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Abstract 

Adoptive cell therapies (ACT) leverage tumor-immune interactions to cure cancer. Despite promising phase 

I/II clinical trials of chimeric-antigen-receptor natural killer (CAR-NK) cell therapies, molecular 

mechanisms and cellular properties required to achieve clinical benefits in broad cancer spectra remain 

underexplored. While in vitro and in vivo experiments are essential, they are expensive, laborious, and 

limited to targeted investigations. Here, we present ABMACT (Agent-Based Model for Adoptive Cell 

Therapy), an in silico approach employing agent-based models (ABM) to simulate the continuous course 

and dynamics of an evolving tumor-immune ecosystem, consisting of heterogeneous “virtual cells” created 

based on knowledge and omics data observed in experiments and patients. Applying ABMACT in multiple 

therapeutic contexts indicates that to achieve optimal ACT efficacy, it is key to enhance immune cellular 

proliferation, cytotoxicity, and serial killing capacity. With ABMACT, in silico trials can be performed 

systematically to inform ACT product development and predict optimal treatment strategies.  

 

Introduction 

Adoptive cell therapies (ACT) have shown substantial progress in combating cancer and other diseases1–9. 

By administrating lymphocytes with intrinsic or engineered antitumoral capabilities, ACTs harness the 

power of the immune system to eliminate tumors9. Recent Chimeric-antigen-receptor natural killer (CAR-

NK) cell therapies have been identified as a promising alternative to CAR-T cell therapies, given their 

ability to address multiple limitations of CAR-T therapies2,10–15. As a low-cost, low-toxicity, off-the-shelf 

solution, various CAR-NK cell therapy products have burgeoned to deliver benefits in a broad spectrum of 

clinical applications12,13. CAR extracellular domain engineering provides specificity for anti-tumor effects, 

such as anti-CD123 targeting acute myeloid leukemia cells16, anti-CD19 targeting B cell lymphoma17, and 

anti-CD70 for hematological malignancies and solid tumors18. Various genetic engineering approaches can 

augment CAR-NK cell functions: armoring NK cells with co-stimulatory cytokine vectors such as IL-1519, 

IL-2120, and STING agonist21 can boost NK cell proliferation and killing capability, while CRISPR editing 

such as CISH deletion22 increases NK cell metabolic fitness. In the case of cord-blood derived CAR-NK 

cells, donor characteristics can dictate CAR-NK function and clinical efficacy. Increased inflammation, 

hypoxia, and cellular stress have been associated with suboptimal cord blood preservation, and CAR-NK 

cells engineered from these cords have reduced anti-tumor efficacy5,23. Despite significant advances, 
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applications of CAR-NK ACT are predominantly in preclinical and phase-I/II trial stages1,14, highlighting 

both the potential and need for further investigation.   

As “living drugs”, ACTs present distinct opportunities and challenges in clinical development24. ACT 

achieves treatment responses through interactions between the product and the target cells. The cell 

products are often genetically modified to boost therapeutic potential. However, both aspects are difficult 

to assess. While in vitro and in vivo models have been instrumental in advancing ACT development, they 

are often costly, labor-intensive, and limited in their ability to replicate the complexity of the interactions 

between the human immune system and the tumor microenvironment (TME)25,26. The TME is characterized 

by diverse and evolving cell populations, along with a rich and dynamic molecular environment, which 

cannot be fully recapitulated using traditional cell-line models26.  Organoids are engineered to replicate the 

morphology and functions of tissues and organs, yet 27still struggle with repeatability, cell maturation, and 

accurately replicating the complexity of native tissue27. Although patient-derived xenograft (PDX) animal 

models aim to reflect TME heterogeneity, they still diverge significantly from human physiology and 

pharmacology, limiting their translational relevance25. Perturbing PDX models is time consuming and 

expensive, limiting exploration and hypothesis testing. Further, evaluating treatment responses, particularly 

cellular kinetics and molecular interactions, such as peak concentration and target interaction rates, remains 

a challenge in these experimental systems due to the difficulties of continuous monitoring24. A more 

comprehensive understanding of multi-scale dynamics at both cellular and sub-cellular level is essential to 

advance ACT development. This includes capturing the heterogeneous and evolving cell populations, 

modeling phenotypic and functional states of individual cells, and accounting for their molecular variations. 

Addressing these challenges requires innovative approaches that combine experimental data with 

mechanistic and computational modeling, which have the potential to provide deeper insights into complex 

biological dynamics. 

Mathematical and computational models have been utilized to understand complex biological systems, 

spanning from organisms to molecules28–33. Recent advancements in ACTs and the growing availability of 

data have facilitated their modeling, though further efforts are needed, particularly in emerging areas such 

as engineered NK cell therapy. Machine learning models, such as random forests, support vector machines, 

and neural networks, estimate statistical relationships between features (e.g., cell counts, cell states, and 

experimental conditions) and outcomes, and those amongst features by optimizing predictive accuracy 

against data.  However, the learned parameters are often difficult to interpret in terms of underlying 

biological mechanisms. This limitation reduces their utility for generating mechanistic insights and 

translating findings into clinical applications34. Sparse data points collected in in vitro or in vivo experiments 

also restrict these models’ ability to accurately capture the dynamics of ACT. Mechanistic models such as 

ordinary differential equations (ODE), partial differential equations (PDE), and stochastic differential 

equations (SDE) have been developed to describe the kinetics of cell populations and cytokines in the 

TME35. These approaches offer improved efficiency and mathematical interpretability and are more suited 

in modeling low-dimensional cell properties and spatial gradients than single-cell level specifications36. 

Among the vast suite of in silico models, Agent-Based Models (ABM)37,38, also known as individual-based 

models, offer the unique advantage of simulating the tumor microenvironment using a bottom-up approach 

to model individual cell behaviors28,39. ABMs represent cells and molecules in the TME as agents and 

environment attributes, in which the behaviors of each type of agent are coded via simplifications and 

approximations of biological processes37,38. This enables ABM to have high temporal, spatial, and multi-

scale data granularity and interpretability, overcoming challenges in above mentioned modeling methods 

such as ODE and neural networks28. Extensive research has demonstrated the potential of using ABM to 
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reproduce the complex interactions in the TME and predict tumor progression or treatment outcomes36,40–

43. Several studies have attempted to model heterogeneity of cell states by summarizing functional effects 

of genes36,39,41,44. However, these effects are usually binarized as positive and negative regulators of cellular 

functions without considering their relative importance. Moreover, the application of ABMs to cellular 

immunotherapies, particularly engineered NK cell therapies, remain unexplored. Several critical questions 

must be addressed: How can a system of cell agents be designed to sufficiently capture the diversity of cell 

types and phenotypic transitions in NK-ACT? How can molecular profiles be integrated with cellular 

functions to model functional heterogeneity? How can knowledge and data be balanced to ensure both 

biological interpretability and predictive accuracy?  

To investigate these questions, we have developed ABMACT, a mechanistic modeling framework that 

reconstructs cellular dynamics of an evolving tumor-immune ecosystem, consisting of “virtual” immune 

cells and tumor cells defined by immunological knowledge and single cell molecular profiles obtained in 

experiments. We focused on NK cells in this first study and constructed an ABM with submodules of 

cellular functions and cell-cell interactions based on our biological knowledge of NK cells and experimental 

data.  

 

Results 

A cell-level mechanistic modeling framework for NK-ACT 

ABMACT is a computer simulation framework for studying cell population dynamics and interactions in 

ACT using ABM (Figure 1). Cell agents, the building blocks of the ABMs, are determined based on domain 

knowledge of interacting cell populations (Figure 1 Step1)2,12,13,15,45. NK cells are ex vivo expanded to 

express activating receptors such as CD16, NKG2D, and activating Killer cell immunoglobulin-like 

receptors (KIRs) and are “licensed” to kill12,45. Cytotoxic killing is the primary mechanism determining 

therapeutic responses in ACT15, placing cytotoxic NK cells (𝑁𝑐 ) and tumor cells (B, such as B cell 

lymphoma) interactions in the center of modeling. However, activation and repeated killing can induce 

exhaustion, resulting in NK dysfunction and cancer immune evasion 46. While NK cells were believed to 

act short-term as part of innate immunity, multiple recent studies have highlighted their capacity to develop 

a “vigilant” phenotype – long living, dormant, and reactive to second pathogen stimulation47–49. To model 

the fate transitions of 𝑁𝑐, we include exhausted NK cell agents (𝑁𝐸)  and vigilant NK cell agents (𝑁𝑉). 

Cellular processes such as proliferation, exhaustion, death, antigen recognition, and migration have 

previously been modeled using quantitative frameworks24,41,50,51. Building on these studies, we implemented 

biologically grounded mathematical rules and parameterizations to govern cell agent behaviors in our model 

(Methods – Cell agent design). Specifically, NK cell proliferation was modeled as cytokine-dependent, 

influenced by tumor presence and natural decay of proliferation rate. Exhaustion was represented by a linear 

decline in its serial killing capacity (SKC, 𝑠) such that NK cells transition from cytotoxic (𝑁𝐶) to exhausted 

(𝑁𝐸) states when the cumulated number of tumor cells killed (∑Ikill) equals to its initial capacity (S0). Non-

exhausted cytotoxic NK cells can instead transform into the vigilant (𝑁𝑉) phenotype upon tumor clearance. 

Details are provided in Supplementary Materials 1. 

The increasing availability of single-cell molecular profiling data provides an unprecedented opportunity 

to model functional heterogeneity at cellular resolution. To achieve so, we quantified the effects of genes 

and pathways on cellular functions such as cytotoxicity. In this study, we used paired single-cell RNA-seq 

(scRNA-seq) and phenotype data from the xenograft lymphoma mouse models in Li et al.23 to select and 
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estimate a subset of genetic features using linear mixed effect regression. 52Gene expression profiles are 

randomly assigned to the cell agents and translated to functional properties through the estimated effects. 

As a result, cell agents unbiasedly represent rich molecular profiles, modeling variations in individual 

cellular fates and collective populational dynamics (Figure 1 Step 2, Methods - Integrate functional genetic 

effects in cell agents). 

Model calibrations were performed on functional data obtained from in vitro autonomous growth in Liu et 

al.19, rechallenge assays in Marin et al.5 and Shanley et al. 20. Joint calibration and evaluation were 

performed on the lymphoma mice model in Li et al. 23 and glioblastoma mice model in Shanley et al.20 

Independent evaluation of calibrated cell agents were performed on a blood cancer tumor-NK cell co-

culture dataset in Dufva et al.52 (Figure 1 Step 3, Methods - Simulation). By obtaining in silico replica of 

the in vivo systems, we can further perturb the models to augment experimental observations, discover key 

drivers to effective tumor control, and explore biological and therapeutic conditions (Figure 1 Step 4, 

Methods - Feature importance sensitivity analysis).  

 
Figure 1: A mechanistic cell-level in silico modeling framework to elucidate cellular characteristics and cell population dynamics.  

[Figure 1] 
a) Workflow diagram of Agent-Based Modeling for Adoptive Cell Therapy (ABMACT). Step 1: Cell agent design. Four cell types are included in 

ABMACT: cytotoxic NK cells, exhausted NK cells, Vigilant NK cells, and tumor cells. Step 2: Embed cell-level genetic effects. Functional effects 

of significant genes and pathways regulating NK cell cytotoxicity are derived from paired longitudinal scRNA-seq data and mice model experiment 
23 (Methods 4.2). The coefficients, multiplied with randomly sample expression profiles in individual cytotoxic cell agents, contribute to variations 

in cytotoxic killing capability. Step 3: Cell agents interact in 2D simulated TME to model tumor-immune interactions over time. ABMs are 

calibrated on in vitro and in vivo data. Step 4: Applications of calibrated ABMACT cell agent models in augmenting experimental observations 

and predicting future trends, tumor control driver discovery through aggregated simulations, and in-silico treatment simulations. Figure created 

with Biorender. 

