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Abstract

Adoptive cell therapies (ACT) leverage tumor-immune interactions to cure cancer. Despite promising phase
I/ clinical trials of chimeric-antigen-receptor natural killer (CAR-NK) cell therapies, molecular
mechanisms and cellular properties required to achieve clinical benefits in broad cancer spectra remain
underexplored. While in vitro and in vivo experiments are essential, they are expensive, laborious, and
limited to targeted investigations. Here, we present ABMACT (Agent-Based Model for Adoptive Cell
Therapy), an in silico approach employing agent-based models (ABM) to simulate the continuous course
and dynamics of an evolving tumor-immune ecosystem, consisting of heterogeneous “virtual cells” created
based on knowledge and omics data observed in experiments and patients. Applying ABMACT in multiple
therapeutic contexts indicates that to achieve optimal ACT efficacy, it is key to enhance immune cellular
proliferation, cytotoxicity, and serial killing capacity. With ABMACT, in silico trials can be performed
systematically to inform ACT product development and predict optimal treatment strategies.

Introduction

Adoptive cell therapies (ACT) have shown substantial progress in combating cancer and other diseases®™°.
By administrating lymphocytes with intrinsic or engineered antitumoral capabilities, ACTs harness the
power of the immune system to eliminate tumors®. Recent Chimeric-antigen-receptor natural killer (CAR-
NK) cell therapies have been identified as a promising alternative to CAR-T cell therapies, given their
ability to address multiple limitations of CAR-T therapies®’® >, As a low-cost, low-toxicity, off-the-shelf
solution, various CAR-NK cell therapy products have burgeoned to deliver benefits in a broad spectrum of
clinical applications**®, CAR extracellular domain engineering provides specificity for anti-tumor effects,
such as anti-CD123 targeting acute myeloid leukemia cells'®, anti-CD19 targeting B cell lymphoma®’, and
anti-CD70 for hematological malignancies and solid tumors®®. Various genetic engineering approaches can
augment CAR-NK cell functions: armoring NK cells with co-stimulatory cytokine vectors such as IL-15,
IL-21%°, and STING agonist®! can boost NK cell proliferation and killing capability, while CRISPR editing
such as CISH deletion® increases NK cell metabolic fitness. In the case of cord-blood derived CAR-NK
cells, donor characteristics can dictate CAR-NK function and clinical efficacy. Increased inflammation,
hypoxia, and cellular stress have been associated with suboptimal cord blood preservation, and CAR-NK
cells engineered from these cords have reduced anti-tumor efficacy®>?. Despite significant advances,



applications of CAR-NK ACT are predominantly in preclinical and phase-1/11 trial stages™**, highlighting
both the potential and need for further investigation.

As “living drugs”, ACTs present distinct opportunities and challenges in clinical development®’. ACT
achieves treatment responses through interactions between the product and the target cells. The cell
products are often genetically modified to boost therapeutic potential. However, both aspects are difficult
to assess. While in vitro and in vivo models have been instrumental in advancing ACT development, they
are often costly, labor-intensive, and limited in their ability to replicate the complexity of the interactions
between the human immune system and the tumor microenvironment (TME)?*?. The TME is characterized
by diverse and evolving cell populations, along with a rich and dynamic molecular environment, which
cannot be fully recapitulated using traditional cell-line models®. Organoids are engineered to replicate the
morphology and functions of tissues and organs, yet ?’still struggle with repeatability, cell maturation, and
accurately replicating the complexity of native tissue?’. Although patient-derived xenograft (PDX) animal
models aim to reflect TME heterogeneity, they still diverge significantly from human physiology and
pharmacology, limiting their translational relevance®. Perturbing PDX models is time consuming and
expensive, limiting exploration and hypothesis testing. Further, evaluating treatment responses, particularly
cellular Kinetics and molecular interactions, such as peak concentration and target interaction rates, remains
a challenge in these experimental systems due to the difficulties of continuous monitoring®. A more
comprehensive understanding of multi-scale dynamics at both cellular and sub-cellular level is essential to
advance ACT development. This includes capturing the heterogeneous and evolving cell populations,
modeling phenotypic and functional states of individual cells, and accounting for their molecular variations.
Addressing these challenges requires innovative approaches that combine experimental data with
mechanistic and computational modeling, which have the potential to provide deeper insights into complex
biological dynamics.

Mathematical and computational models have been utilized to understand complex biological systems,
spanning from organisms to molecules?® %, Recent advancements in ACTs and the growing availability of
data have facilitated their modeling, though further efforts are needed, particularly in emerging areas such
as engineered NK cell therapy. Machine learning models, such as random forests, support vector machines,
and neural networks, estimate statistical relationships between features (e.g., cell counts, cell states, and
experimental conditions) and outcomes, and those amongst features by optimizing predictive accuracy
against data. However, the learned parameters are often difficult to interpret in terms of underlying
biological mechanisms. This limitation reduces their utility for generating mechanistic insights and
translating findings into clinical applications®. Sparse data points collected in in vitro or in vivo experiments
also restrict these models’ ability to accurately capture the dynamics of ACT. Mechanistic models such as
ordinary differential equations (ODE), partial differential equations (PDE), and stochastic differential
equations (SDE) have been developed to describe the Kinetics of cell populations and cytokines in the
TME®. These approaches offer improved efficiency and mathematical interpretability and are more suited
in modeling low-dimensional cell properties and spatial gradients than single-cell level specifications®®.
Among the vast suite of in silico models, Agent-Based Models (ABM)*"*, also known as individual-based
models, offer the unique advantage of simulating the tumor microenvironment using a bottom-up approach
to model individual cell behaviors?®%®, ABMs represent cells and molecules in the TME as agents and
environment attributes, in which the behaviors of each type of agent are coded via simplifications and
approximations of biological processes®*®. This enables ABM to have high temporal, spatial, and multi-
scale data granularity and interpretability, overcoming challenges in above mentioned modeling methods
such as ODE and neural networks?, Extensive research has demonstrated the potential of using ABM to



reproduce the complex interactions in the TME and predict tumor progression or treatment outcomes®64%-

*8, Several studies have attempted to model heterogeneity of cell states by summarizing functional effects
of genes®*%414 However, these effects are usually binarized as positive and negative regulators of cellular
functions without considering their relative importance. Moreover, the application of ABMs to cellular
immunotherapies, particularly engineered NK cell therapies, remain unexplored. Several critical questions
must be addressed: How can a system of cell agents be designed to sufficiently capture the diversity of cell
types and phenotypic transitions in NK-ACT? How can molecular profiles be integrated with cellular
functions to model functional heterogeneity? How can knowledge and data be balanced to ensure both
biological interpretability and predictive accuracy?

To investigate these questions, we have developed ABMACT, a mechanistic modeling framework that
reconstructs cellular dynamics of an evolving tumor-immune ecosystem, consisting of “virtual” immune
cells and tumor cells defined by immunological knowledge and single cell molecular profiles obtained in
experiments. We focused on NK cells in this first study and constructed an ABM with submodules of
cellular functions and cell-cell interactions based on our biological knowledge of NK cells and experimental
data.

Results
A cell-level mechanistic modeling framework for NK-ACT

ABMACT is a computer simulation framework for studying cell population dynamics and interactions in
ACT using ABM (Figure 1). Cell agents, the building blocks of the ABMs, are determined based on domain
knowledge of interacting cell populations (Figure 1 Step1)**'3**% NK cells are ex vivo expanded to
express activating receptors such as CD16, NKG2D, and activating Killer cell immunoglobulin-like
receptors (KIRs) and are “licensed” to kill***. Cytotoxic killing is the primary mechanism determining
therapeutic responses in ACT?, placing cytotoxic NK cells (N,) and tumor cells (B, such as B cell
lymphoma) interactions in the center of modeling. However, activation and repeated killing can induce
exhaustion, resulting in NK dysfunction and cancer immune evasion “°. While NK cells were believed to
act short-term as part of innate immunity, multiple recent studies have highlighted their capacity to develop
a “vigilant” phenotype — long living, dormant, and reactive to second pathogen stimulation**°. To model
the fate transitions of N., we include exhausted NK cell agents (Ng) and vigilant NK cell agents (Ny).
Cellular processes such as proliferation, exhaustion, death, antigen recognition, and migration have
previously been modeled using quantitative frameworks?#+**! Building on these studies, we implemented
biologically grounded mathematical rules and parameterizations to govern cell agent behaviors in our model
(Methods — Cell agent design). Specifically, NK cell proliferation was modeled as cytokine-dependent,
influenced by tumor presence and natural decay of proliferation rate. Exhaustion was represented by a linear
decline in its serial Killing capacity (SKC, s) such that NK cells transition from cytotoxic (N.) to exhausted
(Ng) states when the cumulated number of tumor cells killed (3:1x;;;) equals to its initial capacity (S,). Non-
exhausted cytotoxic NK cells can instead transform into the vigilant (Ny;) phenotype upon tumor clearance.
Details are provided in Supplementary Materials 1.

The increasing availability of single-cell molecular profiling data provides an unprecedented opportunity
to model functional heterogeneity at cellular resolution. To achieve so, we quantified the effects of genes
and pathways on cellular functions such as cytotoxicity. In this study, we used paired single-cell RNA-seq
(scRNA-seq) and phenotype data from the xenograft lymphoma mouse models in Li et al.?® to select and



estimate a subset of genetic features using linear mixed effect regression. **Gene expression profiles are
randomly assigned to the cell agents and translated to functional properties through the estimated effects.
As a result, cell agents unbiasedly represent rich molecular profiles, modeling variations in individual
cellular fates and collective populational dynamics (Figure 1 Step 2, Methods - Integrate functional genetic
effects in cell agents).

