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Distinct information flows for different
whole-body actions across LOTC
subdivisions
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The lateral occipitotemporal cortex (LOTC) is crucial for object, body, and expression perception, but its
functions in computing body representation and action information remain poorly understood. Using
ultrahigh-field 7 T fMRI and data-drivenmethods, we detected four different body-selective subdivisions
within the LOTC network, each with distinct connectivity profiles and differentially involved in computing
different body expressions. Stronger connectivity was observed for the posterior-ventral subdivision to
the visual cortex, the posterior-dorsal subdivision to the precuneus, and the anterior subdivisions to the
frontal cortex, regardless of the type of threatening condition. In contrast, defensive expressions
enhanced the cingulate cortex connectivity to all four LOTC subdivisions. However, aggressive
expressions selectively increased the middle frontal gyrus connectivity to the anterior subdivision, while
decreasing its connectivity to the posterior-dorsal subdivision. These findings go beyond classical
models based on body-category selectivity in the extrastriate body area with subsequent processing of
emotion expression in higher-order areas and indicate emotion expression-specific information flows of
body-related computation in different LOTC subdivisions.

Survival prompts organisms to rapidly sample social information that may
signal threat and aggression in the environment so that they can prioritize
adaptive behavior. The speed and automaticity of social threat perception
suggest that the brain is finely tuned to extract social information from
ongoing observations of whole-body postures andmovements of others and
to compute their behavioral relevance. Since the first reports of a body-
selective area in the extrastriate cortex (EBA)1, body processing has been
widely linked to the lateral occipitotemporal cortex (LOTC). Within the
LOTC, multiple levels of body information have been identified, including
body feature extraction2,3, emotion recognition4–7, aswell ashigher-level social
aspects8,9. Selectivity for haptic body parts10, biological motion11,12, and action
concepts or verbs10,13–16 has also been observed in these areas, underscoring
the complex nature and functional organization of LOTC body areas.

However, the functional organization within LOTC may not be con-
strained to abstract categorical representations but can bemodulated by the
flexible large-scale cortical dynamics during naturalistic vision17,18. Under-
standing interactions between the LOTC and the rest of the brain becomes
crucial when studying the higher-level visual information, such as social
cues. LOTC body areas have been shown to engage with a broader body-
processing network, including the fusiform body area (FBA), posterior
superior temporal cortex (pSTS), and subcortical structures18–20. Impor-
tantly, different connectivity profiles have been revealed between the EBA

andFBAdespite their similar categorical selectivity21. TheEBA, for instance,
exhibits stronger connectivity to the dorsal visuomotor regions such as the
superior parietal lobe (SPL), intraparietal sulcus (IPS), and inferior frontal
gyrus (IFG). In line with previous studies suggesting functional distinctions
between EBA and FBA22–24, these connectivity differences point to a
potential for using whole-brain dynamics to clarify the divergent roles of
local body-selective areas. A key challenge, then, is to identify the hetero-
geneous subregionswithin the LOTC, track their global connectivity during
naturalistic perception, and determine how connectivity profiles inform
LOTC’s functional organization.

In this study, we developed an integrated approach to investigate
jointly the LOTC subdivisions, their whole-brain connectivity, and their
context-sensitive modulations. In brief, independent component analysis
(ICA) was conducted to decompose brain voxels into different components
based on their temporal covariance and to extract the latent time-course for
each component. These component time-courseswere thenused to evaluate
both condition-dependent responses and connectivity patterns. Unlike
voxel-wise contrast analysis, ICA utilizes all data points from the temporal
dimension to estimate potential subdivisions, thus providing better within-
area homogeneity than obtained from using ROIs defined with a limited
number of contrasts. We did ICA in two iterations: first, with data from
Li et al. 20, a whole-brain ICA was conducted to extract the LOTC network;

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Limburg, The Netherlands.
e-mail: b.degelder@maastrichtuniversity.nl

Communications Biology |            (2026) 9:74 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-025-09339-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-025-09339-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-025-09339-3&domain=pdf
http://orcid.org/0000-0003-1667-8986
http://orcid.org/0000-0003-1667-8986
http://orcid.org/0000-0003-1667-8986
http://orcid.org/0000-0003-1667-8986
http://orcid.org/0000-0003-1667-8986
mailto:b.degelder@maastrichtuniversity.nl
www.nature.com/commsbio


next, in our main experiment on the same participants, we presented dif-
ferent conditions of videos and conducted ICAwithin the LOTCnetwork to
extract the subdivisions. The extracted time-courses were then used to track
the connectivity and the condition-dependent modulation for each LOTC
subdivision.Moreover, we used naturalistic videos rather than static images
as the stimuli. Compared to static stimuli, these videos convey richer, more
ecologically valid social cues and are expected to elicit more robust and
distributed whole-brain dynamics during body processing17,18.

We selected two of themost behaviorally relevant whole-body actions:
an aggressive action, which provides a socially threatening cue toward the
observer, and a defensive action, which shows a response to a threat in the
environment.Wehypothesized that these twowhole-body actionswould be
supported by a stable, generalizable, and ecologically relevant network of
brain activity25–27.

