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Abstract

The soil microbiome plays a vital role in maintaining soil nutrient levels and ecological stoichiometry balance.
However, the relationships between rhizosphere microbiomes and soil ecological stoichiometric characteristics,
including organic carbon (SC), total nitrogen (SN), total phosphorus (SP), and their ratios, remain poorly
understood. Here, we used a temperate mountain ecosystem as a natural laboratory along a ~2190 m elevational
gradient spanning a desert steppe-alpine meadow transition. We investigated rhizosphere microbiomes from 20
dominant plant populations across 17 sites by integrating environmental factors, microbial community structure,
functional genes, microbial biomass, and ectorhizosphere soil stoichiometric characteristics. Ectorhizosphere
soil stoichiometric characteristics were significantly associated with microbial biomass stoichiometric
characteristics, rhizosphere community composition, and C-, N-, and P-cycling genes, with functional genes
emerging as the strongest predictors. Structural equation modeling further identified the composition and
diversity of functional genes as key drivers of soil stoichiometric characteristics. Geographic and edaphic factors
exerted primarily direct effects, whereas climatic influences were indirect and mediated through the rhizosphere
microbiome. These findings highlight the rhizosphere microbiome as a critical biological filter linking climate
to soil nutrient stoichiometry at the root-soil interface.
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Introduction

Soil is the foundational material underpinning all terrestrial life, governing material cycling and energy flow,
and thereby directly determining the stability and sustainability of terrestrial ecosystems '. However, over the
past few decades, environmental pressures from climate change and anthropogenic disturbances have intensified.
These forces have triggered a systemic soil ecological crisis, characterized by deteriorated physical structure,
degraded chemical properties, reduced biological activity, and loss of ecological function 3. This degradation
cascade has far-reaching consequences for plant productivity, biodiversity, and the efficiency of the
biogeochemical cycle * #. Hence, understanding the content dynamics, cycling processes, and maintenance
mechanisms of key soil elements, such as carbon (C), nitrogen (N), and phosphorus (P), has become a research
priority. However, most studies focus on single elements in isolation, ignoring their dynamic coupling, which
restricts our understanding of synergistic multiclement Soil responses to environmental change. Ecological
stoichiometry offers a powerful solution by providing a core theoretical framework for analyzing relationships
and coupled cycling among C, N, and P. Its strength also lies in its ability to connect ecological scales °, laying
a vital foundation for exploring soil ecological processes spanning aboveground to belowground domains and
macro- to microdomains.

Extensive research has demonstrated that soil microbiomes participate in critical ecological processes, such as
soil C sequestration, N mineralization, and P solubilization, and play key regulatory roles in maintaining soil
nutrient levels and ecological stoichiometry balance. Microbiomes drive soil ecological stoichiometric
characteristics through intrinsic mechanisms modulated by shifts in microbial composition (e.g., core microbiota)
6 community structure (e.g., fungi-to-bacteria ratio) ’, biodiversity (e.g., taxonomic and functional diversity) ®,

metabolic rates (e.g., C- and N-hydrolase production and carbon use efficiency) * 1°

, and intergroup interactions
1, However, while recent research has extensively explored linkages between soil ecological stoichiometric
characteristics and microbiomes in bulk soils, studies targeting the root-soil interface remain relatively scarce,
particularly those integrating coordinated observations of rhizosphere microbial community structure, function,
and biomass. This gap is notable given that the rhizosphere serves as a biogeochemically active interface
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governing soil nutrient cycling and bioavailability ' and exerts disproportionate control over terrestrial

elemental fluxes and stoichiometric equilibrium, especially as microbiomes exhibit high environmental



sensitivity ' . For instance, climate warming can directly or indirectly alter soil microbial community
composition and functional traits, consequently increasing rates of C and N cycling processes '°. Similarly,
recurrent drought not only imposes legacy effects on soil microbial biomass stoichiometric characteristics and
community assembly but also alters microbe-soil multifunctionality relationships '°. Understanding how
environment-driven perturbations of the rhizosphere microbiome influence soil ecological stoichiometric
characteristics across environmental gradients has thus become a central research focus, particularly given the
large discrepancies reported across spatiotemporal scales and ecosystems. However, linkages between
rhizosphere microbiomes and ectorhizosphere soil ecological stoichiometric characteristics under complex
environmental interactions remain poorly resolved, limiting mechanistic understanding and constraining
predictions of soil responses to climate change.

To develop a more integrated understanding and address the limitations of single-factor studies, we conducted
this study along an elevational gradient (~2190 m) in the Helan Mountains, a temperate arid and semi-arid region.
This mountain ecosystem functions as a natural laboratory, capturing pronounced shifts in geographic, climatic,
and edaphic conditions across a desert steppe-alpine meadow transition. At 17 sites distributed along this gradient
(Supplementary Fig. 1, Supplementary Table 1), we performed extensive measurements of geography, climate,
dominant plant structure, litter, edaphic factors, and microbial attributes. Specifically, from 20 dominant plant
populations, we collected 169 paired rhizosphere and ectorhizosphere soil samples. We quantified the ecological
stoichiometric characteristics of both the ectorhizosphere soil and its microbial biomass, characterized microbial
communities in all rhizosphere samples using absolute-quantification amplicon sequencing, and further
examined functional genes in a representative subset of 97 samples through metagenomic sequencing. This
comprehensive dataset offers a valuable opportunity to holistically evaluate the associations between the
rhizosphere microbiome and ectorhizosphere soil ecological stoichiometric characteristics under complex
environmental interactions. Accordingly, our study was designed to address the following two core questions:
(1) To what degree are ectorhizosphere soil ecological stoichiometric characteristics associated with the
rhizosphere microbiome? Specifically, what is the relative contribution of structural, functional, and biomass
attributes of the rhizosphere microbiome in explaining variation in ectorhizosphere soil ecological stoichiometric

characteristics? (2) What role does the rhizosphere microbiome play in shaping the associations between



ectorhizosphere soil ecological stoichiometric characteristics and environmental factors? We propose the
following hypotheses to address these questions. (1) Ectorhizosphere soil ecological stoichiometric
characteristics and the rhizosphere microbiome are closely correlated. Given the importance of functional
microbiomes in regulating soil nutrient cycles via gene-encoded enzymatic processes ! 1%, the composition and
diversity of rhizosphere microbial C-, N-, and P-cycling genes (CCGs, NCGs, and PCGs, respectively) are key
predictors of ectorhizosphere soil stoichiometric characteristics. (2) Owing to its inherent environmental
sensitivity !°, the rhizosphere microbiome acts as a critical pathway linking environmental factors with
ectorhizosphere soil ecological stoichiometric characteristics.

