
communications biology Article
A Nature Portfolio journal

https://doi.org/10.1038/s42003-025-09382-0

Neuronal mismatch responses to auditory
stimuli in the dorsal hippocampus of
anesthetized rats
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The hippocampus is classically linked to memory, yet increasing evidence points to a broader role in
perceptual inference and deviance detection. Predictive coding theories propose that perception
minimizes mismatches between expected and actual sensory input, expressed in neural signatures
such as mismatch negativity (MMN) and P300. Although MMN arises mainly from sensory and
prefrontal cortices, the hippocampus is anatomically interconnected with both and may also
contribute to prediction error processing. We recorded single- and multi-unit activity and local field
potentials (LFPs) fromDGandCA1 in urethane-anesthetized rats during an auditory oddball paradigm
and a no-repetition control sequence to dissociate prediction error from repetition suppression.
Approximately 20% of hippocampal neurons were sound responsive, and a subset showed deviant
selectivity. Spiking activity predominantly reflected prediction errors, while LFPs revealed
complementary contributions from repetition suppressionandpredictionerror. Early LFPcomponents
were enhanced for randomly presented deviants, whereas later components within the P300 latency
range were stronger for predictable deviants, indicating temporally distinct phases of error signaling
and top-down modulation. These findings identify the hippocampus as an active contributor to
auditory deviance detection and support a hierarchical model in which hippocampal circuits
participate in predictive sensory processing beyond memory.

The ability of the brain to detect and respond to unexpected sensory stimuli
is essential for adaptive behavior. Predictive coding theory posits that per-
ception is not a passive process, but rather an active inferencemechanism in
which the brain continuously generates predictions about incoming sensory
information and minimizes the mismatch between expected and actual
inputs1. Within this framework, mismatch negativity (MMN) and the P300
component havebeenwidely studied asneural signatures of prediction error
and stimulus evaluation. MMN, typically observed in event-related poten-
tials (ERPs), reflects automatic detection of deviations from regular sensory
patterns2, while P300, especially its subcomponents P3a and P3b, is asso-
ciated with attentional reorientation and context updating3,4.

AlthoughMMNandP300 have been extensively examined in auditory
and somatosensory cortices, their roles in hippocampal circuits remain
elusive. Given the established involvement of the hippocampus in spatial
navigation5, associative learning, and memory formation6, it is crucial to
investigate its potential contribution to predictive processing. It has been

known for nearly 30 years that the hippocampus plays a broader role in
perception and novelty detection7,8, integrating past experiences to antici-
pate and evaluate incoming sensory input9,10. The hippocampus may thus
support predictive coding by providing a contextual framework that shapes
expectations and guides behavior8,11,12.

The hippocampus is suggested to lie at the apex of the cortical pro-
cessing hierarchy, even in the context of predictive functions13, it integrates
and relays information across sensory and prefrontal regions. Anatomically
and functionally, it is well-positioned to encode predictions, prediction
errors, or both, due to its reciprocal connections with the auditory cortex14

(AC), prefrontal cortex15 (PFC), thalamus16, and entorhinal cortex17. A
recent and elegant study in the visual domain shows that hippocampus
represents prediction errors early during learning but predictions at later
stages of learning18, backing the findings of a previous study19. Furthermore,
the hippocampal subfields also appear to support distinct roles in predictive
processing: Cornu ammonis 1 (CA1) is implicated in sequence learning and
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novelty detection12,20,21, while the dentate gyrus (DG) supports pattern
separation, distinguishing between highly similar inputs, a crucial
mechanism for sensory discrimination22–24.

The classical oddball paradigm,whichpresents low-probability deviant
tones among repetitive, high-probability standards, has become a common
tool for studying mismatch responses2,4. Human imaging and electro-
physiological studies have reported hippocampal responses to sound
deviations21,25–28, and animal research similarly suggests hippocampal
involvement in novelty detection using ERP and LFP recordings29–32.
Moreover, single- and multi-unit studies in rodents have shown that hip-
pocampal neurons respond to auditory stimuli33–36.While these studieswere
not explicitly framed within predictive coding theory, their findings align
with concepts of expectancy violation, novelty detection, and associative
learning37–39.

While previous studies have reportedmismatch responses using event-
related potentials (ERP) to auditory stimuli in the rat hippocampus31, the
present work advances this line of research by examining these responses at
the neuron level. It distinguishes between prediction error and repetition
suppression, investigates expectation signaling within a predictive coding
framework, and identifies distinct contributions from different hippo-
campal subfields. In this study,we recorded single- andmulti-unit activity as
well as local field potentials (LFPs) from CA1 and DG in urethane-
anesthetized rats under the oddball paradigm. To disentangle prediction
error from repetition suppression, we also employed cascade and many-
standards control sequences40,41. Our results reveal that a subset of hippo-
campal neurons (~20%), respond to auditory stimuli, with nearly a quarter
of these showing stronger responses to deviant and control tones. These
effects were especially pronounced in DG, supporting a role for the hip-
pocampus in deviance detection and predictive auditory processing that
extends beyond its traditional functions42,43 in memory and spatial
navigation.

Results
To understand the role of dorsal hippocampus in auditory processing, we
recorded sound-evoked neuronal activity from 27 rats under urethane
anesthesia (Fig. 1A). We focused on the Cornu Ammonis 1 (CA1) and
Dentate Gyrus (DG) subfields of the hippocampal formation.

We recordeda total of 824units, 138 singleunits, and686multiunits, of
which 321 were histologically located in CA1 and 503 in DG. Figure 1B
shows two representative examples of electrolytic lesions in theCA1andDG
(arrowheads).

To testwhether neuronswere sensitive to auditory stimuli,we recorded
neuronal responses during sound stimulation. We define auditory-
responsive neurons as those units exhibiting a mean activity during the
analysis window (250 to 650ms) at least two standard deviations above the
mean activity in the 125ms preceding reference window (100-225ms).
Following this criterion, we identified 177 neurons (21%) that exhibited
auditory responses after noise burst stimulation. We found at least one
auditory-responsive neuron in all 27 recorded rats. Among them, 63 neu-
rons (35.6%) were histologically located in CA1 across 23 rats, and 114
neurons (64.4%) were located in DG across 12 rats, with 7 rats contributing
toboth subfields.These auditory-responsiveneuronsalso responded topure
tones, although when recording the frequency response areas, we found no
preference for any sound frequency. This suggests that hippocampal neu-
rons are primarily influenced by the contextual aspects of auditory stimu-
lation rather than the physical properties of the sound stimuli.

When analyzing the response to an auditory oddball paradigm
(Fig. 1C), 43 (24.3%; across 9 rats) of these auditory-responsive hippo-
campal neurons (21 units in CA1 out of 6 rats and 22 units in DG out of 5
rats, with 2 rats contributing to both) exhibited a lower response to the
repetitive, standard stimuli (STD) and a significantly higher response to the
deviant sound (DEV). We term these CSI-significant units, since they were
determined using the common SSA index (CSI). Figure 2 illustrates the
responses of example neurons to the deviant (DEV, shown in red) and
standard tone (STD, shown in blue), along with their corresponding

locations in the DG and CA1, as well as raster plots of these neurons,
showing a higher response rate in CA1, compared to DG.

In the following sections, we present the results from recordings of
auditory-responding neurons, focusing on those showing significantly
stronger responses to the deviant than to the standard, i.e., contextual
modulation (CSI-significant).

Context-dependent responses in CA1 and DG
To explore the mechanisms of stimulus specific adaptation (SSA) in the
hippocampus, we first compared responses obtained under the auditory
oddball paradigm (Fig. 1C) by plotting peri-stimulus histograms (PSTH), as
shown in Fig. 3. As explained previously, 177 out of the 824 units recorded
(27 rats) showed significant responses to sounds, and we refer to them as
hippocampal auditory-responsive units. In these units, auditory responses
(Fig. 3A) began on average around 237ms after stimulus onset, lasted until
662ms, and peaked at 387ms. When subtracting the mean STD response
from theDEV response (purple, Fig. 3A bottom) to visualizewhen theDEV
response was higher than the STD (DEV–STD > 0), we observed that the
DEV response exceeded the STD response for 450ms, from 237ms to
687ms after stimulus onset. These units showed a significantly higherDEV
response around 337ms (p < 0.001; t-test withHolm-Bonferroni correction
for multiple comparisons; Fig. 3A).

Within the CSI-significant subset (n = 43; see above), auditory
responses lasted 475ms, starting at 237ms, continuing until 712ms, and
peaking at 362ms (Fig. 3B). TheDEV– STDplot showedpositive responses
for 425ms, from 262ms to 687ms. The DEV response was significantly
different from the STD response for most of the period between 312 and
542ms (p ≤ 0.01). By subfield, responses spanned ~237–687ms in both
CA1 and DG (lasting for about 450ms; Fig. 3C, D, respectively). Units in
DGreachedpeak activity at 337ms, 100msearlier than those inCA1.When
we subtracted the mean STD response from the DEV response, CA1 units
showed a statistically significant difference between DEV and STD
responses at 312ms (p = 0.008; Fig. 3C, bottom), whereas DG units
exhibited the most significant difference from 512 to 537ms (p = 0.002;
Fig. 3D, bottom). In DG, the DEV response exceeded the STD response
between 262ms and 687ms after stimulus onset, while in CA1, this dif-
ference began slightly earlier at 237ms and extended to 687ms.

