artifactual clustering of many subpopulations. Consequently, it is unli-
kely that those subclusters represent biologically meaningful subtypes of
tumor cells in cervical cancer.

We also performed sub-clustering of immune cells in the scRNA-seq
data (Fig. 2e). Distinct immune cell populations, including CD4 + T cells,
CD8+ T cells, plasmablasts, and others, were identified within specific
clusters based on the expression of canonical marker genes (Fig. 2e, f). Some
population of CD8 T cells were high in AP-1 transcription factors (such as
ATF3 and FOSB) expression, and were clustered with NK cells, this sub-
cluster was then annotated as “Activated CD8 T/NK cells”. The AP-1
transcription factors were important for the cytotoxic lymphocyte devel-
opment and antitumor immunity'®"’, implying this subcluster of cells may
play important roles in the TME. Based on the sub-clustering results, our
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Fig. 2 | Identifying epithelial and immune cell subtypes significantly enriched in
AC and SCC tumor subtypes based on scRNA-seq data. a Two-dimensional
UMAP visualization of scRNA-seq depicting epithelial cell subclusters. b The
boxplot indicating proportional difference of different epithelial cell subclusters
across AC and SCC tumor subtypes in scRNA-seq datasets; three subclusters showed
statistically significant proportional difference and marked with “*” indicating p
values < 0.05 and “**” indicating p values < 0.01. ¢ The dot plot showing marker
genes of two epithelial cell subclusters which showed consistency with the Xenium
data, including the subcluster 1 significantly more enriched in SCC samples com-
pared with AC. d Proportional distribution of different epithelial cell subclusters in
samples identified through scRNA-seq analysis; triangles with different colors at the

Gene

bottom indicate AC or SCC cancer subtypes. e Two-dimensional UMAP visuali-
zation of scRNA-seq depicting immune cell subtypes within CC samples. f Dot plot
showing RNA expression levels of marker genes across different immune cell
populations. g Proportions distribution of different immune cells in samples iden-
tified through scRNA-seq analysis; triangles with different colors at the bottom
indicate AC or SCC cancer subtypes. h Comparative distribution of immune cells
across AC and SCC tumor subtypes in scRNA-seq datasets; Student’s  test was used
to perform statistical analysis, and “**” means statistical p value < 0.01, “***” means
statistical p value < 0.001. i Violin plot showing the expression of ICOS+ Th1-like
Tregs related genes in immune cell subtypes. j Dot plot showing expression of ICOS
ligand gene in immune cell subtypes, with the highest expression in pDC subtype.

analysis revealed marked proportional differences in Activated CD8 T/NK
cells, CD8 + T cells, regulatory T cells (Tregs), and plasmacytoid dendritic
cells (pDCs) between AC and SCC (Fig. 2g, Supplementary Data 9). Sta-
tistical result revealed that the Treg cells and pDCs were more abundant in
SCC samples compared with AC samples, indicating that these two immune
cell types may play important roles in the tumor immune microenviron-
ment. Moreover, the hierarchical clustering based on the proportions of

different immune cells in different samples can distinguish the SCC samples
from AC samples (Fig. 2h, Supplementary Data 9), highlighting distinct
immune microenvironment profiles between these cervical cancer subtypes.
We next performed deconvolution (CIBERSORTx) on TCGA-CESC bulk
RNA-seq data, and deciphered the enrichment of plasma cells, CD8 T cells
as well as NK cells in SCC samples, which was consistent with our results
based on scRNA-seq data (Supplementary Fig. 3f).
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We further investigated Tregs and pDCs in terms of other marker
genes. Interestingly, we found that the ICOS gene was highly expressed in
Tregs (Fig. 2i), while ICOSLG was highly expressed in pDCs (Fig. 2j),
implying direct interactions between these ICOS+ Tregs and the ICOSL
secreting pDCs, and the importance of ICOSL-ICOS pathway in the
immune microenvironment in SCC. Apart from that, we also found the
Thl cells related marker genes were highly expressed in Treg populations,
such as CXCR3, LTA and LTB (Fig. 2i), implying that many of the cells in
that cluster were Th1-like Tregs**”'. Unlike common Tregs, these ICOS+
Th1-like Tregs act like the Th1 cells, promoting anti-tumor immunity and
even inhibiting immunosuppression caused by common Tregs’"*.

In addition, we further compared the expression of MDSC (Myeloid
Derived Suppressor Cells) marker genes S100A8/9 within all “myeloid cells”
between AC and SCC samples. The result revealed significantly higher
expression of SI00A8/9 in AC samples (Supplementary Fig. 3g), suggesting
their potential role in driving poor patient prognosis.

HPYV infection was considered to be closely associated with immune
microenvironment in cervical cancer”. In order to better understand how
the HPV infection influences immune tumor microenvironment, we
compared the proportions of different immune cells between HPV + AC
and HPV- AC samples. Only CD8 T cells and NK cells showed statistically
higher proportions in HPV 4+ AC than HPV- AC, abundance of other
immune cells such as plasma cells was not much different (Supplementary
Fig. 4a). In addition, we also compared the HPV + AC samples and the SCC
samples which were all HPV infected. Similar with the comparison between
all AC and SCC samples, we found much higher abundance of CD8 T cells,
NK cells, Tregs and pDCs in SCC samples than in HPV + AC samples
(Supplementary Fig. 4b). The result indicated that the immunogenic tumor
microenvironment may not be correlated with HPV infection, but more
related to the cancer subtypes.