Results

Ectorhizosphere soil ecological stoichiometric characteristics

The ectorhizosphere soil ecological stoichiometric characteristics varied markedly across the 20 dominant plant
populations (Supplementary Table 2). The contents of both SC and SN were consistently associated with
elevation, mean annual temperature (MAT), mean annual precipitation (MAP), and SM (Supplementary Fig. 2);
for example, both declined with increasing MAT. The ectorhizosphere soil ecological stoichiometric ratios
generally showed consistent associations with multiple environmental factors, including positive correlations
with MAP and SM (Supplementary Fig. 3). Partial Mantel tests using the Spearman correlation method revealed
that ectorhizosphere soil ecological stoichiometric characteristics were significantly correlated with those of
litter (»=0.12, P =0.001) and ectorhizosphere soil microbial biomass (» = 0.09, P =0.011), respectively.
Rhizosphere microbial taxonomic diversity and community composition

Shannon diversity and community composition differed significantly across the 20 dominant plant populations
for both rhizosphere bacteria and fungi (Fig. 1). The highest bacterial Shannon diversity index was detected in
Agropyron cristatum (2,596 m), whereas fungal diversity peaked in Ephedra rhytidosperma (1,464 m) (Fig. 1a,
¢). Compared with bacterial Shannon diversity, fungal Shannon diversity displayed stronger non-linear
relationships with elevation, climatic, and edaphic factors, for which piecewise fitting identified clear change
points (Supplementary Fig. 4). The relationship between MAT and fungal Shannon diversity became positive
when MAT exceeded 3.6 °C (Supplementary Fig. 4g). Significant differences were detected in both bacterial (R?

=0.53, P=0.001) and fungal communities (R? = 0.35, P = 0.001) across the 20 dominant plant populations, as



indicated by the permutational multivariate analysis of variance (PERMANOVA) test (Fig. 1b, d). As shown by
principal coordinate analysis (PCoA), rhizosphere bacterial and fungal communities associated with dominant
plants in desert steppes, shallow mountain shrublands, and broad-leaved forests exhibited clear compositional
separation from those linked to other vegetation types. Variation in microbial community composition was
primarily explained by plant species identity rather than environmental factors (Supplementary Table 3). Six
bacterial phyla—Acidobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, and
Chloroflexi—dominated all rhizosphere soils, collectively accounting for more than 80% of total bacterial
abundance (Supplementary Fig. 5a, b). Basidiomycota and Ascomycota were the predominant fungal phyla,
comprising 27.96-99.74% of total fungal abundance (Supplementary Fig. 5c, d). The highest absolute abundance
of rhizosphere bacteria and fungi was observed in Caragana jubata at 3,537 m.

Rhizosphere microbial C-, N-, and P-cycling gene diversity and functional composition

We identified 2,042 CCGs, 60 NCGs, and 123 PCGs associated with key processes, including fixation,
mineralization, solubilization, and transformation. The Shannon diversity of rhizosphere CCGs, NCGs, and
PCGs varied significantly across the 20 dominant plant populations (Fig. 2). Picea crassifolia at 2,939 m
exhibited the highest Shannon diversity for both rhizosphere CCGs and PCGs, whereas NCG diversity was
highest in C. jubata (Fig. 2a, c, ¢). The Shannon diversity of CCGs, NCGs, and PCGs decreased with increasing
MAT (Supplementary Fig. 6b, g, 1) but increased with increasing MAP (Supplementary Fig. 6¢, h, m). Across
dominant plant populations, PCoA revealed significant differences in the composition of CCGs (R? = 0.84, P =
0.001), NCGs (R? = 0.85, P = 0.001), and PCGs (R? = 0.85, P = 0.001) (Fig. 2b, d, f). Variation in functional
gene composition was primarily explained by plant species identity (Supplementary Table 4). The highest
abundance of functional genes occurred in Dasiphora parvifolia (2,596 m), whereas the lowest abundance was
observed in P, crassifolia (2,939 m) (Supplementary Fig. 7a). Within each functional gene category, the dominant
pathways were organic degradation (~37.45%) for CCGs, organic degradation and synthesis (~81.61%) for
NCGs, and purine metabolism (~41.96%) for PCGs (Supplementary Fig. 7b). Cluster analysis of differentially
abundant genes (DAGs) in rhizosphere soils across dominant plant populations is presented in Supplementary
Fig. 8.

Relationships between the rhizosphere microbiome and ecological stoichiometric characteristics



The partial Mantel test was used to examine relationships between the ecological stoichiometric characteristics
of litter, ectorhizosphere soil, and ectorhizosphere microbial biomass, and both the rhizosphere microbial
community and functional genes (Fig. 3). Bacterial and fungal Shannon diversity were significantly correlated
with the litter total carbon to total nitrogen ratio (LC:LN) and microbial biomass carbon (MBC), respectively (P
=0.006; P =0.01; Fig. 3a). The Shannon diversity of CCGs, NCGs, and PCGs was significantly correlated with
the microbial biomass nitrogen to phosphorus ratio (MBN:MBP) (P = 0.004; P =0.048; P =0.005; Fig. 3b). The
compositions of bacterial and fungal communities, as well as those of CCGs and NCGs, were significantly
correlated with SC, SN, and SP contents and their ecological stoichiometric ratios (all P < 0.05). In addition,
NCG Shannon diversity was significantly correlated with litter total phosphorus (LP), litter total carbon to total
phosphorus ratio (LC:LP), and microbial biomass nitrogen (MBN) (P = 0.007; P = 0.008; P = 0.009; Fig. 3b).
Significant correlations were also observed between dominant microbial phyla and multiple C-, N-, and P-
cycling gene pathways and the ecological stoichiometric characteristics of litter, ectorhizosphere soil, and
ectorhizosphere microbial biomass (Supplementary Fig. 9). These relationships differed among dominant
bacterial and fungal phyla and varied with the abundance of CCGs, NCGs, and PCGs associated with different
pathways.

Predictors of ectorhizosphere soil ecological stoichiometric characteristics

Detailed assessment of separate linear mixed-effects models (LMMs) for SC, SN, and SP contents and their
ecological stoichiometric ratios showed that geography, climate, dominant plant structural characteristics, litter,
edaphic factors, and the microbiome jointly explained the variance in these soil variables well (Ry” ranging from
0.32 to 0.82 and 0.82, R.’ ranging from 0.65 to 0.91; Fig. 4). Hierarchical partitioning (HP) analysis indicated
that edaphic factors and the composition and diversity of rthizosphere microbial C-, N-, and P-cycling genes were
the dominant predictors of SN, SC:SP, and SN:SP (Fig. 4b, e, f), together accounting for more than 89.0% of the
explained variance. In contrast, rhizosphere bacterial community structure was the dominant predictor of SC
(Fig. 4a), while microbial biomass ecological stoichiometric characteristics showed the greatest explanatory
power for SP (Fig. 4c). Geographic factors explained the largest proportion of variance in SC:SN (Fig. 4d).