Model calibrations were performed on functional data obtained from in vitro autonomous growth in Liu et
al.’®, rechallenge assays in Marin et al.> and Shanley et al. ?°. Joint calibration and evaluation were
performed on the lymphoma mice model in Li et al. ? and glioblastoma mice model in Shanley et al.°
Independent evaluation of calibrated cell agents were performed on a blood cancer tumor-NK cell co-
culture dataset in Dufva et al. (Figure 1 Step 3, Methods - Simulation). By obtaining in silico replica of
the in vivo systems, we can further perturb the models to augment experimental observations, discover key
drivers to effective tumor control, and explore biological and therapeutic conditions (Figure 1 Step 4,
Methods - Feature importance sensitivity analysis).

Figure 1: A mechanistic cell-level in silico modeling framework to elucidate cellular characteristics and cell population dynamics.

[Figure 1]

a) Workflow diagram of Agent-Based Modeling for Adoptive Cell Therapy (ABMACT). Step 1: Cell agent design. Four cell types are included in
ABMACT: cytotoxic NK cells, exhausted NK cells, Vigilant NK cells, and tumor cells. Step 2: Embed cell-level genetic effects. Functional effects
of significant genes and pathways regulating NK cell cytotoxicity are derived from paired longitudinal ScCRNA-seq data and mice model experiment
2 (Methods 4.2). The coefficients, multiplied with randomly sample expression profiles in individual cytotoxic cell agents, contribute to variations
in cytotoxic killing capability. Step 3: Cell agents interact in 2D simulated TME to model tumor-immune interactions over time. ABMs are
calibrated on in vitro and in vivo data. Step 4: Applications of calibrated ABMACT cell agent models in augmenting experimental observations
and predicting future trends, tumor control driver discovery through aggregated simulations, and in-silico treatment simulations. Figure created
with Biorender.

ABMACT recapitulates differential tumor control in mouse models

We examined whether ABMACT can reproduce the in vivo dynamics of NK cell therapy in mouse models
and account for the differential tumor control across treatment conditions. To this end, cell agents were
parametrized at the level of functional properties to capture differences across phenotypes. Recognizing
that heterogeneity also exists within the same cell type or state, we further parametrize NK cell cytotoxicity
from functional genetic effects. The identified NK cell cytotoxicity genes and GO Biological Process
(GOBP) pathways included both canonical markers and previously under-characterized candidates (Figure
2a, Supplementary Materials 2). CD226% and PDCD1* encode well-established activating and
inhibitory receptor, respectively. Notably, NFKBIA was negatively associated with tumor load, despite its
conventional classification as a stress-response gene. Consistent with our finding, Tang et al.>® reported
enrichment of NKFBIA in a cytotoxic CD56%™CD16™ NK subset characterized by inflammatory and
immune-recruiting signatures, suggesting a context-dependent role of NKFBIA in NK cell cytotoxicity. The
derived coefficients and randomly sampled scRNA expression values were used to initialize cytotoxic NK
cell agents, thereby mimicking the heterogenous NK cell population at the onset of treatment.

Lymphoma Mouse Model

We first investigated the therapeutic effects of engineered CAR-NK cells on a CD19+ lymphoblastoid cell
line in immunodeficient mice in Li et al.*®. Best fitted parameter sets were found by iterative grid search
and minimizing a total loss function L;,,; that balance sensitivity to local fluctuations, robustness to noise,
and fidelity to global tumor control dynamics (Methods — Evaluation metrics). ABMACT achieved good
fitting to the tumor volume data measured by bioluminescence imaging for all the three NK cell products:
non-transduced NK (NT-NK), CD19 CAR-NK and CD19IL15 CAR-NK. Particularly, the CD19IL15



CAR-NK product showed more effective tumor control as compared to NT-NK and CD19 CAR-NK cells,
with tumor clearance by day 14 post-engraftment (Figure 2b), recapitulating the in vivo experiments. With
ABMACT’s ability to simulate continuous time courses, the differential tumor-killing capacity of the three
NK cell products were depicted as continuous time trajectories, beyond the original time snaps (Figure 2c).
ABMACT further delineated the cause of tumor cell death as NK cytotoxicity mediated death (Figure 2d)
and programmed death (Figure 2e).

The CD191L15 CAR-NK cell population expanded faster than the other two groups (Figure 2f), showing
negative correlation with the tumor burden (Pearson’s R= —0.35, p<0.005). Cytotoxic NK cells, which
constituted a large proportion of the total population throughout the 15-day simulation, had the fastest
expansion in the CD19IL15CAR-NK cell group, contrasting with rapid decline in the CD19 CAR-NK cell
and NT-NK cell groups (Figure 2g). The CD19IL15 CAR-NK cells also showed lower degree of
exhaustion as compared with the other two groups (Figure 2h). However, lower exhaustion levels do not
always coincide with more efficacious tumor control. Although CD19 CAR-NK cells appeared less
exhausted than the NT-NK cells, tumors treated with the CD19 CAR-NK cells outgrew those treated with
the NT-NK cells (Figure 2c). In the CD19IL15CAR-NK cell group, the vigilant phenotype emerged as
tumor cells were cleared, indicating successful transition of surviving cytotoxic NK cells in the TME
(Figure 2i).

We further attributed the NK cell dynamics to individual cellular properties. Based on parameters from the
best-fitting results, we found that CD191L15 CAR-NK cells had superior viability and killing capacity as
compared to other two groups (Figure 2j). In addition to enhanced proliferation and lower death rates,
higher cytotoxicity py;; at the beginning of treatment, and higher serial killing capacity (SKC) S,
measured by the number of tumor cells one NK cell could Kill before exhaustion, enabled CDIL15 CAR-
NK cells to exert repeated tumor lysis at a high success rate. The systematic effects of the cellular properties
resulted in stronger interactions between tumor cells and cytotoxic NK cells, measured by the proportions
of tumor cells collocated with cytotoxic NK cells, in the CD191L15 CAR-NK cell treatment group than the
other two treatment groups (Figure 2K).

By deconvoluting the empirical cell dynamics to quantitative properties, we identified potential
mechanisms underlying the differential tumor control observed by Li et al. In the original experiment,
lower tumor growth was observed in the NT-NK group compared to CD19 CAR-NK group (Figure S3b),
diverging from the expectation that NT-NKs would perform worse than CAR-engineered NK cells. The
seemingly counterintuitive results motivated us to investigate the underlying functional properties and
mechanisms using estimated cell agent properties. While equipped with CAR, CD19 CAR-NK cells were
characterized with a higher death rate (d.) and lower serial killing (Sy) compared to NT-NK cells,
suggesting reduced survival and increased susceptibility to exhaustion. The pattern is consistent with
activation induced exhaustion®®, where CD19CAR NK cells undergo strong activation upon CD19
engagement but lack IL-15-mediated persistence. Supporting this interpretation, metabolic profiling of
CD19CAR NK cells post-infusion revealed reduced oxidative phosphorylation and glycolysis relative to
NT NK cells (Figure S8b), consistent with impaired tumor control ability.

In lymphoma model, the optimal fitting results were found at an effector-to-target ratio (ETR) of 1:1, which
was much lower than the set-up condition in the in vivo mice models (50:1). We speculated that the
differences could be due to the reduction of ETR at tumor sites from the ETR at infusion. The challenge of
NK cell infiltration or homing to tumor sites have been previously reported and a limiting factor to NK-
ACT efficacy® . In the study by Li et al., NK cells were infused through mouse tail veins and therefore it



is likely that only a fraction of NK cells infiltrated tumor sites. We assumed the initial infiltration NK cell
population comprising entirely of cytotoxic NK cells to reduce modeling complexity, while NK cell
activation, exhaustion, and ineffective transduction could reduce the actual number of cytotoxic NK cells
homed to tumor sites and inflate the estimated ETR.

Incorporating genetic effects enabled the model to capture intercellular heterogeneity in cytotoxic Killing
probabilities. Integrating sCRNA-seq data by setting the genetic effect parameter b > 0 improved the
overall modeling accuracy as reflected by a reduction in total 10sS L:y:q; (p-val=0.034, Figure 2I,
Supplementary Materials 3.3). Models without genetic effects assumed a constant population-average
killing rate, thereby neglecting variability in cytotoxicity among NK cells (Figure S4f-g). Fine-tuning the
precise magnitude of yields marginal changes in fit, suggesting that enabling heterogeneity through a
positive genetic effect parameter b is more critical than optimizing its exact scale.

Figure 2 Modeling NK-tumor cell interactions in lymphoma mice models using ABMACT framework.
[Figure 2]

(a) Genes and pathways modulating NK cell cytotoxicity identified using LME models of tumor loads in Li et al.?. Confidence interval: 95%. P-
value adjusted by Benjamini-Hochberg correction for multiple-testing. (b) ABMACT simulations recapitulated normalized tumor dynamics in
lymphoma mouse models. Comparison of simulated data with observed data using normalized tumor progression ratios between experimental
groups and the tumor-only control group. (c) Tumor progression calculated by fold changes with respect to the initial tumor population at the start
of the simulation. (d) The cumulative proportion of tumor cell death due to cytotoxic killing by NK cells. (e) The cumulative proportion of tumor
cell death due to programmed death. (f) Total NK cell population fold changes with respect to the initial NK cell population. Normalized by NK
cell count at day 0 of simulation when NK cells were added. Simulated ratios of (g) cytotoxic NK cells, (h) exhausted NK cells, and (i) vigilant NK
cells with respect to the total NK cell population in the lymphoma model. (j) Best-fit cytotoxic NK cell proliferation rate at baseline (t0 of simulation),
death rate, cytotoxicity (probability of killing a tumor cell upon contact) at baseline, and serial killing capacity that minimized the total loss for
three treatment groups. (k) Interaction rate between tumor cells and cytotoxic NK cells in the lymphoma mouse model. Interaction rate calculated
by the ratio between tumor cells co-locating with cytotoxic NK cells and the total tumor cell count. (I) Total 10ss (L;¢q;) With genetic effects (b >
0) and without (b = 0) in modeling the lymphoma mouse model. Results aggregated from the top ten fittings based on MSE. Interval bands of 2
s.e. were calculated using a bootstrap of 1000 iterations.