Although only three ASC samples were included in our study, with no
statistically significant results found for ASC subtype, we further performed
hierarchical clustering on all three cancer subtypes based on the frequency
distribution of the major cell populations using scRNA-seq data (Supple-
mentary Fig. 4c) or Xenium data (Supplementary Fig. 4d). Hierarchical
clustering based on the scRNA-seq data indicated that the ASC subtype was
more similar with the AC, which was consistent with their clinical simila-
rities; while hierarchical clustering based on the Xenium data didn’t dis-
tinguish the three subtypes very well.

Subclutering of the major cell types in Xenium data to identify cell
subtypes

To further resolve cellular heterogeneity within the Xenium dataset, we
performed subclustering on major cell populations, including epithelial
cells, immune cells, cancer-associated fibroblasts (CAFs), fibroblasts, and
endothelial cells. Subclusters exhibiting strong marker gene expression
patterns were annotated based on their molecular signatures, while those
lacking definitive markers in the current Xenium panel were conservatively
labeled as “other.” Among the epithelial cells, we identified and annotated 10
distinct subclusters based on their marker gene profiles (Fig. 3a, Supple-
mentary Data 10). These marker genes included: ligand-encoding genes
(e.g, CXCL1, CXCL10, CCL20), immune-related markers (e.g., IL6,
SI00A9), and proliferative markers (e.g., MKI67), suggesting diverse bio-
logical functions across these subtypes (Fig. 3a). Compared to scRNA-seq
data, subclustering of epithelial cells using the Xenium data might provide a
more refined approach to identify biologically relevant tumor cell subtypes,
thereby deepening our understanding of the diverse functional roles these
cells play in cancer development, progression, and treatment.

For the immune cell compartment, we successfully resolved 20 distinct
subtypes, encompassing a diverse array of cell populations, including 3
plasma cell subtypes, 6 macrophage subtypes, 6 T cell subtypes, as well as
NK cells, B cells, conventional dendritic cells (cDCs), plasmacytoid dendritic
cells (pDCs), and mast cells (Fig. 3b). The plasma cells were further cate-
gorized into 4 subtypes based on their antibody secretion profiles: IGHM+
plasma cells representing early or IgM-secreting plasma cells; IGHG2+

plasma cells characterized by IgG2 antibody production, indicative of a
more mature or class-switched state; and the IGKV2-30+ plasma cells
suggesting a unique clonal population; the fourth cluster was unlike the
plasma cells due to the expression of RGS5, VWF, NOTCH3 and NOTCH1
genes, it was therefore annotated as “NOTCH1+ pericytes” to discriminate
from other pericytes populations (Supplementary Fig. 5a, b). These subtypes
reflect the functional diversity of plasma cells in terms of their antibody
repertoire and immune responses. Among the 6 macrophage subtypes, we
identified two distinct populations with M2-like polarization, characterized
by the overexpression of CD163, a well-known M2 marker*: MMP12 + M2
macrophages with overexpression of MMPI2, and the M2 macrophages
representing a general M2 population without additional specific markers
(Supplementary Fig. 5¢, d). Three other subtypes exhibited M1-like polar-
ization, each marked by distinct functional genes including IL1B, CCL4 and
G0S2. The final macrophage subtype was annotated as CCL21 macrophage,
as their expression of CCL2I did not clearly align with either M1 or M2
polarization, implying a potentially unique or transitional state (Supple-
mentary Fig. 5¢). For the six T cell subtypes (Supplementary Fig. 5e, f), two of
them were CD8 T cells, namely CCL4 + CTL and CD8 T cells (other CTLs),
the other four were CD4 T cells, including CCL13+ Th, IL7R+ Th, Tregand
CD4 T cells (other Th cells). This comprehensive classification of immune
cell subtypes provides a detailed framework for understanding their func-
tional diversity and roles in the immune microenvironment.

Within the stromal compartment, we identified 4 fibroblast subtypes
marked by CSF3R, LIF, CXCL1, and CXCL14 (Fig. 3c), CAF subtypes
expressing SI00A9, PLVAP, and IDO1 (Figs. 3d, 2) endothelial subtypes
characterized by CXCL12 and CCL2 expression (Fig. 3e). Pericytes, defined
by RGS5 and VWEF expression, were not further subclustered due to the low
cell numbers. The “PLVAP + CAF” subcluster not only expressed ACTA2
and DCN, but also expressed the endothelial marker VWF, since PLVAP
was well known as the tumor endothelial marker gene, there was no evi-
dence that CAFs expressed PLVAP gene at all, we believed these cells were
mixed up between CAFs and endothelial cells, therefore we renamed this
cluster of cells as “PLVAP+ Endo” to discriminate with other tumor
endothelial cells.

This annotation step is critical for downstream analysis, as it enables
systematic measurement of spatial distances between distinct cell subtypes
within these highly populated regions.

Determining specific cell-cell interactions in AC or SCC samples
with CellChat
Our scRNA-seq data has identified specific cell types and subtypes enriched
in AC and SCC samples. Next we tried to determine distinct cell-cell
interactions in these tumor types, especially focusing on two epithelial cell
subtypes (S100A9+ and MKI67 + ), which were also detected in the
Xenium data, along with two immune cell types (Tregs and pDCs) that
showed the most significant proportional differences between AC and SCC.

Using the CellChat tool”, we analyzed cell-cell interactions in the
scRNA-seq data from each sample and employed t-tests to evaluate dif-
ferences between AC and SCC groups. The results revealed significantly
stronger cell-cell interactions in SCC samples for these four cell types
(Fig. 4a). In addition to interactions within these four cell types, we also
found enhanced interactions between them and other cell populations in the
SCC microenvironment (Fig. 4a). For example, S100A9+ and MKI67+
epithelial cells, as well as pDCs, exhibited stronger interactions with acti-
vated CD8 T/NK cells, CD8 + T cells, CD163+ macrophages, and pro-
liferating macrophages in SCC, while Tregs showed stronger interactions
only with activated CD8 T/NK cells and CD8 + T cells, suggesting distinct
functional roles for these cells in SCC. Then we focused on their interactions
among those four cell types and activated CD8 T/NK cells and
CD8 + T cells, in total six cell types/subtypes. We found more interaction
events among these six cell identities in SCC samples compared with AC
samples (Fig. 4b).