A more detailed examination of model coefficients further clarified these relationships. The predictive effects of

edaphic factors on SN, SC:SP, and SN:SP were largely driven by SM (P = 1.62e-06; P = 1.44e-05; P = 2.82¢-



06), whereas the geographic influence on SC:SN was mainly explained by dbMEM2 (P = 0.021). Several
microbial attributes also emerged as significant predictors. For functional genes, the first principal coordinate
(PCoA1) of PCGs was the most important predictor of SC, SP, and SN:SP (P = 0.001; P = 0.029; P = 0.004),
and the Shannon diversity of NCGs positively predicted SC and SN (P = 0.022; P = 3.26e-05). For microbial
biomass, the first principal component (PC1) of ecological stoichiometric characteristics significantly predicted
SP, SC:SP, and SN:SP (P =0.001; P = 0.004; P = 0.003), and the second component (PC2) also predicted SC,
SP, and SN:SP (P =0.014; P=0.002; P =0.032). In terms of community structure, bacterial community PCoA1
was a significant predictor of SC (P = 3.26e-07), whereas fungal community PCoA1 predicted the SC:SN ratio
(P =0.030).

Linkages between environmental factors, microbial attributes, and ectorhizosphere soil stoichiometric
characteristics

We further examined the complex direct and indirect pathways linking environmental factors to ectorhizosphere
soil ecological stoichiometric characteristics through multiple microbiome attributes using a piecewise structural
equation model (piecewiseSEM) (Fig. 5). Collectively, geographic, climatic, dominant plant structural, litter,
edaphic, and microbial factors explained 85.0%, 80.0%, 33.0%, 30.0%, 71.0%, and 71.0% of the variance in SC,
SN, SP, SC:SN, SC:SP, and SN:SP, respectively. A key finding was the central role of rhizosphere microbial
functional genes. Across all models, significant direct positive paths were detected from the composition and
diversity of C-, N-, and P-cycling genes to SC, SN, and SP, as well as to their ecological stoichiometric ratios.
In addition, functional genes emerged as a key mediator, statistically linking multiple environmental factors with
ectorhizosphere soil ecological stoichiometric characteristics. For example, geographic factors and dominant
plant structural characteristics influenced SC, SC:SP, and SN:SP through a cascade involving edaphic factors,
microbial community structure, and ultimately functional genes (Fig. 5a, e, f). Similarly, significant indirect
pathways from climatic factors to SC, SN, SC:SP, and SN:SP were identified, sequentially mediated through
microbial community structure and the composition and diversity of C-, N-, and P-cycling genes (Fig. 5a, b, e,
f). Direct associations with ectorhizosphere soil ecological stoichiometric characteristics were also observed for
geographic and edaphic factors. Specifically, geographic factors showed direct associations with SP and SC:SN

(Fig. 5c, d), whereas edaphic factors were directly associated with SN, SC:SP, and SN:SP (Fig. 5b, e, f). In



contrast, climatic factors showed no significant direct associations with any of the measured soil ecological
stoichiometric characteristics. Dominant plant structural characteristics and ectorhizosphere soil microbial
biomass ecological stoichiometric characteristics also exhibited direct positive associations with SP and SC:SP
(Fig. 5¢, e), while litter ecological stoichiometric characteristics were similarly associated with SC:SP and SN:SP
(Fig. 5e, 1).

Discussion

Our study demonstrated differential associations between ectorhizosphere soil ecological stoichiometric
characteristics and environmental factors. MAT showed a strong negative correlation with both SC and SN
(Supplementary Fig. 2b, g). This pattern suggests that warming may exacerbate losses of these elements, a risk
that is particularly pronounced in low-elevation regions where low plant productivity and limited litter input
already constrain soil fertility 2°. The underlying mechanism likely involves temperature-stimulated soil
microbial activity, which accelerates C decomposition and net N mineralization, thereby directly driving C and
N losses from the soil system !. In contrast to MAT, both MAP and SM were positively correlated with SC and
SN (Supplementary Fig. 2c, d, h, and i). This indicates that increased moisture may trigger a cascade of
ecological processes: enhanced plant growth and associated litter input, stimulated microbial turnover, and,
collectively, greater sequestration of C and N in soil. By comparison, SP generally remained stable despite
increases in MAT, MAP, and SM (Supplementary Fig. 21-n), because this element reflects a long-term legacy of
interactions between climatic and biotic processes acting on soil parent material (soil-forming bedrock or
sediments) 22. In addition, the resistance of SP to environmental fluctuations can be attributed to its strong
association with soil mineral particles, such as clay minerals and iron and aluminium oxides, which chemically
bind and protect it from loss 2. Our results indicate that ectorhizosphere soil ecological stoichiometric ratios
exhibit non-linear relationships with climatic and edaphic factors, with pronounced shifts often occurring beyond
specific critical breakpoints (Supplementary Fig. 3). A clear example is the SN:SP ratio, an indicator of nutrient
limitation, which showed a significant decline above a MAT of 1.95 °C (Supplementary Fig. 31). This decrease
in SN:SP was linked to the suppression of SN levels under elevated temperatures.

It is well established that soil microbiomes can modify soil element dynamics and availability through multiple

biochemical and biophysical mechanisms, which in turn shape microbial community assembly *. Consistent



with this view, our partial Mantel analyses provide direct evidence of strong associations between
ectorhizosphere soil ecological stoichiometric characteristics and both the composition of rhizosphere bacterial
and fungal communities and functional genes (Fig. 3). These results support the first part of our first hypothesis.
This association is grounded in the fact that ecological stoichiometric ratios reflect the availability and
proportional balance of key elements, to which microbial community composition, growth, and metabolism are
closely linked. For example, our data indicate that oligotrophic K-strategists, such as Acidobacteria, candidate
division WPS-1, and Chloroflexi, were enriched in the relatively nutrient-poor rhizosphere of dominant species
in desert steppes and shallow mountain shrubs, a pattern consistent with their adaptation to resource-limited
environments (Supplementary Fig. 5) 2. At the same time, these K-strategists exhibit high resource-use
efficiency, enabling them to actively promote efficient soil element cycling and thereby stabilize soil ecological
stoichiometry balance under nutrient-limited conditions. In addition, at high elevations characterized by high
SC:SN, rhizosphere microbiomes displayed higher abundances of C degradation and N fixation genes,
suggesting a microbial potential to rapidly transform C and N pools, which may contribute to the regulation of
soil ecological stoichiometric characteristics (Supplementary Fig. 8a, b) ?. Furthermore, high SN:SP coincided
with elevated abundances of genes related to organic P mineralization, inorganic P solubilization, P uptake and
transport, and the P-starvation response (Supplementary Fig. 8c) %7, indicating a functional profile associated
with greater soil P availability. Taken together, these findings suggest that the rhizosphere microbiome is not
simply a passive responder but an active regulator of soil ecological stoichiometric characteristics. These
observations emphasize the importance of microbial-stoichiometric interactions in shaping element cycling
within the ecosystem.