Results
Nineteen participants were collected in the study, two of whom were
excluded from both experiments, and another one was excluded from the
main experiment due to a large distortion of the functional or anatomical
images. Participants underwent a single scanning session consisting of two
different parts. The first part consisted of a blocked design with twelve
categories of videos (body/face/object * human/monkey * normal/scram-
ble; 10 videos/category). This part of the experiment (termed “Network
localizer” below) has been reported elsewhere20 and was used in the current
study only to define the LOTC network. The second part (termed “Main
experiment” below) consisted of a mixed block/event-related design28 with
five different video conditions (aggressive body, defensive body, neutral
body, neutral face, and neutral; 10 videos/condition). Each block contained
one condition of videos presented with jittered inter-stimulus intervals. The
main experiment was used to define the LOTC subdivisions, to test their
whole-brain connectivity as well as conditional modulations (Fig. 1).

LOTC network extraction
In the network localizer experiment, 75 independent components (ICs)
were extracted from each subject’s pre-processed functional images. Noise-
induced ICs were identified and excluded according to the spatial overlap
with the whitematter/cerebrospinal fluidmask, themean response, and the
r2 of the general linear modeling (GLM) fitting on the IC time-course. The

details of these criteria are described in Li et al. 20. By conducting a GLM on
the IC time-courses of the localizer data, the body-selective temporo-occi-
pital network was identified by the analysis of the contrast [2*human body
(normal−scramble) > human face (normal−scramble)+ human object
(normal−scramble)]. It exhibited a significant preference for human bodies
over objects (Fig. 2a, t(16) = 4.24, Benjamini–Hochberg false discovery rate
corrected q = 0.006, right-tailed) in the bilateral LOTC and also included
bilateral fusiform cortex, superior parietal lobe (SPL), posterior superior
temporal sulcus (pSTS)/temporoparietal junction (TPJ), pulvinar, and
amygdala.

Subdivisions of the LOTC network
In the main experiment, following the identification of the body network
defined above (termed as LOTC network below), we examined subdivisions
with body selectivity within the network. A whole-brain GLM analysis was
conducted to estimate the responses for each different video, resulting in fifty
beta values (5 conditions * 10 videos) for each subject. The analysis for the
main experiment is illustrated in Fig. 1. An ICA procedure was then con-
ducted within the predefined LOTC network on each subject’s 50 betas,
resulting in 15 ICs along with their video-wise betas. The component betas
were then averaged by condition and entered a group-level t-test for the
contrast of [(aggressive body+ defensive body+ neutral body) > (face+
object)] to select body selective subdivisions. After multiple comparison
correction, four adjacent subdivisions showed significant body selectivity
(C04, t(15) = 8.08, corrected q < 0.001; C06, t(15) = 4.21, corrected q = 0.002;
C07, t(15) = 2.66, corrected q= 0.033; C09, t(15) = 4.90, corrected q < 0.001;
all right-tailed; Fig. 2b; Supplementary Data 1). The decomposed beta values
are shown in Fig. 2b. Since the data were spatially demeaned before entering
the ICA, the zero point in the plots indicates the averaged beta value across
all masked voxels, and the signs of the beta values only indicate the relative
magnitude difference compared to the global mean.

By comparing the spatial maps of the four independent components
(i.e., C04, C06, C07, C09), we further investigated the voxels that were
specifically dominant in each of the subdivisions. As shown in Fig. 2c (or
Supplementary Fig. 1 separately plotted for each color), non-overlapping
clusters were identified where the component weights exhibited sig-
nificantly larger values for one of the components than for the other three.
Subdivisions C04 and C09were distributed bilaterally, covering the inferior

Fig. 1 | Illustration of the main experiment design and analysis. Five video con-
ditions (aggressive/defensive/ neutral body, neutral face, object) were presented in a
mixed block/event-related design, in which the stimuli were blocked for each con-
dition, with a jittered inter-trial interval around 3 s. For each condition, ten different
videos were included and repeated 10 times across five runs. GLMwas conducted to
estimate the response for each different video, resulting in 50 betas extracted for each
participant. The video-wise betas were then entered into an ICA procedure within
the body-sensitive LOTC network identified by the localizer experiment. Subdivi-
sions of the LOTC network were defined by higher component responses for body

videos than for non-body videos. To track the whole-brain connectivity of each
selected subdivision, the video-wise betas were z-scored and convolved with the
hemodynamic response function within each condition, resulting in five recon-
structed time-courses for each component. The reconstructed time-courses for all
selected components were then added to a whole-brain GLM design matrix as the
predictors for seed-based connectivity. Finally, two-factor ANOVA was conducted
with connectivity betas across all participants to test their modulations from the
body conditions or the seed components.
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lateral-occipital cortex (Fig. 2c, green component, LOCi for abbreviation;
Supplementary Fig. 1a) and the superior lateral-occipital cortex (Fig. 2c,
purple component, LOCs for abbreviation; Supplementary Fig. 1b) regions,
respectively. The C06 and C07 had a unilateral distribution and covered the
posterior middle temporal gyrus on the left (Fig. 2c, red component,
lpMTG; Supplementary Fig. 1c) and right (Fig. 2c, blue component,
rpMTG; Supplementary Fig. 1d) hemispheres, respectively. Consistent with
a previous study on the subdivisions of EBA29, these body subdivisions
partially overlappedwith and surrounded the atlas-defined hMT region30 in
each hemisphere (Fig. 2d).

