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Hypergraph-driven spatial multimodal
fusion for precise domain delineation and
tumor microenvironment decoding
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Recent advancements in spatial transcriptomics have transformed tumormicroenvironment research
by providing insights into cellular interactions and spatial heterogeneity. A fundamental challenge is
the precise delineation of spatial domains. However, existing methods remain limited in accurately
identifying spatial domains, partially due to their reliance on single-view features. Moreover, these
methods often struggle with many-to-many spot relationships, such as shared biological functions.
To this end, we propose HAST, a hypergraph-driven spatial multimodal fusion tool for precise
domain delineation and tumor microenvironment decoding. HAST integrates gene expression,
spatial coordinates, and histological features to construct local hypergraphs that effectively model
many-to-many spatial relationships. These local hypergraphs are dynamically aggregated into a
global hypergraph, capturing higher-order interactions. To learn discriminative and biologically
meaningful representations, we employ a hypergraph convolutional network, coupled with self-
supervised contrastive learning, to fuse multi-view information. Extensive benchmarking across
multiple datasets demonstrates that HAST outperforms state-of-the-art methods, accurately
delineating spatial domains and uncovering domain-associated genes. Functional enrichment
analyses further reveal biologically relevant pathways and provide novel insights into tumor
microenvironment. In summary, HAST is a robust framework for decoding the spatial complexity
of tumors, paving the way for precise spatial omics analyses in cancer research.

Spatial transcriptomics (ST) has emerged as a pioneering technology that
integrates gene expression with the spatial distribution of cells, offering
unprecedented insights into tissue properties and pathological alterations at
both the molecular and structural levels. By mapping gene expression
patterns on tissue sections, ST technology provides a powerful tool for
unraveling complex cellular microenvironments and tissue structures1,2.
Spatial domain identification is an essential task during the ST analysis
process. It aims to delineate different functional and structural regions
within a tissue based on transcriptomic data. These spatial domains usually
correspond to biologically significant regions, such as tumor micro-
environments or developmental regions of embryonic tissues3,4. Therefore,
accurately identifying these regions is crucial for understanding tissue-

specific functions, revealing disease mechanisms, and guiding precision
medicine strategies5,6.

Traditional non-spatial clustering methods, such as Louvain7, and
package Seurat8, rely solely on gene expression data to group cells into
spatial domains by assessing the similarity between gene expressions. These
methods demonstrate suboptimal performance, due to ignoring the spatial
location information within tissues9,10. To take account of this information,
several graph-based deep learning methods are proposed, such as
SpaGCN9, SpaceFlow11, STAGATE12, and GraphST10. These methods
improve the performance of domain identification by integrating gene
expression with spatial location. For instance, SpaGCN9 and STAGATE12

model spatial information using a graph-based encoder, effectively
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capturing local spatial dependencies between spots. Moreover, SpaceFlow11

employs a contrastive learning strategy that creates negative examples by
randomly rearranging spatial expression graphs during training. Another
method, GraphST10, combines graph convolutional networks (GCNs) with
contrastive learning to derive informative and discriminative spot repre-
sentations by minimizing the distance between spatially adjacent spots.
Furthermore, several advanced methods have been proposed and can be
applied in spatial domain identification. For example, BANKSY13 uses
neighbor-augmented embeddings to jointly perform cell-type labeling and
tissue-domain segmentation in spatial omics data. CellCharter14 integrates
molecular profiles with spatial information and structural metrics to
identify and compare cell niches across samples in a scalable and inter-
pretable manner. scNiche15 is a multi-view graph-fusion autoencoder that
integrates molecular and spatial information via a fusion network to derive
compact single-cell niche representations. Kasumi16 leverages dual-view
learning with spatial information to robustly represent tissues for improved
patient stratification in spatial omics datasets.

While graph-based methods have demonstrated strong performance
in well-structured tissues like the brain, they often encounter challenges in
more heterogeneous contexts, such as tumor microenvironments, where
spatial boundaries are ambiguous, and gene expression signals arenoisy. For
instance, SpaGCN9 acknowledges that their spatial domain detection is
mainly driven by gene expression, which may lead to the discrepancy
between the detected domains and the underlying tissue anatomical
structure. A common limitation among these methods is their reliance on
single-modality features, typically gene expression or spatial coordinates, to
construct pairwise spot-to-spot graphs. Such a design makes it difficult to
capture many-to-many relationships17. For example, in complex tissues,
such as tumors, a spot may share key biological programs with multiple,
non-adjacent neighbors, which cannot be captured by pairwise edges alone.
Modeling such higher-order associations enables more accurate and bio-
logically meaningful spatial domain delineation, especially when domain
boundaries are non-contiguous or partially overlapping18–21. Therefore, it is
essential to develop models that can integrate multi-modal features and
encode high-order relational structures.

Here, we propose a multi-view Hypergraph Association Spatial
Transcriptomic (HAST) framework for domain identification. HAST
constructs three types of modality-specific local hypergraphs separately
from gene expression, spatial coordinates, and histology image features.
These local hypergraphs are then adaptively aggregated into a global
hypergraph to capture higher-order interactions across modalities. All
hypergraphs, along with spatial gene expression patterns, are processed
using hypergraph convolutional networks (HGCNs) to learn comprehen-
sive representations. To further enhance feature discriminability,we employ
self-supervised contrastive learning by corrupting vertex gene features and
aligning original and corrupted representations. The final fused repre-
sentations are used for spatial domain clustering. We evaluate HAST on
multiple spatial transcriptomic datasets and show that it outperforms
existingmethods in spatial domain identification. In addition,HASTreveals
fine-grained spatial and genetic information within tumor microenviron-
ments, providing insights into complex tissue organization.

Results
Overview of HAST
HAST is a hypergraph-based deep learning framework for spatial domain
identification, as illustrated in Fig. 1. It consists of two sequential stages: (1)
multi-view hypergraph construction and representation learning, and (2)
representation refinement and domain identification.