Supporting the latter part of our first hypothesis, rhizosphere microbial functional genes emerged as key
predictors of ectorhizosphere soil ecological stoichiometric characteristics (Fig. 4). This outcome reflects the
fact that the specific composition and diversity of C-, N-, and P-cycling genes directly determine the microbial
community’s potential to synthesize essential extracellular enzymes (e.g., phosphatases and proteases) and
transport proteins. When expressed, this genetic potential governs fundamental soil ecosystem processes such as
organic matter decomposition and nutrient mineralization or immobilization, which ultimately shape soil

ecological stoichiometric characteristics. Notably, the robustness of this predictive relationship is further



reinforced by functional redundancy within microbial communities, which helps maintain the stability of core
element cycling processes under environmental fluctuations 2. In addition, rhizosphere bacterial community
structure explained most of the variance in SC (Fig. 4a). This predictive capacity arises from the dual role of
rhizosphere bacteria as both regulators and contributors to soil organic matter (SOM). On one hand, their intrinsic
traits, including close metabolic coupling with plant roots 2%, together with high reproductive rates and rapid
metabolic turnover *!, allow bacteria to exert strong control over SC. On the other hand, their fast life cycles
generate substantial necromass, which constitutes a direct input to the SC pool *2. Moreover, the results also
reveal a strong association between microbial biomass ecological stoichiometric characteristics and SP (Fig. 4c).
This relationship is reflected not only by the fact that microbial biomass represents a major component of the
soil organic phosphorus pool, but more importantly by the tight coupling of MBC:MBP with the balance between
P mineralization and immobilization, a process that is fundamental to soil P availability 3.

The relative importance of geographic, climatic, and edaphic factors varied among different ectorhizosphere soil
ecological stoichiometric characteristics. Geographic factors were the most important predictors of SP and
SC:SN (Fig. 4c, d). On one hand, parent material acts as the primary initial source of SP, and geographic location
directly determines the type of parent material present. On the other hand, geographic factors strongly influence
vegetation distribution. Plant communities, in turn, regulate SP through uptake-return cycles *, which also
explains why litter ecological stoichiometric characteristics emerged as key predictors of SP. The SC:SN ratio
serves as an important indicator of the degree of SOM degradation and transformation. Geographic features such
as slope and aspect influence SC:SN by controlling both the physical redistribution and biological decomposition
of organic matter. Steeper slopes promote erosion, which selectively removes C-rich material and reduces SC:SN.
At the same time, aspect-driven differences in solar radiation generate distinct microclimatic conditions,
particularly in soil temperature and moisture. These conditions regulate microbial decomposition rates, thereby
altering SC:SN through differential effects on C and N mineralization *. Edaphic factors, especially SM rather
than pH, showed the closest associations with SN, SC:SP, and SN:SP (Fig. 4b, e, f). This pattern may partly
reflect the limiting role of water availability in arid and semi-arid regions, as Li et al. (2023) *° reported that
water scarcity shapes microbiome-mediated P cycling in arid deserts. In contrast to findings from a large-scale

(4300 km) study conducted across China’s ecologically fragile regions, we observed minimal direct associations



between climatic factors and ectorhizosphere soil stoichiometric characteristics (Fig. 4). Instead, our results are
consistent with those of He et al. (2023) *°. A likely explanation is that climate primarily influences soil
stoichiometric characteristics indirectly, through pathways mediated by the microbial community (Fig. 5).
Consistent with our second hypothesis, the rhizosphere microbiome represents a key component of the pathway
linking environmental factors to ectorhizosphere soil ecological stoichiometric characteristics (Fig. 5). This role
appears to be supported by the composition and diversity of C-, N-, and P-cycling genes, which show strong
associations with rhizosphere microbial community structure. This linkage can be interpreted through three
interconnected aspects. First, at the foundational level, community composition determines functional potential.
The rhizosphere effect enhances microbial diversity ¥, promoting a more complex community structure. Such
diversity inherently includes specialized taxa (e.g., decomposers, diazotrophs, and phosphate-solubilizing
bacteria) *® that expand the pool of functional genes critical for nutrient cycling *°. Second, at the mechanistic
level, community interactions dynamically regulate gene expression. Beyond simple gene presence,
microbiomes influence functional gene composition and expression through complex networks of
commensalism, competition, and predation, as well as through environmental adaptation *°. For example, under
low-P conditions, these interactions may enhance the expression of specific P-starvation-responsive genes !,
thereby influencing element cycling rates and soil stoichiometric characteristics. Third, at the ecosystem level,
microbiomes coordinate coupled biogeochemical cycles. The C, N, and P cycles are inherently linked; C
metabolism supports N and P acquisition *?, while N and P availability constrain C decomposition rates 4. It is
the microbial community, via its diverse functional gene repertoire, that regulates these synergistic and
antagonistic relationships, ultimately shaping integrated soil ecological stoichiometric characteristics. In
addition, ectorhizosphere soil microbial biomass ecological stoichiometric characteristics were significantly and
directly associated with SP and SC:SP (Fig. 5c, e). These results suggest that microbial biomass may influence
P dynamics, potentially through physiological processes such as P assimilation during growth and P release
following cellular decomposition. Together, these microbial attributes support a conceptual pathway from the
rhizosphere microbiome to soil ecological stoichiometric characteristics, integrating both genetic potential and
material availability.

Our analysis indicates the absence of a significant direct pathway from climatic factors to ectorhizosphere soil



ecological stoichiometric characteristics. Instead, the entire effect is transmitted indirectly through climate-
driven modulation of the rhizosphere microbiome (Fig. 5). This indirect pathway highlights the functional
importance of the rhizosphere microbiome as a biological intermediary at the root-soil interface, mediating the
influence of abiotic factors such as climate. Such an indirect mechanism is reasonable, given that climatic
physical signals must be translated into biogeochemical processes by microorganisms. This climate-driven
microbial response has been widely documented. For instance, warming accelerates microbial heterotrophic
respiration, promoting SOM decomposition and increasing N and P availability ** 44, Likewise, precipitation

regulates soil moisture, which in turn stimulates microbial metabolic activity and affects aggregate formation 2*

47.48 ultimately influencing soil ecological stoichiometric characteristics. This microbial regulation, however, is
not absolute; under drought conditions, restricted microbial dispersal can weaken their capacity to regulate soil
ecological stoichiometric characteristics *°. In contrast to the indirect, microbially mediated influence of climate,
geographic factors appear to show a more direct, though complex, relationship with ectorhizosphere soil
ecological stoichiometric characteristics. This direct association may arise from geography’s role in establishing
baseline edaphic conditions that subsequently shape rhizosphere microbial community structure and functional
gene composition, either directly or through modulation of key variables such as SM and pH, or from purely
physical links to soil stoichiometric properties themselves. As a result, the observed pattern of ectorhizosphere
soil ecological stoichiometric characteristics reflects the combined influence of multiple interacting pathways.