Connectivity profiles of the LOTC subdivisions and the condi-
tional modulations
To track the connectivity between the body subdivisions and the rest of the
brain, a whole-brain GLM was conducted with the IC responses as pre-
dictors. Since the IC responseswere extracted item-wise, the time-courses of
each IC can be reconstructed by convolving the betas with a canonical
hemodynamic response function (HRF) according to the on/offsets of the
corresponding videos. The IC time-courses were modeled separately for
each IC and each condition, resulting in 5 conditions * 4 subdivisions
(LOCi, LOCs, lpMTG, and rpMTG) = 20 seed-based connectivity terms

Fig. 2 | LOTC subdivisions extracted from ICA. a The coverage of the LOTC
network as defined in the network localizer experiment. b Beta plots of the four
LOTC subdivisions from the main experiment, with individual data plotted as
scatters and lines. Zero-point indicates themean beta value across all masked voxels.
Outline colors indicate the component indexes, and error bars represent ± SEM.
Source data are attached in Supplementary Data 1. cMap of voxels with significantly
higher contribution from each of the subdivisions. The voxel-wise IC weight from

each subdivision was compared to the other three subdivisions and entered a group-
level t-test against zero (two-tailed). The resulting map was corrected by a cluster-
threshold statistical procedure based on Monte-Carlo simulation (initial p < 0.005,
alpha level = 0.05, iteration = 5000). Slice numbers indicate the Z coordinates in the
Talairach space. d The position of the dominance of subdivisions and the atlas
defined hMT (yellow) projected on a Talairach template brain surface.
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added to theGLM.Next, to assess connectivitymodulatedby the expression
type, the resulting betaswere entered in a voxel-wiseANOVAwith the three
body conditions (aggressive/defensive/neutral)*4 seeds. A significant main
effect of seedwas found inwidely distributed clusters, showing that different
LOTC body regions have differentiated connectivity profiles (Fig. 3a; or
Supplementary Fig. 2 separately plotted for each color; Table 1; Supple-
mentary Data 2). The LOCi and the LOCs showed stronger connectivity to
the visual cortex (Supplementary Fig. 2a) and posterior cingulate cortex

(PCC) (Supplementary Fig. 2b), while the two pMTGwere connectedmore
dominantly to themiddle andposterior insula, supramarginal gyrus (SMG),
and frontal regions (Supplementary Fig. 2c and d).

Within the areas showing a significant main effect of body condition,
threatening modulations were found in the anterior/posterior cingulate
cortex (ACC/PCC) and caudate. Subsequent post-hoc tests revealed a sig-
nificant enhancement of overall seed connectivity specifically for the
defensive body condition (Fig. 3b; Table 1; Supplementary Data 2). On the

Table 1 | Results from the 3 (body action) × 4 (seed) ANOVA on the connectivity betas

Talairach label Brodmann label Talairach coordinates ROI statistics p value

x y z

Mean effect: seed F(3,45)

Middle occipital gyrus BA 18 −18 −95 9 6.01 0.002

Posterior cingulate BA 30 −9 −62 14 5.76 0.002

BA 31 12 −54 25 6.57 <0.001

Angular gyrus BA 39 39 −58 39 5.54 0.003

Inferior parietal lobule BA 40 −60 −36 26 5.60 0.002

Postcentral gyrus BA 2 −50 −25 38 5.80 0.002

BA 40 62 −22 22 6.12 0.001

Medial frontal gyrus BA 6 10 −4 57 6.57 <0.001

Insula BA 13 −39 1 1 6.23 0.001

Precentral gyrus BA 44 49 4 12 6.11 0.001

Superior frontal gyrus BA 8 23 28 46 6.19 0.001

BA 10 41 49 20 5.97 0.002

Inferior frontal gyrus BA 47 30 30 −9 5.97 0.002

Middle frontal gyrus BA 9 30 33 30 5.90 0.002

Mean effect: body action F(2,30)

Cingulate gyrus BA 31 −4 −44 33 7.53 0.002

Caudate −12 15 9 7.21 0.003

Anterior cingulate BA 33 4 22 22 6.75 0.004

Interaction effect: seed × action F(6,90)