In Stage 1, HAST constructs three modality-specific local hypergraphs
from spatial transcriptomic data using: (1) Pearson correlation to model
gene expression similarity, (2) Euclidean distance of spatial coordinates to
reflect physical adjacency, and (3) cosine similarity of image patch features
extracted from a pre-trained Vision Transformer to represent histological
morphology. Each spot is connected to its top-k similar neighbors in each
modality to form a hyperedge. These three local hypergraphs are each

encoded with a hypergraph convolutional network (HGCN) to generate
modality-specific latent representations, detailed in “Hypergraph con-
struction”. To integrate the three views, HAST uses an adaptive weighted
hypergraph fusion module that assigns a weight to each local hypergraph
based on its consistencywith the fused structure. Theweights are updated in
a closed-formmanner at each forward pass. This fused global hypergraph is
further processed by an additional HGCN tomodel high-order, multi-view
relationships, detailed in “HGCN for representation learning”.

In Stage 2, we apply self-supervised contrastive learning by cor-
rupting the input gene matrix while maintaining the neighbor topology.
The corrupted and original graphs are both passed through the encoder
pipeline. Contrastive learning encourages the model to produce con-
sistent representations for similar spots by maximizing the alignment
between the original and corrupted versions of the same spot. It enhances
the robustness of representations and does not enforce similarity between
spatially neighboring but biologically distinct spots. Finally, a multilayer
perceptron decoder reconstructs the gene expression matrix from the
fused latent features. This reconstruction step retains biologically
meaningful expression signals, thus providing a refined gene profile for
downstream spatial domain clustering.

Performance of spatial domain identification for the DLPFC
dataset
We first evaluated the spatial identification performance of HAST on the
LIBD human dorsolateral prefrontal cortex (DLPFC) dataset22, which
comprised spatially resolved transcriptomic profiles of 12 slices. Each
slice included manually annotated white matter (WM) and four to six
cortical layers. For this dataset, we compared the spatial domain iden-
tification performance of HAST with other baseline methods. As shown
in Fig. 2a, HAST achieved the best overall clustering performance,
measured by Adjusted Rand Index (ARI)23, Fowlkes-Mallows Index
(FMI)24, and Normalized Mutual Information (NMI)25. We hypothesize
that the dynamic multi-view hypergraph aggregation contributes to the
improved clustering performance. HAST also exhibited less variation in
performance across slices than other methods, demonstrating consistent
and robust clustering results with an average ARI, FMI, and NMI scores
of 0.63, 0.72, and 0.70. These results represented significant performance
improvements in three metrics of 15%, 9%, and 6%, respectively, com-
pared to the second-ranked method, GraphST. Although STAGATE and
GraphST showed decent clustering performance on partial slices, their
overall performance was worse than HAST. Additionally, the perfor-
mance of BayesSpace and SpaceFlow exhibited less variation but had
much lower average scores.

Among all slices, HAST achieved the best performance on slice
#151672, with the ARI of 0.70 and FMI of 0.78. Fig. 2b presents the
clustering results alongside the uniform manifold approximation and
projection (UMAP) visualization. Figure 2c further illustrates clustering
results across baseline methods on slice #151672, revealing that Giotto
performed the worst, with substantial intermixing of clusters and the ARI
of only 0.11 and FMI of 0.36. Seurat exhibited a similar issue, with poorly
defined cluster boundaries. BayesSpace performed slightly better but still
struggled with inter-category mixing. Additionally, SpaceFlow identified
distinct layers, but most of the layers do not match the annotations.
SpaGCN and conST produced cluster shapes that were closer to the
annotations but suffered from inconsistent category thickness. STAGATE
and GraphST achieved the most annotation-aligned results among
baseline methods, with ARI scores of 0.57 and 0.63, respectively. Manual
annotation and clustering results for other DLPFC slices are shown in
Supplementary Figs. S1–S12. Figure 2d visualized the UMAP of HAST
and the three best-performing baseline methods on slice #151672.
SpaGCN achieved relatively good separation between some layers, but
overall exhibited less compact and clearly defined clusters. GraphST
demonstrated stronger local consistency but suffered from overlap
between clusters. Certain regions of STAGATE displayed mixing of dif-
ferent spot types. In contrast, HAST improved spatial delineation visually.
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While these aspects are qualitative in nature, they are aligned with the
quantitative improvements observed in evaluation metrics.

To further validate the efficiency of identified spatial domains, we
detected spatially variable genes (SVGs) for each domain in the case slice
#151673, following the pipeline in SpaGCN. Specifically, for each target
domain, we selected its top three neighboring domains using a spatial
k-nearest approach. Statistical comparison was performed using a log-
transformed gene expression matrix and a neighborhood-aware differ-
ential expression model that accounts for the spatial adjacency matrix.

All SVGdetection was performed on the original gene expressionmatrix
rather than the reconstructed output. Among the detected SVGs, three
with strong domain specificity were presented in Fig. 2e. PCP4 was
identified as a key SVG in domain 1, while MBP and HPCAL1 were
enriched in domains 3 and 6, respectively. These SVGs highlighted their
association with spatial heterogeneity across different regions, demon-
strating the ability of HAST to accurately capture spatial patterns and
reveal meaningful biological insights with distinct domains22,26. Finally,
we highlighted the issue of representation collapse in the case slice

Fig. 1 | Schematic overview of HAST framework for spatial domain identifica-
tion. HAST consists of two stages for gene representation extraction and spatial
domain identification, respectively. Stage 1 further includes two detailed steps,
which are multi-view hypergraph construction and hypergraph representation
learning. In stage 1, three hypergraphs HGC , HMS, and HSC are firstly constructed
from perspectives of gene correlations, morphological similarities, and spatial
neighborhoods. For subsequent operation, three corrupted hypergraphs are gen-
erated by data augmentation. Then, HAST constructs a global hypergraph Hf by

adaptively aggregating weighted local hypergraphs. These local and global hyper-
graphs, along with spatial gene expression patterns, are then processed by hyper-
graph convolutional networks (HGCNs) to learn comprehensive representations,
obtaining the original representation Z and the corrupted representationZ0. In stage
2, the self-supervised contrastive learning is applied to optimize the alignment
between original and corrupted representations. Finally, the reconstructed gene
expression matrix X̂ from amultilayer perceptron (MLP) decoder is used for spatial
domain clustering. Stage 3 illustrates some downstream analysis.
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#151672, which contained five spatial domains, as shown in Fig. 2f.
These heatmaps illustrated the structural separability and discriminative
capacity of the learned embeddings. It can be seen that embeddings
learned from HAST with a specific HGCN encoder failed to produce
clearly separable clusters, causing smaller-scale blocks to blend