Next, we compared responses to the DEV condition (Fig. 3E) and the
STD condition (Fig. 3F) between DG and CA1. After applying a t-test and
Fisher’s correction for combined probability across multiple comparisons,
in the DEV comparison, we found that the largest difference between
subfields occurred at ~337ms, aligning with the DG peak response. For the
STD comparison, the largest difference between subfields occurred around
550ms (Fig. 3F), however, the responses were very noisy and close to the
baseline. To testwhetherCA1andDGshoweddifferences in onset latencies,
we used a 50-ms window to determine a stable onset response time. DEV
onsets did not differ between subfields (CA1: 341.250 ± 30.633ms; CI =
[277.134, 405.366]; n = 20; DG: 314.423 ± 26.923ms; CI = [255.763,
373.083]; n = 13; Wilcoxon rank-sum, p = 0.383; effect Cliffs_delta = -
0.085).Neitherdid STDonset latencies differ (CA1: 439.167 ± 58.932ms;CI
= [312.769, 565.564]; n = 15; DG: 287.500 ± 62.375ms; CI = [154.551,
420.449]; n = 16, Welch’s t-test, p = 0.0877; effect Hedges_g = 0.617).

Comparing CA1 and DG mismatch (DEV-STD) onset latency,
showed similar startingpoints (CA1: 356.62 ± 37.04msSEM;CI= [278.098,
435.138]; n = 17; DG: 323.21 ± 12.76ms SEM; CI = [295.643, 350.785];
n = 14;Welch’s t-test, Bonferroni-adjusted,p = 0.4041).Mediansdifferedby
−50ms (CA1 median = 362.50ms; DG median = 312.50ms). Thus, while
DG peaks earlier on DEV trials (Fig. 3E), the emergence of the DEV–STD
difference occurs at comparable times across subfields.

Periodic oddball modulates DG activity
Toexaminewhether theunits recorded inhippocampus code for some form
of regularity, we employed a variation of the classic random oddball para-
digm (Fig. 4A), namely, the periodic auditory oddball paradigm, where
groups of 9 standard tones followed by 1 deviant tone are repeated overtime
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as a frozen token of stimuli, as shown in Fig. 4B. Both paradigms used the
same stimuli and probabilities, the periodicity of the deviant being the only
difference. This periodic auditory oddball establishes expected uncertainty
(low temporal entropy, since the position of the deviant is predictable),
whereas the classic random oddball imposes unexpected uncertainty (trial-
wise unpredictability). Thus, comparing periodic vs. random isolates the

impact of temporal predictability on hippocampal responses. This periodic
auditory oddball was presented immediately after the random oddball
paradigm. Figure 4C displays the average response of all CSI-significant
units to both the periodic- and randomoddball stimuli (n = 20; 9 tracks in 3
animals). 75% of these units were in DG. Interestingly, we observed a sig-
nificant difference in the neuronal response that emerged just as the deviant
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tone was presented (Fig. 4C; t-test with Holm-Bonferroni corrections for
multiple comparisons, p = 0.04 at 37.5 ms histogram center). However,
comparing the normalized spike counts for theDEV,CTR (control stimuli),
and STD tones between the random and periodic oddball responses during
the analysis windowdid not reveal a significant difference (Fig. 4E). Activity
in the pre-analysiswindow (25 to 50ms)was significantly lower for periodic
than for random sequences (t-test with Holm-Bonferroni correction,
p = 0.0025). This is summarized in a pre-stimulus bar chart (Fig. 4D).

Prediction error index as the main contributor to the mismatch
negativity index in CSI-significant units
Of 177 hippocampal auditory-responsive units (CA1: 63 units in 23 rats;
DG: 114 units in 12 rats), 43 units showed significant CSI—21 in CA1 (6
rats) and 22 in DG (5 rats).To assess how these units responded to the DEV
stimuli, we computed the frequency-specific SSA index (SI) and the CSI
Fig. 5A (left) illustrates scatter plots of the SI (graph plots SI for f1, x-axis
versus f2, y-axis), where non-CSI-significant (auditory-responsive after
excluding CSI-significant) units appear in a lighter shade, while significant-
CSI units are represented in a dark tone. In CA1, non-CSI-significant units
are more broadly dispersed, whereas CSI-significant units cluster pre-
dominantly in the upper-right quadrant, indicating that both frequencies in
the sequence respondmore to deviant stimuli than standard stimuli. InDG,
non-CSI-significant units tend to concentrate around zero, with all but one
CSI-significantunit positioned in theupper-right quadrant, again indicating
a preference for deviant sounds. Points in the upper right quadrants denote
stimulus-independent modulation; most CSI-significant units fall here,
consistent with stimulus-non-specific deviance detection, meaning that the
DEV–STD difference is consistent across frequency identities rather than
tied to a particular frequency.

Figure 5A (right panels), displays histograms for the distributionofCSI
values. As expected, the median CSI of CSI-significant units was sig-
nificantly larger than zero both in CA1 (0.213; IQR: [−0.0799, 0.6811]; 95%
CI: [0.139,0.3006];p < 0.001; two-sided sign test, n = 21) and DG (0.271;
IQR: [0.0446, 1]; 95% CI: [0.2213,0.4493]; p < 0.001, n = 22). This was not
the case for non-CSI-significant units inDG (0.020; IQR: [−0.1400, 0.6056];
95% CI: [0.0035,0.0457]; p = 0.11, n = 114), nor CA1 (-0.0196; IQR:
[−0.2431, 0.0690]; 95% CI: [−0.0463,0.0036]; p > 1, n = 63). To avoid CSI-
driven bias, we computed all summary metrics on the subset of auditory-
responsive but non-CSI-significant units and tested median effects with
two-sided sign tests (Bonferroni-corrected across indices).

We compared the auditory-evoked responses in each condition (STD,
DEV, CTR), in the form of 3 indices (as shown in Fig. 1D): index of
Neuronal Mismatch (iMM =DEV–STD), index of Prediction Error (iPE =
DEV–CTR) and index of Repetition Suppression (iRS = CTR–STD). Thus,
the iMM quantifies the overall neuronal mismatch response, and by means
of comparing it to a control sequence, the iPE identifies the component of
the mismatch response that is attributed to predictive error signaling (or

genuine deviance detection), and the iRS estimates the extent to which
repetition of the STD suppresses activity. In CA1 (non-CSI-significant), SI,
CSI, iMM, iPE, and iRS distributions were not significantly different from
zero after correction. In DG (non-CSI-significant), SI showed a small
positive effect (r = 0.31; p = 0.033 two-sided sign tests with Bonferroni-
corrected across indices),whereasCSI, iMM, iPE, and iRSdistributionswere
not significantly different from zero. These analyses are shown with less-
saturated colors in the revised figure to distinguish them from the full and
CSI-significant subsets. For the broader non-CSI-significant pool, iMM
(DG >CA1: r = –0.28; p < 0.001) and iPE (DG>CA1: r = –0.19; p = 0.0067)
differed, while iRS did not (p = 0.418). Within the CSI-significant subset,
none of the CA1–DG contrasts reached significance (iMM p = 0.129; iPE
p = 0.343; iRS p = 0.611; all |r| ≥ 0.63 using a signed-rank tests), probably do
to having a smaller sample size.

Figure 5B illustrates non-CSI-significant units in light colors, while
CSI-significant units appear in darker tones. All neuronalmismatch indices
exhibit a normal distribution (Fig. 5B), as confirmed by a Kolmogorov-
Smirnov test (p < 0.001). iMM values for CSI-significant units range from
−0.3 to 0.8 in CA1 and from 0.1 to 1 in DG (Fig. 5B, magenta), and in both
cases the median values were significantly largen than zero (CA1: 0.230;
IQR: [−0.2445, 0.7693]; 95% CI: [0.1686,0.3125]; p < 0.001; DG: 0.3366;
IQR: [−0.0939, 1]; 95% CI: [0.2012,0.4565]; p < 0.001; two-sidedWilcoxon
rank-sum test). The main contributor to iMM was iPE (Fig. 5B, orange),
which in both hippocampal areas reached high values (CA1: 0.2030; IQR:
[−0.5759, 0.7730]; 95% CI: [0.1210,2243]; p < 0.001; DG: 0.3032; IQR:
[−0.4763, 1]; 95% CI: [0.1667,0.4059]; p < 0.001). On the other hand, iRS
(Fig. 5B, cyan) showed values much smaller, only being significantly larger
than zero in DG (CA1: 0.0211; IQR: [−0.4630, 0.8786]; 95% CI:
[−0.0148,0.1136]; p = 0.07; DG: 0.0671; IQR: [−0.1649, 0.6243]; 95% CI:
[0.0361,0.1241]; p = 0.002).

These results showevidenceof strong auditorymismatch in the spiking
responses of both CA1 and DG, which could be mostly attributed to an
enhanced response to the deviant sounds.