Next, we examined potential ligand-receptor interactions of these four
cell types with AP-1 activated CD8 T/NK cells and CD8 + T cells separately,
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Fig. 3 | Subclustering within different major cell types separately and identifying
subtypes based on marker genes expression with Xenium spatial
transcriptomic data. a Subclustering the epithelial/tumor cells and identifying
epithelial subtypes according to respective marker gene expression profiles; the
UMAP after clustering is shown on the left and heatmap (right) indicates marker
genes expression in different subclusters. b Subclustering the immune cells in the
Xenium data and identifying specific subtypes based on related markers genes

expression; two-dimensional UMAP visualization is shown on the left and heatmap
indicating respective marker genes expression is shown on the right. Two-
dimensional UMAP visualization of Xenium data depicting fibroblasts (c), CAFs (d)
and endothelial cells (e) subclusters and their respective marker gene expression
profiles; the UMAP is on left side and heatmap showing respective marker gene
expression profiles is on the right.

and identified a greater number of interaction pairs in SCC compared to AC
(Fig. 4c-f), further supporting the notion of more robust cell-cell commu-
nications in SCC. For instance, pDCs exhibited more extensive interactions
with CD8 + T cells or activated CD8 + T/NK cells in SCC samples, char-
acterized by a higher number of potential ligand-receptor pairs (Fig. 4c).
These interactions included key pathways such as APP-CD74, CD80/
CD86-CTLAA4, as well as more robust engagements between various HLA
class I molecules and the CD8 protein. The HLA class I molecules are
responsible for presenting intracellular antigens to cytotoxic T cells and also
activating the cytotoxic T cells”, the enhanced interactions indicate more
activated antitumor immunity of cytotoxic lymphocytes in SCC samples
compared with AC samples. The function of APP-CD74 pathway was
usually considered to suppress immune response in cancer”**, but in some
other cases, it was shown to promote the antitumor immunity through
activating the cytotoxic T cells”’. The CTLA4 was proved to suppress T cell
activation and proliferation and inhibit antitumor immunity’"**, while in
our case, the CD80/CD86-CTLA4 interactions between pDCs and CD8

T cells may inhibit overactivation of the CD8 T cells in SCC. For Tregs
interacting with CD8 + T cells or AP-1 activated CD8 T/NK cells (Fig. 4d),
the major difference was interactions between HLA class I molecules from
Tregs and the CD8 proteins from CTLs, which was considered to suppress
CTL activity’™”, probably indicating a dynamic equilibrium between
immune activation driven by larger numbers of CTLs and suppression
caused by Tregs in SCC. For the other two epithelial subtypes, their inter-
action patterns were largely similar, with the most notable difference being
that interaction pairs involving ICAMI-SPN/CD43 and CDHI-
(ITGAE + ITGB7) were exclusively observed in SCC samples for both
CD8 + T cells and activated CD8 + T/NK cells (Fig. 4e, f). The interplay
between ICAMI1 and SPN/CD43 remains poorly understood, with only a
limited number of studies suggesting their role in tumor adhesion in vitro™.
On the other hand, the interactions between CDHI1 on epithelial cells and
ITGAE/ITGB7 on CD8 + T/NK cells are known to promote the retention
of cytotoxic lymphocytes at tumor sites, thereby enhancing local immune
surveillance™”’.
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subtypes (pDC, Treg, activated CD8 T/NK, CD8 T cells, MKI67+ and S100A9+
epithelial cells) in AC and SCC tumors. Comparison of putative ligand-receptor
pairs involving interactions between CD8 + T cells or activated CD8 + T/NK cells
and Tregs (c), pDCs (d), SI00A9+ epithelial cells (e), and MKI67+ epithelial cells (f)

in AC and SCC.
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In general, our results showed that SCC exhibited a larger variety of
cell-cell interactions, with these cell types interacting through more ligand-
receptor pairs, these interactions may be related to distinct characteristics of
the SCC tumor type.

Determining tumor type specific Interactions in cervical cancer
based on distance analysis

After annotating the cell types and subtypes in the spatial transcriptomic
data, we performed permutation distance analysis™™ on the data, and
determined the pairs of cells showing significantly closer distance in AC or
SCC samples. The principle of this method was to first fix an “index cell” and
the surrounding cells, perform Voronoi tessellation after determining the
cell centroids, and then use permutation methods to generate randomized
cell distance data, followed by a permutation test to assess the spatial rela-
tionships between “index cell” and others (Fig. 5a). The closer distance
would infer higher possibility of those pairs of cells interacting with each
other, representing unique tumor microenvironment in AC or SCC. Each
annotated cell type was independently designated as an ‘index cell’; using
permutation distance analysis, we identified its most proximal cell types as
potential interaction partners.

Our permutation distance analysis revealed several pairs of cell types
with the most divergent spatial distributions between AC and SCC tumors
(Fig. 5b). For instance, GOS2 + M2 macrophages exhibited significantly
closer spatial proximity to two specific cell subtypes: IGHG2+ plasmablasts
and VEGFA+ epithelial cells. Interestingly, the distance between G0S2 +
M2 macrophages and IGHG2+ plasmablasts was markedly reduced in SCC
samples, whereas their proximity to VEGFA+ epithelial cells was more
pronounced in AC samples (Fig. 5b). The spatial proximity between M2-
macrophages and IgG2+ plasmablasts in SCC may be due to the
mechanism that CD163 + M2 macrophages induce differentiation and
isotype switching of plasma cells*'. These findings suggest that the same cell
type can exhibit distinct interaction patterns within different tumor
microenvironments, potentially contributing to the unique characteristics
and progression of each tumor type.