Glioblastoma Mouse Model

To explore the potential of ABMACT in studying a broad spectrum of cancers, we further evaluated it in a
glioblastoma (GBM) mouse model, which examines the therapeutic benefits of ex vivo expanded NK cells
in kill GBM cell lines in immunodeficient mice (Figure 3a). The growth rate of GSC20 GBM tumor cells
were estimated to be lower than Raji lymphoma (0.223 per day vs 0.445 per day), requiring a lower ETR
(1:5 vs 3:1). Similar to the CD191L15 CAR-NK cells in lymphoma model, cytokine-armed NK cells (IL-
21 and IL-15 NK cells) showed more significant tumor control than NT-NK cells (Figure 3b). Tumor
clearances were achieved in both IL-21 and IL-15 NK cells, with the highest proportions of cancer cell
deaths induced by IL-21 NK cell cytotoxicity (Figure 3c). In the NT-NK cell group, tumor cells had
sustained growth, with minimal reductions that were largely contributed by programmed deaths (Figure
3d). Despite having higher death rates than the IL-15 NK cells, the higher proliferation p., cytotoxicity
Priu» and SKC S, of the IL-21 NK cells contributed to more rapid tumor control (Figure 3e). NK cells with
cytokine-expressing vectors showed faster initial NK cell population expansion than the NT-NK cells
(Figure 3f). However, the early cytotoxicity towards tumor cells in the IL-15 NK cell group also resulted
in early drops in cytotoxic population (Figure 3g) and exhaustion (Figure 3h). The time of population
shrinkage concorded with tumor clearance, which aligned with prior studies of NK cell dynamics*®9,
Similar to CD19IL15 CAR-NK cells in lymphoma mouse model, a small proportion of vigilant NK cells
emerged upon tumor clearance (Figure 3i).

Independent Validation



To assess the generalizability of ABMACT in new NK-ACT studies, we used the calibrated non-transduced
NK (NT-NK) cell agents to reproduce co-culture experiments with K562 myeloid leukemia cell line
reported by Dufva et al®®> (Methods — Independent validation). Simulated NK-tumor cell co-culture
reproduced tumor reduction at 24 hours (43.05 + 2.62% simulated vs 41.51% observed, p-val=0.59,
Figure 3j). In addition, we found a similar percentage of effector NK cells subsets, denoted as cytotoxic
NK cell in ABMACT and activated NK cell by Dufva et al., at the end of the 24-hour co-culture (88.59 +
1.53% simulated vs 87.67% observed, p-val=0.57) (Figure 3k). This exercise demonstrates ABMACT
can be reasonably applied on independent datasets deriving from similar cell-lines without re-calibration,
supporting its robustness and generalizability across experimental platforms.

Figure 3 Modeling NK-tumor cell interactions in glioblastoma (GBM) mice models and independent validation using ABMACT framework.

[Figure 3]

(a) ABMACT simulations recapitulated normalized tumor dynamics in GBM mouse models. Comparison of simulated data with observed data
using normalized tumor progression ratios between experimental groups and the tumor-only control group. (b) Tumor progression calculated by
fold changes with respect to the initial tumor population at the start of the simulation. (c) The cumulative proportion of tumor cell death due to
cytotoxic killing by NK cells. (d) The cumulative proportion of tumor cell death due to programmed death. (e) Best-fit cytotoxic NK cell
proliferation rate at baseline (t0 of simulation), death rate, cytotoxicity (probability of killing a tumor cell upon contact) at baseline, and serial
killing capacity that minimized the total loss for three treatment groups. (f) Total NK cell population fold changes with respect to the initial NK
cell population. Normalized by NK cell count at day 7 of simulation when NK cells were added. Simulated ratios of (g) cytotoxic NK cells, (h)
exhausted NK cells, and (i) vigilant NK cells with respect to the total NK cell population in the lymphoma model. (j-k) Independent study validation
on Dufva et al.? (j) Percentage of tumor reduction at 24-hour in the K562 cell line co-culture experiment and (k) percentage of cytotoxic (activated)
NK cells among the total NK cell population using NT-NK cell agents calibrated on Li et al.?* lymphoma mouse model. Simulations were repeated
10 times. Comparison of tumor reduction % and cytotoxic NK cell % were performed using two-sided Student’s t-test. Results aggregated from
the top ten fittings based on MSE. Interval bands of 2 s.e. were calculated using a bootstrap of 1000 iterations.

Applications of ABMACT
Augmenting experimental observations by predicting treatment courses

In vivo systems are inherently limited by the frequency and resolution of measurements, often capturing
only snapshots of dynamic treatment courses. One key advantage of in silico models is their ability to
augment and complement existing experimental results, enhancing scale and granularity. ABMACT builds
upon this strength by simulating designated durations and inferring subpopulation dynamics that maximally
explain laboratory observations. For example, using models for CD19IL15 CAR-NKs, CD19 CAR-NKSs,
and NT-NKs calibrated on the lymphoma mouse model dataset in Li et al.®, we projected tumor progression
and NK cell population dynamics beyond the endpoint of experimental observation (post mice sacrifice),
extending the course to 35 days post-treatment (Figure 4a-b).

In addition, ABMACT provided a means to explore the mechanisms underlying heterogeneous experiment
outcomes. Our model projected complete tumor elimination by CD191L15 CAR-NK cells before day 13,
whereas in Li et al.? most mice showed sustained low tumor burden except before sacrifice except a single
mouse exhibiting tumor rebound at the last timepoint. We speculated that the divergence could be due to
varying NK cell homing efficacy as previously reported by Ran et al.>” and Sanz-Orega et al.*® Keeping a
constant total NK cell to tumor cell ratio, we randomly split 10000 tumor cells and 10000 NK cells to
simulate varying homing efficacy using local ETR (Figure 4c). Reduced homing (local ETR = 0.12)
resulted in tumor outgrowth, while clearance was still achievable with local ETR < 1.0 but occurred later
than day 15 (Figure 4d). The averaged tumor progression displayed an initial growth phase, followed by
regression and plateau (Figure 4e), resembling the rebound pattern in the mouse.



By deconvoluting NK cell populations in the lymphoma and the GBM mouse models, we identified distinct
kinetics of engineered NK cells. Notably, cytokine-expressing NK cells, including CD191L15 CAR-NKs
(Figure 4f), IL-15 NKs (Figure 4g), and IL-21 NKs (Figure 4h) exhibited a small peak in cytotoxic NK
cell ratios, corresponding to the transition of a subset of cytotoxic NK cells into the vigilant phenotype upon
tumor clearance. In contrast, this pattern was not observed in NT-NKs and CD19 CAR-NKs (Figure S6a-
c). This phenomenon was likely driven by the co-stimulation of endogenous cytokines and residual tumor
presence, indicated by cytokine levels and declining tumor-NK cell interaction rate. The cytotoxic NK cell
population sustained proliferation while were less prone to exhaustion at the phenotype shift. While the NK
cell phenotypes defined in ABMACT are hypothetical and informed by existing studies, the observed NK
cell subpopulation trajectories may provide insight into treatment efficacy and warrant further experimental
validation.

Figure 4 Plotting the course of cellular treatment using ABMACT.
[Figure 4]

Prediction of tumor and NK population dynamics: (a) Simulated and observed tumor progression in the lymphoma mouse models. (b) Simulated
total NK cell population trends in NT-NKs, CD19-CARNKSs, and CD191L15-CARNKSs treatment groups in the lymphoma mouse model.
Tumor/NK survival calculated by fold changes with respect to the initial tumor population at the start of the simulation. Evaluation of homing
efficacy: (c) Schematic of randomizing 10000 tumor cells and 10000 NK cells to 10 sites to simulate varying homing efficacy of NK cells to tumor
locations in the CD191L15-CAR NK cell group. (d) Tumor population fold change by local E:T ratio from simulations of the varying NK cell
infiltration. (e) Averaged tumor population fold change. Deconvolution of phenotypes and kinetics: Cytotoxic NK cell ratio, vigilant NK cell ratio,
average cytotoxic NK cell proliferation rate, average cytokine level, and tumor-NK cell interaction rate of (f) CD19IL15 CAR-NK cells in the
lymphoma model, (g) IL-15 NK cells in the GBM model, and (h) IL-21 NK cells in the GBM model. NK cell subtype ratio calculated with respect
to the total NK cell population at each timepoint. Tumor-NK interaction rate calculated by the ratio of tumor cells with co-locating cytotoxic NK
cells with respect to the total tumor cell population. Figure 4c created with Biorender.

Discovering key drivers of tumor control through in silico perturbation experiments

While numerous CAR engineering strategies aim to enhance NK cells, exhaustive testing of potential
designs require significant amount of time and resources. To prioritize the most critical factors influencing
tumor control in NK-ACT, we conducted feature importance sensitivity analysis (Methods) using in silico
perturbations in NK cell properties and dosages. The analysis revealed that the effector-to-target ratio (ETR)
was the most important feature for accumulated tumor growth, followed by NK cell serial killing capacity
(SKC) Sy, death rate d., baseline proliferation rate p. and its decay rate b, _, and baseline cytotoxicity .
(Figure 5a, Figure S6d). Increasing ETR from 1:1 to 2:1 drastically shortened the time to tumor clearance,
though further increases yielded diminishing returns (Figure 5b), aligning with findings previously
reported in a CAR-T dosing review study®. On the contrary, enhancing SKC and proliferation rates showed
a continuous trend of accelerated tumor clearance (Figure 5c¢-d). Parameters contributing to NK cell killing,
including Sy, uc, CAR effect exponent y, and cytotoxicity genetic effect coefficient b had a combined
feature importance 61% higher than the combined importance of viability parameters (p., by_, d.),
suggesting that enhancing NK cell killing capacities such as SKC, cytotoxicity, and specific recognition
may be more effective than improving their viability in the system.