with larger or neighboring ones. In contrast, the embedding
generated through HAST, which adaptively fuses multi-view hyper-
graphs, showed well-separated similarity blocks. It provides a
representation-level explanation of why HAST captures domain
boundaries more accurately.
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Analysis of independent and integrated slices from the mouse
brain tissue dataset
Themouse brain tissue dataset comprised two slices: anterior and posterior,
with only the anterior slice manually annotated. In the anterior section
(Fig. 3a), HAST accurately delineated key regions, including the olfactory
bulb and dorsal pallium. Using the manual annotations from Long et al.10,
HAST achieved the highest ARI and FMI scores of 0.50 and 0.52, respec-
tively, representing a 22% improvement in ARI compared to the second-
ranked GraphST. For the posterior slice (Fig. 3b), which lacked manual
annotations, HAST successfully identified the cerebellar cortex (red box)
and the Ammon’s horn (yellow box), aligning well with the Allen mouse
brain atlas27. Since manual annotations were unavailable, we evaluated
clustering performance using the Silhouette Coefficient (SC)28 and Davies-
Bouldin index (DB)29. The SC measures clustering compactness and
separation, ranging from −1 to 1, with higher values indicating better
clustering. The DB index assesses overall cluster quality, where lower values
are preferable. HAST achieved the highest SC of 0.23 and the lowest DB of
1.36, outperforming other baseline methods.

Since tissue samples can bemuch larger than the capture slices used in
ST,horizontal integration enables the alignment of data frommultiple slices.
To assess the horizontal integration capability of HAST, we spliced two
slices from the mouse brain tissue dataset and compared its performance
against baseline methods (Fig. 3c and Supplementary Fig. S7). Following
previous work, we set the number of target clusters to 26 across all methods.
HAST accurately identified key brain structures, including the cerebral
cortex (red box), and hippocampus (yellow box) closelymatching the Allen
mouse brain atlas. In contrast, other methods neglected certain structures.
For example, conST failed to recognize the hippocampus. Additionally,
HAST achieved the highest SC of 0.26 and the lowest DB of 1.23 among all
methods, demonstrating superior clustering performance. Further analysis
of the UMAP distribution (Fig. 3d) indicated that common regions in the
anterior and posterior slices overlapped, whereas unique regions remained
distinct. This outcome reflects the functional differences between the two
slices and reveals that the integration preserves both shared and distinct
tissue structures.

Specifying the tumor microenvironment in the human breast
cancer dataset
In the analysis of the human breast cancer dataset, the results from HAST
were closest to themanual annotation among all methods and achieved the
highestARI of 0.60 andFMIof 0.63,whichwas 15%higher than the second-
ranked STAGATE in terms of the ARI score (Fig. 4a). It is worth noting
that the clustering result proposed by HAST is more refined compared to
the manual annotation. In particular, for the “Healthy_1” region,
HAST divided it into Cluster 4 and Cluster 16. Analysis of differentially
expressed genes (DEGs) (Fig. 4b) showed that DEGs in cluster 4 included
DCN, VIM, and COL1A2, and these genes tended to play a role in cancer-
associated fibroblasts (CAFs)30–32. In contrast, these genes were not inDEGs
of cluster 16 (Fig. 4b and Supplementary Fig. S14a). In addition, CAF
marker genes (TIMP1, COL1A2, DCN) were upregulated in Cluster 4
(log2FC >0.5,p-value <0.05) (Fig. 4c), butwere not up-regulated inCluster
16 (Supplementary Fig. S14b).We also observed thatGraphST also detected
a cancer-related region, which is larger than Cluster 4 of HAST.While CAF
marker genes are also more highly expressed in the GraphST-identified
domain compared to other regions, the expression enrichment is less than

that observed inHAST. Specifically, COL1A2 exhibits an expression level of
0 in Cluster 4 of GraphST, whereas it is absent in Cluster 4 of HAST.
Similarly, the number of TIMP1 andDCNexpressed at low levels inCluster
4 of GraphST also exceeds that in Cluster 4 of HAST (Fig. 4c). This suggests
that HAST achieved a more refined domain identification.

To further confirm that Cluster 4 corresponded to the cancerous
region, we conducted gene ontology (GO) enrichment analysis (Fig. 4d).
Compared to other clusters, DEGs in Cluster 4 were significantly enri-
ched in molecular functions such as transforming growth factor beta
(TGF-β) binding, cellular components such as collagen-containing
extracellular matrix, and biological processes such as extracellular
matrix organization (adjusted p-value < 0.05). These GO terms suggest
that Cluster 4 exhibits key cancer-related biological features33–35,
including extracellular matrix remodeling, active cancer signaling
pathways, platelet involvement in tumor progression, and enhanced
protein synthesis, further supporting its strong association with the
characteristics of breast cancer tissue. In conclusion, by multimodal
integration of HAST, we identified that Cluster 4 corresponds to a
tumor microenvironment densely populated by CAFs, revealing the
molecular characteristics of CAF-enriched regions.

Performance on the HER2+ dataset, the zebrafish melanoma
dataset, and the Visium HD dataset
The HER2+ dataset also consists of breast cancer tissue slices, albeit
much smaller in size. We evaluated the clustering performance of HAST,
SpaGCN, SpaceFlow, conST, and GraphST on eight slices with manual
annotations (Fig. 5a and Supplementary Figs. S15 and S16). HAST
outperformed other baseline methods across all slices. Specifically, for the
two slices in Fig. 5a, HAST achieved ARI scores of 0.25 and 0.18, sig-
nificantly surpassing GraphST, which recorded scores of 0.1 and 0.05,
respectively. Notably, the number of clusters in the second slice was
smaller for both HAST and GraphST than for manual annotations. This
discrepancy is attributed to both methods performing refinement steps,
as detailed in “Representation refinement” which merge smaller clusters
with others. Biologically, the merged clusters did not exhibit strong
separation in gene expression or morphology, suggesting the merging is
reasonable. Users can also disable this step if they prefer to retain all small
clusters for downstream analysis.