Middle frontal gyrus BA 8 −44 10 41 3.82 0.002

Cerebellum 1 −60 −30 3.94 0.002

Fig. 3 | Whole-brain analysis for subdivision connectivity. a Clusters with a sig-
nificant main effect of the seed on connectivity. Cluster colors indicate the seed with
the highest connectivity to the corresponding clusters. b Clusters with a significant
main effect of the body condition on LOTC connectivity (averaged across sub-
divisions). c FEF cluster with significant interaction between the body condition and
the seed. In b and c, box plots show the connectivity betas for each ROI, with

whiskers (error bars) representing min/max value within 1.5 times the interquartile
range from the lower or upper quartile, and the scatters plotted for individual data
beyond the upper and lower bounds. For all box plots, asterisks indicate the sig-
nificant pairwise comparisons after Bonferroni correction (*p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001). Detailed results for the cluster-level statistics are
shown in Table 1. Source data are attached in Supplementary Data 2.
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other hand, significant interaction effects between body condition and seed
were found in the middle-frontal gyrus/frontal eye field and in the cere-
bellum. In both clusters, the aggressive body condition significantly
increased connectivity to the lpMTG, while it decreased the connectivity to
the LOCs (Fig. 3c; Table 1; Supplementary Data 2).

Testing the low-level feature contribution through cross-subject
correlation
The connectivity analysis reported above was based on the response var-
iance across videos within each condition. However, such variance can be
driven both by the subjective perception and by the low-level visual features
(e.g., motion energy) of the videos. To test the contribution of low-level
features, we calculated the cross-subject correlation (CSC) on each sub-
division’s response profile.We assumed that the higher-level factors, such as
affordance or valence, are dependent on each participant’s perception,
leading to larger cross-subject variability, while the low-level video features
are shared across all participants, resulting in higher CSC. The CSC was
calculated with the subdivision responses for all body videos between each
pair of participants andwas averaged across all combinationsof pairs to get a
group-level CSC measure. A permutation test was conducted by recalcu-
lating the CSC 5000 times after shuffling the video labels within each body
condition for each participant, providing a null distribution of CSC with
disrupted video-wise correspondence. The results indicated that only the
LOCi subdivision showed a significant video-dependent CSC (r = 0.26,
p = 0.004) while the other three subdivisions showed no significant CSC
(lpMTG: r =−0.01, p = 0.655; rpMTG: r = 0.03, p = 0.349; LOCs:
r = 0.07, p = 0.113).

Discussion
We developed an integrated approach to investigate the body-selective
subdivisions of the LOTC, their whole-brain connectivity, and their
condition-dependent modulations. Our results provide a novel perspective
on whole-body action representation by focusing on the local-global
interaction of the LOTC body areas, suggesting a distributed network
dynamic that varies with the demands of expression representation.

We applied ICA analysis to resolve the heterogeneous functional
subdivisions within the LOTC. The current ICA approach utilizes infor-
mation from all stimuli and defines the potential clusters based on shared
response patterns rather than relying on a limited set of contrasts, removing
the assumptions of hard boundaries between the LOTC subdivisions. As a
result, four body-selective subdivisions were identified within the LOTC
bodynetwork20. The largest subdivisionwas the bilateral LOCi located in the
inferior division of LOCand the lateral occipital sulcus (LOS). Another one,
the bilateral LOCs,was defined in the superior division of the LOC.Anterior
to the LOCi and LOCs, two unilateral subdivisions were found in the pos-
teriormiddle temporal gyrus (MTG), one on the left hemisphere andone on
the right (lpMTGand rpMTG).Overall, ourfindings provide evidence for a
distributed functional organization within the LOTC, consistent with an
early proposal by Weiner and Grill-Spector31. Our novel approach also
supports earlier observations of an anterior-posterior separation of body
areas29.

To investigate the connectivity profiles of the detected subdivisions, we
applied a seed-based connectivity framework where the time-course from a
seed region was fitted to the time-courses of the other voxels in the brain. A
traditionalway todefine the representative time-course fromthe seed region
is to average the time-courses of all voxelswithin the region.However, when
the voxel profiles are heterogeneous, the averaged signal may not reflect the
shared response pattern across the voxels. In contrast, the present ICA
approachextracted the time-coursebasedon the temporal covariance across
voxels, which directly reflects the shared profile for the selected seed. Thus,
we would expect better dissociations for the seed-based connectivity from
different seed regions.

We compared connectivity profiles of the different subdivisions using
an ANOVA, with seed region and threatening conditions as factors. A
significant main effect of the seed regions was observed, indicating distinct

global connectivity profiles. The only cluster showing stronger connectivity
to the LOCiwas early visual areas (EVA)/V2, suggesting LOCi’s role in low-
level visual feature computation, as also supported by CSC analysis.
Regarding the LOCs, the strongest connectivity was found with typical
default mode network (DMN) nodes, including PCC, precuneus (pC),
retrosplenial cortex (RSC), and superior frontal gyrus (SFG). Compared to
the LOCi and LOCs, the two anterior subdivisions, lpMTG and rpMTG,
exhibited more widespread connectivity, suggesting that the pMTG may
serve as network hubs connecting the LOTC network to the whole-brain
computation. Both pMTG subdivisions showed the highest connectivity to
SMG and insula. However, in the case of the rpMTG, this connectivity
extended further to encompass the MFG, angular gyrus, and SFG. Also,
different from the LOCs, the anterior subdivisions were linked to regions of
the ventral attention network (VAN), central executive network (CEN), and
salience networks (SN). The asymmetric results are consistent with the
right-lateralized distribution of the VAN32.