LFP mismatch reflects distinct contributions of prediction error
and repetition suppression across subfields and time
Next, we recorded and analyzed the local field potentials (LFPs), which
measure the average synaptic activity in local circuits, in an attempt to
correlate spiking responseswith global responses. Figure 1E shows a coronal
section of the hippocampus highlighting the location of a multichannel
recording. CSI-significant units were predominantly found in the DG,
particularly in the granule cell layer, followed by the hilus and molecular
layer (Fig. 1G, with CSI-significant units marked in red). Similarly, the
largest LFP amplitudes were observed in the hilus and granule cell layers of
the DG (Fig. 1H).

The left column of Fig. 6A-C presents the average response across all
multichannel recordings (Fig. 6A; n = 268; 9 tracks from 3 animals), along

Fig. 1 | Experimental design and histology of recorded neurons. A Schematic
representation of an experimental setup for extracellular recording of auditory-
evoked responses in a rat brain. A schematic lateral view where the hippocampus is
shown in violet. Stimuli were sequences of 75 ms pure tones played by a speaker
coupled to one of the ears. Red arrows represent a possible pathway for auditory
information during the experimental session. B Coronal hippocampal section,
4.5 mm caudal from bregma, with electrolytic lesions in Cornus ammonis 1 (CA1)
and dentate gyrus (DG). Scale bar, 500 µm. Electrophysiological recordings were
made using either multichannel or tungsten electrodes. C A classical oddball
sequence (top) consists of a number of repetitions of a standard tone (STD), with a
deviant tone (DEV) at a different sound frequency occurringwith low probability. In
the current study, only the last STD tone before aDEV tonewas used for analysis. To
account for the different responses to both sound frequencies, another oddball
sequence was played with the STD and DEV roles inverted (second panel). We also
used cascade (third and fourth panels) and many-standard sequences (bottom) as
non-repetition controls. D Mismatch responses recorded following this procedure

(DEV, deviant; STD, standard; CTR, control) can be decomposed in 3 indices (iPE,
index of prediction error; iRS, index of repetition suppression; iMM, index of
neuronal mismatch). ECoronal section of the hippocampus, indicating the location
of CA1 and DG regions. The red line indicates the approximate location of the
multichannel probe. F Enlarged view of the DG with the electrode probe overlaid,
showing the approximate position of recording sites across different sublayers (gl:
granule cell layer; Hilus: hilus (polymorphic layer); CA3: cornu ammonis, area 3;ml:
molecular layer). G LFP traces from all recorded channels in one animal (n = 30
channels in 1 rat), aligned to deviant stimulus onset (0 ms), which include the
standard tone before the deviant (left vertical blue line), the deviant (vertical red line)
and the standard tone after the deviant (right vertical blue line). Channels where
units exhibited significant CSI are traced in red. H Time-amplitude plot of LFP
activity across channels (n = 30 channels in 1 rat), revealing prominent oscillatory
activity in the hilus and granule cell layer (in the infrapyramidal blade). Red and blue
lines above the plot indicate deviant and standard tone presentations, respectively.
The underlying data for this Figure can be found in Supplementary Data 1.
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Fig. 2 | Schematic of left coronal sections with example PSTHs and Dot
Raster plots. The left column shows a schematic drawing of representative coronal
sections, with their position relative to bregma shown below them. Dots indicate the
approximate locations where we recorded CSI-significant neurons. Darker outlined
numbered dots mark the locations of selected example neurons, with their

corresponding PSTH and dot raster plots. Responses to deviant tones (DEV) are
shown in red, while the responses to standard tones (STD) preceding the deviant are
shown in dark blue; responses to all other standard tones are shown in light blue (dot
raster plot). The underlying data for this Figure can be found in Supplemen-
tary Data 1.
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Fig. 3 | Average PSTH of auditory-responsive and CSI-significant neurons.
Average PSTH responses (mean ± SEM) to DEV tones are shown in red, while
average responses to STD tones are shown in blue. The subtraction of themean STD
response from the DEV response (DEV – STD) is shown in purple. The vertical bar
on the left of the plots indicates the duration of the sound. The shaded area along the
lines represents the SEMerror. Statistical significance is denoted by a thick line above
the X-axis. A Average response of auditory-responsive units (n = 177; 27 rats).

B Average response of CSI-significant units (n = 43; 9 rats). C Average response of
CSI-significant units located in CA1 (n = 21; 6 rats). D Average response of CSI-
significant units located in DG (n = 22; 5 rats). E Comparison of the average DEV
response of CSI-significant units in CA1 vs. DG. F Comparison of the average STD
response of CSI-significant units in CA1 vs. DG. The underlying data for this Figure
can be found in Supplementary Data 2.
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with the average responses for LFPs in CA1 (Fig. 6B; n = 3 from 1 animal)
and DG channels (Fig. 6C; n = 13 from 3 animals) where significant CSI
units were recorded. To directly compare responses to DEV and STD sti-
muli, we plotted their average waveforms (Fig. 6, middle column) and
computed the difference waveform (shown in purple). We observed no
prominent deflections in response to the standard tone prior to the deviant

in any of the averaged traces. In the combined average across all channels
(Fig. 6A, middle panel). The DEV–STD difference was statistically sig-
nificant (p < 0.05; t-test with Holm-Bonferroni correction) across several
time windows, including an early time window where the DEV response
was more negative than the STD (~100–250ms) and a late one were the
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DEV response was more positive than the STD (~400-800ms) with peak
amplitude at 578ms.

InCA1 (Fig. 6B), theDEVresponsewas significantly different from the
STD condition across most of the trial. It included two early periods where
theDEV responsewasmore negative than the STD (~120–220ms and 330-
450ms), an early period where DEV was more positive (~230–330ms), as
well as a late period where the DEV response was more positive
(~480–850ms) with peak amplitude at 571ms. In DG (Fig. 6C), the DEV
response was significantly different from the STD condition across most of
the trial. It included two early periods where the DEV response was more
negative than the STD (~100–200ms and 350–400ms) and a late period
where the DEV response was more positive ( ~ 500–800ms) with peak
amplitude at 579ms.

The right panels in Fig. 6 show the corresponding mean amplitudes
during the analysis window. The LFP amplitude of the DEV condition was
significantly larger than that for the STD and CTR conditions for all the
recorded channels (Fig. 6A, right panel; p < 0.001 and p = 0.0015, respec-
tively; t-test with Holm-Bonferroni correction, n = 268). In DG, the LFP
amplitude significantly differed among theDEV, STD, andCTRconditions,
and all indices were significantly larger than zero (Fig. 6C, right panel). On
the other hand, no significant differences were observed among LFP mean
amplitudes in CA1 bar chart, this may be due to the small number of
channels included in the sample (Fig. 6B, right panel; n = 3).

We also calculated the LFP-based predictive coding indices. When
considering all multichannel recordings (Fig. 6D, left panel), both themean
iMM and iPE indices were significantly greater than zero (iMM =
0.0793 ± 0.0172, p < 0.001; IC = [0.0454, 0.1131]; iPE = 0.0583 ± 0.0170,
p = 0.002; IC = [0.0248, 0.0918]; n = 268), whereas the iRS index was not
(iRS = 0.0210 ± 0.0159, p = 0.56; IC = [-0.0103, 0.0522]; n = 268). In CA1
(Fig. 6D, center panel), iMM and iRS were significantly greater than zero
(iMM = 0.3977 ± 0.0832, p = 0.0107; IC = [0.2709, 0.6641]; iRS =
0.2309 ± 0.0556, p = 0.0042; IC = [0.3437, 0.5078]; n = 3), but the iPE index
did not reach significance (iPE = 0.1668 ± 0.0554, p = 0.08; IC = [−0.0848,
0.1684];n = 3).On the otherhand, inDG(Fig. 6D, right panel) both iPEand
iRSwere significantly greater than zero (iPE= 0.1639 ± 0.0553, p = 0.006; IC
= [0.0461, 0.2874]; iRS = 0.2231 ± 0.0537, p = 0.006; IC = [0.1097, 0.3521];
n = 13), with iRS showing a higher mean than iPE, and the iMM index was
also significantly above zero (iMM = 0.3870 ± 0.0812, p = 0.028;; IC =
[0.2164, 0.5789]; n = 13).

With only 3 channels in CA1 and 13 in DG (Fig. 6D), DG showed
larger iPE than CA1 (medians: DG 0.210 vs CA1 0.017; U = 9, p = 0.568;
Cliff’s δ =−0.54; Hedges’ g =−0.64), indicating a large but non-significant
shift toward stronger deviance responses inDG. By contrast, CA1 exhibited
greater iRS (CA1 0.436 vs DG 0.292; U = 34, p = 0.286; δ =+0.74; g = 0.99).
A Welch’s unequal-variance t-test corroborated the iRS difference and
remained significant after Holm correction (p = 0.031), though parametric
inference is tentative given CA1 n = 3. iMM did not differ between regions
(DG 0.534 vs CA1 0.453; U = 17, p = 1; δ =−0.13; g = 0.24). Altogether,
these comparisons suggest that LFPs in CA1 are driven by repetition-sup-
pression, whereas DG combines prediction-error and repetition-
suppression contributions; due to sample size, this is only exploratory.