Assisting treatment decision-making using ABMACT simulation

ACT dose responses often deviate from linear relationships, where excessive dosages may fail to
significantly improve treatment efficacy while increasing the risk of toxicity ®'. Designing optimal ACT



treatment regimens is a delicate task, with limited room for repeated experimental testing. ABMACT
provides a valuable platform for exploring treatment options and informing clinical decision-making
through in-silico simulations. In the lymphoma mouse model simulation, a single dose (1:1 ETR) of NT-
NKs at the ETR of 1:1 led to tumor outgrowth (Figure 2c). To investigate effective tumor control strategies,
we evaluated follow-up treatments with varying dosages, frequencies, timing, and NK cell products using
ABMACT simulations (Figure 5e). We found that to effectively control tumor outgrowth, it required a
higher dose of the same NK cell products (4X) or more effective NK cells such as CD191L15 CAR-NK
cells (1X) (Figure 5f). The overall tumor growth was significantly lower in the 4X NT-NK cell group (p-
adj < 0.001) and 1X CD19IL15 NK group (p-adj < 0.001) (Figure 5g).

Next, we investigated whether administrating the follow-up treatment at different times would result in
differential tumor control. One dose (1X) of CD19IL15 CAR-NK cells was administered on day 5, 7, 10,
and 14 following the initial treatment, respectively (Figure 5h). Earlier intervention contributed to more
efficient tumor control (Figure 5i) and significantly smaller cumulative tumor burden (Figure 5j). Treating
refractory tumors with higher doses of more potent ACT products can lead to a more rapid response, and
dose fractionation have been used in CAR-T cell therapies and recombinant radiotherapy with CAR-NK
cell therapy to mitigate the risks of adverse events associated with high dosages®®. However, it is unclear
whether high dosing in NK-ACT is associated with risks®, and fractioned dosing in NK-ACT alone has not
been extensively explored. To examine whether dose fractionation in NK-ACT can effectively control
tumors, we simulated follow-up treatment with a total of four doses of CD19IL15 CAR-NK cells
administered in one treatment, two treatments, and four treatments (Figure 5k). No significant difference
in cumulative tumor growth was shown when administrating four doses in one treatment versus splitting to
two treatments, but these two treatment strategies resulted in earlier tumor clearance and smaller cumulative
tumor burden compared to splitting administrating the four doses over a course of four treatment (Figure
5I-m). For aggressive cancer types such as lymphoma, tumor cells escaping NK cell surveillance gain a
head-start and undergo exponential growth®. When initial treatment fails, higher doses or more potent NK
cell products are often required to regain control. The timing of treatment influences response efficacy,
while fractionated dosing under calibrated dosage and timing can potentially provide the same treatment
benefit as a single higher dose. ABMACT offers a predictive framework for pretesting follow-up treatment
strategies, reducing the reliance on extensive laboratory experimentation.

Figure 5 Predicting optimal treatment regimens using ABMACT.
[Figure 5]

Sensitivity analysis: (a) Random Forest regression feature importance of model parameters on tumor progression area under the curve (AUC)
measured by mean decrease in impurity (MDI) (Methods). Time to tumor clearance by (b) effector-to-target ratio, (c) serial killing capacity, and
(d) NK cell baseline proliferation rate. Other parameters and simulation conditions were kept constant. Simulating NK-ACT follow-up treatment:
(e) Schema of virtual NK-ACT treatments. Control: NT-NKs were administered at day 0 at an E:T ratio 1:1. 1X NTNK: One follow-up dose (1X)
of NT-NK cells was administered on day 7. 4X NTNK: Four follow-up doses (4X) of NT-NK cells were administered on day 7. 1X CD19IL15
CAR-NK: One follow-up dose (1X) of CD191L15 CAR-NK cells administered on day 7. (f) Simulated tumor progression and (g) accumulative
tumor growth (Area under the curve, AUC) of control, 1X NTNK, 4X NTNK, and 1X CD19IL15 CARNK cell treatments. (h) 1X CD19IL15 CAR-
NK: One follow-up dose (1X) of CD19IL15 CAR-NK cells was administered on day 5, 7, 10, and 14. (i) Simulated tumor progression and (j)
accumulative tumor growth (AUC) of the four treatment groups. (k) 4X1 CD191L15 CAR-NK: Four follow-up doses (4X) of CD191L15 CAR-NK
cells administered on day 5. 2X2 CD191L15 CAR-NK: Two follow-up doses (2X) of CD191L15 CAR-NK cells administered on day 5 and 7 each.
1X4 CD19IL15 CAR-NK: One follow-up dose (1X) of CD191L15 CAR-NK cells was administered on day 5, 7, 10, 14 each. (I) Simulated tumor
progression and (m) accumulative tumor growth (AUC) of the three treatment groups. 10 simulations for each experiment. Interval bands of 2 s.e.
were calculated using a bootstrap of 1000 iterations. Figure 5e, h, and k were created with Biorender.



Exploring TME modulation of NK cell efficacy

Beyond intrinsic cell properties and dosage, the TME imposes spatial and metabolic constraints that can
significantly module NK cell behaviors. As proof-of-concept (POC) studies, we examined physical barriers
in the TME, tissue-aware NK cell motility, and hypoxic stress in the TME (Methods, Supplementary
Materials 5). First, we used NK cell movement probability and travel distance as surrogates to study the
effect of physical barriers in the TME. Restriction to NK cell migration, parametrized by the reduced
probability to move (my), markedly impaired tumor control (Figure S7a). The reduced mobility delayed
NK-tumor encounters and allowed tumor outgrowth. In contrast, travel distance within the tumor sites did
not substantially affect the time to clearance but influenced the peak tumor population (Figure S7e). Next,
to capture more realistic cell behavior, we simulated tissue-aware NK cell movement modalities based on
the experiment by Dondossola et al.®® In this POC, non-engaged NK cell agents moved rapidly in the pre-
activated state and transitioned to slow-moving after engaging and killing tumor cells (Figure S7i),
reproducing the reported association between NK cell movement speed and effector function. Finally, we
factor oxygen in NK and tumor cell functions to simulate hypoxic conditions induced by oxygen
consumption. Under prolonged hypoxia, both NK and tumor population exhibited reduced proliferation,
yet the disproportionate loss of cytotoxic NK cells led to tumor rebound (Figure S7j-1). Together, the POC
studies demonstrate ABMACT’s ability to isolate spatial and metabolic factors in the TME, providing
insights into how physical barriers and hypoxia can delay NK-tumor interactions, diminish effector
persistence, and ultimately compromise therapeutic efficacy. Looking forward, such simulations can be
extended to generate testable hypotheses on how modifying the TME may enhance NK cell therapy
outcomes.

Discussions

Recent progress in NK cell therapies has highlighted knowledge gaps in their underlying biological
mechanisms. While experimental models are indispensable, they are limited in variety, scalability, and
resolution. Mechanism-based computational models, particularly ABMs, can provide an efficient and
ethical alternative®’.

We developed ABMACT, an agent-based modeling framework incorporating biological rules derived from
data and knowledge. By reconstructing the experimental observations from autonomous behaviors of cell
agents, ABMACT deconvolutes differential tumor control to cellular and molecular properties. First,
simulations of in vitro and in vivo tumor-immune dynamics revealed that NK cell products with higher
viability, cytotoxicity, and serial killing capacity have superior tumor control. These explained the superior
efficacy of CD191L15 CAR-NK cells treating lymphoma and IL21 NK cells treating GBM, while also
clarified paradoxical outcomes such as the reduced efficacy of CD19 CAR-NK compared to NT-NK due
to activation-induced exhaustion. By integrating SCRNA-seq data, ABMACT captured functional genetic
heterogeneity in NK cell cytotoxicity. Second, we found the cell-level modeling crucial for capturing NK
cell state transitions, functional variations (e.g. NK cell cytotoxicity), and spatial interactions, yielding more
accurate and biologically realistic simulations. Third, through systematic in silico perturbations, ABMACT
identified the effector-to-target ratio (ETR) as the top determinant to tumor control in addition to the cellular
properties mentioned. Virtual dosing studies showed how regimen timing and fractionation can alter tumor
rebound and revealed that early intervention was critical to preventing tumor rebound. Finally, compared
with other modeling techniques such as ODE, ABMACT outperformed in accuracy, explaining variances
in the experimental observations, and stability (Figure S9, Supplementary Materials 5). Together, these



capabilities establish ABMACT as both a predictive and mechanistic platform for extracting insights from
experiments and informing next-generation ACT strategies.

Parametrizing ABMs depends on data availability and requires balancing computational trackability and
modeling accuracy. Despite its strengths, the current version of ABMACT has several limitations. Firstly,
as a single-compartment model, ABMACT does not fully account for the immune system and host-level
biology. Tumor cells were likely to persist in multiple lymph nodes, and the deviations in simulations of
CD19CAR-NKs lymphoma mice model after day 14 likely reflected the inadequate NK cell infiltration to
all tumor engraftments or incomplete elimination. Secondly, despite improvement to model accuracy and
the ability to capture variations in NK cell cytotoxicity driven by gene and pathway markers, the small
sample size of data for feature selection reduced the effect size and might omit key markers. ABMACT can
benefit from aggregating multiple studies and establishing genetic markers with higher statistical power.
Thirdly, our current model does not consider treatment toxicity, as NK-ACTs have generally been
associated with little adverse effects in previous clinical trials*®.