These results provided a novel opportunity to understand the func-
tional roles of the LOTC subdivisions from a whole-brain network per-
spective, particularly emphasizing the segregation between the DMN and
the SN/CEN connectivity. The DMN is typically involved in self-centered
social perception, including inferring others’ mental state and environ-
ments, evaluating personal significance, and predicting future events based
on one’s autobiographical memory and experiences33–36. One of the core
hubs of DMN, covering the PCC, pC, and RSC, is believed to facilitate
flexible cognition by collecting multisensory inputs and autobiographical
memory, balancing between the internal thoughts and external task
demands, and further regulating the whole-brain level dynamics37–40. Here,
the strong connectivitywas observed between the LOCs subdivision and the
PCC/pC/RSC regions. Such results indicate that the LOC's subdivisionmay
serve as an entrance point for perceiving and understanding whole-body
actions.

In contrast, the anterior LOTC subdivisions (pMTG) connected
extensively to goal-directed networks (SN, CEN, and VAN), including by
insula, dorsal lateral prefrontal cortex (dlPFC), and MFG. Unlike the task-
negative DMN, these networks are highly interactive andmodulated by the
task demands32,41–44. Operating jointly, these networks enable efficient
processing of task-relevant information, including relevant input detection,
attention modulation, and decision-making. Thus, the connectivity of the
pMTG subdivisions may reflect their involvement in a response circuit
finetuned to the whole-body social cues.

Unlike traditional resting-state analysis, the current network analysis
was stimulus-driven, based on a passive viewing task without requiring
active interpretation. Thus, our results suggest an intrinsic segregation of
two essential functions during whole-body action perception, comprehen-
sion, and response, with separated information flow through LOCs and
pMTG subdivisions into the distributed global computation.

To further investigate network dynamics, we assessed LOTC con-
nectivity changes during viewing defensive vs. aggressive body actions. Both
conditions carry threat-related cues, which are expected to trigger effective
adaptive behavior25; yet, they differ in terms of uncertainty, proximity, and
emergency25,27,45. In the defensive/fearful videos, actors’ movements signal
uncertain, potential threats in the environment. Observers must infer
danger from the ambiguous behavior of conspecifics before any response,
requiring integrationof sensory inputwithmemory andprior experience. In
line with this, our results showed that viewing defensive videos enhanced
LOTC’s overall connectivity to the anterior and posterior cingulate cortex,
known hubs for social cognition43,46–49 and peripersonal space
processing50–52. This supports the idea of a global recruitment of LOTC in
response todefensive/fearful body actionperception, aswell aswithfindings
on the role of peripersonal space50.

Unlike the defensive/fearful ones, the aggressive/attacking videos
contain explicit threat signals directly toward the observer25,53,54. When
confronted by direct threats, rapid responses are required to minimize
future harm27, sometimes independent of conscious awareness55,56. Corre-
spondingly, our results revealed an alternating connectivity between left FEF
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and LOTC subdivisions during aggressive/attacking conditions, where the
connectivity was suppressed to the LOCs subdivision but enhanced to the
left pMTG subdivision. As discussed above, we suggest that the LOC sub-
divisions and the pMTG subdivision were involved differently in mentali-
zation and responding networks. The finding of the aggressive expression
modulated connectivity may thus reflect a switch between the two kinds of
computations. Moreover, since the recognition of the action and its emo-
tional valence is not required in our task,we suggest that such a switch in the
brain dynamics is reflective. This is in line with previous studies showing
that threat-induced brain activity can be independent of task demands57, as
well as with the role of left FEF in modulating internal attention44. The
current study explored how global connectivity can help clarify the func-
tional organization of the LOTC. However, questions remain about the
functions of the subdivisions reported here for general body perception.
First, we found that LOCi subdivision may respond to low-level features,
while other studies have revealed neural representations for body
contraction3, head orientation58, and body kinematics59 within LOTC
regions. Thus, it remains to test whether there exists a gradient from low- to
mid/high-level feature encoding across LOTC subdivisions. Secondly, the
current studywas based on a functional connectivity framework and a data-
driven approach. However, the anatomical basis underlying functional
connectivity patterns is yet unclear. Previous studies have shown that the
anterior andposterior LOTCdiffer in their connections through the inferior
longitudinal fasciculus, while the superior and inferior LOTC differ in their
connections through the arcuate and superior longitudinal fasciculi60. It is
still an open question whether the white matter tractography supports the
functional divergence within LOTC. Finally, our study compared two
typical threatening body expressions and found evidence in support of a
potential early divergence of informationflowwithin LOTC.Towhat extent
these findings generalize to other body actions is amatter of future research.
New feature-rich datasets have become available, providing a large sample
of naturalistic human actions61,62. We would expect the current data-driven
approaches could serve as a primer for future studies that will benefit from
large dataset analysis.