 

ABMACT recapitulates differential tumor control in mouse models 
We examined whether ABMACT can reproduce the in vivo dynamics of NK cell therapy in mouse models 

and account for the differential tumor control across treatment conditions. To this end, cell agents were 

parametrized at the level of functional properties to capture differences across phenotypes. Recognizing 

that heterogeneity also exists within the same cell type or state, we further parametrize NK cell cytotoxicity 

from functional genetic effects. The identified NK cell cytotoxicity genes and GO Biological Process 

(GOBP) pathways included both canonical markers and previously under-characterized candidates (Figure 

2a, Supplementary Materials 2). CD22653 and PDCD154 encode well-established activating and 

inhibitory receptor, respectively. Notably, NFKBIA was negatively associated with tumor load, despite its 

conventional classification as a stress-response gene. Consistent with our finding, Tang et al.55 reported 

enrichment of NKFBIA in a cytotoxic CD56dimCD16hi NK subset characterized by inflammatory and 

immune-recruiting signatures, suggesting a context-dependent role of NKFBIA in NK cell cytotoxicity. The 

derived coefficients and randomly sampled scRNA expression values were used to initialize cytotoxic NK 

cell agents, thereby mimicking the heterogenous NK cell population at the onset of treatment.  

Lymphoma Mouse Model 

We first investigated the therapeutic effects of engineered CAR-NK cells on a CD19+ lymphoblastoid cell 

line in immunodeficient mice in Li et al.56. Best fitted parameter sets were found by iterative grid search 

and minimizing a total loss function 𝐿𝑡𝑜𝑡𝑎𝑙 that balance sensitivity to local fluctuations, robustness to noise, 

and fidelity to global tumor control dynamics (Methods – Evaluation metrics). ABMACT achieved good 

fitting to the tumor volume data measured by bioluminescence imaging for all the three NK cell products: 

non-transduced NK (NT-NK), CD19 CAR-NK and CD19IL15 CAR-NK. Particularly, the CD19IL15 
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CAR-NK product showed more effective tumor control as compared to NT-NK and CD19 CAR-NK cells, 

with tumor clearance by day 14 post-engraftment (Figure 2b), recapitulating the in vivo experiments. With 

ABMACT’s ability to simulate continuous time courses, the differential tumor-killing capacity of the three 

NK cell products were depicted as continuous time trajectories, beyond the original time snaps (Figure 2c). 

ABMACT further delineated the cause of tumor cell death as NK cytotoxicity mediated death (Figure 2d) 

and programmed death (Figure 2e).    

The CD19IL15 CAR-NK cell population expanded faster than the other two groups (Figure 2f), showing 

negative correlation with the tumor burden (Pearson’s R= −0.35, p<0.005). Cytotoxic NK cells, which 

constituted a large proportion of the total population throughout the 15-day simulation, had the fastest 

expansion in the CD19IL15CAR-NK cell group, contrasting with rapid decline in the CD19 CAR-NK cell 

and NT-NK cell groups (Figure 2g). The CD19IL15 CAR-NK cells also showed lower degree of 

exhaustion as compared with the other two groups (Figure 2h). However, lower exhaustion levels do not 

always coincide with more efficacious tumor control. Although CD19 CAR-NK cells appeared less 

exhausted than the NT-NK cells, tumors treated with the CD19 CAR-NK cells outgrew those treated with 

the NT-NK cells (Figure 2c). In the CD19IL15CAR-NK cell group, the vigilant phenotype emerged as 

tumor cells were cleared, indicating successful transition of surviving cytotoxic NK cells in the TME 

(Figure 2i). 

We further attributed the NK cell dynamics to individual cellular properties. Based on parameters from the 

best-fitting results, we found that CD19IL15 CAR-NK cells had superior viability and killing capacity as 

compared to other two groups (Figure 2j). In addition to enhanced proliferation and lower death rates, 

higher cytotoxicity 𝑝𝑘𝑖𝑙𝑙  at the beginning of treatment, and higher serial killing capacity (SKC) 𝑆0 , 

measured by the number of tumor cells one NK cell could kill before exhaustion, enabled CDIL15 CAR-

NK cells to exert repeated tumor lysis at a high success rate. The systematic effects of the cellular properties 

resulted in stronger interactions between tumor cells and cytotoxic NK cells, measured by the proportions 

of tumor cells collocated with cytotoxic NK cells, in the CD19IL15 CAR-NK cell treatment group than the 

other two treatment groups (Figure 2k).  

By deconvoluting the empirical cell dynamics to quantitative properties, we identified potential 

mechanisms underlying the differential tumor control observed by Li et al.23 In the original experiment, 

lower tumor growth was observed in the NT-NK group compared to CD19 CAR-NK group (Figure S3b), 

diverging from the expectation that NT-NKs would perform worse than CAR-engineered NK cells. The 

seemingly counterintuitive results motivated us to investigate the underlying functional properties and 

mechanisms using estimated cell agent properties. While equipped with CAR, CD19 CAR-NK cells were 

characterized with a higher death rate (𝑑𝐶 ) and lower serial killing (𝑆0 ) compared to NT-NK cells, 

suggesting reduced survival and increased susceptibility to exhaustion. The pattern is consistent with 

activation induced exhaustion46, where CD19CAR NK cells undergo strong activation upon CD19 

engagement but lack IL-15-mediated persistence. Supporting this interpretation, metabolic profiling of 

CD19CAR NK cells post-infusion revealed reduced oxidative phosphorylation and glycolysis relative to 

NT NK cells (Figure S8b), consistent with impaired tumor control ability.  

In lymphoma model, the optimal fitting results were found at an effector-to-target ratio (ETR) of 1:1, which 

was much lower than the set-up condition in the in vivo mice models (50:1). We speculated that the 

differences could be due to the reduction of ETR at tumor sites from the ETR at infusion. The challenge of 

NK cell infiltration or homing to tumor sites have been previously reported and a limiting factor to NK-

ACT efficacy57,58. In the study by Li et al., NK cells were infused through mouse tail veins and therefore it 
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is likely that only a fraction of NK cells infiltrated tumor sites. We assumed the initial infiltration NK cell 

population comprising entirely of cytotoxic NK cells to reduce modeling complexity, while NK cell 

activation, exhaustion, and ineffective transduction could reduce the actual number of cytotoxic NK cells 

homed to tumor sites and inflate the estimated ETR.  

Incorporating genetic effects enabled the model to capture intercellular heterogeneity in cytotoxic killing 

probabilities. Integrating scRNA-seq data by setting the genetic effect parameter 𝑏 > 0  improved the 

overall modeling accuracy as reflected by a reduction in total loss 𝐿𝑡𝑜𝑡𝑎𝑙  (p-val=0.034, Figure 2l, 

Supplementary Materials 3.3). Models without genetic effects assumed a constant population-average 

killing rate, thereby neglecting variability in cytotoxicity among NK cells (Figure S4f-g). Fine-tuning the 

precise magnitude of yields marginal changes in fit, suggesting that enabling heterogeneity through a 

positive genetic effect parameter 𝑏 is more critical than optimizing its exact scale.  

Figure 2 Modeling NK-tumor cell interactions in lymphoma mice models using ABMACT framework.  

[Figure 2] 

(a) Genes and pathways modulating NK cell cytotoxicity identified using LME models of tumor loads in Li et al.23. Confidence interval: 95%. P-

value adjusted by Benjamini-Hochberg correction for multiple-testing. (b) ABMACT simulations recapitulated normalized tumor dynamics in 

lymphoma mouse models. Comparison of simulated data with observed data using normalized tumor progression ratios between experimental 

groups and the tumor-only control group. (c) Tumor progression calculated by fold changes with respect to the initial tumor population at the start 

of the simulation. (d) The cumulative proportion of tumor cell death due to cytotoxic killing by NK cells. (e) The cumulative proportion of tumor 

cell death due to programmed death. (f) Total NK cell population fold changes with respect to the initial NK cell population. Normalized by NK 

cell count at day 0 of simulation when NK cells were added. Simulated ratios of (g) cytotoxic NK cells, (h) exhausted NK cells, and (i) vigilant NK 

cells with respect to the total NK cell population in the lymphoma model. (j) Best-fit cytotoxic NK cell proliferation rate at baseline (t0 of simulation), 

death rate, cytotoxicity (probability of killing a tumor cell upon contact) at baseline, and serial killing capacity that minimized the total loss for 

three treatment groups. (k) Interaction rate between tumor cells and cytotoxic NK cells in the lymphoma mouse model. Interaction rate calculated 

by the ratio between tumor cells co-locating with cytotoxic NK cells and the total tumor cell count. (l) Total loss (𝐿𝑡𝑜𝑡𝑎𝑙) with genetic effects (𝑏 >

0) and without (𝑏 = 0) in modeling the lymphoma mouse model. Results aggregated from the top ten fittings based on MSE. Interval bands of 2 

s.e. were calculated using a bootstrap of 1000 iterations. 

 

Glioblastoma Mouse Model 

To explore the potential of ABMACT in studying a broad spectrum of cancers, we further evaluated it in a 

glioblastoma (GBM) mouse model, which examines the therapeutic benefits of ex vivo expanded NK cells 

in kill GBM cell lines in immunodeficient mice (Figure 3a). The growth rate of GSC20 GBM tumor cells 

were estimated to be lower than Raji lymphoma (0.223 per day vs 0.445 per day), requiring a lower ETR 

(1:5 vs 3:1). Similar to the CD19IL15 CAR-NK cells in lymphoma model, cytokine-armed NK cells (IL-

21 and IL-15 NK cells) showed more significant tumor control than NT-NK cells (Figure 3b). Tumor 

clearances were achieved in both IL-21 and IL-15 NK cells, with the highest proportions of cancer cell 

deaths induced by IL-21 NK cell cytotoxicity (Figure 3c). In the NT-NK cell group, tumor cells had 

sustained growth, with minimal reductions that were largely contributed by programmed deaths (Figure 

3d). Despite having higher death rates than the IL-15 NK cells, the higher proliferation 𝑝𝑐, cytotoxicity 

𝑝𝑘𝑖𝑙𝑙, and SKC 𝑆0 of the IL-21 NK cells contributed to more rapid tumor control (Figure 3e). NK cells with 

cytokine-expressing vectors showed faster initial NK cell population expansion than the NT-NK cells 

(Figure 3f). However, the early cytotoxicity towards tumor cells in the IL-15 NK cell group also resulted 

in early drops in cytotoxic population (Figure 3g) and exhaustion (Figure 3h). The time of population 

shrinkage concorded with tumor clearance, which aligned with prior studies of NK cell dynamics48,59,60. 

Similar to CD19IL15 CAR-NK cells in lymphoma mouse model, a small proportion of vigilant NK cells 

emerged upon tumor clearance (Figure 3i).  

Independent Validation 
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To assess the generalizability of ABMACT in new NK-ACT studies, we used the calibrated non-transduced 

NK (NT-NK) cell agents to reproduce co-culture experiments with K562 myeloid leukemia cell line 

reported by Dufva et al52 (Methods – Independent validation). Simulated NK-tumor cell co-culture 

reproduced tumor reduction at 24 hours (43.05 ± 2.62%  simulated vs 41.51% observed, p-val=0.59, 

Figure 3j). In addition, we found a similar percentage of effector NK cells subsets, denoted as cytotoxic 

NK cell in ABMACT and activated NK cell by Dufva et al., at the end of the 24-hour co-culture (88.59 ±

1.53% simulated vs 87.67% observed, p-val=0.57) (Figure 3k). This exercise demonstrates ABMACT 

can be reasonably applied on independent datasets deriving from similar cell-lines without re-calibration, 

supporting its robustness and generalizability across experimental platforms. 

Figure 3 Modeling NK-tumor cell interactions in glioblastoma (GBM) mice models and independent validation using ABMACT framework.  