It is also noteworthy that more than half of the top 20 most divergent
interactions between AC and SCC samples occurred among the immune
cell subpopulations, highlighting the distinct immune microenvironments
associated with these two cancer types (Fig. 5b). These differences may
underlie their contrasting clinical behaviors and outcomes. For example,
CCL4 + M1 macrophages demonstrated close interactions with both
IL1B + M1 macrophages and CD4 + T cells; however, the communication
with IL1B + M1 macrophages was stronger in AC samples, while interac-
tions with CD4 + T cells were more prominent in SCC samples (Supple-
mentary Fig. 6). This divergence may reflect differences in the anti-tumor
immune responses elicited in AC versus SCC, potentially influencing their
respective therapeutic responses and prognoses.

The observed variability in immune cell behavior across different
microenvironments underscores the need for tailored treatment strategies.
For instance, the distinct interaction patterns of immune cells in AC and
SCC may require different therapeutic approaches to effectively target their
unique microenvironmental dynamics. By leveraging spatial transcriptomic
techniques, we can gain deeper insights into these specific cellular behaviors,
paving the way for more precise and personalized therapeutic interventions.
Such an approach holds great promise for improving treatment efficacy and
patient outcomes, ultimately leading to better prognosis and survival rates.

In addition, we extended our analysis to investigate the interactions
between immune cells and non-immune cells, revealing that the most
divergent interactions occurred between epithelial cell subtypes and various
immune cell populations (Fig. 5¢). For instance, CD8 + T cells were found
to engage in significant interactions with multiple epithelial subtypes,
including CXCL1 4, CXCL10+, VEGFA +, and S100A9+ epithelial
cells. Notably, all of these interactions were markedly stronger in SCC
samples compared to AC samples. This observation suggests that SCC may
exhibit a more robust anti-tumor immune response, potentially driven by
enhanced CD8 + T cell activity and their closer spatial proximity to

epithelial cells. These findings highlight the distinct immune micro-
environment of SCC, which may be associated with its high link to HPV
infections driving carcinogenesis and therapeutic responsiveness.

We also analyzed the spatial distances for those four specific cell types:
pDCs, Tregs, SI00A9+ epithelial cells, and MKI67+ epithelial cells. pDCs
were found to be in close proximity to numerous immune cell types, and for
most pairs, the distances were shorter in AC samples compared to SCC
samples. However, the distance between pDCs and IgG+ plasma cells was
notably shorter in SCC samples (Fig. 5d). This observation aligned with the
established role of pDCs in promoting B cell maturation and plasma cell
differentiation**”, suggesting that the closer interaction between pDCs and
plasma cells in SCC samples may reflect enhanced plasma cell maturation.
For Tregs, the most striking difference between AC and SCC samples was
observed in their proximity to CCL134 Th cells, with significantly shorter
distances in AC samples (Fig. 5e). The reason why Tregs preferentially
interact with CCL13+ Th cells, rather than other Th cell subsets, remains
unclear and warrants further investigation. Additionally, Tregs were found
to be closer to CCL4+ CTLs and other CD8 + T cells in AC samples,
suggesting a role for Tregs in suppressing cytotoxic T cell activity within the
AC tumor microenvironment (TME). In contrast, the distance analysis for
the two epithelial subtypes (S100A9+ and MKI67+ epithelial cells) revealed
fewer interactions compared to pDCs and Tregs (Fig. 5f). Both epithelial
subtypes were predominantly located near other epithelial cells, with two
exceptions: both were also found in close proximity to CCL4+ CTLs and
other CD8 + T cells, implying a cytotoxic role for these T cells in targeting
and eliminating tumor cells.

Moreover, we also performed the distance analysis among the six
major cell identities used before to validate the results based on Cellchat.
First, we cross-checked the consistency of cell annotations based on both
omics dataset. Apart from the two epithelial subtypes showed before
(Supplementary Fig. 3e), we found the consistency of Tregs, pDCs and CD8
T cells (Supplementary Fig. 7a); CCL4 CTLs (ST data) were most similar
with activated CD8 T/NK (scRNA-seq data) based on our integrative
analysis (Supplementary Fig. 7a). The results revealed stronger interactions
among these cell types in SCC samples, especially pDC- Treg and aCD8 T/
NK-Treg pairs (Supplementary Fig. 7b), which was consistent with the
ligand-receptor based analysis.

Microenvironmental cell abundance analysis surrounding the
target cells to differentiate AC and SCC