By using inherent environmental gradients within a mountain ecosystem as a natural experiment, this study
elucidates the complex direct and indirect pathways linking geography, climate, dominant plants, litter, edaphic
factors, and the rhizosphere microbiome to ectorhizosphere soil ecological stoichiometric characteristics. The
results highlight the central role of the rhizosphere microbiome, showing that C-, N-, and P-cycling genes are
key predictors of ectorhizosphere soil ecological stoichiometric characteristics. Importantly, rhizosphere
microbial community structure and functional gene composition constitute the primary pathway through which
climatic factors influence ectorhizosphere soil ecological stoichiometric characteristics, thereby playing a pivotal
role in biogeochemical element cycling. This finding indicates that climate change impacts on rhizosphere

microbiomes should receive priority in ecological restoration strategies, as amplified cascade effects through

microbial pathways may destabilize soil nutrient pools and their stoichiometric relationships under increasing



climatic variability. In addition, geographic factors are strongly and directly associated with spatial variation in
ectorhizosphere soil ecological stoichiometric characteristics, emphasizing the need for regionally tailored soil
management strategies that account for local geographic contexts. Overall, this study advances the theoretical
understanding of rhizosphere microbiome-driven element cycling at the root-soil interface and provides a
practical basis for targeted regulation of rhizosphere microbial communities to improve soil management and
ecological conservation in temperate arid and semi-arid regions. These advances are essential for enhancing our
ability to predict and manage soil biogeochemical cycling under future climate change.

Methods

Site description

The study was conducted in the Helan Mountains ecosystem (38°13'-39°30" N, 105°41'-106°41" E), located
along the border between the Ningxia Hui Autonomous Region and the Inner Mongolia Autonomous Region,
China. Situated at the junction of the northwestern inland arid region and the East Asian monsoon region, the
Helan Mountains act as a vital ecological security barrier for Northwest China, with a main peak reaching 3,556
m above sea level (a.s.l.). We selected 17 study sites along an elevational gradient ranging from 1,351 to 3,537
m a.s.l. (Supplementary Fig. 1). Vegetation types across these sites included desert steppe, shallow mountain
shrublands, broad-leaved forest, temperate coniferous forest, mixed broadleaf-conifer forest, dark coniferous
forest, subalpine shrub, and alpine meadow. Detailed site characteristics are provided in Supplementary Table
1.

At each site, nine sub-sites were established as primary survey units. The first sub-site was positioned randomly
within the site, and eight additional sub-sites were then randomly established relative to this initial sub-site,
ensuring that the distance between any two sub-sites exceeded 10 m while accommodating site-specific
boundaries and accessibility. Given the structural complexity of mountain vegetation, which required a more
refined sampling approach, a nested quadrat design was applied within each sub-site. This design was adapted
to vegetation structure to adequately represent tree, shrub, and herbaceous layers. For multilayered communities
containing trees, a 20 m x 20 m tree quadrat was established, within which a 5 m x 5 m shrub quadrat was nested,
and within that, a 1 m x 1 m herb quadrat. Where shrub layers were absent, the 1 m x 1 m herb quadrat was

nested directly within the 20 m x 20 m tree quadrat. For communities composed only of shrubs and herbs, a 5 m



x 5 m shrub quadrat containing a 1 m x 1 m herb quadrat was used. Following this protocol, a total of 148 sub-
sites were established across the 17 sites. Although the standard design included nine sub-sites per site, one site
(S17) was limited to four sub-sites due to accessibility constraints. Across these 148 sub-sites, the nested quadrat
design yielded a total of 305 individual quadrats, including 63 tree, 94 shrub, and 148 herb quadrats. Based on
geographic coordinates extracted for each sub-site from the National Tibetan Plateau Data Center (TPDC;

https://data.tpdc.ac.cn), the 30-year MAT across the 17 sites averaged 3.9 °C, showing a warming trend of

+1.1 °C over this period. MAP averaged 263.7 mm, and both climatic variables varied significantly with
elevation (Supplementary Table 1).

Field sampling

Field sampling was conducted during the 2021 plant-growing season (24 July—30 August). A plant community
survey was first carried out. Specifically, we recorded canopy density, height, and individual abundance of trees,
as well as coverage, height, and density of shrubs and herbs, and herb frequency within each quadrat. Importance
values were calculated separately for each life-form layer to identify dominant species.

At the same time, within each sub-site, one litter sample was collected by combining litter from five evenly
distributed points within the sub-site, ensuring that each composite sample weighed more than 200 g. The litter
consisted of fallen leaves, twigs, and fruits, with an about equal proportion of undecomposed and partially
decomposed material. Samples were oven-dried at 65 °C to constant weight and stored for subsequent analysis
of litter total carbon (LC), total nitrogen (LN), and LP.

Ectorhizosphere and rhizosphere soils were then sampled from dominant plant species, covering 20 dominant
plant populations across the 17 sites. At 15 sites, a single species was overwhelmingly dominant and selected
for sampling. At the remaining two sites, two and three species were selected, respectively, due to highly
comparable dominance values (Supplementary Table 1). Notably, P. crassifolia was sampled at multiple sites
owing to its broad distribution in the Helan Mountains. For each dominant plant population, five mature and
healthy individuals were selected within a quadrat (20 m x 20 m for trees, 5 m x 5 m for shrubs, and Il m x 1 m
for herbs), and their fine roots at 0—10 cm depth were carefully excavated from three directions around the plant
base 3'. This depth was chosen because microbial activity is relatively high at 5-10 cm, and litter decomposition

mainly influences the topsoil 2. Soil loosely adhering to the roots was gently shaken off and collected as



ectorhizosphere soil, while soil tightly adhering to the root surface within a 2 mm range was removed using a
soft sterilized brush to obtain rhizosphere soil 3. For each dominant plant population, two composite samples
(ectorhizosphere and rhizosphere) were generated by pooling material from the five individuals. Rhizosphere
soil samples were transferred into sterile 15 mL centrifuge tubes and immediately frozen on dry ice. Sampling
of Prunus mongolica and C. jubata was limited to three and four sub-sites, respectively. For P. mongolica, this
limitation was due to excavation difficulties caused by rocky substrates and the scarcity of fine roots in the target
0-10 cm layer associated with its taproot system. For C. jubata, sampling was constrained by site accessibility,
as noted above. In total, 338 soil samples (169 ectorhizosphere and 169 rhizosphere) were transported to the
laboratory immediately after collection. Upon arrival, ectorhizosphere soil samples were divided, with one
portion air-dried for physicochemical analyses and the other stored at 4 °C for microbial biomass determination.
All rhizosphere soil samples were stored at —80 °C prior to DNA extraction.