We also recorded LFPs inDG during a periodic oddball paradigm and
compared the responses to the random oddball paradigm. Figure 6E, shows
all DG LFPs (n = 13, 3 rats, 6 tracts) from channels with units showing
significant CSI under both periodic and random oddball sequences. We
found a significant difference in the neuronal response beginning around
the onset of the deviant tone, consistent with our spike data (Fig. 6E; t-test
with Holm-Bonferroni correction, p < 0.05: 36–158ms). Additionally, we
found another significant difference ~450–350ms before the DEV stimu-
lus onset.

These results indicate that in the hippocampus as a whole, deviant
sounds produce LFP responses larger than standard sounds, and this can be
attributed to an enhanced response to deviants rather than a reduced
response to standards. This effect is magnified in the DG; however, it seems
to be a combined influence of enhanced response to deviants and reduced
response to standards when comparing to a control sequence.

Significantly higher response to deviant tones across trials over
standard and control conditions
To examinewhether trial positionwithin the sequence influenced responses
across different paradigms (Fig. 1C), we calculated the average spike count
for each trial. Each trial consistedof apure tonepresented every second,with
a total of 400 trials per paradigm for all recorded units exhibiting significant
CSI (n = 20; 9 tracks in 3 animals) (Fig. 7). Since only multichannel units
were analyzed, the sequences and frequencies were consistent across all
recordings.

To identify general response trends, we applied a simple linear
regression model (f(x) = β0+ β1x+ ε), which effectively captured broad
patterns in the data (Fig. 7A–F, thick lines). The model explained a mean-
ingful portion of the variance in the response, and an ANCOVA confirmed
that it performed significantly better than a constant model. Differences
across paradigms were examined by comparing intercepts (β0) and slopes
(β1). No significant slopes were found for STD responses, indicating a lack
of repetition suppression (Table 1). Responses to the STD condition
remained significantly lower than those to DEV tones across trials, as
indicated by their intercept (β0) values (Table 1).

We looked for differences between the linear regression fits by con-
structing a comparison matrix (Fig. 7G), which displays the significance of
pairwise paradigm comparisons for estimated intercepts (β₀, left) and slopes
(β₁, right). None of the slopes significantly differed from one another or
from the null hypothesis (Fig. 7G, Table 1), indicating no adaptation and
suggesting that time (1 s/trial) did not significantly affect the response.

The intercepts for deviant tones in the random oddball paradigm
(DEV-R) were significantly higher than those for the random standard
tones (STD-R) (p = 0.0021, t-testwithHolm-Bonferroni correction) and the
many-standard paradigm (MSC), aswell as both cascade control paradigms
(CASC-ASC, CASC-DES) (p < 0.001). Similarly, the intercepts for deviant
tones in the periodic oddball paradigm (DEV-P) were significantly higher
than those for periodic standard tones (STD-P) (p = 0.0024), as well as
higher than those for STD-R,MSC,CASC-ASC, andCASC-DES (p < 0.001;
Fig. 7G). None of the control responses had intercepts significantly different
from STD-R. However, the MSC intercept (β₀ = 2.2546 ± 0.19047,

Fig. 4 | Differences between periodic and random oddball paradigm responses.
A Schematic of a classical oddball sequence. It includes many repetitions of a
standard tone (STD, light blue) and rare deviant tones (DEV, red) at a different
frequency, with the STD immediately before each DEV shown in dark blue.
B Schematic of a periodic oddball sequence. It uses repeating blocks of nine STDs
followed by one DEV as a fixed frozen, ten-tone cycle over time; for illustration
purposes only four STDs are shown. C Average PSTH of CSI-significant units
recorded usingmultichannel probes from both CA1 (n = 5; 2 rats) andDG (n = 15; 3
rats), centered at the onset of deviant tones (0 ms, red). The plot includes the
responses to the standard tones before and after a deviant (blue). Vertical bars
indicate the duration of sounds. The response (mean ± SEM) during a random
oddball sequence is shown with a continuous trace, while the mean response during

a periodic oddball is displayed with a dashed trace. The shaded area along the lines
represents the SEM error. Statistical significance for the comparison between ran-
dom and periodic sequences is denoted by a thick black line above the X-axis. Note
that the only statistical difference occurs during the presentation of the deviant tone
(25–50 ms), marked by a circled D. D Bar plots representing the normalized spike
counts for the 25–50 ms time window. E Bar plots representing the normalized spike
counts for each experimental condition (red, deviant; blue, standard; green, control),
using the analysis window (250-650 ms); no periodic/randomdifference is observed.
Error bars indicate ± SEM. Asterisks indicate significance from a t-test with
Holm–Bonferroni correction (**p < 0.01; ***p < 0.001). The underlying data for
this Figure can be found in Supplementary Data 2.
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Fig. 5 | CSI selectivity andmismatch-related responses across CA1 andDG.ALeft
panels display scatter plots of the frequency-specific SSA index (SI) for f1 (x-axis) vs.
f2 (y-axis) in CA1 (top; n = 63; 6 rats) and DG (bottom; n = 107; 5 rats). Lighter
shades denote non-CSI units (auditory-responsive after excluding CSI-significant),
while CSI-significant units appear in a darker tone. Units in the top right quadrant
show higher response to the deviant for both frequencies. Right panels show his-
tograms of the common SSA Index (CSI) for CA1 (top) and DG (bottom). Red
vertical lines represent the mean of the distribution. B Left panels show the dis-
tributions of the index of neuronal mismatch (iMM) for CA1 (top; n = 126; 6 rats)
and DG (bottom; n = 214; 5 rats), with lighter colors representing non-CSI-

significant units (auditory-responsive after excluding CSI-significant) and darker
colors indicating CSI-significant units.Middle panels display the index of prediction
error (iPE) and right panels the index of repetition suppression (iRS). These results
show that prediction error is the main contributor to neuronal mismatch both in
CA1 and DG. Red vertical lines mark each distribution’s median: the dashed line is
the median of non-CSI-significant units, while the solid line indicates the median of
CSI-significant units. Asterisks indicate that the median differs from zero according
to a two-sided sign test with Bonferroni correction; *p < 0.05, **p < 0.01,
***p < 0.001. The underlying data for this Figure can be found in Supplemen-
tary Data 3.
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p < 0.001) was significantly lower than that of STD-P. There were no sig-
nificant differences between the intercepts of ODD-R and ODD-P or
between STD-R and STD-P.

We also used a Wilcoxon signed-rank test to compare the responses
elicited by theMSC andCASC conditions, finding no significant differences
between them. Since our results in this section indicate no significant dif-
ference between the controls, we chose to use the many-standards-evoked
responses as the control (CTR) for analyses.

Discussion
We recorded single- andmulti-unit activity and LFPs fromCA1 andDG to
examine auditory novelty responses. Ourmain findings are as follows: (1) A
distinct subpopulation of hippocampal neurons responded to auditory
stimuli, exhibiting significantly stronger responses to deviant tones com-
pared to standard and control tones, supporting predictive coding
mechanisms. (2)DGneurons showed shorter response latencies and higher
mismatch indices than CA1 neurons, suggesting locally distinct
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mechanisms for encoding prediction error. (3) Single/multiunit population
analyses indicated that mismatch responses in both CA1 and DG were
primarily driven by prediction error rather than repetition suppression,
whereas LFP analyses showed that iPE and iRS contributed distinctly across
space and time (repetition suppression-biased patterns inCA1with small n,
mixed PE/RS contributions in DG). (4) Spike-time analyses revealed that
units with stronger responses to deviants already exhibited suppression to
standard stimuli (Fig. 7). (5)Atboth theneuronal andpopulationLFP levels,
early responses to randomly presented deviants are enhanced relative to
repeated periodic deviants, consistent with prediction error signaling. In
contrast, at the LFP level, late responses are stronger for periodic deviants
than for randomly presented ones, suggesting an additional role in signaling
the precision of predictions.

Together with previous reports8,21,26,27,29,31,44, our findings demonstrate
that the hippocampus contributes to predictive auditory processing and
novelty detection18,39,45.

Animal studies have documented hippocampal auditory responses
using ERP and LFP recordings46–48. However, single-cell studies remain
elusive33–35,49–51 and anesthesia often attenuates responses. In line with these
observations, we detected tone-evoked activity in only approximately 20%
of units.

As in humans, most prior animal studies onMMN relied on LFPs. For
example, mismatch responses have been observed in both CA1 and DG
regions in rats31,44. Inmice, early LFP peaks around 30–50ms post-stimulus
have been reported48, although analysis in that study was limited to the first
225ms. In our study, LFPmismatch responses reflected contributions from
both repetition suppression and prediction error, and exhibited clear
habituation patterns21, in contrast to unit-level activity, which did not. This
suggests that adaptation occurs mainly at the network level52,53. Our
recordings also revealed robust deviance-relatedpeaks at 65ms, 226ms, and
a pronounced late component at 580ms. These latency differences may
reflect variability in stimulus complexity, anesthetic protocols (e.g., keta-
mine vs. urethane), or recording locations.