We also quantified the abundance of surrounding cell types within a 100-pum
radius around the target cells (e.g., tumor cells, immune cells) to assess their
spatial interactions and microenvironmental compositions. Here we still
focused on pDCs, Tregs, SI00A9+ and MKI67+- epithelial cells, which were
regarded as “target” cells separately (Fig. 6a). We found three cell subtypes,
including CXCL1+ Fib, CXCL6+ Epi and IgG+ plasmablasts were sig-
nificantly more enriched in SCC samples than AC near the pDCs, while
PLVAP+ Endothelial cells were more enriched in AC samples (Fig. 6b, ¢). It
was well known that PLVAP+ Endothelial cells played important roles in
tumor progression as well as angiogenesis****, and pDCs may enhance their
functions in AC tumor type. Surrounding the Tregs, five cell subtypes,
including CXCL12+ Endo, CXCL14+ Fib, MUC5AC+- Epi, Pericytes and
PLVAP+ Endo were more enriched in AC samples, while two other sub-
types, CXCL6+ Epi and IgG+ plasmablasts were more enriched in SCC
samples (Fig. 6d, e). The most significant proportional difference was found
surrounding the MKI67+ Epi, in total nine cell subtypes had proportional
difference between AC and SCC samples, and SI00A9+ Epi was the most
divergent one, it was much more enriched in SCC samples, implying the
importance of their interactions in the TME (Fig. 6f, g). Besides, among
these 9 cell subtypes, there was only one immune cell subtype, cDCs which
was more enriched in SCC samples. The cDCs play important roles in anti-
tumor immunity by presenting tumor antigens, activating T cells, and
modulating the tumor microenvironment; their ability to induce anti-tumor
immune responses can directly or indirectly inhibit the proliferation of
tumor cells**. Higher abundance of <DCs surrounding the proliferating
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Fig. 6 | Comparative analysis of microenvironmental cell-type abundance asso-
ciated with specific target cell identities between AC and SCC. a Schematic
illustration of quantified analysis on the abundance of surrounding cell types within
specific area: for each target cell type, the spatial abundance of surrounding cell types
was quantified within a 100-pm radial neighborhood of individual cells across all
samples, followed by statistical analysis; scale bar is 50 mm. The boxplots showing
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cell types with statistically significant proportional difference (divided by 100-um
radial surrounding cell numbers) between AC and SCC samples surrounding pDC
(b), Treg (d), MKI67+ epithelial cells (f) and SI00A9+ epithelial cells (h). Repre-
sentative images showing differential cell-type abundance around one target cell in
ACand SCC samples, with the target cells pDC (c), Treg (e), MKI67+ epithelial cells
(g) and S100A9+ epithelial cells (i).

tumor cells may imply enhanced antitumor immunity in SCC samples. For
the S100A9+ Epi surrounded cells, only VEGFA+ Epi and MKI67+ Epi
were significantly more enriched in SCC samples (Fig. 6h, 1).

Cervical cancer neighborhood analysis

To further explore the spatial organization of the tumor microenvironment
in cervical cancer, we performed the neighborhood analysis on the spatial
transcriptomic data of cervical cancer. We determined 13 distinct

neighborhoods based on local distributions of specific cell types within the
set regions (Fig. 7a), and each neighborhood represented a specific clus-
tering area of cells in space, reflecting the spatial structure of different
cell types.

In our neighborhood analysis, multiple tumor cell subpopulations
were enriched in clusters 4, 10, and 12, indicating aggregation of these
tumor cells in space and formation of distinct structures within the
microenvironment (Fig. 7a). Additionally, cluster 3 was most abundant
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images of the spatial distributions and abundance of all cellular neighborhoods
within the AC, SCC and ASC tumor samples. d The boxplot indicating proportions
of different cellular neighborhoods (CNs) in AC and SCC samples; Student’s t-test
was used to perform statistical analysis, and “*” means statistical p value < 0.05, “**”
means statistical p value < 0.01.

with various kinds of T cells, CCL21 macrophages, pDCs and IDO1+
CAFs (Fig. 7b). This implied strong interactions between IDO1+ CAFs
with the immune cells within a small niche. IDO1+4 CAFs was well
known as pivotal metabolic-immune regulators in the TME, driving
immune evasion and tumor progression via Trp metabolism, cytokine
crosstalk, and stromal remodeling'”*’. Based on our spatial tran-
scriptomic data, we showed that they may interact with pDCs, CCL21
macrophages as well as various kinds of T cells to fulfill biological
functions. The spatial distributions of different neighborhoods in the
TME can be visualized (Fig. 7¢).

Next we compared the abundance of different clusters in AC and SCC
samples. The result showed that cluster 1 was significantly abundant in AC
samples, while cluster 2 was most enriched in SCC samples (Fig. 7d). The
cluster 1 was mainly composed of PLVAP+ epithelial cells, pericytes,
PLVAP +, CCL2+ and CXCL12+ endothelial cells. This small niche may

be responsible for tumor metastasis****. Since this cluster was more enriched
in AC samples, implying that AC had higher risk of metastasis than SCC,
which was consistent with the clinical experience. The cluster 2 was mainly
composed of different subtypes of epithelial cells, with highest abundance
S100A9+ and CXCL6+ epithelial cells. This reflected distinct tumor cell
organizations in the SCC.

These results demonstrate that within the tumor immune micro-
environment of cervical cancer, distinct spatial aggregation patterns exist
among different cell types, particularly in regions where tumor cells and
immune cells interact. These findings shed new light on the dynamics of
cell-cell interactions in the tumor microenvironment and may lay a theo-
retical foundation for the development of future immunotherapy strategies.
Furthermore, the identification of cellular neighborhoods will enhance our
understanding of the functional roles played by specific cell types within the
context of their surrounding microenvironment.
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Discussion

Cervical cancer (CC) remains a significant global health burden, with
adenocarcinoma (AC) and squamous cell carcinoma (SCC) representing
distinct histological subtypes that exhibit divergent clinical behaviors and
therapeutic responses. By integrating single-cell RNA sequencing (scRNA-
seq) and spatial transcriptomics (ST), our study provides unprecedented
insights into the cellular and spatial heterogeneity of these subtypes,
revealing unique tumor microenvironment (TME) dynamics that may
underlie their contrasting prognoses. Below, we contextualize our findings,
discuss their implications for understanding CC biology, and propose future
directions for therapeutic development.