In the zebrafish melanoma dataset, we analyzed tissue slices A and
B. Hunter et al.2 used scRNA-seq data to classify interface clusters into
muscle-like and tumor-like subclusters. However, independent analysis
of ST data proved insufficient to accurately identify clusters, especially in
smaller regions where scRNA data were not integrated. In slices A and B,
the domain identification results from HAST closely matched the
annotations provided by Hunter et al. (Fig. 5b). In the UMAP visuali-
zation, Cluster 7 in slice A and Cluster 14 in slice B serve as interfaces,
connecting the two primary regions of muscle and cancer. In contrast,
other baseline methods, although capable of recognizing the cancer-
muscle interface, exhibited reduced accuracy (Supplementary Fig. S17).
For instance, in Slice A, STAGATE identified larger interface regions,
while SpaceFlow mistakenly included normal muscle tissue within the
interface cluster boundaries. In slice B, GraphST barely recognized the
interface region correctly. Additionally, DEGs identified by HAST
included genes such as zgc:158463, si:dkey-153m14.1, RPL41, and hspb9
(Fig. 5c). These DEGs reflect the reciprocal regulation between muscle

Fig. 2 | Performance on the DLPFC dataset. a Boxplots of ARI scores, FMI scores,
and NMI scores for eleven methods on 12 slices of the DLPFC dataset. In the
boxplots, the center line represents the median, the box boundaries represent the
upper and lower quartiles, the black dots denote individual slices, and the whisker
lines are 1.5 × interquartile range. b H& E images, manual annotations, clustering
with ARI and NMI by HAST on slice #151672 of the DLPFC dataset, and UMAP
visualization. c Clustering results of baseline methods Seurat, Giotto, SpaGCN,
SpaceFlow, conST, BayesSpace, STAGATE, and GraphST on slice #151672 of the
DLPFC dataset using ARI and FMI. Manual annotation and clustering results for

other DLPFC slices are shown in Supplementary Figs. S1--S12. Tools for visuali-
zation are from the Scanpy package. d UMAP visualization by SpaGCN, GraphST,
STAGATE, and HAST on DLPFC slice #151672. e Spatial expression patterns of
SVGs for domain 1 (PCP4), domain 3 (MBP), and domain 6 (HPCAL1) for slice
#151673. fHeatmaps of spot similarity matrices in the latent space of HAST, HAST
with only spatial location correlation HGCN encoder, HAST with only gene cor-
relation HGCN encoder, and HAST with only morphological similarity HGCN
encoder on slice #151672 of the DLPFC dataset.
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Fig. 3 | Performance on the mouse brain tissue dataset. a H& E image of the
anterior slice of mouse brain tissue dataset, manual annotation from Long et al.10 and
clustering results of HAST and baseline methods on this slice measured by ARI and
FMI. Colors are independently assigned for eachmethod. bH&E image of the posterior
slice of mouse brain tissue dataset, annotations from the Allen reference atlas27, and
clustering results of HAST and baseline methods on this slice measured by SC and DB.

Colors are independently assigned for each method. c Horizontal integration of HAST,
including annotations of the Allen reference atlas, results of the integration of HAST
and baseline methods on anterior and posterior mouse brain tissue sections. The cer-
ebral cortex is outlined in the red box, and the hippocampal Cornu Ammonis region is
outlined in the yellow box. The remaining results of the baseline method are shown in
Supplementary Fig. S13. d The UMAP visualization of HAST.
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Fig. 4 | Results on the human breast cancer dataset. a H& E image of the human
breast cancer dataset, manual annotation, and clustering results of HAST and
baseline methods on this slice measured by ARI and FMI. Colors are independently
assigned for eachmethod. bDifferential gene expression (DGE) analysis of Cluster 4
vs. other clusters (left) and Cluster 16 vs. other clusters (right). Each point represents
a gene, with the vertical axis indicating -log10 of the p-value and the horizontal axis
representing the log2FoldChange (log2FC). P-values were from the two-sided
Wilcoxon rank-sum test. Significance thresholds were set at ∣log2FC∣ > 0.5 and p-
value < 0.05. cViolin plots of CAFmarker genes (TIMP1, COL1A2,DCN) inCluster

4 vs. other clusters. The vertical axis represents gene expression levels. Each violin
indicates the expression distribution of a specific gene, and the width indicates the
frequency. The central white line represents the median, the thick black bar within
each violin is the interquartile spacing, and the whisker line extends from the 25th
and 75th percentiles to 1.5 × interquartile range. dGO analysis of Cluster 4 vs. other
clusters. The vertical axis represents GO terms, while the horizontal axis represents
-log10 of the p-value. GO enrichment analysis was conducted using a one-sided
hypergeometric test, with p-values adjusted for multiple comparisons using the
Benjamini-Hochberg method.
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tissue and cancer cells. GO enrichment analysis of the interface between
slices A and B revealed enrichment in pathways related to translation,
cytoplasmic translation, and ribosome assembly (Fig. 5d). These results
underscore the active transcription and translation processes occurring at
the interface, further supporting previous findings.

To assess the scalability and effectiveness of HAST under high spatial
resolution, we further evaluated it on the Visium HD dataset. Due to the
ultra-high resolution of this dataset, we divided the tissue into multiple
patches and selected representative ones (20,000 cells per patch) for
benchmarking to ensure GPUmemory feasibility across baseline methods.

https://doi.org/10.1038/s42003-025-09312-0 Article

Communications Biology |            (2026) 9:45 8

www.nature.com/commsbio


Among these, the performance of HAST and GraphST on two repre-
sentative patches is shown inFig. 5e,whereHASTdemonstratesfiner spatial
boundarydelineationandmore coherentdomain structures.Quantitatively,
HAST outperforms GraphST and other baselines in both ARI and FMI.
Additional comparison results involving SpaGCN, STAGATE, SpaceFlow,
conST, KASUMI, and cellcharter, as well as evaluations on other Visium
HDpatches, are provided in Supplementary Fig. S18. Thesefindings suggest
that HAST remains robust and effective under high-resolution settings,
highlighting its potential for fine-grained spatial analysis across different
spatial transcriptomics technologies.