Methods
The study consisted of twoparts: a network analysis to identify the temporo-
occipital network associated with body action perception. This was
accomplished through a data-driven strategy based on our previous study20.
Next, themain experimentwas employed to extract subdivisionswithin this
network and investigate their connectivity profiles as well as their mod-
ulation by threatening body conditions.

Participants
Nineteen healthy participants (age = 24.58 ± 3.20 years; 6 males, all right-
handed) took part in the experiment. All participants had a normal or
corrected-to-normal vision and no medical history of any psychiatric or
neurological disorders. All participants provided informed written consent
before the start of the experiment and received a monetary reward (vou-
chers) or course credits for their participation. The experiment was
approved by the Ethical Committee at Maastricht University and was
performed in accordance with the Declaration of Helsinki.

Network localizer
The functional localizer used a blocked design with twelve categories of
videos consisting of three factors: (body/face/object) * (human/monkey) *
(normal/scramble). Each category consisted of ten 1000-ms videos, which
were presented in a random order following a block design. Within each
block, the videos were separated by a fixed 500-ms inter-trial interval, while
two consecutive blocks were interleaved by an inter-block interval jittered
around 11 s. The order of block conditions was randomized for each par-
ticipant, and each condition was repeated six times within three runs. Each
run contained a catch block where, in one of the trials, the fixation point
changed its shape froma “+” to a “o”. Participantswere instructed to press a
buttonwhen they detected a change in thefixation shape. The total lengthof

each run was 735 s on average, corresponding to 735 volumes at 1000ms
repetition time (TR). A detailed description of the localizer stimuli and
design can be found in Li et al. 20.

Main experiment
For the main experiment, the stimuli were presented following a mixed
block/event-related design28 consisting of five conditions of videos: three
human body conditions (aggressive, defensive, and neutral), one neutral
human face condition and one neutral object condition (Fig. 1). Each
condition consisted of 10 different 1000-ms videos at 60 frames/s (i.e., total
of 60 frames). The body and face videos were chosen from the stimulus set
first described inKret et al. 63 andPoyo Solanus et al. 64. Body videos depicted
a male actor performing an emotional body movement in an aggressive-
angry, defensive-fearful, or neutral fashion. All actors in the body videos
weredressed inblack, and their faceswere blurredwith aGaussianfilterwith
Ulead Video Studio (https://www.videostudiopro.com/en/pages/old-
brands/ulead) and Adobe After Effects (https://www.adobe.com/
products/aftereffects) to avoid triggering facial perception-related pro-
cesses. The facial condition consisted of neutral facial movements such as
pulling the nose or coughing. The object condition videos consisted of
moving artificial objects with the aspect ratio matched to human bodies.

The experiment used a block designwith a jittered inter-trial interval of
around 3 s and a fixed inter-block interval of 12 s. Each video was centered
and presented on a uniform gray background. Stimulus size was 3.5°*7.5°
visual angle for bodies and objects, and 3.5°*3.5° visual angle for faces. The
order of blocks was randomized for each participant, and each condition
was repeated 10 times within five runs. In each run, two extra blocks were
inserted containing a catch trial with a change in the shape of the fixation
cross. Participants were instructed to detect the fixation shape changes and
press a response button. The experiment used a fixation shape detection
task, but no emotion recognition task, since explicit emotion recognition
strongly impacts the results in body sensitive areas2,7,25,57. The total length of
each run was 480 s (480 volumes).

The main experiment and the localizer experiment were programmed
using the Psychtoolbox (https://www.psychtoolbox.net) implemented in
Matlab 2018b (https://www.mathworks.com). Stimuliwereprojectedonto a
screen positioned at the end of the scanner bore with a Panasonic PT-
EZ57OEL projector (screen size = 30*18 cm, resolution = 1920*1200 pix-
els). Participants viewed the stimuli through a mirror attached to the head
coil (screen-to-eye distance = 99 cm, visual angle = 17.23*10.38 degrees).

fMRI data acquisition
All images were acquired with a Siemens 7TMAGNETOM scanner with a
1-transmitter/32-receiver head coil (NovaMedical) at the Maastricht Brain
Imaging Centre (MBIC) of Maastricht University, the Netherlands. Func-
tional imageswere collectedusing theT2*-weightedmulti-band accelerated
EPI 2D BOLD sequence (TR/TE = 1000/20ms, multiband acceleration
factor = 3, flip angle = 54°, in-plane isotropic resolution = 1.6 mm, number
of slices per volume = 68, matrix size = 128*128, volume number = 735 for
the network localizer and 480 for the main experiment). T1-weighted
anatomical images were obtained using the 3D-MP2RAGE sequence (TR/
TE = 5000/2.47ms, Inverse time TI1/I2 = 900/2750ms, flip angle FA1/
FA2 = 5/3°, in-plane isotropic resolution = 0.7mm, matrix size = 320*320,
slice number = 240). Physiological parameters such as heart and respiration
rateswere recorded using pulse oximetry on the index finger of the left hand
and a respiratory belt.