Auditory information reaches thehippocampusviamultiple pathways.
One route relays signals through the AC via the classical (canonical)
ascending auditory pathway54–58. A second route involves the non-canonical
pathway, transmitting input more directly through the medial septum and
reticular formation39,59–62. While the AC pathway is associated with longer-
latency responses, the non-canonical route provides shorter-latency input.
As we discuss further in the next section, our findings suggest that auditory
responses in the hippocampus are predominantly shaped by inputs likely
originating from the AC, i.e., following the canonical auditory pathway via
the entorhinal cortex.

In the lemniscal AC, neuronal responses to repeated tones typically
diminish by half after about seven repetitions. In contrast, in the non-
lemniscal AC41, this reduction occurs after just two repetitions, as well as in
both the medial prefrontal cortex63 and hippocampus (current study), it is
evident after a single repetition. This rapid habituation observed in our
recordings is consistent with previous human studies reporting a swift
decline inhippocampal activity in response to repeated stimuli39,64,65. Indeed,

our adaptation time-course analyses donot reveal a progressive suppression
pattern in the hippocampus over time (Fig. 7A–F; see also Fig. 8A). Instead,
responses to deviant tones consistently exceed those to standard tones,
suggesting that the capacity for stimulus discriminationmay arise upstream
of the hippocampus, likely in the entorhinal cortex60, auditory cortex14, or
thalamus16. Although the hippocampus receives substantial input from
lemniscal pathways, we found that prediction error indices in the DG were
comparable to those in non-lemniscal AC regions (Fig. 8B), likely reflecting
shared contextual sensitivity. This similarity suggests that non-lemniscal-
like computations either emerge within hippocampal circuits or arrive via
convergingmultimodal inputs. Prediction error levels inDGexceeded those
in lemniscal AC, which primarily encodes low-level stimulus features, and
were lower than in PFC, where predictive processing likely reflects the
highest-order integrative functions. Consistent with this interpretation, we
did not observe neurons with a clear frequency sensitivity, as occurs with
purely auditory neurons. Units lacked frequency selectivity yet showed
deviance sensitivity. This supports the view that hippocampal auditory
codes prioritize contextual relations and expectation violations over spectral
tuning9,18,45.

Earlier models posited that hippocampal mismatch responses rely
entirely on upstream activity from AC and are recruited only when deviant
stimuli are salient enough to trigger attentional mechanisms. In this fra-
mework, the AC can detect even subtle differences, such as tones near
behavioral thresholds66, whereas the hippocampus is recruited only when
the deviant stimulus is prominent enough to disrupt ongoing processing.
This viewmirrors theMMN–P3a sequence observed in humans, where the
full response (particularly the P3a component) is elicited only under con-
ditions of high stimulus salience67,68.

Although the MMN is primarily generated in auditory and frontal
cortices67, the hippocampus canmodulateMMN-related activity through its
connections with the entorhinal cortex and the trisynaptic circuit58,69,70.
Oddball paradigms also elicit the P300 component, which consists of two
subcomponents, P3a and P3b, each associated with distinct cognitive pro-
cesses such as attention, memory updating, and context evaluation71–73.

Our observed peak latencies (~430ms inCA1, ~580ms inDG) in LFP
and the late neuronal responses observed in CA1 and DG (250–350ms
range) are more in line with P3b dynamics than aligning with MMN. The
same can be said for the onset latencies, with the CA1 deviant response
starting around ~340ms and the DG response at ~315ms. These findings
likely reflect hippocampal contributions to memory updating and con-
textual processing20,30,38,74.

Additional studies have shown that hippocampal involvement in
novelty detection depends not only on stimulus salience but also on
prior learning and the continuous monitoring of temporal
sequences34,75. Recent theoretical models propose that the hippo-
campus plays a central role in updating internal models of the
environment, linking deviance detection to the encoding of con-
textual representations38 and expected variability76. Within this fra-
mework, the periodic oddball involves low expected uncertainty (low
entropy, predictable deviant timing), whereas the random oddball

Fig. 6 | LFP responses, predictive coding indices andRandomvsPeriodicOddball
response. A The average LFP traces (mean ± SEM) across all multichannel
recordings (n = 268; 9 tracks in 3 animals) are shown on the left panel, with the
response to the STD condition in blue, DEV in red, and CTR in dark green. As in
previous figures, vertical bars indicate the tone presentations. The middle panel
shows the comparison of the response to theDEVvs STD conditions, the subtraction
of the mean STD response from the DEV response (DEV–STD) is shown in purple.
Black bars above the x-axis indicate pointwise DEV > STD significance (t-tests,
Holm–Bonferroni). The average LFP amplitude (mean ± SEM) for each stimulus
condition during the analysis window (250–650 ms) is shown in the right panel,
where asterisks indicate significant differences among conditions after a t-test with
holm-Bonferroni correction. B, C Same as in (A), but using data from channels
where CSI-significant units were recorded in CA1 (n = 3, 2 tracts in 2 animals) and
DG (n = 13, 6 tracts in 3 animals), respectively. Error bars indicate ± SEM.

D Violinplots of the distributions of predictive coding indices (iMM, neuronal
mismatch index; iPE, index of prediction error; iRS, index of repetition suppression).
For all multichannel recordings (n = 268; 9 tracks in 3 animals) on the left, CA1
(n = 3; 2 tracks in 2 animals) in the middle panel, and DG (n = 13, 6 tracts in 3
animals) on the right panel. Indices whose average is different from zero are indi-
cated by asterisks; *p < 0.05, **p < 0.01, ***p < 0.001. E Average of all DG LFP
(n = 13, 6 tracts in 3 animals), showing the response elicited by both the periodic and
random oddball auditory paradigm of channels that had units with significant CSI.
The response to the periodic oddball is shown as a dashed line, whereas the response
to the random presentation is represented by a continuous line. The shaded area
along the lines is the SEM error. Statistical significance for the comparison between
random and periodic sequences is denoted by a thick black line above theX-axis. The
underlying data for this Figure can be found in Supplementary Data 3.
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involves high expected uncertainty (trial-wise unpredictability)76,77.
Consistent with these accounts, periodic deviants evoked stronger
late LFP components and earlier spiking, particularly in DG, around
deviant onset (Figs. 4C, 6E), suggesting predictive responses that
exploit learned temporal structure, while random deviants elicited
responses dominated by surprise (prediction error). Note that the
periodic effect includes a decrease during stimulus presentation in
DG (Fig. 4C), consistent with a modulatory influence.

We interpret these anticipatory signals as evidence that the hippo-
campus encodes predictions, not merely mismatches. This interpretation is
supported by findings that hippocampal representations shift from signal-
ing prediction errors to representing predicted stimuli as regularities
become established through learning18. In unpredictable contexts, such as
the random oddball paradigm, the hippocampus emphasizes unexpected
inputs. With repeated exposure to structured sequences, it increasingly
reflects expected events. Our results suggest that even under anesthesia,

Fig. 7 | Spike counts over trials for different auditory paradigms. Each panel
represents the average response at every trial of the sequence, for all the units that
presented significant SSA recorded with the multichannel probe (n = 20; 3 rats).
A and B correspond to the random and periodic oddball paradigms, respectively,
showing responses during a deviant tone (DEV; red) or a standard tone (STD; blue).
C–E illustrate the responses to the control paradigms: Many-Standards (C; dark
green), Cascade Ascending (D; medium green), and Cascade Descending (E; light
green). Dots indicate the average spike count at each trial, while solid lines represent

linear regression fits. FComparison of the linear regression fits for all the paradigms.
G Heatmaps showing the p-values of the comparison of linear regression model
estimates (intercept, β₀, left; and slope, β₁, right) between paradigms. Darker colors
mean smaller p-values, as indicated by the logarithmic color bar on the right. A
Holm-Bonferroni correction formultiple comparisonswas applied to the p-values in
each table, with statistically significant values (*p < 0.05, **p < 0.01, ***p < 0.001)
highlighted in bold. The underlying data for this Figure can be found in Supple-
mentary Data 4.
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hippocampal circuits internalize temporal structure and transition into a
predictive mode. Thus, the periodic oddball paradigm may function as a
minimal learning context that engages generative processes in the hippo-
campus, supporting its broader role in hierarchical inference and predictive
coding. While urethane anesthesia limits direct extrapolation to awake
behavior, our findings still offer insight into hippocampal deviance

processing under stable and controlled physiological conditions. Previous
studies have shown that auditory change detection in the hippocampus
persists under anesthesia35,78,79, though responsemagnitude and timingmay
differ from those in awake states. P300-like components have also been
observed under anesthesia29,80. One limitation of our study is the exclusive
use of pure-tone oddball stimuli. Although the hippocampus responds to

Fig. 8 | Comparisons between AC, mPFC, and
hippocampal responses. A Average responses for
thefirst 10 STD trials (mean ± SEM) in the lemniscal
AC (L-AC, green, dotted line), nonlemniscal AC
(nL-AC, orange, dotted line), mPFC (gray, dotted
line), DG (red, solid trace), and CA1 (blue, solid
trace). Error bars indicate ± SEM. Open circles
indicate the trial at which the STD falls below 50%
relative to the first trial. Arrowheads on the left
represent the minimum response to STD during the
sequence, as determined by the steady-state (SS)
parameter of a three-parameter power-law fit for AC
and PFC, while for CA1 (n = 21; 6 rats) and DG
(n = 22; 5 rats), it shows the lowest STD response
observed across all trials.BMedian iPE (orange) and
iRS (cyan) values for each AC, PFC or hippocampus
subdivision recorded, referenced against the base-
line set by the CTR.Here, iPE is plotted as positive in
the upward direction, while iRS is plotted as positive
in the downward direction (see Fig. 1D). AC and
PFC data originates from Parras et al. (2017) and
Casado-Román et al. (2020), respectively. Asterisks
indicate statistical significance of each index com-
pared to a zero median (n.s., nonsignificant;
*p < 0.05; **p < 0.01; ***p < 0.001; t-test with
Holm-Bonferroni correction). The underlying data
for this Figure can be found in Supplemen-
tary Data 4.