Data acquisition

Meteorological and topographical data for all sampling sub-sites were extracted in ArcGIS v10.8 using precise
longitude and latitude coordinates. Meteorological data, including MAT and MAP for the period 1992-2021,
were obtained from the TPDC. Topographical variables, including slope and aspect, were derived from the 30 m

resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model

(ASTER GDEM), sourced from the Geospatial Data Cloud (https://www.gscloud.cn).

Litter elemental contents and ecological stoichiometric ratios

LC and LN were quantified using the potassium dichromate oxidation method and the semimicro Kjeldahl
method, respectively. After HSOs—H>0, digestion, LP was determined using the molybdenum-antimony
colorimetric method >*. Mass-based ecological stoichiometric ratios were then calculated from these elemental
concentrations (Supplementary Table 6).

Soil physicochemical properties, microbial biomass, and ecological stoichiometric ratios

The basic physicochemical properties of the ectorhizosphere soil were analyzed, with SM measured using the
drying method and pH measured at a 1:2.5 soil-to-water ratio. Concentrations of SC, SN, and SP were quantified
using the K>Cr207-H>SO4 wet oxidation method, semimicro Kjeldahl digestion, and the molybdenum-antimony

colorimetric method, respectively. Ectorhizosphere soil MBC, MBN, and microbial biomass phosphorus (MBP)



were determined using the chloroform fumigation-extraction method > °% 7. Briefly, microbial biomass
concentrations were calculated as the differences between extracts (0.5 M K2SO4 for MBC and MBN; 0.5 M
NaHCOj3; for MBP) from fumigated and unfumigated soil samples, following correction for extraction efficiency
8 Ecological stoichiometric ratios for both soil and microbial biomass were subsequently calculated
(Supplementary Tables 2 and 5).

DNA extraction, amplicon sequencing, and bioinformatics

Amplicon sequencing combined with an internal standard method was performed to analyze rhizosphere
bacterial and fungal community composition and absolute abundance. Total genomic DNA was extracted from
about 0.4-0.5 g of fresh rhizosphere soil using the FastDNA® SPIN Kit (MP Biomedicals, Santa Ana, USA)
according to the manufacturer’s instructions and stored at —20 °C ¥, The integrity of the extracted DNA was
assessed by 1.5% agarose gel electrophoresis, and DNA concentration was quantified using a Qubit 3.0
Spectrophotometer (Thermo Fisher Scientific, USA). For absolute quantification, a mixture of nine distinct
synthetic spike-in sequences was added to each DNA sample at a known copy number ¢°. These spike-ins, absent
from public nucleotide sequence databases, were artificially synthesized, with their variable regions replaced by
random sequences of ~40% GC content. To ensure optimal quantitative performance, a preliminary polymerase
chain reaction (PCR) was conducted to co-amplify the target regions alongside the spike-ins. This step
determined the appropriate spike-in concentration for each sample to achieve a final spike-in proportion within
the ideal range of 15-50%. The bacterial 16S rRNA V4-V5 region was amplified with primers 515F (5'-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG GTGCCAGCMGCCGCGG-3") and 907R (5'-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCGTCAATTCMTTTRAGTTT-3") ©®, while the
fungal ITS2 region was amplified with primers ITS3 (5'-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCATCGATGAAGAACGCAGC-3") and ITS4 (5'-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCTCCGCTTATTGATATGC-3") 2. Subsequently,
the qualified PCR products were subjected to an Index PCR to attach unique dual-index sequences and Illumina
adapters to each amplicon. The Index PCR was performed in a 20 pL reaction mixture containing 2 pL 10%
TopTaq buffer, 0.4 uL. TopTaq DNA polymerase, 0.6 uL forward index primer (NGNPCRFN5XX, 10 uM), 1.5

pL reverse index primer NGNPCRRN7XX, 4 uM), 1.6 uL dNTPs (2.5 mM), 2 uL template DNA, and nuclease-



free H20 to a final volume of 20 pL. Thermal cycling conditions consisted of an initial denaturation at 94 °C for
2 min, followed by eight cycles of denaturation at 94 °C for 20 s, annealing at 60 °C for 20 s, and extension at
72 °C for 1 min, with a final extension at 72 °C for 10 min. The resulting amplicons from the Index PCR
constituted the final sequencing libraries. An initial quality assessment of the libraries was performed using 1.5%
agarose gel electrophoresis to confirm successful amplification of target fragments. Qualified libraries were
quantified and pooled equimolarly to ensure uniform sequencing depth across samples. The pooled library was
purified using a gel extraction kit (TTANGEN, Beijing) to remove nonspecific products and primer dimers. Prior
to sequencing, the final library underwent quality control, including fragment size assessment on an Agilent 2100
Bioanalyzer and precise concentration quantification using the ABI 9700HT Fast Real-Time PCR system.
Sequencing was carried out by Genesky Biotechnologies Inc. (Shanghai, China) on an Illumina NovaSeq 6000
platform (Illumina, San Diego, CA, USA) using paired-end reads (2 x 250 bp).

Bioinformatic of raw sequencing data was conducted using QIIME 2™ v2022.8. After demultiplexing, Illumina
adapters and PCR primers were removed using the cutadapt plugin, followed by merging of paired-end reads.
The DADA2 plugin was then applied for denoising, error correction, and inference of amplicon sequence
variants (ASVs). Taxonomic classification of representative ASV sequences was performed using a pretrained
naive Bayes classifier with confidence thresholds of 0.8 for 16S and 0.6 for ITS, trained on the RDP v11.5 and
UNITE v9.0 reference databases, respectively. To determine absolute abundances, spike-in sequences were first
identified and their read counts quantified. For each sample, a standard curve was constructed by plotting known
spike-in copy numbers against corresponding read counts, and this curve was used to calculate absolute copy
numbers for each ASV based on its read count %. To correct for PCR amplification bias, the rrDB V5.6 database
was used to adjust bacterial 16S rRNA gene copy numbers. After removal of contaminants (e.g., chloroplasts,
mitochondria, and spike-in sequences), a total of 176,102 bacterial ASVs and 42,528 fungal ASV's were retained
across all rhizosphere soil samples. These filtered ASVs were used in all subsequent downstream analyses.
Metagenomic sequencing, assembly, and functional annotation

From the initial 169 rhizosphere samples, a representative subset was selected for shotgun metagenomic
sequencing. For 18 dominant plant populations, nine replicate samples were available for each. The supervised
) o

selection method microPITA (microbiomes: Picking Interesting Taxonomic Abundance was applied to



identify the five most representative samples from these nine replicates. For P. mongolica and C. jubata, all
available replicates were retained because of their lower sample numbers. This selection process resulted in a
final set of 97 samples for metagenomic sequencing. The open-source microPITA software is available through

the Galaxy platform at https://www.i-sanger.com .