The ablation studies of HAST
To verify the contribution of the different parts of the HAST, we conducted
ablation experiments on the loss function and network architecture sepa-
rately. Supplementary Fig. S19a and S20a present the clustering results on
the four datasets when varying the loss function, with w/o indicating the
exclusionof the specific loss function.The removal of both contrastive losses
resulted in an average ARI score reduction of 20.3% across four datasets.
When the individual losses,LSCL andLC SCL,were added, the averageARI
scores improved by 3.8% and 6.9%, respectively. The best performance was
achieved when both contrastive losses were incorporated. This indicated
that contrastive losses improved the quality of representations by pulling
similar vertices closer together and pushing dissimilar vertices further apart.

Supplementary Fig. S19b and S20b evaluated the role of various
modules within the network structure. Firstly, we only used a spatial cor-
relation GCN GSC as the encoder. When replacing it with the spatial cor-
relation HGCNHSC, the average ARI score improved by 4.3%. Besides, as
different HGCNmodules were progressively incorporated, the average ARI
scores improved by 2.5%, 5.7%, and 4.4%. This improvement could be
attributed to the local-global hypergraph encoder, which defined higher-
order relationships across multiple views, enabling richer feature interac-
tions. By extending spot relationships from simple first-order adjacencies to
more complex contextual dependencies, the model effectively captured a
broader spectrum of topological relationships. Supplementary
Fig. S19c and S20c further illustrated the performance of using a single
modality to construct a graph or hypergraph. It can be seen that HGCN
consistently outperforms GCN. In addition, among the three modalities,
graph or hypergraph construction using histological features and gene
correlation is superior to that using spatial locations.

We then tested HAST with varying numbers of HVGs on the DLPFC
dataset and observed that the performance remains stable, with changes in
ARI and NMI within ± 5%, as shown in Supplementary Fig. S21. This
suggests that HAST is robust to moderate variations in HVG selection. We
finally selected 3000HVGs as a default based on empirical evaluation across
datasets, balancing expression diversity and computational efficiency.

In HAST, we applied ViT-B/32, pre-trained on ImageNet-1K, as the
default morphological encoder. No fine-tuning was performed. To evaluate
robustness, we further tested Prov-GigaPath36, a large foundation model
pre-trained on whole-slide histopathology images, and ResNet-5037, a
classical CNN-based encoder loaded with ImageNet-pretrained weights.
Performance across these encoders on the DLPFC dataset is provided in
Supplementary Fig. S23. The results demonstrate that HAST performs best
when using ViT-B/32 as the image encoder, validating it as an effective and
efficient morphological feature extractor.

Finally, we conducted ablation experiments on the choice of hyper-
parameters in HAST. These include radius r in the post-clustering spatial
smoothing, neighbor k in hypergraph construction, and the parameters λ1
and λ2 for balancing reconstruction loss and contrastive loss. Related
experimental results are shown in the Supplementary Fig. 23. For radius r,
HAST achieves optimal performance with r = 40 for DLPFC, mouse brain
tissue, human breast cancer, and r = 20 for HER2+, balancing noise
smoothing and functional boundary preservation. For the number of
neighbors, k = 3 yields the best trade-off between accuracy and stability
across datasets. λ1 and λ2 are set to 10 and 1 to avoid contrastive loss
dominating the training process.

Discussion
Spatial transcriptomic domain identification plays a pivotal role in deci-
phering tissue architecture and cellular interactions. While existing graph-
basedmethods have advanced the integration of gene expression and spatial
coordinates, their reliance on single-view pairwise graphs limits their ability
to capture the intricate many-to-many relationships inherent in complex
tissues, such as tumor microenvironments, where distinct spatial domains
may share similar gene expressionprofiles but differ in histological structure
or spatial organization. In this study, we proposed HAST, a multi-view
hypergraph framework that integrates gene expression, spatial location, and
histology images to model higher-order interactions and refine repre-
sentations through self-supervised contrastive learning. Comprehensive
experiments demonstrate thatHAST outperforms state-of-the-artmethods
across diverse datasets and provides biologically interpretable insights into
spatial domains.

Unlike conventional graph-based models that rely on predefined
pairwise relationships, HAST dynamically aggregates three complementary
hypergraphs-gene correlation, morphological similarity, and spatial
neighborhoods-to capture both local and global structural dependencies.
The adaptiveweightingmechanismhelpsmitigate the impactof low-quality
or noisy modalities by dynamically adjusting the contribution of each fea-
ture view, improving robustness in cases where specific modalities may
provide less informative signals. The integration of self-supervised con-
trastive learning further enhances discriminative power. By perturbing gene
expression features while preserving hypergraph topology, HAST learns
invariant representations that align neighboring spots and separate dis-
similar regions38,39. This strategy mitigates overfitting and improves gen-
eralization. For instance, in the DLPFC dataset, HAST achieved sharp
domain boundaries that closely matched manual annotations, while
methods like SpaGCN and GraphST exhibited spatial dispersion or over-
smoothing. In conclusion, the performance advantage of HAST over prior
methods can be attributed to two key innovations. First, the hypergraph
fusion framework enables richer relational modeling by capturing higher-
order and cross-viewassociations, rather than relying solely onpairwise spot
relationships. Second, the inclusion of the morphological view brings in
spatial tissue structure information derived from H&E images, which
complements the gene and spatial views with histological features. Our
ablation studies confirm that both components are essential, and their
integration leads to significant performance improvements.