Our scRNA-seq analysis revealed stark differences in the cellular
composition of AC and SCC tumors. AC exhibited a higher proportion of
epithelial cells, suggesting a tumor-cell-dominated TME, while SCC was
enriched in immune cells such as plasma cells and NK/T cells. These
findings aligned with clinical observations of SCC’s more immunogenic
nature compared to AC, which often evaded immune detection due to its
deeper anatomical location and stromal-rich microenvironment. The SCC-
predominant epithelial subcluster expressing KRT5, KRT6A, and the pro-
inflammatory alarmin gene SI00A9 highlights a potential link between
squamous differentiation, myeloid cell recruitment, and immune modula-
tion. SI00A9, a known driver of tumor-stroma crosstalk'*”", may foster an
inflammatory niche in SCC, facilitating immune cell infiltration while
paradoxically promoting immunosuppressive signaling. Conversely, AC-
enriched subclusters overexpressing histone genes (e.g, HISTIH3A) and
tetraspanins (e.g., TSPAN1/3/8) suggest distinct molecular pathways driving
tumor progression, possibly linked to DN'A damage repair and cell adhesion
—mechanisms that warrant further exploration in the context of therapy
resistance.

In cervical SCC, high plasma cell abundance may have dual functions:
the IgG secreted plasma cells may promote antibody-dependent anti-tumor
responses via viral antigen targeting (e.g, HPV E6/E7)”, these antibodies
may neutralize the viral particles to inhibit infection of new cells, or opsonize
tumor cells through phagocytosis (ADCP) or NK-cell killing (ADCC)**™>.
Conversely, diffuse intratumoral plasma cells (IgA/IgG4-dominated) drive
immunosuppression through M2 macrophage polarization, fibrosis, and
T-cell exclusion®”. Spatial distribution, antibody isotype, and HPV antigen
specificity determine net impact.

The spatial transcriptomic data further illuminated the architectural
divergence between subtypes. While SCC tumors displayed robust inter-
actions between CD8 4T cells and epithelial subtypes (e.g., CXCL1 +,
S100A9 + ), AC tumors were characterized by stromal-rich niches domi-
nated by PLVAP+ endothelial cells and pericytes. PLVAP, a marker of
vascular permeability and angiogenesis***, is associated with metastatic
potential, consistent with AC’s clinical propensity for distant spread. These
findings underscore the importance of spatially resolved analyses in dis-
secting subtype-specific TME features that bulk sequencing approaches may
obscure.

The immune landscape of SCC was marked by heightened activity of
cytotoxic lymphocytes (e.g., CCL4+ CTLs) alongside elevated immuno-
suppressive populations, including Tregs and pDCs, although part of the
Tregs showed Thl-like activities with CXCR3 and LTA/LTB over-
expression. The co-enrichment of these cells in SCC suggests a dynamic
equilibrium between immune activation and suppression, potentially driven
by bidirectional interactions. For instance, the ICOS-ICOSLG axis linking
Tregs and pDCs may enhance immunosuppressive signaling, while the
proximity of pDCs to IgG+ plasma cells in SCC points to their role in
fostering plasma cell maturation. Intriguingly, SCC Tregs exhibited a Th1-
like phenotype (e.g., CXCR3, LTA/LTB), a paradoxical feature that may
reflect functional plasticity. Thl-like Tregs have been implicated in both
suppressing effector T cells and secreting pro-inflammatory cytokines**,
suggesting a dual role in SCC that merits further investigation. In contrast,
AC’s immune microenvironment was less active but uniquely organized,
with Tregs spatially proximal to CCL13+ Th cells and CCL4+ CTLs. This
spatial arrangement may reflect AC-specific mechanisms of immune

evasion, such as Treg-mediated suppression of cytotoxic lymphocytes. The
scarcity of cDCs—critical antigen-presenting cells—in AC’s proliferative
niches (MKI67+ Epi surrounded) further underscores its immune-cold
phenotype, which may contribute to its resistance to checkpoint inhibitors.

Stromal cells emerged as key architects of subtype-specific TMEs,
which can be potential therapeutic targets for CC. Both tumor types har-
bored IDO1+ cancer-associated fibroblasts (CAFs) that colocalized with
immune cells (e.g., T cells, pDCs) in spatially defined neighborhoods. IDO1,
a mediator of tryptophan metabolism, is a known driver of immune evasion
and a promising therapeutic target™”. Its association with CCL21+ mac-
rophages—a population with ambiguous M1/M2 polarization—suggests a
novel immunosuppressive axis in CC. Interestingly, AC’s stromal com-
partment was enriched in PLVAP+ endothelial cells and CXCL12+
fibroblasts, which may promote angiogenesis and metastatic dissemination.
Targeting PLVAP or its downstream effectors (e.g, VEGF) could disrupt
AC’s vascular niche, potentially mitigating metastasis.

In addition to decoding the molecular mechanisms of different CC
subtypes, our findings also have several translational implications. For
instance, the identification of spatial neighborhoods revealed coexistence of
activated CD8 + T cells and immunosuppressive networks (e.g., ICOS+
Tregs, IDO1+ CAFs) in certain patients may reflect localized immuno-
suppressive niches. Combining checkpoint inhibitors (e.g., anti-PD-1) with
ICOS/IDO1 blockade could potentially shift this balance towards immune
activation, offering a strategy for precision medicine. The stromal and
vascular dominance of AC highlights the need for therapies targeting
PLV AP+ endothelial cells or histone-driven DNA repair pathways. Besides,
the identification of neighborhoods enriched in metastatic (AC) or
immune-active (SCC) cells could guide prognosis and treatment selection.