For metagenomic analysis, the initially extracted total genomic DNA (without spike-ins) was randomly
fragmented to an average size of 400 bp using a Covaris ME220 ultrasonicator (Covaris, USA). Metagenomic
sequencing libraries were then constructed using a DNA library preparation kit (Genesky, China). After quality
control, the libraries were subjected to paired-end whole-metagenome sequencing (2 x 150 bp) on the Illumina
NovaSeq 6000 platform.

Bioinformatic processing of metagenomic data followed a standard pipeline. First, raw Illumina reads were
quality controlled using fastp v0.23.2 for adapter trimming, quality filtering, and error correction. High-quality
reads were then assembled into contigs using MEGAHIT v1.2.9 (parameters: —k-min 27 and —k-step 10) ®, and
contigs shorter than 500 bp were removed. Open reading frames (ORFs) were predicted from the retained contigs
using MetaGeneMark v3.38, and ORFs shorter than 100 bp were excluded. The remaining ORFs were clustered
at 95% sequence identity using MMseqs2 v13.45111 to generate a non-redundant gene catalogue. To quantify
gene abundance, high-quality reads were mapped back to this catalogue using Bowtie2 v2.5.1, and abundance
was normalized using the transcripts per million (TPM) method ¢’. For functional annotation, the non-redundant

gene catalogue was searched against the CCycDB (https://ccyedb.github.io/), NCycDB, and PCycDB databases

68,69 ysing DIAMOND v2.0.14 in blastp mode (e-value < le-5) to identify genes involved in C, N, and P cycling,
respectively. For each gene, the function of the best hit was used to classify it as a CCG, NCG, or PCG.
Statistics and reproducibility

All statistical analyses were conducted using R software v4.3.3, with a significance level of a = 0.05. First,
ecological stoichiometric characteristics of ectorhizosphere soil and associated microbial biomass from 20
dominant plant populations, as well as litter stoichiometric characteristics across sites, were compared
(Supplementary Tables 2, 5, and 6, respectively; Supplementary Data 1). Each dominant plant population had
nine replicates (n = 9), with the exception of P. mongolica (n = 3) and C. jubata (n = 4), resulting in a total

sample size of 169 (N =169). Prior to analysis, all variables were tested for normality (Shapiro—Wilk test) and



homoscedasticity (Levene’s test). Nonnormally distributed data were log- or square-root-transformed. For
normally distributed data, either one-way ANOVA (with LSD post hoc test) or Welch’s ANOVA (with Games—
Howell post hoc test) was applied, depending on variance homogeneity. For non-normal data, the Kruskal-Wallis
test was used, followed by Dunn’s test where appropriate. All P values from multiple comparisons were corrected
using the false discovery rate (FDR). Generalized additive models (GAMs) and piecewise fitting were then used
to examine relationships between soil ecological stoichiometric characteristics and environmental factors
(Supplementary Figs. 2, 3). Partial Mantel tests based on Spearman’s correlation were employed to assess
associations among ecological stoichiometric characteristics of soil, microbial biomass, and litter while
controlling for geographic distance derived from longitude, latitude, and elevation.

Second, using the same analytical framework, Shannon diversity of rhizosphere bacteria, fungi, and functional
genes was compared across dominant plant populations (Figs. 1, 2; Supplementary Data 2), along with their
relationships with environmental factors (Supplementary Figs. 4, 6). Analyses of bacterial and fungal
communities used the full dataset of 169 samples (N = 169). In contrast, functional gene analyses were based on
the subset of 97 samples (N = 97) selected using microPITA, comprising five replicates (n = 5) for 18 dominant
plant populations, except for P. mongolica (n =3) and C. jubata (n = 4). Variations in taxonomic and functional
composition of the rhizosphere microbiome across dominant plant populations were visualized using PCoA
based on Bray—Curtis dissimilarity (Figs. 1, 2). Statistical significance of these variations was tested using
PERMANOVA, implemented via the adonis function in the vegan package "°. In addition, absolute copy numbers
of the ten most dominant bacterial and fungal phyla were visualized (Supplementary Fig. 5; Supplementary Data
3). Relative abundances of C-, N-, and P-cycling genes and expression patterns of DAGs were displayed using
bar plots and clustered heatmaps, respectively (Supplementary Figs. 7, 8; Supplementary Data 4).

Third, using the LinkET package 7!, partial Mantel tests were performed to assess correlations between the
ecological stoichiometric characteristics of litter, soil, and microbial biomass and multiple facets of the
rhizosphere microbiome, including microbial diversity and community composition (N = 169), as well as
functional gene diversity, composition, and abundance (N = 97), while controlling for geographic distances (Fig.
3; Supplementary Data 5). In addition, correlations among ecological stoichiometric characteristics, dominant

bacterial and fungal phyla, and the abundance of genes associated with different C-, N-, and P-cycling pathways



were evaluated using Spearman’s correlation analysis (Supplementary Fig. 9).

Fourth, LMMs and HP were applied to quantify the relative importance of multiple potential predictors,
including geography, climate, dominant plant structure, litter, edaphic factors, and the microbiome, in explaining
variation in SC, SN, and SP and their ecological stoichiometric ratios (Supplementary Data 6; N =97). To account
for the hierarchical sampling design, site and dominant plant population (nested within site) were included as
random effects, and analyses were conducted using the Ime4 7> and glmm.hp packages ’*. Marginal (Rm?) and
conditional (R¢?) coefficients of determination were calculated using the r.squaredGLMM function in the MuMIn
package. Independent eigenvectors derived from a dbMEM analysis based on longitude and latitude coordinates
were used as geographic predictors 4. To address high collinearity among predictors, principal component
analysis (PCA) was conducted separately for climatic factors and for the ecological stoichiometric characteristics
of litter and soil microbial biomass, with PC1 and PC2 retained for subsequent analyses (Supplementary Fig.
10). Prior to fitting the LMMs, stepwise regression was performed to identify a parsimonious set of key
predictors while minimizing collinearity (variance inflation factor < 5). All candidate predictors were
standardized to Z-scores to ensure comparability of regression coefficients and to avoid bias arising from
differences in measurement units .