In practical scenarios involving multiple slices from the same tissue
type, HAST can be flexibly applied either slice-by-slice or in an integrated
fashion. For instance, in the mouse brain dataset, HAST is trained across

Fig. 5 | Performance on the HER2+ dataset and analysis of the zebrafish mela-
noma dataset. a Two groups of H& E images in the HER2+ dataset, manual
annotation, and clustering results ofHAST andGraphSTmeasured byARI and FMI.
The remaining results of other baseline methods and slices are shown in Supple-
mentary Figs. S15 and S16. b H& E image, annotation of zebrafish melanoma on
slices A and B fromHunter et al.2, clustering results of HAST on slices A and B with
SC and DB, and corresponding UMAP visualizations. Baseline methods results are
shown in Supplementary Fig. S17. c DGE analysis of the interface domain versus
other domains on slice A (up) and B (down). Each point represents a gene, with the
vertical axis denoting the -log10 of the p-value and the horizontal axis denoting the

log2FC. P-values were from the two-sided Wilcoxon rank-sum test. Significance
thresholds were set at ∣log2FC∣ > 0.25 and p-value < 0.05. d GO analysis for the
identified interface domain versus other domains on slices A (left) and B (right). The
vertical axis represents GO terms, while the horizontal axis represents -log10 of the
p-value. GO enrichment analysis was conducted using a one-sided hypergeometric
test, with p-values adjusted formultiple comparisons using the Benjamini-Hochberg
method. e Clustering results of HAST and GraphST measured by ARI and FMI on
one patch of a VisiumHDdata. The remaining results of other baselinemethods and
slices are shown in Supplementary Fig. S18.
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concatenated slices, allowing it to uncover shared and distinct spatial
structures. This joint modeling benefits from the shared biological context
while preserving unique slice-level heterogeneity.

HAST’s ability to resolve fine-grained spatial domains has significant
implications for understanding tissue heterogeneity. In the human breast
cancer dataset, HAST identified a CAF-enriched subcluster within the
“Healthy_1” region, validated by upregulated markers (DCN, COL1A2)
andGO terms related to extracellularmatrix remodeling30,32. Such precision
is critical for delineating tumor-stroma interfaces and identifying ther-
apeutic targets35. Similarly, in zebrafish melanoma, HAST uncovered
interface regions with active transcriptional activity, marked by ribosome-
related genes (RPL41, hspb9), suggesting a transitional zone between tumor
and muscle tissues2,32. These findings underscore the capacity of HAST to
reveal spatially resolved molecular mechanisms that are often obscured in
conventional analyses.

HAST could be further improved in the following aspects: First, the
computational complexity of HAST increases with hypergraph size, posing
challenges for large-scale datasets. Future work could explore mini-batch
training or graph sparsification to enhance scalability. Second, the current
implementation relies on predefined hyperparameters, which may require
optimization for tissues with varying spatial resolutions. Automating
hyperparameter selection viameta-learning or Bayesian optimization could
improve adaptability. Third, HAST can be extended to integrate multi-
omics data (e.g., proteomics, epigenetics) or single-cell RNA-seq references,
enabling joint analysis of cellular states and spatial contexts. Furthermore,
our current framework operates on 2D slices independently, extending
HAST to analyze aligned serial tissue sections for 3D spatial domain iden-
tification represents a compelling future direction. This will require datasets
with accurate inter-slice registration or inherently 3D transcriptomic
measurements, which are emerging with platforms such as Stereo-seq and
3D Slide-seq.

Methods
Data description
Five publicly available ST datasets and histological images obtained from
different platforms are employed (Supplementary Table S1). The first is
the DLPFC Dataset, which comprises twelve slices from three indivi-
duals, acquired using the 10 × Visium platform22. Each individual con-
tributes four slices, sampled at 10 μm and 300 μm intervals, with section
sizes ranging from 3460 to 4789 spots, capturing 33,538 genes. Each
section is manually annotated, containing five to seven distinct regions.
The second dataset is the mouse brain tissue from the 10 × Genomics
Data Repository. This dataset consists of two sections with 2695 and
3355 spots. Fifty-two manually labeled regions from the Allen brain
atlas27 are used as references. The third is the human breast cancer
sample sourced from the 10 × Genomics Data Repository, which con-
tains 3798 spots and 36,601 genes, with 20 manually annotated regions.
The fourth dataset of the HER2+40 breast tumor includes 36 tissue
sections from eight patients. Eight annotated sections manually labeled
by pathologists are used in this study. The last is the zebrafish melanoma
dataset2 retrieved from the NCBI GEO database. Two tissue sections with
2179 and 2677 spots are selected and analyzed.

Data preprocessing
For spatial clustering, HAST incorporates gene expression counts, spatial
location data, and histological images. The top 3000 highly variable genes
(HVGs) are first selected. Gene expression counts are subsequently nor-
malized by library size and log-transformed using the SCANPY package41.
The normalized gene expression counts are finally standardized to zero
meanandunit variance as input for theHASTmodel. For imagedata,HAST
extracts coordinate-centered sub-images of size 224 × 224 based on spatial
location coordinates. The spatial resolution of the original H&E images is
determined by the imaging platform of each dataset. For datasets based on
the 10xVisiumplatform, the resolution is approximately 0.253μmperpixel.
Each extracted sub-image thus corresponds to an area of approximately

57 μm × 57 μm.”, which is basically comparable to the size of a spot. These
sub-images are normalized and finally encoded into feature vectors.

For datasets involvingmultiple tissue slices, HAST supports both slice-
wise processing and cross-slice integration. When spatial alignment is fea-
sible, we merge the spot-level data across slices and apply joint training and
clustering, as demonstrated in themouse brain dataset. Otherwise,HAST is
applied to each slice independently.

Hypergraph construction
HAST first constructs hypergraphs to learn latent representations from
three perspectives: gene correlations, morphological similarities, and spatial
neighborhoods.

Gene correlation matrix. Gene expression correlation of cells helps
improve clustering accuracy by revealing biological similarities and poten-
tial functional links between cells. In addition, it helps reduce noise inter-
ference and supports further analysis of cellular functions. For the gene
expression correlation weight GCij, we calculate it through the gene
expression vectors gi and gj from spots si and sj by

GC si; sj
� �

¼ GCij ¼
gi � gi
� � � gj � gj

� �
��gi � gi

��
2

��gj � gj
��
2

; ð1Þ

where gi and gj are the mean value of gi and gj, which come from the gene
expression matrix X.