Validation against independent datasets has demonstrated ABMACT ’s generalizability across tumor types.
The future work can extend to therapeutic areas beyond NK-ACT and capture more complex spatial
interactions. Implemented in the MESA Python framework®, ABMACT ensures portability, accessibility,
and reproducibility. The functional gene feature selection step can be applied to diverse omics datasets,
such as sScRNA-seq paired with extracellular flux data to characterize cell metabolic states?*. Other crucial
players in anti-tumor immunity, such as macrophages, CD4+ and CD8+ T cells, and dendritic cells can be
modeled by modifying and extending the current NK cell agent design. In addition to new molecular
features, spatial information such as niches of resistance can be used to model heterogeneity of tumor
populations. A proof-of-concept model .on hypoxic inhibition of NK cell dynamics is illustrated in
Supplementary Materials 6. Current 2D modeling in ABMACT reflects the dimensionality and resolution
of the experiment data used for calibration. The Moore neighborhood can readily integrate cell coordinates
to inform precise positioning of cell populations. High-resolution volumetric data from spatial
transcriptomics and multiplexed imaging can be integrated in ABM to provide spatial priors for cell
positioning as previously demonstrated®™. This allows for the representation of more complex tissue
structures such as vasculatures, multi-compartmental biology, and patient-specific physiological conditions
while avoid artifacts that arise from calibrating 3D modeling against lower-dimensional experimental data.
Additionally, coupling ABMs with ODE or PDE models could more accurately capture TME cytokine
pharmacokinetics and gene regulatory networks®®. SDE models can be leveraged to capture cell-level
heterogeneities in properties such as proliferation and migration™. Such hybrid models can reduce
computational costs while maintaining biological relevance, capturing dynamics at both cellular and
molecular levels, and extending ABMACT’s applicability to broader contexts of immunotherapies. To
improve modeling efficiency, surrogate models (e.g. Gaussian process regressors) can accelerate parameter
search and prediction®”.

Challenges in ACT trials, including source quality, resistant tumor niches, and comorbidities, also require
careful consideration. Source and donor variabilities in NK cell qualities>”* can be modeled through
modifying cell agent parameters, as demonstrated in the diverging serial killing capacity of optimal cord
NK cells (Opt-Cs) and suboptimal cord NK cells (Sub-Cs) in the study by Marin et al.®> (Figure S2i).
Prognostic markers and clinical health records, such as serum cytokine concentrations, immune evasive
mutations, and comorbidity index, can contribute to both cell agent parametrization and TME specifications.
We anticipate the individualized, continuous prediction of treatment outcomes can accommodate variability



beyond patient xenograft models alone. By establishing a bidirectional feedback loop where longitudinal
clinical measurements recalibrate model parameters and simulations forecast response trajectories,
ABMACT functions as a continuously learning, data-driven system. In chronic disease settings such as
cancer, this framework could project disease progression and help identify follow-up windows for optimal
treatment opportunities. However, it is important to note that computational models like ABMACT are
intended to complement, not replace experimental and clinical studies, and their predictions require
validation. By integrating computational insights with experimental findings, ABMACT has the potential
to enhance ACT development while maintaining a realistic perspective on its applicability.

In conclusion, ABMACT integrates experimental data and single-cell profiles into mechanistic simulations
of NK cell therapies. By quantifying key determinants of ACT efficacy, ABMACT enables in silico
prioritization of cell products, laying the foundation for streamlining preclinical development and reducing
reliance on animal models, in line with the FDA Modernization Act 2.072. When extended to incorporate
patient-specific factors, dosing and fractionation simulations can potentially predict personalized treatment
courses to support risk stratification and cohort expansion in future ACT trials. As the first agent-based
model dedicated to engineered NK cell therapy to our knowledge, ABMACT sets the stage for
computational-experimental codesign of next generation immunotherapies, helping researchers and
clinicians anticipate optimization opportunities and risks in ACT therapies.

Methods
In vitro experiment data for model calibration

Cell autonomous growth: Cell counts of NT (n=3) and CD19IL15 CAR-NK (n=3) from day 0 to day 42
were obtained from the cord blood NK cell autonomous growth experiments in Liu et al.'®. Cells were
cultured in vitro without tumor or additional cytokine stimulation®®,

Tumor rechallenge assay: Mean Raji lymphoma tumor population dynamics measured by tumor cell index
were obtained from tumor rechallenge assays with cord blood CAR19/I1L15 NK cells from optimal cords
(Opt-Cs) and suboptimal cords (Sub-Cs) (n=4 each) in Marin et al.>. The tumor cell index was measured
by the intensity of mCherry fluorochrome, representing the counts of tumor cells®. NK cells were challenged
against mCherry transduced Raji lymphoma tumor cells at an effector-to-target ratio (ETR) of 5:1°. Tumor
cells (100,000 cells) were added every two to three days °. Mean glioblastoma tumor population dynamics
measured by tumor cell index were obtained from GSC20 tumor rechallenge assays with IL-21 and 1L-15
NK cells (n=3 donors each) in Shanley et al.?°. NK cells were challenged against mCherry transduced
GSC20 glioblastoma cells at an E:T ratio of 1:1%°. Tumor cells were added every two to three days .
Dose-response assay: Mean cytotoxicity profiles of NT, CAR19, CAR19/IL15 NK cells were obtained from
the 'Cr-release dose-response assay of NK cell products (n=3 donors) against Raji targets in Li et al.%.
Cytotoxicity was measured as the percentage of specific lysis of tumor cells relative to targets %,

Xenograft mice model data for model calibration

Lymphoma

Tumor growth data and scCRNA-seq data of NK cells and tumor cells were obtained from the xenograft mice
model of Raji lymphoma treated with NK cells in the Figure 2C of Li et al.”. The scRNA-seq data are
publicly available in Gene Expression Omnibus (GEO) repository at accession number GSE190976. Tumor

loads were quantified as average tumor radiance in p-s~tcm™2sr=! %, which were assumed to be
proportional to size of the tumor population (Figure S3a). Normalized tumor progression was calculated



by dividing tumor radiances of experiment groups by the mean tumor radiances in the tumor-only control
group (Figure S3b). NK cells were transfected with retroviral vectors encoding iC9.CAR19.CD28-zeta-
2A-1L-15 (CAR19IL15), CAR19.CD28-zeta (CAR19), and IL-15, with non-transduced (NT) NK cells
serving as control (n=5 per group) . The xenograft NOD/SCID IL-2Ry null mice were infused with FFLuc-
labeled NK-resistant Raji lymphoma cells (2 x 10° per mouse) on day 0%. NK cells were harvested from
each group pre-infusion and on days 7, 14, 21, 28 and underwent sScRNA sequencing 2. Tumor cells were
harvested from each group on days 7, 14, 21, 28 and underwent scRNA sequencing .

Glioblastoma

Tumor growth data and scRNA-seq data of NK cells were obtained from the xenograft mice model of
GSC20 glioblastoma treated with NK cells in Figure 3A of Shanley et al.?°. The processed sScRNA-seq data
are publicly available at accession number GSE227098. Tumor loads were quantified as average tumor
radiance in p - s~tem~2sr~1 % (Figure S3c). Normalized tumor progression was calculated by dividing
tumor radiances of experiment groups by the mean tumor radiances in the tumor-only control group (Figure
S3d). The NOD/SCID IL-2R-null human xenograft mice were intracranially injected 0.5 x 10° patient-
derived FFluc-labeled GSC20 tumor cells on day 0 and treated intratumorally with NK cells (hn = 3 to 5 per
group) at an E:T ratio of 1:5 at day 7 .

Blood cancer cell line NK-tumor cell co-culture experiment for independent validation

The tumor cell count and scRNA-seq data of NK cells (syn52600685) were obtained from the 24-hour co-
culture experiment of K562 myeloid leukemia cell line in Dufva et al®?. In the co-culture experiment, NK
cells were plated at an ETR of 1:4 with respective tumor cell lines. Samples were harvest at 0,1,3, 6, 12,
and 24 hours 2,

Cell agent design

We encoded three NK cell phenotypes: cytotoxic NK cells (N¢), exhausted NK cells (Ng), vigilant NK cells
(Ny), along with tumor cells (B, such as B cell lymphoma) in the agent-based model (ABM) using the
Python Mesa framework®® (Figure 1, Figure S1). The tumor microenvironment was established in a 2D
Moore neighborhood discrete lattice grid to reflect the dimensionality of in vitro and in vivo data used for
calibration and for its simplicity and efficiency in modeling®. The Moore neighborhood allows cell
movement and interactions in eight directions, reflecting the quasi-random motility of cells. Cell Agents
act autonomously by programmed rules and commit to an action when the probability, sampled from a
uniform distribution U(0,1), passes a predefined threshold e.g. proliferation rate. For example, Raji
lymphoma tumor cells were estimated to have a proliferation rate of 0.455 per day. When at a completion
of a cell cycle, a tumor cell agent samples a random number from U(0,1) and compare it with 0.455. If the
random number exceeds the threshold, the cell will divide and generate a daughter cell. Cellular properties
are encoded as attributes of agents and are inherited by daughter cells from mother cells. The TME was
initiated with tumor cells in the center and NK cells in the periphery. We assumed that cell agents followed
Brownian motions and modeled cell motility with random walks, while NK cell agents traveled in the
direction of the highest tumor concentration due to the chemokine gradient when tumors are present. The
specifics of cell agent design are entailed below.