Finally, six piecewiseSEM were constructed using the piecewiseSEM package ’® to evaluate multivariate
relationships among predictor groups (geographic, climatic, dominant plant structural, litter, and edaphic factors),
the microbiome, and ectorhizosphere soil ecological stoichiometric characteristics (Supplementary Data 7; N =
97). This framework is well suited to hierarchical data because it integrates mixed-effects models. To reduce
dimensionality, composite variables representing distinct ecological components were first developed. For each
predictor group, an LMM with soil ecological stoichiometric characteristics as the response variable and site and
dominant plant population (nested within site) as random effects was used to estimate standardized coefficients
for individual variables, which were then used as weights to generate composite indices. This procedure
produced composite variables for geography, climate, dominant plant structure, litter, edaphic factors, and
microbial attributes. Hypothesized causal pathways among these composite variables were then specified as a
series of LMMs, all sharing the same random-effects structure. Spatial autocorrelation was addressed using a

two-step approach. First, the geographic composite variable was included as a fixed effect to capture broad-scale



spatial patterns. Second, an exponential spatial correlation structure (corExp) was incorporated into model
residuals to account for fine-scale spatial dependence, but only when supported by likelihood ratio tests and
lower Akaike Information Criterion (AIC) values. These individual LMMs were combined into an a priori
PiecewiseSEM and refined by sequential removal of non-significant paths (P > 0.05), guided by ecological
hypotheses, to obtain the most parsimonious model with the lowest AIC 7. Overall model fit was evaluated using
Fisher’s C statistic, with non-significant P values (P > 0.05) indicating adequate consistency with the data.
Data availability

The absolute quantitative sequencing and metagenomic sequencing data are publicly available in the Genome
Sequence Archive at the National Genomics Data Center, China National Center for Bioinformation, under
accession numbers CRA022703 (bacteria), CRA022707 (fungi), and CRA022858 (metagenome). The datasets
supporting the findings of this study, including source data for all figures and tables as well as statistical analysis
outputs, are provided in Supplementary Data 1-7.
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Fig. 1 | Diversity and community composition of rhizosphere microbiome across dominant plant populations.
Shannon diversity and community composition of rhizosphere bacteria (a, b) and fungi (c, d). Different lowercase
letters indicate significant differences among plants based on a Kruskal-Wallis test followed by Dunn’s post-hoc test
with Benjamini-Hochberg correction (P < 0.05). PCoA analyses were conducted using Bray-Curtis distance matrices,
and statistical differences among dominant plant populations were assessed by PERMANOVA (variance explained,
R?; significance, P value). For each plant, n = 9, except for SMS3 (n = 3) and AM4 (n = 4). Different dominant plant
populations are displayed in various colors, where each color series corresponds to a specific vegetation type.

Fig. 2 | Diversity and composition of rhizosphere microbial functional genes across dominant plant populations.
Shannon diversity and composition of C-cycling genes (a, b), N-cycling genes (c, d), and P-cycling genes (e, f).
Different lowercase letters indicate significant differences among dominant plant populations based on a one-way
ANOVA followed by an LSD test with Benjamini-Hochberg correction (P < 0.05). For each plant, n = 5, except for
SMS3 (n = 3) and AM4 (n = 4).

Fig. 3 | Correlations between the rhizosphere microbiome and ecological stoichiometric characteristics.
Correlations of microbial diversity and community composition (a), as well as functional gene diversity, composition,
and abundance (b), with ecological stoichiometric characteristics of litter, ectorhizosphere soil, and ectorhizosphere
microbial biomass were assessed using partial Mantel tests. Pairwise comparisons among ecological stoichiometric
characteristics are shown using a colour gradient indicating Spearman’s correlation coefficient (*P < 0.05; **P < 0.01;
***p < 0.001). Edge width corresponds to the partial Mantel r statistic, while line colour indicates statistical
significance based on 999 permutations. Microbial community and functional gene compositions were calculated
using the Bray—Curtis dissimilarity matrix. LC, litter total carbon; LN, litter total nitrogen; LP, litter total phosphorus;
LC:LN, litter total carbon to total nitrogen ratio; LC:LP, litter total carbon to total phosphorus ratio; LN:LP, litter total
nitrogen to total phosphorus ratio; SC, soil organic carbon; SN, soil total nitrogen; SP, soil total phosphorus; SC:SN,
soil organic carbon to total nitrogen ratio; SC:SP, soil organic carbon to total phosphorus ratio; SN:SP, soil total
nitrogen to total phosphorus ratio; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP,
microbial biomass phosphorus; MBC:MBN, microbial biomass carbon to nitrogen ratio; MBC:MBP, microbial
biomass carbon to phosphorus ratio; MBN:MBP, microbial biomass nitrogen to phosphorus ratio; TPM, transcripts

per million.



Fig. 4 | Relative importance of multiple predictors to ectorhizosphere soil ecological stoichiometric
characteristics. For SC, SN, and SP contents (a-c) and ecological stoichiometric ratios (d-f), the figure presents both
the relative importance of each predictor (expressed as the proportion of explained variance) and the averaged
parameter estimates (standardized regression coefficients) with their 95% confidence intervals (N = 97). The marginal
R? (Rm?) and conditional R? (R¢?) values represent the proportions of variance explained by fixed effects alone and by
both fixed and random effects, respectively. PC1 and PC2 denote the first and second principal components,
respectively, derived from separate principal component analyses of climatic factors, litter ecological stoichiometric
characteristics, and microbial biomass ecological stoichiometric characteristics. Climatic factors include MAT and
MAP. PCoAl and PCoA2 represent the first and second principal coordinates, respectively, from separate PCoA
analyses of microbial community and gene composition. CCGs, NCGs, and PCGs denote C-, N-, and P-cycling genes,
respectively. doMEM, distance-based Moran’s eigenvector maps; Aspecty, north component of slope aspect; Plantc,
dominant plant coverage; Plantp, dominant plant density; SM, soil moisture. *P < 0.05; **P < 0.01; ***P < 0.001.

Fig. 5 | Best-fitting PiecewiseSEM of the direct and indirect paths affecting ectorhizosphere soil ecological
stoichiometric characteristics. The models reveal the paths linking predictor groups (geographic, climatic, dominant
plant structural, litter, and edaphic factors) and the microbiome to SC, SN, and SP (a-c), as well as to their ecological
stoichiometric ratios (d-f). Significant paths are shown in blue for positive relationships and red for negative
relationships, with line width proportional to the absolute value of the standardized path coefficient. Non-significant
relationships are indicated by grey lines of uniform width. Litter and ectorhizosphere soil microbial biomass
stoichiometric characteristics are represented by PC1 and PC2, respectively. For each model, N = 97. Aspecte, east
component of slope aspect; Planty, dominant plant height; Fisher’s C, statistic used to evaluate overall model fit (with
non-significant P values indicating a satisfactory fit); AIC, Akaike information criterion; DF, degrees of freedom. *P

< 0.05; **P < 0.01; ***P < 0.001.
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Editor's Summary

Analysis of rhizosphere microbiomes across an elevational gradient reveals microbial functional genes as key

drivers of soil ecological stoichiometry, highlighting their role as a biological filter between climate and soil

nutrient cycling.
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