Limitations of this study include the small sample size of ASC cases and
the restricted gene panel in Xenium spatial assays, which may have obscured
some important cell populations such as y§ T cells. To improve this, cus-
tomized panels and other single-cell level data (e.g., spatial proteomic data,
scRNA-seq data) are needed to identify more cell types/subtypes which are
biologically meaningful. Besides, future work should integrate multi-omics
data (e.g., proteomics, epigenetics) to validate ligand-receptor interactions
and explore the functional roles of Thl-like Tregs and CCL21+
macrophages.

In summary, by integrating scRNA-seq and spatial transcriptomic
data, our study delineates the molecular and spatial landscapes of cervical
adenocarcinoma and squamous cell carcinoma, revealing subtype-specific
mechanisms of immune evasion, stromal remodeling, and metastasis. These
insights not only advance our understanding of CC biology but also provide
aroadmap for developing precision therapies tailored to the unique TME of
each subtype. As spatial technologies evolve, their application in clinical
trials could transform CC management, offering hope for improved out-
comes in this globally significant malignancy.

Methods

Clinical samples collection

The cervical cancer samples, including 8 cases of adenocarcinoma, 6 cases of
squamous cell carcinoma, and 2 cases of adenosquamous carcinoma, were
obtained from multiple sites, including Sun Yat-sen Memorial Hospital of
Sun Yat-sen University, the First Hospital of Jilin University and the Third
Affiliated Hospital of Harbin Medical University. All these 16 fresh samples
were subjected to single-cell RNA sequencing, and paraffin-embedded
tumor tissues were prepared for 15 of them (Supplementary Data 1).
Additionally, 7 more paraffin-embedded tissues collected from the Sun Yat-
sen Memorial Hospital of Sun Yat-sen University together with 15 FFPE
samples were used for Xenium spatial transcriptome analysis (n =22,
Supplementary Data 1). This study was reviewed and received approval
from the Ethics Committee of Sun Yat-sen Memorial Hospital of Sun Yat-
sen University, the First Hospital of Jilin University Ethics committee and
the Ethics committee of Third Affiliated Hospital of Harbin Medical Uni-
versity. All ethical regulations relevant to human research participants were
followed. All patient data were de-identified prior to analysis, as all data were
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fully anonymized and no individual can be identified, the requirement for
informed consent for publication was waived by the Ethics Committees
from the three hospitals. Relevant clinical information was collected from
medical records.

Single-cell sample preparation

The fresh cervical cancer samples were collected and processed
immediately with the procedure modified from the manufacturer’s protocol
(Demonstrated Protocol, CG000147). Briefly, the fresh tumor tissues
were cut into small pieces and incubated with digestion medium
(RPMI1640 supplemented with 200 U/mL collagenase IV (C1889, Sigma),
10 U/mL DNAse II (D8764, Sigma), 2% heat-inactivated FCS) for 30 min at
37°C. Then the single cell suspension was filtered through a prewetted
40 pum strainer to remove clumps and debris, followed by centrifuge and
washing with RPMI1640 medium for three times. The cell pellet was
resuspended with 1x chilled Red Blood Cell Lysis Buffer (ab204733, Abcam)
and incubated on ice for 10 min, and then washed with cold PBS three times.
The single cell suspension was then prepared at an appropriate con-
centration for the library preparation steps.

Single-cell library preparation and sequencing

The 5 single-cell library was prepared strictly following the manufacturer’s
instructions (User Guide CG000733, 10x Genomics) using the Chromium
GEM-X Single Cell 5 Kit v3 (cat# PN-1000699). The final libraries were
pooled and sequenced at the Illumina NovaSeq6000 sequencer using the
150 bp PE kits (read 1=26bp, i7 index = 10 bp, i5 index = 10 bp, read
2 =90 bp read configuration) targeting an average of 20,000 reads per cell.

ScRNA-seq data pre-processing, dimension reduction and
clustering

Single-cell RNA sequencing (scRNA-seq) data were processed using the 10x
Genomics Cell Ranger pipeline (v7.1.0). Raw sequencing files (BCL format)
were first demultiplexed into sample-specific FASTQ files using cellranger
mkfastq, followed by alignment and feature quantification via cellranger
count. To account for RNA content, reads were aligned to a pre-mRNA
reference transcriptome (GRCh38-2020-A) that retains intronic regions,
ensuring detection of unspliced nuclear transcripts.

Following Cell Ranger processing, the data were imported into R via
Seurat::Read10X (v5.1.0)*. Nuclei were filtered using thresholds of >500
genes, <10,000 genes, <20,000 UMIs, or 220% mitochondrial content per
nucleus. To mitigate ambient RNA, single cells with UMIs <3 X the median
droplet count (approximating empty droplets, as most droplets lack cells)
were excluded. The data underwent doublet detection using DoubletFinder
(PCs 1-20; parameters: nExp=0.076x(nCells*/10*), pN=0.25, pK optimized
via paramSweep_v3).

All samples were merged into a unified Seurat object and processed via
Seurat’s standard workflow. Data were log-normalized (scale fac-
tor=10,000), and 2000 variable features were selected using FindVaria-
bleFeatures (vst method). Scaling and PCA were applied to all genes. To
mitigate donor-specific batch effects, Harmony integration (RunHarmony,
grouped by donor) was performed prior to clustering, followed by UMAP
dimensionality reduction. Expression of marker genes in the resulting
clusters was then used to label clusters for downstream analysis.

Cell-cell communication analysis with the scRNA-seq data

The CellChat package (version 2.1.2)° was used to perform cell-cell com-
munication analysis in our cervical cancer dataset. First the data with nor-
malized gene expression matrix and cell type annotations was used as input
and incorporated with the built-in ligand-receptor interaction database to
infer biologically significant cell-cell communications with the truncated
mean (trim = 0.1) to reduce outlier effects. Then the inferred networks were
aggregated at the cell type level and visualized using heatmaps, networks and
circle plots independently. For multi-group comparisons (AC vs SCC in our
case), the differential interactions were quantified using a permutation test
and then used for statistical analysis.