Cytotoxic NK cells (N;)

A cytotoxic NK cell interacts with a target in three stages: migration, conjugation, and attachment”. NK
cells can both move freely and migrate towards chemokine or proinflammatory protein gradients’®. When
reaching and recognizing the target, the conjugation phase starts. The NK cell forms an immunological
synapse and reorganizes actin cytoskeletons’ ¢, The microtubule organizing center (MTOC) and secretory
lysosomes are polarized towards the immunological synapse, followed by lysosome docking and finally the
release of cytotoxic molecules into the target cell”’®. On ending the conjugation phase, the NK cell begins
to dissociate from the target cell irrespective of successful killing, resuming free migration or initiating
conjugations with other targets’. A cytotoxic NK cell (N,) is responsible for killing tumor cells. When a
N, cell agent encounters a tumor cell agent, N has a probability of py;;; to successfully kill the tumor cell,
depending on various factors contributing to its cytotoxicity and the tumor cell’s ability to evade immune
surveillance (peyaqe)- In the process of Killing, N reduces its serial killing capacity (s), resulting in
exhaustion and transformation to the exhausted phenotype (Ng) when s reaches 0. As compared to the other
two NK cell phenotypes, N cell agents are able to efficiently expand and have the potential to transform
to a vigilant phenotype (Ny). In Vanherberghen et al.”, the mean total conjugation and attachment time
was measured to be 193 minutes and 235 minutes for lytic and non-lytic events, respectively. Therefore,
we considered a four-hour step length (AT = 4hr) for the ABM to approximate the time for cytotoxic NK
cells moving toward tumor cells and exert killing.

Cytotoxic killing activity
To reduce parameter search space for NK cell cytotoxicity in ABM, we performed initial estimation of
relative baseline cytotoxicity of CAR19IL15 NK cells, CAR19 NK cells, and NT NK cells using the dose-

response data from the 5'Cr-release assay of NK cell products against Raji targets in Li et al.?®. We applied
the following dose-response Emax model:
Eo
E(y) = T Rexg" (1)
1+ (=)
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where x, denoted the average relative NK cell cytotoxicity of the group g, E, denoted the baseline death
percentage (cytotoxicity) of tumor cells at ratio = 0, R denoted the effector:target ratio, ksogdenoted the
half-maximum relative average NK cell cytotoxicity of the group g, and m denoted Hill’s coefficient (shape
parameter). We assumed E is constant across groups given the same Raji tumor cells used in experiments.
The nonlinear least squares estimation was performed using the least _squares function of the Python
package scipy’’. Three types of loss including “linear”, “soft _11”, and “cauchy” were compared to select
parameters with minimum loss.

We constructed the probability of killing a tumor cell upon contact py;; with reference to the cytotoxicity
function in **. p,;;; is a function of baseline cytotoxicity cyk, gene effects Gygx, CAR engineering effect vy,
and the tumor cell’s probability to evade recognition peyade:

1.0 Y
*
1.0 + exp(—(cnk + Gnk))
where cyg~truncN(yg, 6.2), Gyg = tanh(b Z};l Bigi), and b is the overall NK cell cytotoxicity genetic

effect coefficient to ensure reasonable scaling. The first part of the formula consists of an exponentiated
sigmoid function that accounts for the nonlinear relationship between p,;;; and NK cell cytotoxicity and

Pkill = (1 = pevade) (2)



genetic effects. The initial value of NK cell baseline cytotoxicity u. was estimated based on the dose-
response data from the >'Cr-release assay of NK cell products against Raji targets in Retzlaff et al.? and
refined using global search (Supplementary Materials 1). The RNA expressions of significant genes and
pathways associated with NK cell cytotoxicity g and respective coefficients 8 were obtained from the
cross-lagged LME model My .

Characterize NK cell proliferation kinetics

NK cells require extrinsic stimulations to expand and persist. Studies have shown that the presence of
cytokines such as IL-15 and tumor antigens enhances NK cell expansion®'*%, Without exogenous
stimulation, NK cell expansion could not be sustained, and the population start to wane in one to two
weeks’®. In the cell autonomous growth experiment in Liu et al.'®, 1L-15-expressing CAR-NK cells
sustained higher population than NT NKs, although the effect of IL-15 stimulation on NK cell proliferation
and survival gradually reduced due to system clearance™.

Therefore, we hypothesized that the endogenous cytokine expression such as IL-15 in CAR-NK cells is
crucial for population expansion in addition to tumor antigen stimulation. Using an exponential form and
Hill’s equation to describe the nonlinear dependencies between cytokine concentration and cell proliferative
property’®, we proposed a cytokine-dependent model (CM) for computing the proliferation rate of 1L-15-
expressing NK cells as follows.

pi(t) = peexp(w — by, t), ®3)
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Initial ranges and default values of hyperparameters were determined using linear programming of
biological constraints. p. is baseline cytotoxic NK cell proliferation rate, c; ;) is the dimensionless
cytokine concentration level in the neighboring region (i, j), cs¢ is the half-maximum cytokine level. y, is
the Hill’s equation exponent, b, is the natural decay rate parameter of proliferation rate, ¢ is cell age, and

Bl%\+6
B
tumor count B; ;) in the neighborhood (i, j), half-maximum tumor load Bs, and a Hill equation exponent
y1. kg is a constant in the context of NK cell autonomous growth as tumor cells are absent and kept to the
default value. We considered a half-life of 2.5hrs for IL-15%. At every step of the ABM, the real-time
cytotoxic NK cell proliferation rate p; was sampled from a truncN(pz (t), o, ?) distribution.

6 is a small constant for keeping w nonzero. kg = is the tumor stimulation effect considering

Y1
+BSO +6

CM is compared to a vanilla model (VM) of w = 0 and a b invariant across groups. The first 70% of data
were used for fitting and the remaining for testing. Parameters c, y,, b were globally searched to minimize
mean squared errors (MSE) between simulated and observed population fold change with respect to the
initial cell counts. The characterization of NK cell proliferation model is performed on the autonomous
growth kinetics of cord blood (CB) CAR-NK and NT-NK cells using measured cell counts data from *°,
Results are provided in Supplementary Materials 1.



Exhausted NK cell (Ng) and characterize NK cell exhaustion process

In adoptive cell therapy, NK cell serial killing capacity (SKC) can be modulated by its CAR engineering®,
source quality®, gene editing®®, and cytokine stimulation®. Once a cytotoxic NK cell exhausts, it will no
longer be able to kill tumor cells but can remain in the system in the presence of tumor antigen. We focused
on aspects of NK cell exhaustion due to loss of ability to secret cytolytic granules and impaired cytotoxicity
due to dysregulated inhibitory signals. The former was quantified as the serial killing capacity s, and the
latter was modeled by a link function between the probability of killing a tumor cell upon contact, py;; and
RNA expression of genes found to be significantly associated with NK cells’ tumor control ability based
on the LME modeling. Bhat et al.®* demonstrated that one NK cell was able to kill four to six tumor cells
in 16 hours. However, the experiment was limited in duration to thoroughly measure the maximum SKC.
To date, the exhausted NK cell phenotype can only be determined functionally using NK cell rechallenge
assay. To fill the gap of mathematical models of NK cell exhaustion, we hypothesized that NK cell
exhaustion could be deconvoluted as the reduction of serial killing capacity and impaired killing capability.
We encoded an NK cell initial SKC parameter S,, which reduced as NK cell killed targets (event denoted
as I;;). The following Exhaustion Models (EM) are proposed.

Exhaustion Model 1 (EM1):
NK cell exhaustion can be primarily described by the linear reduction in SKC. A cytotoxic NK cell (N;)
transformed to an exhausted NK cell (Ng) when its current SKC reached zero.

s =S = Xlkin ()
Exhaustion Model 2 (EM2):

In addition to the linear reduction in SKC, interactions with tumor cells increase the inhibitory signaling in
NK cells such. Given that exhaustion markers LAG3 and PDCD1 were found to be significantly associated
with NK cell cytotoxicity based on the cross-lagged LME model My . We model the exhaustion process
as:

s = So — Xlkin (6)
XGon = XGopn T 2kl (7)
where x¢_ . is the vector of RNA expression of exhaustion marker genes G = {LAG3, PDCD1}, which
further updates NK cells’ killing probability pg;;.
Exhaustion Model 3 (EM3):

Increased expression of exhaustion markers could in turn regulate the synthesis and secretion of cytolytic
granules. We used an exponential function to link Hill equations of exhaustion markers to the reduction of
serial killing capacity.

s = So — Xlkine’exn (8)
xGexh
Vern =) O
. xGexh 50 + xGexh
XGoun = XGopn T 2kl (10)

We compared the three EMs by fitting to tumor rechallenge assay in ° and selected the model with the
smallest MSE loss. Results are provided in Supplementary Materials 1.



Vigilant NK cells (Ny/)

Several studies have demonstrated that NK cells exhibit functions previously only available among cells of
the adaptive immune system, including the cell memory*®"8, Homeostatic proliferation drives NK cells to
transform into a dormant, sustained phenotype with preserved effector function and self-renewal potential
that can live in the host for prolonged time*®#9%28" To differentiate such NK cells before and after the
second viral or pathogen challenge, we termed the former as vigilant NK cells (Ny) and the latter as
memory-like NK cells. In ABMACT, upon local tumor clearance (B_), cytotoxic NK cells exposed to
tumors can transform to vigilant NK cells (Ny) at a probability kg_. The vigilant cluster had a lower
proliferation rate p, and death rate d;, to sustain a small population in the host. A proportion of the vigilant
NK cells are capable of exhibiting recall upon a second tumor stimulation (event denoted as B.. when tumor
cells are present in the neighborhood) and convert back to cytotoxic NK cells at a probability kg, .