[Figure 3] 

(a) ABMACT simulations recapitulated normalized tumor dynamics in GBM mouse models. Comparison of simulated data with observed data 

using normalized tumor progression ratios between experimental groups and the tumor-only control group. (b) Tumor progression calculated by 

fold changes with respect to the initial tumor population at the start of the simulation. (c) The cumulative proportion of tumor cell death due to 

cytotoxic killing by NK cells. (d) The cumulative proportion of tumor cell death due to programmed death. (e) Best-fit cytotoxic NK cell 

proliferation rate at baseline (t0 of simulation), death rate, cytotoxicity (probability of killing a tumor cell upon contact) at baseline, and serial 

killing capacity that minimized the total loss for three treatment groups. (f) Total NK cell population fold changes with respect to the initial NK 

cell population. Normalized by NK cell count at day 7 of simulation when NK cells were added.  Simulated ratios of (g) cytotoxic NK cells, (h) 

exhausted NK cells, and (i) vigilant NK cells with respect to the total NK cell population in the lymphoma model. (j-k) Independent study validation 

on Dufva et al.52 (j) Percentage of tumor reduction at 24-hour in the K562 cell line co-culture experiment and (k) percentage of cytotoxic (activated) 

NK cells among the total NK cell population using NT-NK cell agents calibrated on Li et al.23 lymphoma mouse model. Simulations were repeated 

10 times. Comparison of tumor reduction % and cytotoxic NK cell % were performed using two-sided Student’s t-test. Results aggregated from 

the top ten fittings based on MSE. Interval bands of 2 s.e. were calculated using a bootstrap of 1000 iterations. 

 

Applications of ABMACT 

Augmenting experimental observations by predicting treatment courses 

In vivo systems are inherently limited by the frequency and resolution of measurements, often capturing 

only snapshots of dynamic treatment courses. One key advantage of in silico models is their ability to 

augment and complement existing experimental results, enhancing scale and granularity. ABMACT builds 

upon this strength by simulating designated durations and inferring subpopulation dynamics that maximally 

explain laboratory observations. For example, using models for CD19IL15 CAR-NKs, CD19 CAR-NKs, 

and NT-NKs calibrated on the lymphoma mouse model dataset in Li et al.56, we projected tumor progression 

and NK cell population dynamics beyond the endpoint of experimental observation (post mice sacrifice), 

extending the course to 35 days post-treatment (Figure 4a-b).  

In addition, ABMACT provided a means to explore the mechanisms underlying heterogeneous experiment 

outcomes. Our model projected complete tumor elimination by CD19IL15 CAR-NK cells before day 13, 

whereas in Li et al.23 most mice showed sustained low tumor burden except before sacrifice except a single 

mouse exhibiting tumor rebound at the last timepoint. We speculated that the divergence could be due to 

varying NK cell homing efficacy as previously reported by Ran et al.57 and Sanz-Orega et al.58 Keeping a 

constant total NK cell to tumor cell ratio, we randomly split 10000 tumor cells and 10000 NK cells to 

simulate varying homing efficacy using local ETR (Figure 4c). Reduced homing (local ETR = 0.12) 

resulted in tumor outgrowth, while clearance was still achievable with local ETR ≤ 1.0 but occurred later 

than day 15 (Figure 4d). The averaged tumor progression displayed an initial growth phase, followed by 

regression and plateau (Figure 4e), resembling the rebound pattern in the mouse.  
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By deconvoluting NK cell populations in the lymphoma and the GBM mouse models, we identified distinct 

kinetics of engineered NK cells. Notably, cytokine-expressing NK cells, including CD19IL15 CAR-NKs 

(Figure 4f), IL-15 NKs (Figure 4g), and IL-21 NKs (Figure 4h) exhibited a small peak in cytotoxic NK 

cell ratios, corresponding to the transition of a subset of cytotoxic NK cells into the vigilant phenotype upon 

tumor clearance. In contrast, this pattern was not observed in NT-NKs and CD19 CAR-NKs (Figure S6a-

c). This phenomenon was likely driven by the co-stimulation of endogenous cytokines and residual tumor 

presence, indicated by cytokine levels and declining tumor-NK cell interaction rate. The cytotoxic NK cell 

population sustained proliferation while were less prone to exhaustion at the phenotype shift. While the NK 

cell phenotypes defined in ABMACT are hypothetical and informed by existing studies, the observed NK 

cell subpopulation trajectories may provide insight into treatment efficacy and warrant further experimental 

validation. 

Figure 4 Plotting the course of cellular treatment using ABMACT.  

[Figure 4] 

Prediction of tumor and NK population dynamics: (a) Simulated and observed tumor progression in the lymphoma mouse models. (b) Simulated 

total NK cell population trends in NT-NKs, CD19-CARNKs, and CD19IL15-CARNKs treatment groups in the lymphoma mouse model. 

Tumor/NK survival calculated by fold changes with respect to the initial tumor population at the start of the simulation. Evaluation of homing 

efficacy: (c) Schematic of randomizing 10000 tumor cells and 10000 NK cells to 10 sites to simulate varying homing efficacy of NK cells to tumor 

locations in the CD19IL15-CAR NK cell group. (d) Tumor population fold change by local E:T ratio from simulations of the varying NK cell 

infiltration. (e) Averaged tumor population fold change. Deconvolution of phenotypes and kinetics: Cytotoxic NK cell ratio, vigilant NK cell ratio, 

average cytotoxic NK cell proliferation rate, average cytokine level, and tumor-NK cell interaction rate of (f) CD19IL15 CAR-NK cells in the 

lymphoma model, (g) IL-15 NK cells in the GBM model, and (h) IL-21 NK cells in the GBM model. NK cell subtype ratio calculated with respect 

to the total NK cell population at each timepoint. Tumor-NK interaction rate calculated by the ratio of tumor cells with co-locating cytotoxic NK 

cells with respect to the total tumor cell population. Figure 4c created with Biorender. 

 

 

 

Discovering key drivers of tumor control through in silico perturbation experiments 

While numerous CAR engineering strategies aim to enhance NK cells, exhaustive testing of potential 

designs require significant amount of time and resources. To prioritize the most critical factors influencing 

tumor control in NK-ACT, we conducted feature importance sensitivity analysis (Methods) using in silico 

perturbations in NK cell properties and dosages. The analysis revealed that the effector-to-target ratio (ETR) 

was the most important feature for accumulated tumor growth, followed by NK cell serial killing capacity 

(SKC) 𝑆0, death rate 𝑑𝑐, baseline proliferation rate 𝑝𝑐 and its decay rate 𝑏𝑝𝑐
, and baseline cytotoxicity 𝜇𝑐 

(Figure 5a, Figure S6d). Increasing ETR from 1:1 to 2:1 drastically shortened the time to tumor clearance, 

though further increases yielded diminishing returns (Figure 5b), aligning with findings previously 

reported in a CAR-T dosing review study61. On the contrary, enhancing SKC and proliferation rates showed 

a continuous trend of accelerated tumor clearance (Figure 5c-d). Parameters contributing to NK cell killing, 

including 𝑆0, 𝜇𝐶 , CAR effect exponent 𝛾, and cytotoxicity genetic effect coefficient 𝑏 had a combined 

feature importance 61% higher than the combined importance of viability parameters ( 𝑝𝑐 , 𝑏𝑝𝑐
, 𝑑𝑐 ), 

suggesting that enhancing 𝑁K cell killing capacities such as SKC, cytotoxicity, and specific recognition 

may be more effective than improving their viability in the system.  

 

Assisting treatment decision-making using ABMACT simulation 

ACT dose responses often deviate from linear relationships, where excessive dosages may fail to 

significantly improve treatment efficacy while increasing the risk of toxicity 61. Designing optimal ACT 
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treatment regimens is a delicate task, with limited room for repeated experimental testing. ABMACT 

provides a valuable platform for exploring treatment options and informing clinical decision-making 

through in-silico simulations. In the lymphoma mouse model simulation, a single dose (1:1 ETR) of NT-

NKs at the ETR of 1:1 led to tumor outgrowth (Figure 2c). To investigate effective tumor control strategies, 

we evaluated follow-up treatments with varying dosages, frequencies, timing, and NK cell products using 

ABMACT simulations (Figure 5e). We found that to effectively control tumor outgrowth, it required a 

higher dose of the same NK cell products (4X) or more effective NK cells such as CD19IL15 CAR-NK 

cells (1X) (Figure 5f). The overall tumor growth was significantly lower in the 4X NT-NK cell group (p-

adj < 0.001) and 1X CD19IL15 NK group (p-adj < 0.001) (Figure 5g).  

Next, we investigated whether administrating the follow-up treatment at different times would result in 

differential tumor control. One dose (1X) of CD19IL15 CAR-NK cells was administered on day 5, 7, 10, 

and 14 following the initial treatment, respectively (Figure 5h). Earlier intervention contributed to more 

efficient tumor control (Figure 5i) and significantly smaller cumulative tumor burden (Figure 5j). Treating 

refractory tumors with higher doses of more potent ACT products can lead to a more rapid response, and 

dose fractionation have been used in CAR-T cell therapies and recombinant radiotherapy with CAR-NK 

cell therapy to mitigate the risks of adverse events associated with high dosages62,63. However, it is unclear 

whether high dosing in NK-ACT is associated with risks64, and fractioned dosing in NK-ACT alone has not 

been extensively explored. To examine whether dose fractionation in NK-ACT can effectively control 

tumors, we simulated follow-up treatment with a total of four doses of CD19IL15 CAR-NK cells 

administered in one treatment, two treatments, and four treatments (Figure 5k). No significant difference 

in cumulative tumor growth was shown when administrating four doses in one treatment versus splitting to 

two treatments, but these two treatment strategies resulted in earlier tumor clearance and smaller cumulative 

tumor burden compared to splitting administrating the four doses over a course of four treatment (Figure 

5l-m). For aggressive cancer types such as lymphoma, tumor cells escaping NK cell surveillance gain a 

head-start and undergo exponential growth65. When initial treatment fails, higher doses or more potent NK 

cell products are often required to regain control. The timing of treatment influences response efficacy, 

while fractionated dosing under calibrated dosage and timing can potentially provide the same treatment 

benefit as a single higher dose. ABMACT offers a predictive framework for pretesting follow-up treatment 

strategies, reducing the reliance on extensive laboratory experimentation. 

Figure 5 Predicting optimal treatment regimens using ABMACT.  

[Figure 5] 

Sensitivity analysis: (a) Random Forest regression feature importance of model parameters on tumor progression area under the curve (AUC) 

measured by mean decrease in impurity (MDI) (Methods). Time to tumor clearance by (b) effector-to-target ratio, (c) serial killing capacity, and 

(d) NK cell baseline proliferation rate. Other parameters and simulation conditions were kept constant. Simulating NK-ACT follow-up treatment: 

(e) Schema of virtual NK-ACT treatments. Control: NT-NKs were administered at day 0 at an E:T ratio 1:1. 1X NTNK: One follow-up dose (1X) 

of NT-NK cells was administered on day 7. 4X NTNK: Four follow-up doses (4X) of NT-NK cells were administered on day 7. 1X CD19IL15 

CAR-NK: One follow-up dose (1X) of CD19IL15 CAR-NK cells administered on day 7. (f) Simulated tumor progression and (g) accumulative 

tumor growth (Area under the curve, AUC) of control, 1X NTNK, 4X NTNK, and 1X CD19IL15 CARNK cell treatments. (h) 1X CD19IL15 CAR-

NK: One follow-up dose (1X) of CD19IL15 CAR-NK cells was administered on day 5, 7, 10, and 14. (i) Simulated tumor progression and (j) 

accumulative tumor growth (AUC) of the four treatment groups. (k) 4X1 CD19IL15 CAR-NK: Four follow-up doses (4X) of CD19IL15 CAR-NK 

cells administered on day 5. 2X2 CD19IL15 CAR-NK: Two follow-up doses (2X) of CD19IL15 CAR-NK cells administered on day 5 and 7 each. 