Morphological similarity matrix. Morphological information reveals
spatial relationships between cells and microenvironmental features by
providing insights into the morphological structure of cells. Combining
morphological information can better distinguish cells with similar func-
tions but different spatial locations, and assist in identifying tissue structures
and cellular states. To utilize this information, we extract a 224 × 224 pixel
image patch centered at each spot’s spatial coordinate from the histology
image. These sub-images are then fed into a pre-trained Vision
Transformer42, which serves as the image encoder to generate spot-wise
morphological feature vectors. The morphological similarity weight MSij
between si and sj is calculated by cosine similarity and defined as

MS si; sj
� �

¼ MSij ¼
mi �mj��mi

��
2

��mj

��
2

; ð2Þ

where mi andmj represent the morphological features for spots si and sj.
Spatial correlation matrix. For spatial location information, we cal-

culate the Euclidean distance between spots to quantify the effect of spatial
information on determining similar cell states. The spatial correlation
weight SCij is represented as

SC si; sj
� �

¼ SCij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2

þ yi � yj

� �2r
; ð3Þ

where (xi, yi) and (xj, yj) are coordinates of spots si and sj.
After completing the matrix computations, we construct three

hypergraphs based on the gene correlation matrix GC, morphological
similarity matrix MS, and spatial correlation matrix SC. For each spot, we
define a neighbor set within each matrix and select the k most similar
neighbors. Specifically, for GC andMS, we choose the k neighbors with the
highest correlation. For SC, kneighborswith the smallest spatial distance are
selected.

With theneighbor setN GC ,NMS, andN SC , wedefineeachvertex i and
its set of neighbors as a hyperedge ei. The hypergraphsHGC,HMS, andHSC

are then constructed for the threematrices, respectively. EachhypergraphH
can be represented as a set V of vertices and a set E of hyperedges:
H ¼ fV; Eg, E ¼ feijei ¼ fi;N igg.
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HGCN for representation learning
In this step, the top 3000 highly variable genes are selected. Then, we log-
transform the original gene expression matrix and normalize it41. For sub-
sequent contrastive learning, we generate corrupted hypergraphs by data
augmentation. Specifically, given a hypergraph H and a normalized gene
expression matrix X, the corrupted hypergraph is created by randomly
shuffling the gene expression vectors betweenverticeswhilemaintaining the
topology of the original hypergraph. The corrupted hypergraph and shuf-
fled gene expression matrix are denoted asH0 and X0.

HGCN-based encoder. To extract the spot latent representation from
the gene expression matrix, we design an HGCN-based encoder. The
HGCN can effectively capture the higher-order correlations between ver-
tices in the hypergraph H, making it well-suited for handling complex
neighboring structures. Specifically, the encoder takes the hypergraph H
and the expression matrix X as input and utilizes the HGCN to learn the
latent representation zi of spot i. In HGCN, the structure of the hypergraph
is represented by the adjacency matrix H ∈ RN×M, where N denotes the
number of spots, andM represents the number of hyperedges. Vertex fea-
tures are aggregated and propagated through hyperedges. Formally, for the
layer l, the vertex representation is updated as

Xðlþ1Þ ¼ σ D�1=2
v HWD�1

e H>D�1=2
v XðlÞΘðlÞ

� �
; ð4Þ

where X(l+1) is the output of the l-th layer and σ is the ReLU function for
nonlinear activation.Dv∈RN×N is the vertex degreematrix,De∈RM×M is the
hyperedge degree matrix.W ∈ RM×M is the weight matrix of the hyperedge,
andΘ is the learnable parameter matrix that maps the input features to the
latent representation space.

Adaptive weighted hypergraph fusion. Different views provide
complementary information, making the fusion of the three hypergraphs
into a more informative and robust global hypergraph beneficial for the
clustering task. However, due to the noise and the incompleteness of the
original features, some views may not correctly reflect the actual topology
between vertices. Therefore, we adaptively assign weights to each hyper-
graph during hypergraph fusion, ensuring a more reliable structure repre-
sentation. Specifically,weminimize the sumof the squareddifferences of the
weighted Frobenius paradigms between Hf and all Hv by adjusting Hf:

Hf ¼ min
Hf

XV
v

wv k Hf �Hvk2F ; ð5Þ

whereV = [GC,MS, SC], and wv is the weight or each view. According to
43,

we compute thewv using the inverse distance of fusion adjacencymatrixHf

and each latent adjacency matrix Hv, which is expressed as

wv ¼
1

k Hf � HvkF
: ð6Þ

Based on the obtained weights, the fusion adjacencymatrixHf is updated in
each forward pass by

Hf ¼
P

vwvH
vP

vwv
: ð7Þ

At the start of training, latent hypergraphs from different views are
assigned equal weights. As training progresses, these weights are adap-
tively updated based on the differences between the matrices, ensuring
that high-quality local hypergraphs, those closely aligned with the fusion
hypergraph, receive higher weights. Simultaneously, less reliable hyper-
graphs are assigned smaller weights, effectively mitigating the negative
impact of noise.

With the fusion adjacency matrixHf, we sum the outputs of the three
HGCNs to obtain the global features. An additional HGCN is then applied
as the final layer of the encoder to derive the original representation Z.

Similarly, for the corrupted gene expression matrix X0, the same process is
used to obtain the corrupted original representation Z0. The representation
Z is then fed into a decoder composed of two linear layers to reconstruct it
into the original gene expression space. Specifically, the decoding process is
defined as

X̂ ¼ ðReLUðZW1 þ b1ÞÞW2 þ b2; ð8Þ

where X̂ is the reconstructed gene expression matrix.W1,2 and b1,2 are the
weights and biases for linear transformations. To fully leverage the gene
expressionmatrix,we train themodel byminimizing the self-reconstruction
loss Lrec of the gene expression data, which is defined as