Tumor cells (B)

Malignant cells are characterized by uncontrolled growth and immune evasion®. B-cell non-Hodgkin
lymphoma was characterized to have a medium proliferation rate ranging from 0.15 per day to 0.80 per day
in indolent to highly aggressive types®. Glioblastoma was estimated to have a medium proliferation rate of
0.022 per day using patient MRI data®. The tumor cell agents (e.g. B cell lymphoma, glioblastoma) are
modeled to be highly proliferative with a minimum likelihood of apoptosis. Proliferation rates pg can be
specific to cell lines, host conditions, and other factors. Proliferation rates used in modeling were estimated
using tumor-only bio-illuminance data from the lymphoma®® and GBM?® mouse models using the following
ODE model:

dB B
N (1_Bmax>B (11)
where B is average tumor radiance, which is a surrogate for tumor size, u is tumor cell proliferate rate in
day?, and B, is the equivalent average radiance of growth-limiting tumor size (Supplementary
Materials 1). To account for immune evasion, we assumed tumor cells can evade CAR-NKs by
downregulating CAR target and gain mutations over generations. In the lymphoma mouse model, CD19
expressions are sampled and randomly assigned to tumor cell agents to represent tumor heterogeneity. We
assumed tumor cells has a probability of gaining immune resistant mutation p,,,qte Of 0.001%, which is
added to the probability of evading NK cell cytotoxic Killing pa,qq4e- In models with specific CAR targets
such as anti-CD19, the expression of the target in tumor cell agents modifies peyqqe. FOr example, peyade
of tumor cells expressing high CD19 is proportionally reduced by a constant scaling factor. In addition to
proliferation, death, mutation, a tumor cell agent is able to move to neighboring grids at every model step
with a probability mg.

Integrate functional genetic effects in cell agents

Single-cell RNA sequencing data processing

Longitudinal scRNA-seq data of NK cells and tumor cells were obtained from GSE190976 and processed
as described in Supplementary Materials of Li et al.®*. GOBP gene set density scores (GSDS) were
calculated using R package “gsdensity”*. Pre-infusion sScRNA-seq data of IL-15 and I1L-21 NK cells® were
obtained from GSE227098 in Shanley et al. %°.,



Feature selection using linear mixed effects modeling

NK cell lysis killing is tightly regulated by a repertoire of activating surface receptors inhibitory receptors
such as Fc receptor FcyRIIIa (CD16), NKG2D, and KIR2DL177%%, To understand the molecular features
underlying NK cells anti-tumoral capability, we performed feature selection on a literature-curated list of
112 NK cell genes and 5 GO Biological Process (GOBP) pathways?**"¢%°7 (Supplementary Materials
2) that regulate NK cell activation, inhibition, OXPHQOS, proliferation, survival, cytotoxicity, regulatory
function, and memory function.

To select significant genes and pathways and quantify their effects on NK cell cytotoxicity, we applied
linear mixed-effects (LME) modeling to paired scRNA-seq data of NK cells and tumor radiance data from
the lymphoma mouse model in Li et al.* using R package Ime4®. We assume that gene-expression patterns
in NK cells are associated with function of NK cells and their anti-tumor control effecting tumor size at the
next timepoint, as NK cells required tumor antigen stimulation to sustain and might have drastically waned
at the time of sample collection if tumors were cleared. Tumor loads were at D28 were excluded due to cell
count scarcity. The cross-lagged LME model for NK cells, My, included random intercept effects for time
and group to consider temporal and inter-group variations. My, was defined as:

Y = XnkBnk + ZnkUnk + €nk (12)
where Y = (yy )k are means of tumor radiance in unit of p - s~tcm™2sr~1 across all mice in the k-th group

at ty,....tr, k€{1,..., K}. X = (ing)K*I*G are gene expressions of the g-th gene of the i-th cell in the k-th

group at a timepoint t,, ..., tr_1, g € {1,...,G;}i € {1, ..., ,}.B = (Bg)G are regression coefficients of
fixed effects for the g-th gene. Z = (Zi)] are random effects for time and group, j € {t,k},.u = (uj)] are
random effects regression coefficient for the j-th random effect, u;~N(0, Gui) and Gy, is the covariance

matrix, and € = (&x;)k.: random error for the i-th cell in the k-th group, €,;~N(0, 62). Notations in the
format (X; ); denotes data X of the i-th element in a matrix I, and I can be multi-dimensional.

We used a two-step approach for model variable selection and fitting. In the first round of fitting, single
covariate LME models were fitted for each gene and GOBP. Significant covariates were retained in the
final model based on p values adjusted for multiple testing. LME models were fitted using restricted
maximum likelihood and Nelder-Mead optimizer given small sample sizes. Due to overlaps between genes
selected based on literature reviews and relevant GOBP gene sets, we compared models with and without
GOBP gene sets and the null model with only random effects using Akaike information criterion (AIC) and
Bayesian information criterion (BIC). The LME model with coefficients in Supplementary Data 1 had the
smallest AIC and BIC. We currently considered a total of 117 genes and GOBPs for NK cell genetic effect
model, which can be further expanded to include additional genes and pathways. As the number of genes
and pathways of interest exceeded the number of observations, this approach allows efficient
dimensionality reduction while controlling for false discoveries.

Integrate functional genetic effects in cell agent cytotoxicity

Fixed effects regression coefficients of significant genes and GOBP pathways, Byk, Were multiplied with
-1 to further parametrize cytotoxic NK cell agents’ probability of killing a tumor cell upon contact, py;;;,
as described in Methods section “Cytotoxic killing activity.” In the lymphoma model, the scRNA-seq data
at pre-infusion were sampled and randomly assigned to cytotoxic NK cell agents for respective experiment
groups. In the GBM model, the scRNA-seq data at pre-infusion were sampled and randomly assigned to



cell agents for respective NK cell groups. The expressions multiplied with coefficients derived above and
contributed topy;;;.-

Tumor cell viability model My,

In addition to My, we also built an LME model for tumor cells with sScCRNA expressions of tumor cells
and tumor radiance. Tumor cells are intrinsically programmed to proliferate and survive®. We focused on
17 GOBPs governing tumor cell proliferation, cell cycle regulation, and apoptosis. We also included HLA-
E, HLA-C, HLA-B, HLA-A, HLA-F, HLA-G, HLA-DOA, HLA-DOB for immune recognition®®, BRAF, NRAS,
KIT, MAPK2 for uncontrolled cell growth!®, ERBB4, GRIN2A, and GRM3 for tumor progression, RAC1
and PREX2 for cell motility and metastasis'®**® HIF1AN, HIF1A-AS1, HIF1A, and HIF1A-AS2 for
hypoxia response’®, and VEGFC, VEGFA, VEGFD, and VEGFB for angiogenesis and metastasis'®. The
complete list is provided in Supplementary Data 1.

To select significant genes and pathways and quantify their effects on tumor viability, we applied an LME
model, M1y, to paired scRNA-seq data of tumor cells and tumor radiance data from the lymphoma mouse
model®® using R package Ime4®. In M1y, we proposed that tumor viability was associated tumor SCRNA-
seq data at the current time point. My, was defined as:

Y = XnkBnk + ZnkUnk + €nk (13)
where Y = (yy)k: mean average tumor radiance in unit of p/s/cm? /sr of mice in the k-th group, X =
(ing)K*I*G: gene expression of the g-th gene of the i-th cell in the k-th group, B = (Bg)G: fixed effects
regression coefficient for the g-th gene, Z = (Zj)]: random effects for time and group, Z; = (t,k), u =
(uj)]: random effects regression coefficient for the j-th random effect, u;~N(0, Guj) and Gy, is the

covariance matrix, and € = (ey;)k.;: random error for the i-th cell in the k-th group, €x;~N(0, 62).

Simulation

Evaluation metrics

To make simulation data comparable to experimental observations, tumor progression in simulations and

in experimental observations were normalized by tumor-only control measurements, respectively. The

. . . T, Ng(8)
simulated normalized tumor progression was calculated as 7;,,, = —2—, where Ty(t) = —2— was tumor

control Ny

cell agent count at timepoint ¢t in group g normalized by tumor cell agent count at timepoint O,

— Ncontrol(t)
Teontroi(t) = T N,

normalized by tumor cell agent count at timepoint 0. The observed normalized tumor progression was

was tumor cell agent count at timepoint ¢ in the tumor-only control group

2

V, . . . . .
calculated as 7,,; = —2—, where V, (t) is the average tumor radiance in p - s™*cm™?sr™! at timepoint ¢

control

in group g and V.0 () is the average tumor radiance in p - s~ tcm™2sr™1 at timepoint ¢ in the tumor-
only control group. Simulation results were evaluated on normalized tumor progression 7;,, and r,s using
the total loss L;,:4; calculated as follows:

Leotar = Lusg + Luag + Bayc +1 — R? (14)
where Lysg = MSE (Tsim, Tobs) 1S the mean squared error (MSE) 10SS, Ly ag = MAE (T5im, Tops) 1S Mean
absolute error (MAE) loss, Ayyc = |AUC (15im) — AUC (1,p5)] is the difference between the area under the
curve (AAUC) in simulated and observed data, and R? is coefficient of determination calculated by scikit-



learn function r2_score!®, Each component was chosen to capture complementary aspects of model
performance. MSE captures large deviations between simulated and observed tumor trajectories, while the
MAE provides a robust measure less influenced by outliers. AAUC compares the integrated tumor burden
over time. R? quantifies the proportion of variance explained by the model; including 1 — R? ensures
penalization of poor overall fit even when pointwise errors are small. Together, these terms balance
sensitivity to local fluctuations, robustness to noise, and fidelity to global tumor control dynamics.

Simulation initiation

The simulations were initiated with a 2D discrete Moore space. A tumor niche was initiated with 1000
tumor cell agents in a 50 by 50 grid, corresponding to a spatial density that supported biologically realistic
encounter rates while avoiding overcrowding or excessive sparsity. The number of NK cells varied
depending on the effector-to-target ratio (ETR). We evaluated alternative densities and found that both
lower and higher initial occupancies (< 0.2 cell/grid or > 1.2 cell/grid) reduced fitting accuracy given the
same ETR of 1.0 (Supplementary Materials 3.1). Because of the intra-tumoral administration of NK cells
in the GBM mouse model, we assumed no loss of NK cells in infusion and an ETR of 1:5 for all three
groups, same as the mouse experiment setup. Simulation data were aggregated to compute the mean and
standard deviation.