1X4 CD19IL15 CAR-NK: One follow-up dose (1X) of CD19IL15 CAR-NK cells was administered on day 5, 7, 10, 14 each. (l) Simulated tumor 

progression and (m) accumulative tumor growth (AUC) of the three treatment groups. 10 simulations for each experiment. Interval bands of 2 s.e. 

were calculated using a bootstrap of 1000 iterations. Figure 5e, h, and k were created with Biorender. 
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Exploring TME modulation of NK cell efficacy 

Beyond intrinsic cell properties and dosage, the TME imposes spatial and metabolic constraints that can 

significantly module NK cell behaviors. As proof-of-concept (POC) studies, we examined physical barriers 

in the TME, tissue-aware NK cell motility, and hypoxic stress in the TME (Methods, Supplementary 

Materials 5). First, we used NK cell movement probability and travel distance as surrogates to study the 

effect of physical barriers in the TME. Restriction to NK cell migration, parametrized by the reduced 

probability to move (𝑚𝑁), markedly impaired tumor control (Figure S7a). The reduced mobility delayed 

NK-tumor encounters and allowed tumor outgrowth. In contrast, travel distance within the tumor sites did 

not substantially affect the time to clearance but influenced the peak tumor population (Figure S7e). Next, 

to capture more realistic cell behavior, we simulated tissue-aware NK cell movement modalities based on 

the experiment by Dondossola et al.66 In this POC, non-engaged NK cell agents moved rapidly in the pre-

activated state and transitioned to slow-moving after engaging and killing tumor cells (Figure S7i), 

reproducing the reported association between NK cell movement speed and effector function. Finally, we 

factor oxygen in NK and tumor cell functions to simulate hypoxic conditions induced by oxygen 

consumption. Under prolonged hypoxia, both NK and tumor population exhibited reduced proliferation, 

yet the disproportionate loss of cytotoxic NK cells led to tumor rebound (Figure S7j-l). Together, the POC 

studies demonstrate ABMACT’s ability to isolate spatial and metabolic factors in the TME, providing 

insights into how physical barriers and hypoxia can delay NK-tumor interactions, diminish effector 

persistence, and ultimately compromise therapeutic efficacy. Looking forward, such simulations can be 

extended to generate testable hypotheses on how modifying the TME may enhance NK cell therapy 

outcomes. 

 

Discussions 

Recent progress in NK cell therapies has highlighted knowledge gaps in their underlying biological 

mechanisms. While experimental models are indispensable, they are limited in variety, scalability, and 

resolution. Mechanism-based computational models, particularly ABMs, can provide an efficient and 

ethical alternative67.  

We developed ABMACT, an agent-based modeling framework incorporating biological rules derived from 

data and knowledge. By reconstructing the experimental observations from autonomous behaviors of cell 

agents, ABMACT deconvolutes differential tumor control to cellular and molecular properties. First, 

simulations of in vitro and in vivo tumor-immune dynamics revealed that NK cell products with higher 

viability, cytotoxicity, and serial killing capacity have superior tumor control. These explained the superior 

efficacy of CD19IL15 CAR-NK cells treating lymphoma and IL21 NK cells treating GBM, while also 

clarified paradoxical outcomes such as the reduced efficacy of CD19 CAR-NK compared to NT-NK due 

to activation-induced exhaustion. By integrating scRNA-seq data, ABMACT captured functional genetic 

heterogeneity in NK cell cytotoxicity. Second, we found the cell-level modeling crucial for capturing NK 

cell state transitions, functional variations (e.g. NK cell cytotoxicity), and spatial interactions, yielding more 

accurate and biologically realistic simulations. Third, through systematic in silico perturbations, ABMACT 

identified the effector-to-target ratio (ETR) as the top determinant to tumor control in addition to the cellular 

properties mentioned. Virtual dosing studies showed how regimen timing and fractionation can alter tumor 

rebound and revealed that early intervention was critical to preventing tumor rebound. Finally, compared 

with other modeling techniques such as ODE, ABMACT outperformed in accuracy, explaining variances 

in the experimental observations, and stability (Figure S9, Supplementary Materials 5). Together, these 
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capabilities establish ABMACT as both a predictive and mechanistic platform for extracting insights from 

experiments and informing next-generation ACT strategies. 

Parametrizing ABMs depends on data availability and requires balancing computational trackability and 

modeling accuracy. Despite its strengths, the current version of ABMACT has several limitations. Firstly, 

as a single-compartment model, ABMACT does not fully account for the immune system and host-level 

biology. Tumor cells were likely to persist in multiple lymph nodes, and the deviations in simulations of 

CD19CAR-NKs lymphoma mice model after day 14 likely reflected the inadequate NK cell infiltration to 

all tumor engraftments or incomplete elimination. Secondly, despite improvement to model accuracy and 

the ability to capture variations in NK cell cytotoxicity driven by gene and pathway markers, the small 

sample size of data for feature selection reduced the effect size and might omit key markers. ABMACT can 

benefit from aggregating multiple studies and establishing genetic markers with higher statistical power. 

Thirdly, our current model does not consider treatment toxicity, as NK-ACTs have generally been 

associated with little adverse effects in previous clinical trials1,5.  

Validation against independent datasets has demonstrated ABMACT’s generalizability across tumor types. 

The future work can extend to therapeutic areas beyond NK-ACT and capture more complex spatial 

interactions. Implemented in the MESA Python framework68, ABMACT ensures portability, accessibility, 

and reproducibility. The functional gene feature selection step can be applied to diverse omics datasets, 

such as scRNA-seq paired with extracellular flux data to characterize cell metabolic states23. Other crucial 

players in anti-tumor immunity, such as macrophages, CD4+ and CD8+ T cells, and dendritic cells can be 

modeled by modifying and extending the current NK cell agent design.  In addition to new molecular 

features, spatial information such as niches of resistance can be used to model heterogeneity of tumor 

populations. A proof-of-concept model on hypoxic inhibition of NK cell dynamics is illustrated in 

Supplementary Materials 6. Current 2D modeling in ABMACT reflects the dimensionality and resolution 

of the experiment data used for calibration. The Moore neighborhood can readily integrate cell coordinates 

to inform precise positioning of cell populations. High-resolution volumetric data from spatial 

transcriptomics and multiplexed imaging can be integrated in ABM to provide spatial priors for cell 

positioning as previously demonstrated65. This allows for the representation of more complex tissue 

structures such as vasculatures, multi-compartmental biology, and patient-specific physiological conditions 

while avoid artifacts that arise from calibrating 3D modeling against lower-dimensional experimental data. 

Additionally, coupling ABMs with ODE or PDE models could more accurately capture TME cytokine 

pharmacokinetics and gene regulatory networks69. SDE models can be leveraged to capture cell-level 

heterogeneities in properties such as proliferation and migration70. Such hybrid models can reduce 

computational costs while maintaining biological relevance, capturing dynamics at both cellular and 

molecular levels, and extending ABMACT’s applicability to broader contexts of immunotherapies. To 

improve modeling efficiency, surrogate models (e.g. Gaussian process regressors) can accelerate parameter 

search and prediction67. 

Challenges in ACT trials, including source quality, resistant tumor niches, and comorbidities, also require 

careful consideration. Source and donor variabilities in NK cell qualities5,71 can be modeled through 

modifying cell agent parameters, as demonstrated in the diverging serial killing capacity of optimal cord 

NK cells (Opt-Cs) and suboptimal cord NK cells (Sub-Cs) in the study by Marin et al.5 (Figure S2i). 

Prognostic markers and clinical health records, such as serum cytokine concentrations, immune evasive 

mutations, and comorbidity index, can contribute to both cell agent parametrization and TME specifications. 

We anticipate the individualized, continuous prediction of treatment outcomes can accommodate variability 
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beyond patient xenograft models alone. By establishing a bidirectional feedback loop where longitudinal 

clinical measurements recalibrate model parameters and simulations forecast response trajectories, 

ABMACT functions as a continuously learning, data-driven system. In chronic disease settings such as 

cancer, this framework could project disease progression and help identify follow-up windows for optimal 

treatment opportunities. However, it is important to note that computational models like ABMACT are 

intended to complement, not replace experimental and clinical studies, and their predictions require 

validation. By integrating computational insights with experimental findings, ABMACT has the potential 

to enhance ACT development while maintaining a realistic perspective on its applicability.  

In conclusion, ABMACT integrates experimental data and single-cell profiles into mechanistic simulations 

of NK cell therapies. By quantifying key determinants of ACT efficacy, ABMACT enables in silico 

prioritization of cell products, laying the foundation for streamlining preclinical development and reducing 

reliance on animal models, in line with the FDA Modernization Act 2.072. When extended to incorporate 

patient-specific factors, dosing and fractionation simulations can potentially predict personalized treatment 

courses to support risk stratification and cohort expansion in future ACT trials. As the first agent-based 

model dedicated to engineered NK cell therapy to our knowledge, ABMACT sets the stage for 

computational-experimental codesign of next generation immunotherapies, helping researchers and 

clinicians anticipate optimization opportunities and risks in ACT therapies. 

 

Methods 

In vitro experiment data for model calibration 

Cell autonomous growth: Cell counts of NT (n=3) and CD19IL15 CAR-NK (n=3) from day 0 to day 42 

were obtained from the cord blood NK cell autonomous growth experiments in Liu et al.19. Cells were 

cultured in vitro without tumor or additional cytokine stimulation19. 

Tumor rechallenge assay: Mean Raji lymphoma tumor population dynamics measured by tumor cell index 

were obtained from tumor rechallenge assays with cord blood CAR19/IL15 NK cells from optimal cords 

(Opt-Cs) and suboptimal cords (Sub-Cs) (n=4 each) in Marin et al.5. The tumor cell index was measured 

by the intensity of mCherry fluorochrome, representing the counts of tumor cells5. NK cells were challenged 

against mCherry transduced Raji lymphoma tumor cells at an effector-to-target ratio (ETR) of 5:1 5. Tumor 

cells (100,000 cells) were added every two to three days 5. Mean glioblastoma tumor population dynamics 

measured by tumor cell index were obtained from GSC20 tumor rechallenge assays with IL-21 and IL-15 

NK cells (n=3 donors each) in Shanley et al.20. NK cells were challenged against mCherry transduced 

GSC20 glioblastoma cells at an E:T ratio of 1:1 20. Tumor cells were added every two to three days 20. 

Dose-response assay: Mean cytotoxicity profiles of NT, CAR19, CAR19/IL15 NK cells were obtained from 

the 51Cr-release dose-response assay of NK cell products (n=3 donors) against Raji targets in Li et al.23. 

Cytotoxicity was measured as the percentage of specific lysis of tumor cells relative to targets 23. 

 

Xenograft mice model data for model calibration  

Lymphoma 

Tumor growth data and scRNA-seq data of NK cells and tumor cells were obtained from the xenograft mice 

model of Raji lymphoma treated with NK cells in the Figure 2C of Li et al.23. The scRNA-seq data are 

publicly available in Gene Expression Omnibus (GEO) repository at accession number GSE190976. Tumor 

loads were quantified as average tumor radiance in p ∙ s−1cm−2sr−1  23, which were assumed to be 

proportional to size of the tumor population (Figure S3a). Normalized tumor progression was calculated 
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by dividing tumor radiances of experiment groups by the mean tumor radiances in the tumor-only control 

group (Figure S3b). NK cells were transfected with retroviral vectors encoding iC9.CAR19.CD28-zeta-

2A-IL-15 (CAR19IL15), CAR19.CD28-zeta (CAR19), and IL-15, with non-transduced (NT) NK cells 

serving as control (n=5 per group) 23. The xenograft NOD/SCID IL-2Rγ null mice were infused with FFLuc-

labeled NK-resistant Raji lymphoma cells (2 × 105 per mouse) on day 0 23. NK cells were harvested from 

each group pre-infusion and on days 7, 14, 21, 28 and underwent scRNA sequencing 23. Tumor cells were 

harvested from each group on days 7, 14, 21, 28 and underwent scRNA sequencing 23. 

Glioblastoma 

Tumor growth data and scRNA-seq data of NK cells were obtained from the xenograft mice model of 

GSC20 glioblastoma treated with NK cells in Figure 3A of Shanley et al.20. The processed scRNA-seq data 

are publicly available at accession number GSE227098. Tumor loads were quantified as average tumor 

radiance in p ∙ s−1cm−2sr−1 20 (Figure S3c). Normalized tumor progression was calculated by dividing 

tumor radiances of experiment groups by the mean tumor radiances in the tumor-only control group (Figure 

S3d). The NOD/SCID IL-2R-null human xenograft mice were intracranially injected 0.5 × 106 patient-

derived FFluc-labeled GSC20 tumor cells on day 0 and treated intratumorally with NK cells (n = 3 to 5 per 

group) at an E:T ratio of 1:5 at day 7 20. 