fMRI image preprocessing
Anatomical and functional images were preprocessed using Brainvoyager
2265 and the Neuroelf toolbox (https://neuroelf.net/) in Matlab 2018b. For
anatomical images, brain extraction was conducted with INV2 images to
correct for MP2RAGE background noise. The resolution was then down-
sampled to 0.8mm for better alignment to the 1.6mm resolution of func-
tional images. For functional images, the preprocessing steps included EPI
distortion correction66, slice scan time correction, 3D head-motion
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correction, andhigh-pass temporalfiltering (GLMwithFourier basis set of 3
cycles, including linear trend). Coregistration was first conducted between
the anatomical image and its most adjacent functional run using a
boundary-based registration (BBR) algorithm67, and all the other functional
runs were coregistered to the aligned run. Individual images were nor-
malized to Talairach space68 and subjected to 3mm Gaussian spatial
smoothing. Trilinear/sinc interpolation was used in the motion correction
step, and sinc interpolation was used in all the other steps.

Physiological parameters were collected as confound factors for the
functional imagingdata. Thephysiological datawere preprocessedusing the
RETROspective ImageCORrection (RETROICOR)69,70 pipeline,whichuses
Fourier expansions of different orders for thephase of cardiac pulsation (3rd
order), respiration (4th order), and cardio-respiratory interaction (1st
order). Eighteenphysiological confound factorswerefinally created for each
participant.

The anatomical labeling of the brain areas reported in this study was
performed according to the Talairach Daemon (http://www.talairach.org/
daemon.html) in combination with the Multilevel Human Brain Atlas
(https://ebrains.eu/service/human-brain-atlas).

LOTC network extraction
Body-related brain networks were extracted using independent component
analysis (ICA), which decomposes the whole-brain time-courses into
multiple spatially independent components (ICs) based on maximal tem-
poral coherence. Subsequently, the original time-course of each voxel can be
calculated as a weighted sum of different IC time-courses. Voxels showing
highweights for the same IC suggest that theymay have shared fluctuations
and may belong to the same brain network. ICA has been widely used in
both resting-state and task-based fMRI to identify large-scale networks in
human and animal brains71–73. However, since subject-wise ICA is a data-
driven approach, a significant issue is that the order of the ICs is arbitrary,
making it unsuitable for direct group-level inference across subjects. Thus,
the current study employed another approach called group ICA using the
Group ICA of fMRI Toolbox (GIFT)74. Instead of directly estimating ICs on
each subject, the group ICA first applies dimensionality reduction on each
participant’s data using principal component analysis (PCA) on the time
dimension. It then estimates a set of shared group-level ICs by temporally
concatenating data from all participants using the Infomax algorithm
implemented in the GIFT74. The group ICs are then entered in a back-
reconstruction step for each participant separately, resulting in subject-level
ICs time-courses and spatial weights, which reflect both the individual-
specificity and the group-level correspondence75. Here, we used the group-
information-guided ICA (GIG-ICA)76 for the back-reconstruction of the
subject components, which estimates the ICs with multi-objective optimi-
zation tomaximize the spatial independence and the similarity to the group-
IC maps at the same time.

We estimated 75 spatially independent components to identify body-
selective networks within the localizer experiment20. The stability of group
ICAwas assessed by the ICASSOmodule implemented in the GIFT, which
repeated the Infomax decomposition 20 times and resulted in an index of
stability (Iq) for each IC77. Prior to the group-ICA, physiological andmotion
confoundswere regressed out from the preprocessed functional images. The
resulting time courses were then transformed into percentages of signal
change to enhance the ICA stability78. Components showing large white
matter/cerebrospinal fluid predominance were excluded from further
analysis.

To identify body-selective networks, we conducted a GLM on each
reconstructed subject-level IC time course to estimate how each condition
modulated the IC response. In the designmatrix, each condition’s predictor
was modeled as a boxcar function with the same duration of the block and
convolved with a canonical hemodynamic response function (HRF).
Within subjects, the estimated betas were first averaged across all runs and
then used to calculate the contrast of [2*human body (normal-scram-
ble)–(human face (normal-scramble)+ human object (normal-scram-
ble))]. Right-tailed t-tests and Benjamini–Hochberg multiple comparison

corrections were conducted at the group level to find significant body
sensitivity.

To define the group-level coverage of the IC networks, the individual
IC maps were normalized to z-scores and averaged across all runs for each
participant. A group t-test against zero was computed using the z-scored
maps of each subject and corrected using a cluster-threshold statistical
procedure based on Monte-Carlo simulation (initial p < 0.005, alpha
level = 0.05, iteration = 5000). The group-level coverage of the network was
then used as the initial mask for the subdivision extraction in the main
experiment.