Table 1 | Linear regression model output for the effect of spike counts over time

Intercept (β₀) Slope (β₁)

Estimate SEM p-Value Estimate SEM p-Value

DEV R 5.3157 0.6247 2.36E−16 0.0033 0.0025 1

STD R 2.7570 0.2003 2.13E−40 0.0021 0.0009 0.1062

DEV P 5.9515 0.6126 5.55E−21 0.0018 0.0026 1

STD P 3.4611 0.2004 1.57E−61 0.0003 0.0009 1

MSC 2.2546 0.1905 1.93E−30 0.0019 0.0008 0.1377

CASC ASC 2.5347 0.1905 6.36E−38 −0.0009 0.0008 1

CASC DES 2.6757 0.1905 2.36E−16 −0.0005 0.0008 1

Results of a linear regressionmodel (f(x)=β0+ β1x+ ε), examining the relationshipbetween time (1 s/trial) and spikecounts. The left columndisplays the intercept estimatedby themodel for eachparadigm,
while the right column presents the estimated slope, which reflects the effect of time. A Holm-Bonferroni correction for multiple comparisons has been applied to the reported p-values in each column.
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both simple and complex sounds, its encoding specificity can vary
depending on stimulus type and context39. It is generallymore responsive to
ecologically or behaviorally salient sounds, such as speech, vocalizations,
emotionally charged stimuli, or learned cues34,81–83. Additionally, hippo-
campal engagement is shaped by prior experience and task relevance84–88. In
our paradigm, the rats were not pre-exposed to the auditory stimuli, which
may have limited the involvement of contextual memory processes. Finally,
because CA1 and DG units were drawn from only partially overlapping
animal sets, between-subfield effects could reflect animal variability to some
extent.

Differences between single/multi-unit and LFP results may reflect
the functional diversity of hippocampal neurons. Distinct cell types
have varied anatomical and physiological traits that influence auditory
responsiveness33,34,39,84,89,90. Inhibitory interneurons often fire in sync
with theta oscillations32,81,91, and respond to acoustically meaningless
sounds, as seen in GABAergic CA1 boutons receiving septal input92.
Pyramidal neurons, by contrast, exhibit burst firing with less phase
locking. While our study could not identify cell types, such functional
differences may underline the observed disparities between spiking and
LFP signals.

In conclusion, our findings suggest that hippocampal neurons are
involved in both prediction error signaling and predictive processes, oper-
ating as part of a distributed network that includes both cortical and sub-
cortical regions8. This supports the view that the hippocampus plays an
active role in predictive coding, consistent with hierarchical models of
predictive processing, in which the hippocampus, together with prefrontal
regions37, is positioned at a higher level (Fig. 8B) within the predictive
hierarchy.

Methods
Statistics and reproducibility
For all unit analyses, each recorded unit or multi-unit was treated as an
independent measurement, while for LFP analyses, each channel was
treated as an independent measurement. Animals themselves were not
treated as replicates for statistical testing; however, all experiments included
multiple animals, and sample sizes (n) for each analysis are reported toge-
therwith the number of animals contributing to those samples. Unit counts,
channel counts, and animal contributions were extracted directly from the
dataset acquired in 27 urethane-anesthetized rats. Across all experiments,
we obtained 824 units (138 single units, 686 multi-units), of which 177 (27
rats) met the criterion for auditory responsiveness. From these, 43 (9 rats)
neurons exhibited significant contextual modulation (CSI-significant)
under the oddball paradigm.

For LFP analyses, we included 268 channels across 9 probe insertions
in 3 animals, with subfield-specific analyses based on 3 CA1 channels, 2
tracts in 2 animals, and 13 DG channels, 6 tracts in 3 animals.

All offline analyses were performed using MATLAB with custom
analysis scripts. Statistical comparisons used standard parametric (two-
sample and paired t-tests, Welch’s t-tests for unequal variances, and one-
way ANOVA/ANCOVA) and non-parametric tests (Wilcoxon sign-rank
tests, Mann–Whitney U tests, and Kolmogorov–Smirnov tests for nor-
mality), selected according to distributional properties of the data.Multiple-
comparison correction was performed using Holm–Bonferroni procedures
(and Fisher’s combined probability when comparing PSTH time courses).
Significance threshold was set at α = 0.05 (two-sided). Confidence intervals
to 95%were also calculatedwhenapplicable. Effect sizes (Cliff’sδ,Hedges’g)
were reported for comparisons between CA1 and DG predictive coding
indices.

Auditory-responsive neurons were observed in every recorded animal,
demonstrating reproducibility across biological replicates. CSI-significant
units were found across multiple animals in both CA1 and DG. LFP mis-
match effects were reproducible across 9 multichannel recordings from 3
animals.Whenever results depended on smaller subsamples (e.g., CA1 LFP
channels), these limitations are acknowledged in the manuscript’s
Discussion.

Surgical procedures
We conducted experiments on 27 female Long-Evans rats, with body
weights ranging from 200 to 350 g. The rats were anesthetized using ure-
thane (1.9 g/kg, administered intraperitoneally). To maintain a stable level
of deep anesthesia, additional doses of urethane (~0.5 g/kg, intraper-
itoneally) were given if corneal or pedal reflexes were observed.We selected
urethane for its capacity to maintain balanced neural activity, offering a
moderate effect on both inhibitory and excitatory synapses93. Female rats
were used to ensure stable body weight, improving dosing accuracy and
physiological stability, and to maintain continuity with prior work; there-
fore, sex comparisons were not possible. Our aim was a general character-
ization of hippocampal predictive coding rather than a sex-comparative
analysis, and future studies should include male cohorts to assess potential
sex-specific effects.

We confirmed normal hearing via auditory brainstem responses
(ABR), which we recorded using subcutaneous needle electrodes connected
to an RZ6 Multi I/O Processor (Tucker-Davis Technologies, TDT) and
analyzed with BioSig software (TDT). Auditory stimuli consisted of 0.1 ms
clicks, presented at a rate of 21 per second, delivered to the right ear in 10 dB
increments, from 10 to 90 dB SPL, using a close-field speaker. We admi-
nistered 0.1 mg/kg atropine sulfate to the rats every 10 hours (sub-
cutaneous), 0.25mg/kg dexamethasone (intramuscular), and 5–10ml of
glucosaline solution (subcutaneous) to reduce bronchial secretions, brain
edema, and prevent dehydration, respectively. The animals were artificially
ventilated through a tracheal cannula with monitored expiratory [CO2]
levels and were positioned in a stereotaxic frame with hollow specula to
enable direct sound delivery to the ears. Body temperature was maintained
at approximately 37 °C using a homeothermic blanket system (Cibertec,
Spain). For surgical access, an incision was made along the scalp midline,
and the periosteum was retracted to expose bregma. We performed a cra-
niotomy above the left hippocampus, approximately 3 × 4.5 mm in size, and
the dura was carefully removed.

Data acquisition
We recorded unit and multiunit activity to look for evidence of predictive
coding signals under acoustic oddball stimulation in CA1 and DG, of the
urethane-anesthetized rat. We conducted experiments in an electrically
shielded and sound-attenuating chamber. Recording tractswere orthogonal
to the brain surface of the left hippocampus: ~4–6.3 mm rostral to bregma,
~2.5mm lateral to themidline and ~0.2–4.5mmdorsoventrally. Therefore,
we recorded in CA1 and DG, as shown in the histology picture shown in
Fig. 1B. We performed extracellular neurophysiological recordings using
both glass-coated tungsten microelectrodes (1.6–2.6 MΩ impedance at
1 kHz) and 32-channel Cambridge probes (H4). We used a piezoelectric
micromanipulator (Sensapex) to advance and measure the penetration
depth. We visualized the electrophysiological recordings of tungsten elec-
trodes online using custom software programmed with the OpenEx suite
(TDT) andMATLAB (MathWorks), and stored the data for offline analysis.
For multichannel recording, we used custom software programmed in
Synapse (TDT) andMATLAB. For tungsten electrodes, analog signals were
digitizedwith anRZ6Multi I/OProcessor, a RA16PAMedusa Preamplifier,
and a ZC16 headstage (TDT) at 97 kHz sampling rate and amplified 251x.
We applied a band-pass filter between 0.5 and 4.5 kHz to the neurophy-
siological signals using a second-order Butterworth filter. We digitized
multichannel recording signals using two RZ6Multi I/O Processors (TDT),
RA16PAMedusa Preamplifiers, a miniDBF adapter, ZC64 headstage cable,
and a ZCA-NN64 adapter connected to an H4 multichannel probe (Neu-
roTech, Cambridge, UK). Data were digitized at a sampling rate of 25 kHz
and band-pass filtered between 0.3 and 5 kHz using a second-order But-
terworth filter.