 

Blood cancer cell line NK-tumor cell co-culture experiment for independent validation 

The tumor cell count and scRNA-seq data of NK cells (syn52600685) were obtained from the 24-hour co-

culture experiment of K562 myeloid leukemia cell line in Dufva et al52. In the co-culture experiment, NK 

cells were plated at an ETR of 1:4 with respective tumor cell lines. Samples were harvest at 0,1,3, 6, 12, 

and 24 hours 52. 

 

Cell agent design 

We encoded three NK cell phenotypes: cytotoxic NK cells (NC), exhausted NK cells (NE), vigilant NK cells 

(NV), along with tumor cells (B, such as B cell lymphoma) in the agent-based model (ABM) using the 

Python Mesa framework68 (Figure 1, Figure S1). The tumor microenvironment was established in a 2D 

Moore neighborhood discrete lattice grid to reflect the dimensionality of in vitro and in vivo data used for 

calibration and for its simplicity and efficiency in modeling44. The Moore neighborhood allows cell 

movement and interactions in eight directions, reflecting the quasi-random motility of cells. Cell Agents 

act autonomously by programmed rules and commit to an action when the probability, sampled from a 

uniform distribution 𝑈(0,1) , passes a predefined threshold e.g. proliferation rate. For example, Raji 

lymphoma tumor cells were estimated to have a proliferation rate of 0.455 per day. When at a completion 

of a cell cycle, a tumor cell agent samples a random number from 𝑈(0,1) and compare it with 0.455. If the 

random number exceeds the threshold, the cell will divide and generate a daughter cell. Cellular properties 

are encoded as attributes of agents and are inherited by daughter cells from mother cells. The TME was 

initiated with tumor cells in the center and NK cells in the periphery. We assumed that cell agents followed 

Brownian motions and modeled cell motility with random walks, while NK cell agents traveled in the 

direction of the highest tumor concentration due to the chemokine gradient when tumors are present. The 

specifics of cell agent design are entailed below. 
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Cytotoxic NK cells (𝑁𝐶) 

A cytotoxic NK cell interacts with a target in three stages: migration, conjugation, and attachment73. NK 

cells can both move freely and migrate towards chemokine or proinflammatory protein gradients74. When 

reaching and recognizing the target, the conjugation phase starts. The NK cell forms an immunological 

synapse and reorganizes actin cytoskeletons75,76. The microtubule organizing center (MTOC) and secretory 

lysosomes are polarized towards the immunological synapse, followed by lysosome docking and finally the 

release of cytotoxic molecules into the target cell75,76. On ending the conjugation phase, the NK cell begins 

to dissociate from the target cell irrespective of successful killing, resuming free migration or initiating 

conjugations with other targets73. A cytotoxic NK cell (𝑁𝐶) is responsible for killing tumor cells. When a 

𝑁𝑐 cell agent encounters a tumor cell agent, 𝑁𝐶 has a probability of 𝑝𝑘𝑖𝑙𝑙 to successfully kill the tumor cell, 

depending on various factors contributing to its cytotoxicity and the tumor cell’s ability to evade immune 

surveillance (𝑝𝑒𝑣𝑎𝑑𝑒 ). In the process of killing, 𝑁𝐶  reduces its serial killing capacity (𝑠), resulting in 

exhaustion and transformation to the exhausted phenotype (𝑁𝐸) when 𝑠 reaches 0. As compared to the other 

two NK cell phenotypes, 𝑁𝐶 cell agents are able to efficiently expand and have the potential to transform 

to a vigilant phenotype (𝑁𝑉). In Vanherberghen et al.73, the mean total conjugation and attachment time 

was measured to be 193 minutes and 235 minutes for lytic and non-lytic events, respectively. Therefore, 

we considered a four-hour step length (Δ𝑇 = 4ℎ𝑟) for the ABM to approximate the time for cytotoxic NK 

cells moving toward tumor cells and exert killing. 

Cytotoxic killing activity 

To reduce parameter search space for NK cell cytotoxicity in ABM, we performed initial estimation of 

relative baseline cytotoxicity of CAR19IL15 NK cells, CAR19 NK cells, and NT NK cells using the dose-

response data from the 51Cr-release assay of NK cell products against Raji targets in Li et al.23. We applied 

the following dose-response Emax model: 

E(y) =
E0

1 + (
R ∗ xg

k50
)

m                                                                           (1) 

where xg denoted the average relative NK cell cytotoxicity of the group g, E0 denoted the baseline death 

percentage (cytotoxicity) of tumor cells at ratio = 0, R denoted the effector:target ratio, k50g
denoted the 

half-maximum relative average NK cell cytotoxicity of the group g, and m denoted Hill’s coefficient (shape 

parameter). We assumed E0 is constant across groups given the same Raji tumor cells used in experiments. 

The nonlinear least squares estimation was performed using the least_squares function of the Python 

package scipy77. Three types of loss including “linear”, “soft_l1”, and “cauchy” were compared to select 

parameters with minimum loss.  

We constructed the probability of killing a tumor cell upon contact pkill with reference to the cytotoxicity 

function in 41. 𝑝𝑘𝑖𝑙𝑙 is a function of baseline cytotoxicity cNK, gene effects GNK, CAR engineering effect γ,  

and the tumor cell’s probability to evade recognition pevade: 

pkill = [
1.0

1.0 + exp(−(cNK + GNK))
]

γ

∗ (1 − pevade)                                        (2) 

where cNK~truncN(μc, σc
2), GNK = tanh(b ∑ βigi

k
i=1 ), and b is the overall NK cell cytotoxicity genetic 

effect coefficient to ensure reasonable scaling. The first part of the formula consists of an exponentiated 

sigmoid function that accounts for the nonlinear relationship between 𝑝𝑘𝑖𝑙𝑙 and NK cell cytotoxicity and 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

genetic effects. The initial value of NK cell baseline cytotoxicity μc was estimated based on the dose-

response data from the 51Cr-release assay of NK cell products against Raji targets in Retzlaff et al.23 and 

refined using global search (Supplementary Materials 1). The RNA expressions of significant genes and 

pathways associated with NK cell cytotoxicity 𝐠 and respective coefficients 𝛃 were obtained from the 

cross-lagged LME model 𝑀𝑁𝐾.  

 

Characterize NK cell proliferation kinetics 

NK cells require extrinsic stimulations to expand and persist. Studies have shown that the presence of 

cytokines such as IL-15 and tumor antigens enhances NK cell expansion5,19,23. Without exogenous 

stimulation, NK cell expansion could not be sustained, and the population start to wane in one to two 

weeks78. In the cell autonomous growth experiment in Liu et al.19, IL-15-expressing CAR-NK cells 

sustained higher population than NT NKs, although the effect of IL-15 stimulation on NK cell proliferation 

and survival gradually reduced due to system clearance19.  

Therefore, we hypothesized that the endogenous cytokine expression such as IL-15 in CAR-NK cells is 

crucial for population expansion in addition to tumor antigen stimulation. Using an exponential form and 

Hill’s equation to describe the nonlinear dependencies between cytokine concentration and cell proliferative 

property79, we proposed a cytokine-dependent model (CM) for computing the proliferation rate of IL-15-

expressing NK cells as follows.  

𝑝𝑐
∗(𝑡) = 𝑝𝑐 exp(𝑤 − 𝑏𝑝𝑐

𝑡),                                                              (3) 

𝑤 = 𝑘𝐵 ∗
𝑐(𝑖,𝑗)

𝛾2 + 𝛿

𝑐(𝑖,𝑗)
𝛾2 + 𝑐50

𝛾2 + 𝛿
                                                                (4) 

Initial ranges and default values of hyperparameters were determined using linear programming of 

biological constraints. 𝑝𝑐  is baseline cytotoxic NK cell proliferation rate, 𝑐(𝑖,𝑗)  is the dimensionless 

cytokine concentration level in the neighboring region (𝑖, 𝑗), 𝑐50 is the half-maximum cytokine level. 𝛾2 is 

the Hill’s equation exponent, 𝑏𝑝𝑐
 is the natural decay rate parameter of proliferation rate, 𝑡 is cell age, and 

𝛿 is a small constant for keeping 𝑤 nonzero. 𝑘𝐵 =
𝐵(𝑖,𝑗)

𝛾1 +𝛿

𝐵(𝑖,𝑗)
𝛾1 +𝐵50

𝛾1+𝛿
 is the tumor stimulation effect considering 

tumor count 𝐵(𝑖,𝑗) in the neighborhood (𝑖, 𝑗), half-maximum tumor load 𝐵50, and a Hill equation exponent 

𝛾1. 𝑘𝐵 is a constant in the context of NK cell autonomous growth as tumor cells are absent and kept to the 

default value. We considered a half-life of 2.5hrs for IL-1580. At every step of the ABM, the real-time 

cytotoxic NK cell proliferation rate pC
′  was sampled from a truncN(𝑝𝑐

∗(𝑡), σpC
2) distribution. 

CM is compared to a vanilla model (VM) of 𝑤 = 0 and a 𝑏 invariant across groups. The first 70% of data 

were used for fitting and the remaining for testing. Parameters 𝑐, 𝛾2, 𝑏 were globally searched to minimize 

mean squared errors (MSE) between simulated and observed population fold change with respect to the 

initial cell counts. The characterization of NK cell proliferation model is performed on the autonomous 

growth kinetics of cord blood (CB) CAR-NK and NT-NK cells using measured cell counts data from 19. 

Results are provided in Supplementary Materials 1. 
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Exhausted NK cell (𝑁𝐸) and characterize NK cell exhaustion process 

In adoptive cell therapy, NK cell serial killing capacity (SKC) can be modulated by its CAR engineering23, 

source quality5, gene editing22, and cytokine stimulation81. Once a cytotoxic NK cell exhausts, it will no 

longer be able to kill tumor cells but can remain in the system in the presence of tumor antigen. We focused 

on aspects of NK cell exhaustion due to loss of ability to secret cytolytic granules and impaired cytotoxicity 

due to dysregulated inhibitory signals. The former was quantified as the serial killing capacity 𝑠, and the 

latter was modeled by a link function between the probability of killing a tumor cell upon contact, 𝑝𝑘𝑖𝑙𝑙 and 

RNA expression of genes found to be significantly associated with NK cells’ tumor control ability based 

on the LME modeling. Bhat et al.81 demonstrated that one NK cell was able to kill four to six tumor cells 

in 16 hours. However, the experiment was limited in duration to thoroughly measure the maximum SKC. 

To date, the exhausted NK cell phenotype can only be determined functionally using NK cell rechallenge 

assay. To fill the gap of mathematical models of NK cell exhaustion, we hypothesized that NK cell 

exhaustion could be deconvoluted as the reduction of serial killing capacity and impaired killing capability. 

We encoded an NK cell initial SKC parameter S0, which reduced as NK cell killed targets (event denoted 

as 𝐼𝑘𝑖𝑙𝑙). The following Exhaustion Models (EM) are proposed. 

Exhaustion Model 1 (EM1): 

NK cell exhaustion can be primarily described by the linear reduction in SKC. A cytotoxic NK cell (𝑁𝐶) 

transformed to an exhausted NK cell (NE) when its current SKC reached zero.  

s = S0 − ∑Ikill                                                                           (5) 

Exhaustion Model 2 (EM2): 

In addition to the linear reduction in SKC, interactions with tumor cells increase the inhibitory signaling in 

NK cells such. Given that exhaustion markers LAG3 and PDCD1 were found to be significantly associated 

with NK cell cytotoxicity based on the cross-lagged LME model 𝑀𝑁𝐾. We model the exhaustion process 

as: 

s = S0 − ∑Ikill                                                                           (6) 

𝒙𝐺𝑒𝑥ℎ

′ = 𝒙𝐺𝑒𝑥ℎ
+ ∑Ikill                                                                   (7) 

where 𝒙𝐺𝑒𝑥ℎ
 is the vector of RNA expression of exhaustion marker genes 𝐺 = {𝐿𝐴𝐺3, 𝑃𝐷𝐶𝐷1}, which 

further updates NK cells’ killing probability 𝑝𝑘𝑖𝑙𝑙. 