Subdivisions of LOTC network and seed-based connectivity
The analysis for the main experiment is illustrated in Fig. 1. First, a fixed-
effects GLM was conducted on each participant’s functional images with
each video treated as a separate predictor, resulting in fifty betas for each
voxel for eachparticipant.Next, a group-ICAdecompositionwas conducted
directly on the estimated video betas within the regions defined by the
LOTC body network localizer. The goal of this step is to separate the voxels
within the LOTCnetwork intomultiple spatially independent clusterswhile
maintaining the response coherence across the fifty videos. We extracted
fifteen ICs in this step, eachwith adistinct responseprofile to thefifty videos.
To identify the components of interest, we averaged the responses for each
condition within each subject for each IC separately. We then computed a
group-level component-wise t-test for the contrast of [(aggressive body+
defensive body+ neutral body) > (face+ object)]. ICs showing a significant
difference were identified as body selective subdivisions and subsequently
used for the following analysis.

To track the connectivity between the LOTC subdivisions and the rest
of the brain, a whole-brain GLM was performed on the BOLD responses
using the subdivision IC response profiles as predictors (Fig. 1). Since the
ICs’ responses indicate howstrongly brain activity related to each stimulus is
represented within each component, they do not contain any temporal
information.Therefore,wefirst reconstructed the time courses of each ICby
convolving the responses with a canonical HRF based on the onsets and
offsets of the corresponding videos. These reconstructed time courses of the
subdivisions were then added to a GLM design matrix to reflect their seed-
based connectivity. Before convolving the HRF, the IC betas were nor-
malized within each condition so that the reconstructed time-courses
reflected the item-to-item variance while omitting the categorical baseline
modulations. Moreover, the IC time courses were modeled separately for
each subdivision and each condition. A set of standard event-related pre-
dictors was also added, which was constructed by convolving each stimulus
duration with the HRF and binned for each condition, to account for the
stimulus-driven responses. The coverage of all seed regions wasmasked out
from the whole-brain connectivity GLM, since the potential signal
spreading between adjacent seed regions may inflate the connectivity
estimation.

The resulting betas for the connectivity terms were then entered in a
voxel-wise random-effects ANOVA with factors Body conditions (aggres-
sive/defensive/neutral) and Seeds (LOCi/LOCs/rpMTG/lpMTG) to assess
the expression type-modulated connectivity. Statistical maps of significant
main and interaction effects were corrected with the Monte Carlo cluster-
threshold (initial p < 0.005, alpha level = 0.05, iteration = 3000). Further
multiple comparisons and simple effect tests were conducted at the ROI
level for each significant cluster.

Cross-subject correlation analysis
Cross-subject correlation (CSC) analysis was conducted to compare the
video-wise response similarity across participants. Higher correlation was
expected if the responses were driven by subject-independent low-level
visual features from the videos, while lower CSC could suggest more
involvement of subject-specific computation of higher-level affective fea-
tures. For each LOTC subdivision, the responses for all 50 videos were
demeaned for each participant to normalize the baseline difference. Next,
pairwise Pearson correlation was calculated across all participants based on
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the 30 body video responses, and the Pearson r values from all pairs of
calculations were averaged as a group-level CSC measure. A permutation
test was conducted by recalculating the group CSC after shuffling the video
labels within each body condition for each participant. The within-
condition permutation disrupted the video correspondence across partici-
pants while preserving the condition-wise modulation, resulting in a null
distribution specific to the single video effect. The permutation procedure
was repeated 5000 times for each subdivision, and the proportion of per-
mutation CSC samples above the corresponding empirical CSC was cal-
culated as a statistical significance measure.

Statistics and reproducibility
For spatial coverage of group-level ICs, the individual IC maps were nor-
malized to z-scores and averaged across all runs for each participant. A
group t-test against zero (n = 16 participants) was computed using the
z-scored maps of each subject and corrected using a cluster-threshold sta-
tistical procedure based onMonte-Carlo simulation (initial p < 0.005, alpha
level = 0.05, iteration = 5000). For GLM and contrast analysis on IC time-
courses, random-effect t-tests and Benjamini–Hochberg multiple compar-
ison corrections were conducted at the group level to test the significance.
For whole-brain analysis of connectivity GLM, random-effects ANOVA
was conducted and tested for significant main and interaction effects at the
group level. Statistical maps were corrected with the Monte Carlo cluster-
threshold (initial p < 0.005, alpha level = 0.05, iteration = 3000). For CSC
analysis, the significance was tested at a group level with a permutation test.
The within-condition permutation disrupted the video correspondence
across participants while preserving the condition-wise modulation,
resulting in a null distribution specific to the single video effect. The per-
mutation procedure was repeated 5000 times for each subdivision, and the
proportion of permutationCSC samples above the corresponding empirical
CSC was calculated as a statistical significance measure.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The neuroimaging data of the current study are not available on a public
repository but can be provided upon request to the corresponding author.

Code availability
Core functions for the group ICA analysis were provided by the Matlab-
based GIFT toolbox (https://github.com/trendscenter/gift). Customized
scripts for the post-analysis on the IC time-course analysis are available
upon request to the first author or the corresponding author.
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