Lrec ¼ X � X̂
�� ��2

F : ð9Þ

Representation refinement
To further enhance the robustness and discriminative ability of the
feature representation, we employ a self-supervised contrastive
learning strategy for the latent space representation after encoding.
Specifically, for a vertex in the hypergraph, the representation vectors
of its neighbors constitute the local context of the vertex. The
representation vector of the vertex itself, along with its local context,
forms a positive pair, while its representation vector and the local
context from the corrupted hypergraph form a negative pair.
Through self-supervised contrastive learning, we maximize the
mutual information of positive pairs while minimizing the mutual
information of negative pairs. This approach ensures that neigh-
boring vertices in the hypergraph topology are encouraged to have
similar representations, whereas disjoint or unrelated vertices are
assigned dissimilar representations. The contrastive loss LSCL can be
defined as

LSCL ¼ � 1
2N

XN
i¼1

EðX;HÞ logΦ zi; gi
� �� 	þEðX0 ;H0Þ log 1�Φ z0i; gi

� �� �� 	 !
;

ð10Þ

where zi is the representation of vertex i, and gi denotes its local context
vector. z0i is the corresponding representation from the corrupted hyper-
graph. The discriminator Φ is a learnable neural network, which is defined
asΦ(h, c) = c⊤Wh+ b, where c is the embedding of the context (e.g., original
spot), h is the embedding of either a positive or negative sample, andW is a
learnable weight. The output logits are used to classify positive and negative
pairs in the contrastive loss. To ensure stability and balance in themodel, we
introduce a symmetric contrastive loss LC SCL for the corrupted hyper-
graph, leveraging the fact that its topology remains identical to the original
hypergraph. This loss function is designed to maintain consistency and
enhance the model’s robustness, which is formalized as

LC SCL ¼ � 1
2N

PN
i¼1

EðX0 ;H0Þ logΦ z0i; g
0
i

� �� 	


þEðX;HÞ log 1�Φ zi; g
0
i

� �� �� 	�
;

ð11Þ

where g 0i is the local context vector of vertex i from the corrupted hyper-
graph. In summary, the representation learning of HAST is optimized by
minimizing both the reconstruction loss and the contrastive loss, with the
overall training loss defined as

L ¼ λ1Lrec þ λ2 LSCL þ LC SCL
� �

; ð12Þ

where λ1 and λ2 are weighting coefficients used to balance the effects of
the reconstruction loss and the contrastive loss. The reconstruction loss
preserves fine-grained gene expression patterns, while the contrastive loss
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improves cluster separability. Together, they enable the model to learn
embeddings that are both biologically consistent and structurally
discriminative.

After completing the training, we cluster the spots into different spatial
domains using the reconstructed spatial gene expressionmatrix X̂ generated
by the decoder, combined with the non-spatial clustering algorithm
mclust44. For datasets with ground-truth annotations (e.g., DLPFC), we
directly set the number of clusters to match the number of manually
annotated domains. For datasets without annotations (e.g., mouse brain
posterior, zebrafish melanoma), we adopt the same number of clusters as
used in related works2,10 to ensure a fair comparison.

To mitigate noise in the clustering results that could impact
downstream biological analyses, we perform an additional optimization
step. Specifically, for each spot, the spots located within a predefined
radius r are considered its neighbors.HAST then reassigns the spot to the
domain that corresponds to the most common label among its neigh-
boring spots. This optional post-processing step is intended to smooth
noisy assignments and improve spatial coherence, especially for isolated
or borderline spots. While it helps reduce spurious small clusters, users
should be aware that it may also merge small but potentially meaningful
clusters. This step can be disabled if fine-grained cluster preservation is
desired.

Implementation details
For all datasets utilized in the experiments, we employ ViT-B/32, pre-
trained on ImageNet-1K, to extract morphological features, with the size of
sub-images set to 224×224. InHAST, thenumber of nearest neighbors k for
hypergraph construction is set to 3. The hyperparameters of the loss
function, λ1 and λ2, are assigned values of 10 and 1. The Adam optimizer is
used for optimization, with a learning rate of 0.001 and 600 training epochs.
For the compared methods, we use the source code and the suggested
parameter settings provided by the authors. All training is conducted on a
single NVIDIA 4090 GPU.

Baseline methods
Todemonstrate the effectiveness ofHAST for spatial clustering,we compare
HAST with ten state-of-the-art methods: Seurat8, Giotto45, Kasumi16,
cellcharter14, SpaGCN9, SpaceFlow11, BayesSpace46, conST47, STAGATE12,
and GraphST10. Three metrics, the Adjusted Rand Index (ARI), Fowlkes-
Mallows Index (FMI), and Normalized Mutual Information (NMI), are
used for evaluating the difference between the clustering results and the
manual annotations. Two metrics, the Silhouette Coefficient (SC) and
Davies-Bouldin index (DB), are used for evaluating the clustering results
without manual annotations.

Statistics and reproducibility
This study utilized publicly available datasets. Sample sizes were not pre-
determined using statistical methods; instead, we adopted the sample sizes
reported inprevious studies. Following a comprehensive quality assessment,
all datawere included in the analysis. It shouldbenoted that the experiments
were not randomized.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The evaluated datasets are accessible through the papers cited, with detailed
information available in Supplementary Table S1. The URL of each dataset
is listed as follows. The DLPFC dataset: https://research.libd.org/spatial
LIBD/. Themouse brain tissue dataset: https://www.10xgenomics.com/data
sets/mouse-brain-serial-section-1-sagittal-anterior-1-standard-1-1-0 and
https://www.10xgenomics.com/datasets/mouse-brain-serial-section-1-sagi

ttal-posterior-1-standard-1-1-0. The human breast cancer dataset: https://
www.10xgenomics.com/datasets/human-breast-cancer-block-a-section-1-
1-standard-1-1-0. The HER2+ dataset: https://github.com/almaan/her2st.
The zebrafishmelanoma dataset: https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSM4838131 and https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSM4838132. The Visium HD human breast cancer (fresh
frozen) data: https://www.10xgenomics.com/datasets/visium-hd-cytassist-
gene-expression-human-breast-cancer-fresh-frozen. Source data can be
found in the Supplementary Data file.

Code availability
The source code for HAST is publicly available at https://github.com/
VitaIntelli-CQU/HAST. It supports Linux, Windows, and other operating
systems compatible with Python, and can be executed onGPUdevices with
CUDA support. A Zenodo version is also available at https://zenodo.org/
records/1751883548.
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