Exhaustion Model 3 (EM3): 

Increased expression of exhaustion markers could in turn regulate the synthesis and secretion of cytolytic 

granules. We used an exponential function to link Hill equations of exhaustion markers to the reduction of 

serial killing capacity. 

s = S0 − ∑Ikill𝑒
𝛾𝑒𝑥ℎ                                                                       (8) 

𝛾𝑒𝑥ℎ = ∑
𝒙𝐺𝑒𝑥ℎ

𝒙𝐺𝑒𝑥ℎ 50
+ 𝒙𝐺𝑒𝑥ℎ

                                                               (9) 

𝒙𝐺𝑒𝑥ℎ

′ = 𝒙𝐺𝑒𝑥ℎ
+ ∑Ikill                                                                (10) 

We compared the three EMs by fitting to tumor rechallenge assay in 5 and selected the model with the 

smallest MSE loss. Results are provided in Supplementary Materials 1. 
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Vigilant NK cells (𝑁𝑉) 

Several studies have demonstrated that NK cells exhibit functions previously only available among cells of 

the adaptive immune system, including the cell memory49,78. Homeostatic proliferation drives NK cells to 

transform into a dormant, sustained phenotype with preserved effector function and self-renewal potential 

that can live in the host for prolonged time48,49,82–87. To differentiate such NK cells before and after the 

second viral or pathogen challenge, we termed the former as vigilant NK cells (NV) and the latter as 

memory-like NK cells. In ABMACT, upon local tumor clearance (𝐵−), cytotoxic NK cells exposed to 

tumors can transform to vigilant NK cells (NV) at a probability 𝑘𝐵−. The vigilant cluster had a lower 

proliferation rate 𝑝𝑉 and death rate 𝑑𝑉 to sustain a small population in the host. A proportion of the vigilant 

NK cells are capable of exhibiting recall upon a second tumor stimulation (event denoted as 𝐵+ when tumor 

cells are present in the neighborhood) and convert back to cytotoxic NK cells at a probability 𝑘𝐵+. 

Tumor cells (𝐵) 

Malignant cells are characterized by uncontrolled growth and immune evasion88. B-cell non-Hodgkin 

lymphoma was characterized to have a medium proliferation rate ranging from 0.15 per day to 0.80 per day 

in indolent to highly aggressive types89. Glioblastoma was estimated to have a medium proliferation rate of 

0.022 per day using patient MRI data90. The tumor cell agents (e.g. B cell lymphoma, glioblastoma) are 

modeled to be highly proliferative with a minimum likelihood of apoptosis. Proliferation rates 𝑝𝐵 can be 

specific to cell lines, host conditions, and other factors. Proliferation rates used in modeling were estimated 

using tumor-only bio-illuminance data from the lymphoma56 and GBM20 mouse models using the following 

ODE model: 

dB

dt
= μ (1 −

B

Bmax 
) B                                                                  (11) 

where B is average tumor radiance, which is a surrogate for tumor size, μ is tumor cell proliferate rate in 

day-1, and Bmax is the equivalent average radiance of growth-limiting tumor size (Supplementary 

Materials 1). To account for immune evasion, we assumed tumor cells can evade CAR-NKs by 

downregulating CAR target and gain mutations over generations. In the lymphoma mouse model, CD19 

expressions are sampled and randomly assigned to tumor cell agents to represent tumor heterogeneity. We 

assumed tumor cells has a probability of gaining immune resistant mutation 𝑝𝑚𝑢𝑡𝑎𝑡𝑒 of 0.00191, which is 

added to the probability of evading NK cell cytotoxic killing 𝑝𝑒𝑣𝑎𝑑𝑒 . In models with specific CAR targets 

such as anti-CD19, the expression of the target in tumor cell agents modifies 𝑝𝑒𝑣𝑎𝑑𝑒 . For example, 𝑝𝑒𝑣𝑎𝑑𝑒 

of tumor cells expressing high CD19 is proportionally reduced by a constant scaling factor. In addition to 

proliferation, death, mutation, a tumor cell agent is able to move to neighboring grids at every model step 

with a probability mB.  

 

Integrate functional genetic effects in cell agents 

Single-cell RNA sequencing data processing 

Longitudinal scRNA-seq data of NK cells and tumor cells were obtained from GSE190976 and processed 

as described in Supplementary Materials of Li et al.56. GOBP gene set density scores (GSDS) were 

calculated using R package “gsdensity”92. Pre-infusion scRNA-seq data of IL-15 and IL-21 NK cells20 were 

obtained from GSE227098 in Shanley et al. 20.  
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Feature selection using linear mixed effects modeling 

NK cell lysis killing is tightly regulated by a repertoire of activating surface receptors inhibitory receptors 

such as Fc receptor FcγRIIIa (CD16), NKG2D, and KIR2DL173,76,93. To understand the molecular features 

underlying NK cells anti-tumoral capability, we performed feature selection on a literature-curated list of 

112 NK cell genes and 5 GO Biological Process (GOBP) pathways23,55,76,94–97 (Supplementary Materials 

2)  that regulate NK cell activation, inhibition, OXPHOS, proliferation, survival, cytotoxicity, regulatory 

function, and memory function.  

To select significant genes and pathways and quantify their effects on NK cell cytotoxicity, we applied 

linear mixed-effects (LME) modeling to paired scRNA-seq data of NK cells and tumor radiance data from 

the lymphoma mouse model in Li et al.56 using R package lme498. We assume that gene-expression patterns 

in NK cells are associated with function of NK cells and their anti-tumor control effecting tumor size at the 

next timepoint, as NK cells required tumor antigen stimulation to sustain and might have drastically waned 

at the time of sample collection if tumors were cleared. Tumor loads were at D28 were excluded due to cell 

count scarcity. The cross-lagged LME model for NK cells, 𝑀𝑁𝐾, included random intercept effects for time 

and group to consider temporal and inter-group variations. Mnk was defined as: 

𝐘 = 𝐗𝐍𝐊𝛃𝐍𝐊 + 𝐙𝐍𝐊𝐮𝐍𝐊 + 𝛜𝐍𝐊,                                                          (12) 

where 𝐘 = (yk)K are means of tumor radiance in unit of p ∙ s−1cm−2sr−1 across all mice in the k-th group 

at 𝑡2,…,𝑡𝑇, 𝑘 ∈ {1, … , 𝐾}. 𝐗 = (xkig)
K∗I∗G

 are gene expressions of the g-th gene of the i-th cell in the k-th 

group at a timepoint 𝑡2, … , 𝑡𝑇−1 , 𝑔 ∈ {1, … , 𝐺𝑖}, 𝑖 ∈ {1, … , 𝐼𝑘}. 𝛃 = (βg)
G

 are regression coefficients of 

fixed effects for the g-th gene. 𝐙 = (𝐙𝐣)J
 are random effects for time and group, j ∈ {𝐭, 𝐤}, . 𝐮 = (uj)J

 are 

random effects regression coefficient for the j-th random effect, uj~N(0, Guj
) and Guj

 is the covariance 

matrix, and 𝛜 = (ϵki)K∗I: random error for the i-th cell in the k-th group, ϵki~N(0, σe
2). Notations in the 

format (𝑋𝑖 )𝐼 denotes data 𝑋 of the i-th element in a matrix 𝐼, and 𝐼 can be multi-dimensional. 

We used a two-step approach for model variable selection and fitting. In the first round of fitting, single 

covariate LME models were fitted for each gene and GOBP. Significant covariates were retained in the 

final model based on p values adjusted for multiple testing. LME models were fitted using restricted 

maximum likelihood and Nelder-Mead optimizer given small sample sizes. Due to overlaps between genes 

selected based on literature reviews and relevant GOBP gene sets, we compared models with and without 

GOBP gene sets and the null model with only random effects using Akaike information criterion (AIC) and 

Bayesian information criterion (BIC). The LME model with coefficients in Supplementary Data 1 had the 

smallest AIC and BIC. We currently considered a total of 117 genes and GOBPs for NK cell genetic effect 

model, which can be further expanded to include additional genes and pathways. As the number of genes 

and pathways of interest exceeded the number of observations, this approach allows efficient 

dimensionality reduction while controlling for false discoveries. 

Integrate functional genetic effects in cell agent cytotoxicity 

Fixed effects regression coefficients of significant genes and GOBP pathways, 𝛃𝐍𝐊, were multiplied with 

-1 to further parametrize cytotoxic NK cell agents’ probability of killing a tumor cell upon contact, 𝑝𝑘𝑖𝑙𝑙, 

as described in Methods section “Cytotoxic killing activity.” In the lymphoma model, the scRNA-seq data 

at pre-infusion were sampled and randomly assigned to cytotoxic NK cell agents for respective experiment 

groups. In the GBM model, the scRNA-seq data at pre-infusion were sampled and randomly assigned to 
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cell agents for respective NK cell groups. The expressions multiplied with coefficients derived above and 

contributed to𝑝𝑘𝑖𝑙𝑙. 

Tumor cell viability model 𝑀𝑇𝑀 

In addition to 𝑀𝑁𝐾, we also built an LME model for tumor cells with scRNA expressions of tumor cells 

and tumor radiance. Tumor cells are intrinsically programmed to proliferate and survive88. We focused on 

17 GOBPs governing tumor cell proliferation, cell cycle regulation, and apoptosis. We also included HLA-

E, HLA-C, HLA-B, HLA-A, HLA-F, HLA-G, HLA-DOA, HLA-DOB for immune recognition99, BRAF, NRAS, 

KIT, MAPK2 for uncontrolled cell growth100, ERBB4, GRIN2A, and GRM3 for tumor progression, RAC1 

and PREX2 for cell motility and metastasis101,102, HIF1AN, HIF1A-AS1, HIF1A, and HIF1A-AS2 for 

hypoxia response103, and VEGFC, VEGFA, VEGFD, and VEGFB for angiogenesis and metastasis104. The 

complete list is provided in Supplementary Data 1. 

To select significant genes and pathways and quantify their effects on tumor viability, we applied an LME 

model, MTM, to paired scRNA-seq data of tumor cells and tumor radiance data from the lymphoma mouse 

model56 using R package lme498. In MTM, we proposed that tumor viability was associated tumor scRNA-

seq data at the current time point. MTM was defined as: 

𝐘 = 𝐗𝐍𝐊𝛃𝐍𝐊 + 𝐙𝐍𝐊𝐮𝐍𝐊 + 𝛜𝐍𝐊,                                                          (13) 

where 𝐘 = (yk)K: mean average tumor radiance in unit of p/s/cm2/sr of mice in the k-th group, 𝐗 =

(xkig)
K∗I∗G

: gene expression of the g-th gene of the i-th cell in the k-th group, 𝛃 = (βg)
G

: fixed effects 

regression coefficient for the g-th gene, 𝐙 = (Zj)J
: random effects for time and group, Zj = (t, k), 𝐮 =

(uj)J
: random effects regression coefficient for the j-th random effect, uj~N(0, Guj

) and Guj
 is the 

covariance matrix, and 𝛜 = (ϵki)K∗I: random error for the i-th cell in the k-th group, ϵki~N(0, σe
2). 