Spatial transcriptomics using Xenium platform

The FFPE tissues were sectioned at a thickness of 5 um and placed on the
Xenium slides (cat# PN-1000659, 10x Genomics) according to the manu-
facturer’s instructions (CG000578, 10x Genomics). After baking at 42 °C for
3 h, slides were stored in 50 ml centrifuge tubes containing desiccant at
room temperature until subsequent experiments. Next, the tissue sections
were dewaxed and de-crosslinked following the manufacturer’s instructions
(CG000580, 10x Genomics), and then treated according to the user guide for
“Xenium In Situ Gene Expression” (CG000760, 10x Genomics). The whole
process included a series of manual experiments, including Priming
Hybridization, RNase Treatment & Polishing, Probe Hybridization, Post
Hybridization Wash, Ligation, Amplification, Cell Segmentation Staining,
and Autofluorescence Quenching. After completing these steps, the slides
were processed using the user guide “Xenium Analyzer” (CG000584, Rev A,
10x Genomics). The pre-designed “Human Immuno-Oncology” gene panel
(cat# PN-1000654) including 380 genes together with customized 50 genes
was used in the assay (Supplementary Data 3). The 50 custom genes were
designed to target specific cell subtypes based on the scRNA-seq data.

Spatial transcriptomic data processing

The raw count matrix generated by the Xenium Analyzer platform was pre-
processed using the Seurat package (version 5.1.0) in R (version 4.4.1). Cells
expressing at least three gene (min.freatures >=3) were retained. The raw
count data were normalized using the SCTransform function. After PCA
analysis using the RunPCA function, the data was further integrated by
RPCA integration to minimize the batch effect, followed by clustering and
visualization through UMAP dimensionality reduction, leading to identi-
fication of the major cell populations, including epithelial/cancer cells,
endothelial cells, pericytes, cancer-associated fibroblasts (CAFs), fibroblasts,
B cells, plasmablasts, myeloid cells, mast cells and NK/T cells.

For subclustering of each major cell identity, the process was repeated
starting from the SCTransform step. A specific cell subtype was annotated
only if the expression level of its marker gene was at least 4 times higher than
in other subclusters (Log2FC > 2) and if more than 60% of the cells within
that cluster expressed the gene. Subclusters that could not be annotated
based on these criteria were labeled as “other” for downstream analysis.

Cell-cell interactions analysis

The permutation-based distance analysis was used to systematically eval-
uate cell-cell spatial interactions under different experimental/pathological
conditions™. First, one annotated cell type was independently designated as
an ‘index cell’, the observed spatial distances between cell types were com-
puted using Delaunay triangulation within biologically independent regions
to establish nearest-neighbor relationships. For each cell pair (index cell —
celltype2), the mean triangulation distance was calculated across all regions.
Statistical analysis was performed through implementation of a permuta-
tion approach by randomly shuffling cell type labels within each region
while preserving spatial coordinates and tissue architecture. This rando-
mization process was repeated 100 times to generate a null distribution of
expected distances. The average distances for each field in each permutation
cycle were calculated and compared with the observed distances using a
Mann-Whitney U Test. The fold enrichment of the observed distance to the
mean distance derived from the permutation test was determined for each
pair of cells. The whole process was repeated each time switching the
“index cell”.

Neighborhood enrichment analysis with Spatial

Transcriptomic data

The Neighborhood enrichment analysis was performed as previously
described”. A window size of 20-100 nearest neighbors was selected for
analysis. Within each window, different cell types and subtypes were
quantified, and a vector containing cell count information was generated.
These vectors were then clustered to identify recurrently composed neigh-
borhoods, revealing distinct spatial niches enriched with specific cell
populations. Through extensive parameter optimization, we determined the
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optimal number of cellular neighborhoods that best captured tissue spatial
organization and heterogeneity. Finally, we identified the most highly
enriched cell identities within each neighborhood.

Statistics and reproducibility
For quantitative assessment of cellular microenvironment composition, we
developed a spatial neighborhood frequency analysis pipeline. Four func-
tionally relevant cell subtypes (pDC, MKI67+ epithelial cells, SI00A9+
epithelial cells, and regulatory T cells) were selected as spatial anchors. For
each anchor subtype, we first extracted all cellular coordinates and cross-
joined them with coordinates of 47 other cell subtypes within the same tissue
section using Cartesian product generation. Euclidean distances between
anchor cells (x,,y1) and neighboring cells (x,,y.) were computed as d =
sqrt((x,—x1)> + (y2—y1)?), with spatial proximity defined as d <100
(equivalent to 100-unit radius). Neighborhood frequencies were normalized
as percentages relative to total proximal interactions per sample.
Comparative analysis between AC and SCC groups was performed
using two-tailed Student’s ¢ tests with Welch’s correction. Statistical sig-
nificance was hierarchically annotated (*p < 0.05, **p < 0.01, ***p < 0.001).
The analytical workflow was implemented in R 4.4.1.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The scRNA-seq data for the cervical cancer patients have been deposited at
ArrayExpress (EMBL-EBI) with accession number E-MTAB-15983, as well
as OMIX with accession number OMIX012298 with controlled access; the
spatial transcriptomic data have been deposited at Biolmage Archive
(EMBL-EBI) with accession number S-BIAD2378, and also OMIX with
accession number OMIX012586 with controlled access.

Code availability

Details of publicly available software used in the study are given in the
“Methods”. No custom code or mathematical algorithm that is deemed
central to the conclusions was used.
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