Sound stimulation and recording protocol
The sound stimuliwere generatedusing theRZ6Multi I/OProcessor (TDT)
and customsoftware programmedwithOpenExSuite or Synapse (TDT) for
multichannel recordings, as well as MATLAB. Sounds were presented
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monaurally in a close-field condition to the ear contralateral to the left
hippocampus, through a custom-made speaker. We calibrated the speaker
using a ¼-inch condenser microphone (model 4136, Brüel & Kjær) and a
dynamic signal analyzer (Photon+ , Brüel &Kjær) to ensure a flat response
up to73 ± 1 dBSPLbetween0.5 and44 kHz, and the secondand third signal
harmonics were at least 40 dB lower than the fundamental at the loudest
output level.

When using tungsten electrodes to search for evoked auditory
responses from the hippocampus (24 rats), we presented stochastic trains of
white noise bursts and sinusoidal pure tones of 75ms duration with 5ms
rise-fall ramps, varying presentation rate and intensity to avoid possible
stimulus-specific effects that could suppress evoked responses.

Once auditory responses were confirmed, we used only pure tones
(75ms duration, 5ms rise/fall ramps) for all experimental stimulation
protocols. All stimulation sequences ran at 1 stimulus per second. First, the
frequency response area (FRA) of the neuron was computed by randomly
presenting pure tones of various frequency and intensity combinations, that
ranged from 1 to 44 kHz (in 4–6 frequency steps/octave) and from 0 to 70
dBs (10 dB steps), with 1–4 repetitions per tone, similarly to our previous
studies in the auditory system41,94–96. However, as in our previous work on
the PFC63, we could not determine clear receptive fields in the FRAs of the
hippocampus, so we chose the frequencies and intensity for our test
sequences based on our observations during manual search, trying to
maximize the auditory-evoked response when possible.

For each unit, we selected 10 equally spaced tones to generate 3 no-
repetition sequences (i.e., the many-standards, cascade ascending, and
cascade descending), and pairs of consecutive frequencies (within those 10
tones) to generate oddball sequences. All sequences were 400-stimuli long,
and were presented always in the same order: cascade ascending, cascade
descending, many-standard, oddball ascending and oddball descending
(Fig. 1C), called ascending oddball since the deviant tone has a higher
frequency than the standard; and descending oddball, since the frequency
which was the standard in the ascending oddball (lower frequency) is now
the deviant tone, and the higher frequency is the standard. An oddball
sequence consisted of a repetitive tone (STD, 90% probability), occasionally
replaced by a different tone (DEV, 10% probability) in a pseudorandom
manner. The first 10 stimuli of the sequence set the STD, and aminimumof
3 STD tones always preceded each DEV. Oddball sequences were either
ascending or descending, depending onwhether theDEV tone had a higher
or lower frequency than the STD tone, respectively (Fig. 1C). In 8 rats, we
also presented the periodic variation of both oddballs at the end of all the
paradigms mentioned above. The periodic oddball consisted of groups of
9 standard tones followed by 1 deviant tone, repeated overtime as a frozen
token of stimuli, keeping the probability of appearance the same (Fig. 4B).

On the other hand, whenusingmultichannel probes (9 tracks in 3 rats)
the white noise searching and FRA protocols were omitted. We proceeded
directly to insert the electrode and record the activity as we presented the
auditory paradigms, with 20 seconds of silence between paradigms. All the
experiments performed with multichannel probes used pure tones at 70 dB
and set frequencies for the oddball (5280 Hz and 7470Hz) and controls,
which included those two frequencies and another 8 frequencies equally
spaced.

One limitation of the mismatch measurements obtained using the
oddball paradigm is that the effects of high-order processes like genuine
deviance detection or prediction error (PE) signaling cannot be dis-
tinguished from lower-order spectral-processing effects, such as SSA97,98, an
effect in which some neurons exhibit a lower response to the repetitive,
standard stimuli and a significantly higher response to the deviant sound.
The so-called ‘no-repetition’ controls allow for assessing the relative con-
tribution of both higher- and lower-order processes to the overall mismatch
response40. These controls of the auditory oddball paradigm are tone
sequences that must meet 3 criteria: (1) to feature the same tone of interest
with the same presentation probability as that of the DEV; (2) to induce an
equivalent state of refractoriness by presenting the same rate of stimulus
per second (which excludes the DEV alone from being considered a proper

CTR); and (3) present no recurrent repetition of any individual stimulus,
specially the tone of interest, thus ensuring that no SSA is induced during
the CTR99.

Hence, we can assess the portion of the mismatch response (DEV –
STD) that canbe attributed to the effectsof spectral repetitionyieldedduring
the STD train, such as SSA100,101, by comparing the auditory-evoked
responses to DEV and to CTR. When the auditory-evoked response is
similar or higher duringCTR than inDEV, then themismatch response can
be fully accounted for by repetition suppression, and no higher-order
process of deviance detection or PE signaling can be deduced (i.e.: DEV ≤
CTR; Fig. 1D).Otherwise, a stronger response toDEV than toCTRunveils a
component of the mismatch response that can only be explained by a
genuine process of deviance detection or PE signaling (i.e.: DEV >
CTR; Fig. 1D).

To distinguish frequency-specific effects from genuine deviance
detection or predictive processing, we used two no-repetition control
sequences for our oddball paradigms: the many-standards and cascaded
sequences (Fig. 1C). The many-standards sequence presents the tone of
interest within a randomized set of tones, each appearing with the same
probability as the deviant stimulus in the oddball paradigm102. In contrast,
the cascade sequence arranges tones in a structuredpattern, either ascending
or descending in frequency.While the stimulus of interest follows a regular
pattern, unlike the DEV, it does not rely on repetition-based regularity,
which is susceptible to SSA as seen with the standard stimulus.

Histological verification
At the end of the experiments performed using tungsten electrodes,
we induced electrolytic lesions through the recording electrode (10
μA, 10 seconds). Animals were afterwards euthanized with a lethal
dose of urethane, decapitated, and the brains immediately immersed
in a mixture of 4% formaldehyde in 0.1 M PB. After fixation, tissue
was cryoprotected in 30% sucrose and sectioned in the coronal plane
at 40-μm thickness on a freezing microtome. We stained slices with
0.1% cresyl violet to facilitate identification of cytoarchitectural
boundaries (Fig. 1B). We conducted a histological assessment of the
electrolytic lesions in the hippocampal subfields, processing the data
blindly to each animal’s history. We assigned multiunit and single-
unit locations to their corresponding areas using a rat brain atlas,
based on histological verification and the stereotaxic coordinates of
the recording tracts in all three axes103. For multichannel recordings,
we identified electrode-induced damage in the cortex through his-
tology, allowing us to approximate unit locations using stereotaxic
coordinates.

Data analysis
Offline data analyses were performed with MATLAB functions, the Sta-
tistics andMachine Learning toolbox, and custom-madeMATLAB scripts.
We first processed the tungsten electrode recordings using a principal
component analysis algorithm (PCA)104, obtainingmore isolated single and
multi-units that responded to sound from each recording. Computing
PSTHs with a bin size of 25ms, we measured unit responses to each tested
tone and condition (DEV, STD, and CTR). In the case of the STD, we used
the response to the STD right before a deviant tone, to have a comparable
number of trial repetitions. The corresponding control would be the
response to the deviant frequency used in the oddball sequence, but pre-
sented in the non-repetition sequences (e.g., Figs. 2–4: unit PSTHs, DEV/
STD averages).

Multichannel offline data analyseswere alsoperformedwithMATLAB
functions, the Statistics and Machine Learning toolbox, and custom-made
MATLAB scripts105. First, we spike-sorted the data using Kilosort4 in
Python106,107 and thenvisually curated it usingPhy, also inPython.After this,
all analyses ran in parallel to each other when comparing PCA and
Kilosort4-sorted units.

Wechose abaseline activitywindowof125ms,whichwas located from
100ms to 225ms after stimulus onset, 25ms before the analysis window
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(250 to 650ms). This window was chosen since it is the earliest post-onset
interval that showed low amplitude, a mostly flat response with no
DEV–STD significant differences. Although baselines are typically pre-sti-
mulus, in our data, the pre-onset periodwas not ideal. Responseswere long-
latency and sustained, increasing the risk that slow (very long latency)
activity would leak into a pre-stimulus baseline. We defined auditory-
responsive neurons as those units exhibiting amean activity plus 2 standard
deviations higher than the mean activity in the baseline activity window
(e.g., Fig. 3A). To analyze the auditory-responsive pool we excluded CSI-
significant units (e.g., Fig. 5).