 

Simulation 

Evaluation metrics 

To make simulation data comparable to experimental observations, tumor progression in simulations and 

in experimental observations were normalized by tumor-only control measurements, respectively. The 

simulated normalized tumor progression was calculated as 𝑟𝑠𝑖𝑚 =
𝑇𝑔

𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙
, where 𝑇𝑔(𝑡) =

𝑁𝑔(𝑡)

𝑁0
 was tumor 

cell agent count at timepoint 𝑡  in group 𝑔  normalized by tumor cell agent count at timepoint 0, 

𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡) =
𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡)

𝑁0
 was tumor cell agent count at timepoint 𝑡  in the tumor-only control group 

normalized by tumor cell agent count at timepoint 0. The observed normalized tumor progression was 

calculated as 𝑟𝑜𝑏𝑠 =
𝑉𝑔

𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙
, where 𝑉𝑔(𝑡) is the average tumor radiance in p ∙ s−1cm−2sr−1 at timepoint 𝑡 

in group 𝑔 and 𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡) is the average tumor radiance in p ∙ s−1cm−2sr−1 at timepoint 𝑡 in the tumor-

only control group. Simulation results were evaluated on normalized tumor progression 𝑟𝑠𝑖𝑚 and 𝑟𝑜𝑏𝑠 using 

the total loss 𝐿𝑡𝑜𝑡𝑎𝑙 calculated as follows: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑀𝑆𝐸 + 𝐿𝑀𝐴𝐸 + Δ𝐴𝑈𝐶 + 1 − 𝑅2                                                        (14) 

where 𝐿𝑀𝑆𝐸 = 𝑀𝑆𝐸(𝑟𝑠𝑖𝑚, 𝑟𝑜𝑏𝑠) is the mean squared error (MSE) loss, 𝐿𝑀𝐴𝐸 = 𝑀𝐴𝐸(𝑟𝑠𝑖𝑚, 𝑟𝑜𝑏𝑠) is mean 

absolute error (MAE) loss, Δ𝐴𝑈𝐶 = |𝐴𝑈𝐶(𝑟𝑠𝑖𝑚) − 𝐴𝑈𝐶(𝑟𝑜𝑏𝑠)| is the difference between the area under the 

curve (Δ𝐴𝑈𝐶) in simulated and observed data, and 𝑅2 is coefficient of determination calculated by scikit-
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learn function r2_score105. Each component was chosen to capture complementary aspects of model 

performance. MSE captures large deviations between simulated and observed tumor trajectories, while the 

MAE provides a robust measure less influenced by outliers. Δ𝐴𝑈𝐶 compares the integrated tumor burden 

over time. 𝑅2  quantifies the proportion of variance explained by the model; including 1 − 𝑅2  ensures 

penalization of poor overall fit even when pointwise errors are small. Together, these terms balance 

sensitivity to local fluctuations, robustness to noise, and fidelity to global tumor control dynamics.  

 

Simulation initiation 

The simulations were initiated with a 2D discrete Moore space. A tumor niche was initiated with 1000 

tumor cell agents in a 50 by 50 grid, corresponding to a spatial density that supported biologically realistic 

encounter rates while avoiding overcrowding or excessive sparsity. The number of NK cells varied 

depending on the effector-to-target ratio (ETR). We evaluated alternative densities and found that both 

lower and higher initial occupancies (≤ 0.2 cell/grid or ≥ 1.2 cell/grid) reduced fitting accuracy given the 

same ETR of 1.0 (Supplementary Materials 3.1). Because of the intra-tumoral administration of NK cells 

in the GBM mouse model, we assumed no loss of NK cells in infusion and an ETR of 1:5 for all three 

groups, same as the mouse experiment setup. Simulation data were aggregated to compute the mean and 

standard deviation.  

Calibration 

The large parameter space of the proposed model requires both literature-informed parameter setting and 

multi-stage parameter calibration. To reduce the high computation demand of parameter search of ABM, 

we iteratively optimized the following hyperparameters prior to more granular parameter search for 

parameters most pertinent to NK cell efficacy. Hyperparameters for NK cell proliferation function, 

including Hill’s equation exponent of tumor antigen effect (𝛾1), Hill’s exponent of cytokine effect (𝛾2), 

half-maximum tumor load ( 𝐵50 ), and half-maximum of cytokine’s effect ( 𝐶50 ) are calibrated on 

CAR19IL15 NK cell and NT NK cell autonomous growth data from Liu et al19. Proliferation rate (𝑝𝐵) and 

death rate of tumor cells (𝑑𝐵) were estimated based on lymphoma and glioblastoma studies by Li et al.23 

and Shanley et al.20, respectively. Three hyperparameters for tumor cells were fixed as constant based on 

literature-informed assumptions. Tumor cell movement probability (𝑚𝐵) and speed (𝑣𝐵) were set to be 

small positive constants based on the assumption that tumor cells have relatively lower mobility than NK 

cells. Tumor mutation rate 𝑝𝑚𝑢𝑡𝑎𝑡𝑒 was set as a small positive to represent tumor cells’ capability to gain 

immune resistant mutation91. After setting these parameters, number of tumor cells 𝑛𝑡𝑢𝑚𝑜𝑟 , number of 

initial cytotoxic NK cells 𝑛𝑁𝐾 , NK cell baseline proliferation rate 𝑝𝑐 , NK cell death rate 𝑑𝑐 , NK cell 

proliferation decay rate 𝑏𝑝𝑐
, NK cell serial killing capacity (SKC) 𝑆0 , and baseline cytotoxicity 𝜇𝑐  are 

varied to search for optimal fitting.  

In lymphoma mouse model, data points at day 0, 7, and 14 post-engraftment (equivalent to day 7 and 14 

post-infusion) were used for model calibration. The assumption that engraftment occurred seven days post 

infusion was based on the comparable tumor radiance in mouse models at day 7 (Figure 2C in Li et al.56). 

For the lymphoma mouse model, data points after post-engraftment day 14 (equivalent of post-infusion day 

21) were removed due to lack of data points for the Raji control group. Each simulation in lymphoma 

autonomous growth, rechallenge assay, and mice model simulations was repeated 30 times. In GBM mouse 

model, data points at day 14, 22, and 37 after intra-tumoral injection were used for model calibration. Each 

simulation in the GBM mouse model was repeated 5 times due to computation time constrain.  
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We estimated the ETR by selecting the ETR that minimize the total loss across groups. The remaining 

parameters were selected by minimizing total loss under the ETR. The top 10 parameters with minimum 

total losses were also reported. The lymphoma and GBM ABMACT model parameters are listed in Table 

1. 

 

Table 1 Model parameters. 

[Table 1] 

 

Independent validation 

We tested the calibrated non-transduced NK (NT-NK) cell model using the K562 cell line co-culture 

experiment from Dufva et al52 that were not used in the calibration process. Genetic features of NT-NK 

cells and tumor cells are obtained from scRNA-seq data in Dufva et al.52 under the Synapse accession 

number syn52600685. K562 myeloid leukemia cell line coculturing with NT-NK cells was simulated using 

the calibrated ABMACT. GSEA scores are calculated using fgsea106 in R. Simulations followed experiment 

setup of a 1:4 effector-to-target ratio (ETR) and an estimated density of 0.5 million tumor cells per ml. 

3,125 virtual tumor cells and 782 virtual NT-NK cells were randomly placed in a 50 by 50 Moore’s grid 

with each grid cell representing a 50𝜇𝑚 by 50𝜇𝑚 space. The simulations followed the co-culture time of 

24 hours, during which NT-NK cells autonomously interacted with tumor cells.  

 

Feature importance sensitivity analysis  

Aggregating simulation data from in silico perturbation experiments of ABMACT, we trained a Random 

Forest Regressor (RFR) using scikit-learn105 to evaluate the importance of model parameters on 

accumulated tumor growth and prediction accuracy. Tumor growth was measured by the area under the 

curve (AUC) over a 35-day simulation period. Prediction accuracy was measured by MSE between 

simulated data and observed experiment data in the xenograft lymphoma mice model in Li et al.56. Feature 

importance was evaluated by the mean decrease in impurity (MDI) and permutation importance (PI). MDI 

measures the information gain of features in predicting outcomes. In the case of predicting a continuous 

outcome variable, MDI measures the reduction in MSE when splitting a variable at a tree node.107. PI 

measures the reduction in the model accuracy score when randomly shuffling a feature’s value, overcoming 

the potential biases of MDI for highly variable features108. Sensitivity analysis simulations were repeated 

10 to 30 times. 

To evaluate the robustness of model parameters, we assessed the variance explained by the sensitivity 

analysis parameters using linear regression model and type II ANOVA test. To test robustness to sampling 

variability, we subsampled 80% of the sensitivity analysis dataset and refitted the Random Forest Regressor 

30 times.  To evaluate interdependencies between model parameters, we conduct global sensitivity analysis 

by simulating CD19IL15CAR-NK cell lymphoma model with ± 10% variations and analyzed the results 

using Spearman’s correlation.  

Detailed sensitivity analyses are provided in Supplementary Materials 4. 
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Uncertainty estimation 

Coefficient of variation 

We followed the approach by Nikishova et al109 and evaluated simulation stability using coefficient of 

variation (𝐶𝑉 = 𝜎/𝜇) on accumulated tumor progression, measured by normalized area under the curve 

(AUC), of ABMACT calibrated on the lymphoma model by Li et al.23 (Supplementary Materials 3.2). 

Each simulation was repeated 10 times with the calibrated parameters over 35 simulation days. Normalized 

tumor progression AUC was calculated by first dividing tumor cell agent population counts in the treatment 

group by the mean tumor population count in the tumor-only control group and then averaging over time. 

The mean and standard deviation were calculated over repeats for each treatment group. 

 

Simulation-based inference parameter distribution estimation 

We used a simulation-based inference workflow by Boelts et al.110 to create surrogate models and estimate 

parameter distributions. Using the sbi Python package by Boelts et al.110 and the method by Papamakarios 

& Murray111, we trained a posterior estimation model on simulation lymphoma model data generated by 

ABMACT. In total 11 parameters were evaluated, including ETR, cytotoxic NK cell proliferation rate 𝑝𝐶 , 

NK cell migration rate 𝑚𝑁, NK cell death rate 𝑑𝐶 , NK cell baseline cytotoxicity 𝜇𝐶 , NK cell serial killing 

capacity 𝑠, CAR effect coefficient 𝛾, NK cell genetic effect coefficient 𝑏, and three hyperparameters for 

NK cell proliferation rate (tumor load half-maximum 𝐵50, cytokine concentration half-maximum 𝑐50, and 

decay rate 𝑏𝑝𝐶
). The observations to were summarized to tumor population fold change normalized to tumor 

only control at day 0, 7, 14 post-engraftment. To estimate posterior distributions of parameters, normalized 

tumor progression in the mice models of the NT, CAR19, and CAR19IL15 NK cell groups in Li et al.23 

were given to the surrogate model and 1000 posterior samples of the parameters were drawn. Mean and 

standard deviation of posterior distributions are reported in Supplementary Data 2. 

 

Benchmarking with ordinary differential equations  

To benchmark ABMACT, we compare it with the commonly used ordinary differential equation (ODE) 

models on the lymphoma mice model dataset using the total loss metrics (𝐿𝑡𝑜𝑡𝑎𝑙) specified in “Evaluation 

metrics” (Supplementary Material 3.4). ABMACT and ODE models were calibrated on the same 

xenograft lymphoma mice model data in Li et al. 56. The ODE fitting results are provided in Supplementary 

Data 3. 