The time of the peak response in the PSTH was determined using the
bin center where the maximum peak was found, while the latency of each
response was determined by the first peak to be above 1 standard deviation
plus the mean of the baseline activity, after the baseline activity window. In
addition to peak latency, we estimated the onset latency using a 50-ms
moving window applied to PSTHs (25-ms bins). For each unit and condi-
tion (DEV, STD, andDEV-STD).Onset latencywas defined as thefirst time
point at which the 50-ms window of spike counts exceeded half of the
maximumresponse, after baseline subtractionacross the entirewindow; this
criterion minimizes false onset latency estimation due to spontaneous
activity. Onset latency was computed separately for CA1 and DG units and
summarized as mean ± SEM. Group differences were assessed using
Welch’s t-tests (unequal variances) andMann–WhitneyU tests (e.g., Fig. 3:
latency comparisons).

To compare the differences between the responses to the periodic and
random oddball paradigms, only the multichannel recording data were
used.A t-testwith aHolm-Bonferroni correction, for a falsediscovery rate of
0.1, was used to compare the random and periodic responses, and to
compare the normalized spike counts among each other (e.g., Fig. 4D, E).
For the significant difference window comparison in Fig. 4D, we quantified
spike counts in the 25 to 50mswindow relative toDEVonset (Fig. 4C). The
bar charts in Fig. 4E used the standard analysis window.

To compare across different units, we normalized the auditory-evoked
responses to each tone of interest in 3 testing conditions as follows:

Normalized DEV ¼ DEV=N

Normalized STD ¼ STD=N

Normalized CTR ¼ CTR=N

where

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DEV2 þ STD2 þ CTR2
p

is the Euclidean norm of the vector defined by the DEV, STD, and CTR
responses. Thereby, normalized responses are the coordinates of a 3D unit
vector defined by the normalized DEV, normalized STD, and normalized
CTR responses that range between 0 and 1. This normalized vector has an
identical direction to the original vector defined by thenon-normalized data
and equal proportions among the three response measurements (e.g.,
Figs. 3–4A: normalized PSTHs, Fig. 4C–E: normalized PSTHs, normalized
counts, Fig. 5: SI/CSI/iMM/iPE/iRS are obtained from normalized data,
Fig. 6A–C:normalized amplitudes in bar graphs,which afterwards is used to
calculate iMM/iPE/iRS (Fig. 6D) and Fig. 8: Normalized spike counts and
indices). To enable direct comparison between randomandperiodic evoked
responses, all panels in Fig. 4 were normalized using the normalization
factor from the random oddball condition.

In order to quantify and compare SSA levels betweenCA1 andDG,we
computed the frequency-specific SSA index for each stimulus, SI(f1) and

SI(f2), and the CSI for every recording site, in the usual way100,108:

SI f i
� � ¼ DEV f i

� �� STD f i
� �

DEV f i
� �þ STD f i

� � ; i ¼ 1; 2

CSI f i
� � ¼

P

DEV f i
� ��P

STD f i
� �

P

DEV f i
� �þP

STD f i
� � ; i ¼ 1; 2

WhereDEV f i
� �

, STD f i
� �

are spike counts in response to frequency fi when
it was a deviant and standard, respectively. The CSI was calculated only for
recordings with significant auditory responses to at least one frequency in
the oddball paradigm (either as deviant or as standard, Fig. 5A). To deter-
mine if a unit was CSI-significant, we assessed whether its CSI value was
statistically significant. We did this by calculating 1000 CSI values using
bootstrapping and checking whether the range of generated CSI values
remained consistently positive or negative. If the range retained the same
signas theoriginalCSI value, theunit’sCSI indexwas considered significant,
identifying it as a CSI-significant neuron (Fig. 1G: red LFP traces, Fig. 2: All
examples are CSI significant, Figs. 3B–F, 4, 5: darker colors are CSI-
significant units, Fig. 7 only shows CSI-significant spikes, as well as the
hippocampus data in Fig. 8).

To quantify and facilitate the interpretation of the oddball paradigm
controls, we calculated the indices of neuronal mismatch (iMM, computing
the overall mismatch response), repetition suppression (iRS, accounting for
lower-order frequency-specific effects), and prediction error (iPE, unveiling
higher-order deviance detection or PE signaling activity) with the nor-
malized spike counts as:

iMM ¼ Normalized DEV � Normalized STD

iRS ¼ Normalized CTR� Normalized STD

iPE ¼ Normalized DEV � Normalized CTR

Index values ranged between -1 and 1, where

iMM ¼ iRS� iPE

This was used in Fig. 5B (unit indices), Fig. 6D (LFP indices), and
Fig. 8B (cross-area indices).

For the LFP signal analysis, only themultichannel recording data were
used.We filtered the raw recording using a 4th-order Butterworth bandpass
filter that allows frequencies between 0.1 Hz and 30 Hz109. Then we aligned
the recorded wave to the onset of the stimulus for every trial, and computed
the mean LFP for every recording site and stimulus condition (DEV, STD,
CTR; e.g., Fig. 1G-H: LFP traces and time-amplitude plot, Fig. 6A and first
panel of Fig. 6D, where only channels with an amplitude above −0.07mV
were included). Finally, grand-averages were computed for all conditions,
for CA1 and DG, taking into account only channels where neurons with a
significant CSI index were recorded (e.g., Fig. 6B–D: CA1 and DG analysis,
and Fig. 6E: periodic vs random LFP). The analysis window to calculate the
amplitudes and indices in the LFP was also from 250ms to 650ms.

Our data set was normally distributed, which we verified using the
Kolmogorov-Smirnov test, therefore, we were able to mostly use a t-tests
throughout the study with a Holm-Bonferroni to control the family-wise
error rate at α = 0.05, for most of our analysis (spike counts, normalized
responses, indices, and response latencies; e.g., Fig. 3A–D, Figs. 4, 5,
Fig. 6A–C). The only exceptionwas the comparison betweenDEVand STD
responses in CA1 and DG, where we used a t-test in combination with
Fisher’s correction for combined probability across multiple comparisons
(e.g., Fig. 3E, F). As well as to check for significance of our median values in
Fig. 5, whereweused a two-sided sign test. Given the small andunequal LFP
samples (CA1 = 3; DG = 13), we compared CA1 vs DG indices (iMM, iPE,
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iRS) using two-sided Mann–Whitney U tests, with Holm–Bonferroni cor-
rection across indices (α = 0.05). As a sensitivity analysis, we also ran
Welch’s t-tests (Holm-adjusted). We summarize medians/interquartile
ranges (IQRs) and report Cliff’s δ and Hedges’ g to convey effect size and
direction. Results are interpreted cautiously due to the imbalanced
CA1 sample.

To analyze the responses over time of the auditory-evoked responses,
wemeasured theDEV, STD, andCTR responses as average spike counts for
every trial number within the sequence, for all recorded units exhibiting
significant CSI (n = 20; 9 tracks in 3 animals). Since we only analyzed
multichannel units, sequences and frequencies remained consistent across
recordings63. We included all the standard tones, not just the last standard
before a deviant event as previously, as well as the responses to all the
frequencies in the control paradigms (Fig. 7A-E).We applied a simple linear
regressionmodel inMATLAB (f(x) = β0+ β1x+ ε) (Fig. 7F). To look at the
differences between the linear regression fits, we constructed a comparison
matrix, which displays the significance of pairwise paradigm comparisons
for estimated intercepts (β₀, left) and slopes (β₁, right), a t-test with Holm-
Bonferroni correction was used. To determine whether a linear model
outperformed a constant model, we performed an ANCOVA (Fig. 7G, H).

We also used a Wilcoxon signed-rank test to compare the
responses elicited by the MSC and CASC conditions; for this, we
calculated the average firing rates for the controls for each trial in the
sequence. To ensure consistency, we grouped the trials into sets of 10
and calculated the mean spike count for each group, resulting in 40
measurements for each control condition. We then computed the
difference in spike counts between them for these 40 values and
tested for statistical significance.

Ethics statement
All methodological procedures were approved by the Bioethics Committee
for Animal Care of the University of Salamanca (USAL-ID-574) and per-
formed in compliance with the standards of the European Convention ETS
123, the European Union Directive 2010/63/EU, and the Spanish Royal
Decree 53/2013 for the use of animals in scientific research.

The methods, encompassing surgical procedures, electrophysiological
recordings, stimulus design, andpreprocessing steps up to but not including
the statistical analyses, are based on and largely consistent with those
described in Parras et al. (2017) and Casado-Román et al. (2020).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The source data to create all the figures presented in the manuscript can be
found in the Supplementary Data file. Raw data can be requested from the
corresponding author.

Code availability
Custom-written analysis scripts are shared at https://github.com/Canelab-
USAL/Neuronal-Mismatch-Responses_to_Auditory_Stimuli_in_the_
Dorsal_Hippocampus_of_Anesthetized_Rats or https://doi.org/10.5281/
zenodo.17789144110.
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