The ODE models are adapted from the approach in Kirouac et al.50 and constructed with consideration of 

NK cell cytotoxicity and transitions between phenotypes as follows: 

𝑑𝐵

𝑑𝑡
= 𝜇𝐵𝐵 − 𝑝𝑘𝑔

𝑁𝑐                                                                  (15) 

𝑑𝑁𝑐

𝑑𝑡
= 𝜇𝑔 (

𝐵𝑚1

𝐵50𝑚1 + 𝐵𝑚1
) 𝑁𝑐 − 𝑑𝑔𝑁𝑐 − (1 −

𝑠𝑔

𝑆𝑔
) 𝑁𝑐 − 𝑝𝑣 (

1

1 + 𝐵𝑚2
) 𝑁𝑐                (16) 

𝑑𝑠𝑔

𝑑𝑡
= −𝑝𝑘𝑔

+ 𝜇𝑔 (
𝐵𝑚1

𝐵50𝑚1 + 𝐵𝑚1
) 𝑆𝑔                                                (17) 

𝑑𝑁𝑒

𝑑𝑡
= (1 −

𝑠𝑔

𝑆𝑔
) 𝑁𝑐 − 𝑑𝑔𝑁𝑒                                                        (18) 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

𝑑𝑁𝑣

𝑑𝑡
= 𝑝𝑣 (

1

1 + 𝐵𝑚2
) 𝑁𝑐 − 𝑑𝑣𝑁𝑣                                                    (19) 

Here, tumor cell population 𝐵 had proliferation rate 𝜇𝐵. Cytotoxic NK cells 𝑁𝑐 could kill tumor cells at a 

probability of 𝑝𝑘𝑔
. Different NK cell products possess varying properties, the subscript 𝑔  denotes 

parameters specific to NK cell group 𝑔. 𝑁𝑐 population proliferated at a baseline proliferation rate 𝜇𝑔 and 

modified by the presence of tumor antigen. The modification effect of tumor antigen was represented by 

the Hill’s function 
𝐵𝑚1

𝐵50𝑚1+𝐵𝑚1
, where 𝐵50 was the half-maximum population count of tumor cells and 𝑚1 

was Hill’s exponent. 𝑁𝑐 died at a probability of 𝑑𝑔. The exhaustion of cytotoxic NK cells was modelled by 

the reduction of average serial killing capacity of the population as (1 −
𝑠𝑔

𝑆𝑔
) 𝑁𝑐, where 𝑠𝑔 measured the 

average serial killing capacity of 𝑁𝑐, and 𝑆𝑔 was the maximum serial killing capacity. 𝑠𝑔 was reduce by the 

average killing rate 𝑝𝑘𝑔
 and increased by the generation of new cytotoxic NK cells. When tumor cells were 

cleared, 𝑁𝑐 could also transform to the vigilant phenotype 𝑁𝑣 at a probability 𝑝𝑣. In the modifier 
1

1+𝐵𝑚2
, 

𝑚2 was a large enough constant so that the transformation only occurred after B approached 0. 𝑁𝑒 denoted 

the number of exhausted NK cells. 𝑑𝑣 was vigilant NK cells’ death rate.  

Parameter fitting was obtained by minimizing the total loss 𝐿𝑡𝑜𝑡𝑎𝑙 of normalized tumor progression between 

ODE prediction and experimental data in the lymphoma mouse model by Li et al.23 The total loss included 

MSE, MAE, difference between simulated and observed tumor progress area under the curve Δ𝐴𝑈𝐶 , and 

coefficient of determination 𝑅2.  Random parameter initialization and fitting were performed and repeated 

30 times. The top 10 best fitting with the smallest loss were selected.  

 

Proof-of-concept models 

TME physical barriers 

Spatial constraints on NK cell anti-tumoral efficacy can be reflected by NK cell infiltration. Direct 

quantification of physical barriers would require new experimental measurements and specialized 

algorithms, which would add complexity to the model. As a pragmatic alternative, we introduced two 

surrogate measures of physical barriers to NK cell infiltration and evaluated their impact on accumulated 

tumor growth using the area under the curve (AUC). We performed simulations on 1) varying NK cell 

movement probability (𝑚𝑁 ), and 2) varying distances between NK cell infiltration border and tumor 

seeding area under the setting of the CAR19IL15NK cell treatment of lymphoma mice models in Li et al.23 

(Supplementary Materials 5.1)  

Migration restriction: Resistance from physical barriers such as extracellular matrix was modeled by 

varying the NK cell migration probability (𝑚𝑁). The original calibrated model used 𝑚𝑁 = 0.9, which was 

reduced to 0.7, 0.5, and 0.3 to simulate progressively restricted migration.  

Migration distance: The tumor seeding area was varied to represent different distances that NK cells must 

travel to reach tumor cells. Distance was quantified as the ratio between tumor seeding area diameter and 

the simulation space width. Relatively to the control setup, the distance was increased by 5% and 15% from 

the original model setup (control). All other parameters were kept consistent with the calibrated model.  
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NK cell movement dynamics 

We developed a preliminary NK cell agent model that takes into consideration tissue density and movement 

modality (Supplementary Materials 5.2). We introduced a modifier function to NK cell movement speed 

𝑣𝑁 based on TME density as follows: 

𝑣𝑁
′ = 𝑣𝑁(1 − 𝐴𝑐𝑒𝑙𝑙/𝐴𝑚𝑎𝑥), 

where 𝐴𝑐𝑒𝑙𝑙 is the total cell space occupied and 𝐴𝑚𝑎𝑥 is the maximum capacity. NK cell movement will be 

reduced in dense areas to model the difference in movement in liquid tumors versus solid tumors such as 

glioblastoma. In addition, based on the experiment by Dondossola et al66, NK cells displayed movement 

modalities that are associated with their effector function. Non-engaged NK cells showed an average 

moving speed of 5.83 ± 0.86 μ𝑚/𝑚𝑖𝑛 and are less prone to cytotoxic killing, while engaged NK cells 

showed an average moving speed of 2.71 ± 0.71 μ𝑚/𝑚𝑖𝑛 and more prone to cytotoxic killing. Based on 

this experiment, we modified the movement function of NK cell agents. 

Hypoxic condition 

To demonstrate how niches of resistance can suppress NK cell activities, we implemented a proof-of-

concept model for hypoxic regions created tumor oxygen competition and tracked NK cell dynamics 

(Supplementary Materials 5.3). Default oxygen concentration of 1.35e-8ml/grid and standard oxygen 

consumption rate of 2.16e-9ml/cell/hr per unit activity follows the ABM simulation setup in the study by 

Jalalimanesh et al.112 Pathological hypoxia is defined as the oxygen level reaching 20% of the default 

oxygen concentration113. We implemented the following rules: 1) NK cell agents exhibit reduced 

proliferation and cytotoxicity under hypoxic conditions; 2) Under prolonged hypoxia, tumor cell agent 

proliferation will also reduce. 

 

Statistics and Reproducibility 

Two-tailed Mann-Whitney U tests with a significance level of 0.05 were used for testing differences in 

simulated overall tumor progression (AUC) between conditions. Student’s t-tests were used for comparing 

genetic effects metrics. P-value adjustment for multiple testing was performed using Benjamini-Hochberg 

correction. Boxplots show the median (center line), 25th–75th percentiles (box), and 1.5× IQR (whiskers). 

Points represent outliers. 

 

Code Availability 

The feature selection using LME model was performed in R (v4.2.2)114. ABM simulations were 

performed in Python (v3.9) 115 using the MESA framework (v2.2.4)68. The source code for reproducing 

the work is accessible at: https://github.com/KChen-lab/ABMACT. 

Data Availability 

Data for generating figures are provided in Supplementary Data 4 and at 

https://doi.org/10.5281/zenodo.17818689. Public scRNA-seq data used in this work can be obtained from 

GSE190976, GSE227098, and syn52600685. 
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Table 1 

Parameter Description Value Unit Source 

𝑝𝐶  Proliferation rate 

of cytotoxic NK 

cell 

Vary by cell 

product 

𝑑𝑎𝑦−1 Model fitting on 

data from Liu et 

al.19 

𝑑𝐶  Death rate of 

cytotoxic NK cell 

Vary by cell 

product 

𝑑𝑎𝑦−1 Model fitting on 

data from Liu et 

al.19 

μc Baseline NK cell 

cytotoxicity mean 

Vary by cell 

product 

Dimensionless Model fitting on 

data from Li et 

al.23 

σc Baseline NK cell 

cytotoxicity 

standard deviation 

0.01 Dimensionless Fixed 

𝑏 NK cell 

cytotoxicity 

genetic effect 

coefficient 

0.1 Dimensionless Parameter search 

𝛾 Chimeric antigen 

receptor effect 

exponent 

CAR: 0.5 

NT: 1.0 

Dimensionless Parameter search 

𝛽𝐺𝑁𝐾
 Coefficient vector 

of significant NK 

cell cytotoxicity 

molecular features 

𝐺 

Supplementary 

Table S2 

Dimensionless LME model 

fitting on 

lymphoma mice 

model data in Li 

et al. 23 

𝑔𝑁𝐾 Normalized RNA 

expressions and 

GOBP densities of 

NK cells 

Supplementary 

Data 1 

Dimensionless 23 

𝑚𝑁 Movement 

probability of NK 

cells 

0.9 Dimensionless Fixed  

𝑣𝑁 Movement speed 

of NK cells 

39 𝜇𝑚 ∙ ℎ𝑟−1 116 

𝑆0 Initial NK cell 

serial killing 

capacity 

Vary by cell 

product 

cell Model fitting on 

data from Marin 

et al.5 

𝑏𝑝𝑐
 Natural decay 

parameter for 

cytotoxic NK cell 

proliferation rate 

Vary by cell 

product  

Δ𝑇−1 Model fitting on 

data from Liu et 

al.19 
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𝐵50 Half-maximum 

tumor load 

25 Dimensionless Model fitting on 

data from Liu et 

al.19 

𝑐50 Half-maximum 

cytokine level 

70 Dimensionless Model fitting on 

data from Liu et 

al.19 

𝛾1 Hill’s equation 

exponent of tumor 

antigen effect 

0.2 Dimensionless Model fitting on 

data from Liu et 

al.19 

𝛾2 Hill’s equation 

exponent of 

cytokine effect 

0.2 Dimensionless Model fitting on 

data from Liu et 

al.19 

𝑡50𝐼𝐿15
 Half-life of IL-15 2.5hr Δ𝑇−1 80 

𝑡50𝐼𝐿21
 Half-life of IL-21 0.2hr Δ𝑇−1 117 

pevade Probability of B 

cell lymphoma 

tumor cells 

evading immune 

surveillance 

∝ 𝑔{𝐵,𝐶𝐷19}
−1  Dimensionless 118 

𝑝𝑉 Proliferation rate 

of vigilant NK 

cells 

1e-3 𝑑𝑎𝑦−1 Fixed to be a 

small value based 

on literature 
48,49,82–87 

𝑑𝑉 Death rate of 

vigilant NK cells 

1e-3 𝑑𝑎𝑦−1 Fixed to be a 

small value based 

on literature 
48,49,82–87 

𝑝𝐸 Proliferation rate 

of exhausted NK 

cells 

0 𝑑𝑎𝑦−1 Fixed 

𝑑𝐸 Death rate of 

exhausted NK 

cells 

Vary by cell 

product 

𝑑𝑎𝑦−1 Model fitting on 

data from Liu et 

al.19 

𝑘𝐵−
 Transition 

probability of 𝑁𝐶 

to 𝑁𝑉 

1.0 Dimensionless Fixed 

𝑘𝐵+
 Transition 

probability of 𝑁𝑉 

to 𝑁𝐶 

0.9 Dimensionless Fixed 

𝑝𝐵𝑙𝑦𝑚𝑝ℎ𝑜𝑚𝑎
 Proliferation rate 

of B cell 

lymphoma tumor 

cell 

0.455 𝑑𝑎𝑦−1 Modeling fitting 

on data from Li et 

al.56 
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𝑝𝐵𝑔𝑙𝑖𝑜𝑏𝑙𝑎𝑠𝑡𝑜𝑚𝑎
 Proliferation rate 

of glioblastoma 

tumor cell 

0.223 𝑑𝑎𝑦−1 Modeling fitting 

on data from 

Shanley et al.20 

𝑑𝐵 Death rate of 

tumor cell 

1e-4 𝑑𝑎𝑦−1 Modeling fitting 

on data from Li et 

al.23 

𝑚𝐵 Movement 

probability of 

tumor cells 

0.1 Dimensionless Fixed  

𝑣𝐵 Movement speed 

of tumor cells 

1 𝑔𝑟𝑖𝑑 𝑝𝑒𝑟 𝑠𝑡𝑒𝑝 Fixed 

𝑝𝑚𝑢𝑡𝑎𝑡𝑒 Percentage 

increase of 𝑝𝑒𝑣𝑎𝑑𝑒  

1e-3 Dimensionless Fixed 

Δ𝑇 Model step length 4 ℎ𝑟 73 

𝑙 Grid cell size 50 𝜇𝑚 Fixed 

𝐵𝑀𝑎𝑥 Maximum number 

of tumor cells per 

grid cell 

25 cell Fixed 
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Editor Summary 
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ABMACT, an agent-based model of adoptive cell therapy, recapitulated cellular dynamics in two 

cancer preclinical models and showed that enhancing immune cell proliferation, cytotoxicity, 

and serial killing capacity is critical for optimal efficacy. 
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