Calibration

The large parameter space of the proposed model requires both literature-informed parameter setting and
multi-stage parameter calibration. To reduce the high computation demand of parameter search of ABM,
we iteratively optimized the following hyperparameters prior to more granular parameter search for
parameters most pertinent to NK cell efficacy. Hyperparameters for NK cell proliferation function,
including Hill’s equation exponent of tumor antigen effect (y;), Hill’s exponent of cytokine effect (y,),
half-maximum tumor load (Bsy), and half-maximum of cytokine’s effect (Cso) are calibrated on
CAR19IL15 NK cell and NT NK cell autonomous growth data from Liu et al*®. Proliferation rate (pz) and
death rate of tumor cells (dg) were estimated based on lymphoma and glioblastoma studies by Li et al.?
and Shanley et al.?°, respectively. Three hyperparameters for tumor cells were fixed as constant based on
literature-informed assumptions. Tumor cell movement probability (mg) and speed (vg) were set to be
small positive constants based on the assumption that tumor cells have relatively lower mobility than NK
cells. Tumor mutation rate p,,,cate Was set as a small positive to represent tumor cells’ capability to gain
immune resistant mutation®’. After setting these parameters, number of tumor cells 74,0, NUMber of
initial cytotoxic NK cells nyg, NK cell baseline proliferation rate p., NK cell death rate d., NK cell
proliferation decay rate b, , NK cell serial Killing capacity (SKC) S,, and baseline cytotoxicity u. are
varied to search for optimal fitting.

In lymphoma mouse model, data points at day 0, 7, and 14 post-engraftment (equivalent to day 7 and 14
post-infusion) were used for model calibration. The assumption that engraftment occurred seven days post
infusion was based on the comparable tumor radiance in mouse models at day 7 (Figure 2C in Li et al.*®).
For the lymphoma mouse model, data points after post-engraftment day 14 (equivalent of post-infusion day
21) were removed due to lack of data points for the Raji control group. Each simulation in lymphoma
autonomous growth, rechallenge assay, and mice model simulations was repeated 30 times. In GBM mouse
model, data points at day 14, 22, and 37 after intra-tumoral injection were used for model calibration. Each
simulation in the GBM mouse model was repeated 5 times due to computation time constrain.



We estimated the ETR by selecting the ETR that minimize the total loss across groups. The remaining
parameters were selected by minimizing total loss under the ETR. The top 10 parameters with minimum
total losses were also reported. The lymphoma and GBM ABMACT model parameters are listed in Table
1.

Table 1 Model parameters.
[Table 1]

Independent validation

We tested the calibrated non-transduced NK (NT-NK) cell model using the K562 cell line co-culture
experiment from Dufva et al®® that were not used in the calibration process. Genetic features of NT-NK
cells and tumor cells are obtained from scRNA-seq data in Dufva et al.®* under the Synapse accession
number syn52600685. K562 myeloid leukemia cell line coculturing with NT-NK cells was simulated using
the calibrated ABMACT. GSEA scores are calculated using fgsea'® in R. Simulations followed experiment
setup of a 1:4 effector-to-target ratio (ETR) and an estimated density of 0.5 million tumor cells per ml.
3,125 virtual tumor cells and 782 virtual NT-NK cells were randomly placed in a 50 by 50 Moore’s grid
with each grid cell representing a 50um by 50um space. The simulations followed the co-culture time of
24 hours, during which NT-NK cells autonomously interacted with tumor cells.

Feature importance sensitivity analysis

Aggregating simulation data from in silico perturbation experiments of ABMACT, we trained a Random
Forest Regressor (RFR) using scikit-learn'® to evaluate the importance of model parameters on
accumulated tumor growth and prediction accuracy. Tumor growth was measured by the area under the
curve (AUC) over a 35-day simulation period. Prediction accuracy was measured by MSE between
simulated data and observed experiment data in the xenograft lymphoma mice model in Li et al.*®. Feature
importance was evaluated by the mean decrease in impurity (MDI) and permutation importance (PI). MDI
measures the information gain of features in predicting outcomes. In the case of predicting a continuous
outcome variable, MDI measures the reduction in MSE when splitting a variable at a tree node.’”’. PI
measures the reduction in the model accuracy score when randomly shuffling a feature’s value, overcoming
the potential biases of MDI for highly variable features'®. Sensitivity analysis simulations were repeated
10 to 30 times.

To evaluate the robustness of model parameters, we assessed the variance explained by the sensitivity
analysis parameters using linear regression model and type Il ANOVA test. To test robustness to sampling
variability, we subsampled 80% of the sensitivity analysis dataset and refitted the Random Forest Regressor
30 times. To evaluate interdependencies between model parameters, we conduct global sensitivity analysis
by simulating CD19IL15CAR-NK cell lymphoma model with + 10% variations and analyzed the results
using Spearman’s correlation.

Detailed sensitivity analyses are provided in Supplementary Materials 4.



Uncertainty estimation

Coefficient of variation

We followed the approach by Nikishova et al'® and evaluated simulation stability using coefficient of
variation (CV = a/u) on accumulated tumor progression, measured by normalized area under the curve
(AUC), of ABMACT calibrated on the lymphoma model by Li et al.? (Supplementary Materials 3.2).
Each simulation was repeated 10 times with the calibrated parameters over 35 simulation days. Normalized
tumor progression AUC was calculated by first dividing tumor cell agent population counts in the treatment
group by the mean tumor population count in the tumor-only control group and then averaging over time.
The mean and standard deviation were calculated over repeats for each treatment group.

Simulation-based inference parameter distribution estimation

We used a simulation-based inference workflow by Boelts et al.''° to create surrogate models and estimate
parameter distributions. Using the sbi Python package by Boelts et al.**> and the method by Papamakarios
& Murray**, we trained a posterior estimation model on simulation lymphoma model data generated by
ABMACT. In total 11 parameters were evaluated, including ETR, cytotoxic NK cell proliferation rate p,,
NK cell migration rate my, NK cell death rate d., NK cell baseline cytotoxicity u., NK cell serial killing
capacity s, CAR effect coefficient y, NK cell genetic effect coefficient b, and three hyperparameters for
NK cell proliferation rate (tumor load half-maximum Bs,, cytokine concentration half-maximum cs,, and
decay rate b,.). The observations to were summarized to tumor population fold change normalized to tumor
only control at day 0, 7, 14 post-engraftment. To estimate posterior distributions of parameters, normalized
tumor progression in the mice models of the NT, CAR19, and CAR191L15 NK cell groups in Li et al.?
were given to the surrogate model and 1000 posterior samples of the parameters were drawn. Mean and
standard deviation of posterior distributions are reported in Supplementary Data 2.

Benchmarking with ordinary differential equations

To benchmark ABMACT, we compare it with the commonly used ordinary differential equation (ODE)
models on the lymphoma mice model dataset using the total loss metrics (L;o¢q:) specified in “Evaluation
metrics” (Supplementary Material 3.4). ABMACT and ODE models were calibrated on the same
xenograft lymphoma mice model data in Li et al. °. The ODE fitting results are provided in Supplementary
Data 3.

The ODE models are adapted from the approach in Kirouac et al.*® and constructed with consideration of
NK cell cytotoxicity and transitions between phenotypes as follows:

dB
= HBB = PicgNe (15)
dN, B™ 4 Sg 1
G = o\ gggm ) Ve~ dae— (1= M=o (o) e 19
dsg B™
at = Pt i\ psgm 4 g )9 a7
dNe _ <1 Sg)N d,N (18)
dt Sg) ¢ 9



dN, 1
W =Dy (1 T BmZ)NC — dyN, (19)

Here, tumor cell population B had proliferation rate pgz. Cytotoxic NK cells N, could kill tumor cells at a
probability of Pk, - Different NK cell products possess varying properties, the subscript g denotes

parameters specific to NK cell group g. N, population proliferated at a baseline proliferation rate u, and
modified by the presence of tumor antigen. The modification effect of tumor antigen was represented by

SOT:BW, where B50 was the half-maximum population count of tumor cells and m,

was Hill’s exponent. N, died at a probability of d,. The exhaustion of cytotoxic NK cells was modelled by

the Hill’s function 5

the reduction of average serial Killing capacity of the population as (1 - ;—Z) N¢, where s, measured the

average serial Killing capacity of N, and S, was the maximum serial Killing capacity. s, was reduce by the
average Killing rate Pk, and increased by the generation of new cytotoxic NK cells. When tumor cells were

cleared, N, could also transform to the vigilant phenotype N, at a probability p,,. In the modifier M%mz,

m, was a large enough constant so that the transformation only occurred after B approached 0. N, denoted
the number of exhausted NK cells. d,, was vigilant NK cells’ death rate.

Parameter fitting was obtained by minimizing the total loss L;,;4; 0f normalized tumor progression between
ODE prediction and experimental data in the lymphoma mouse model by Li et al. The total loss included
MSE, MAE, difference between simulated and observed tumor progress area under the curve A4y, and
coefficient of determination R?. Random parameter initialization and fitting were performed and repeated
30 times. The top 10 best fitting with the smallest loss were selected.

Proof-of-concept models

TME physical barriers

Spatial constraints on NK cell anti-tumoral efficacy can be reflected by NK cell infiltration. Direct
quantification of physical barriers would require new experimental measurements and specialized
algorithms, which would add complexity to the model. As a pragmatic alternative, we introduced two
surrogate measures of physical barriers to NK cell infiltration and evaluated their impact on accumulated
tumor growth using the area under the curve (AUC). We performed simulations on 1) varying NK cell
movement probability (my), and 2) varying distances between NK cell infiltration border and tumor
seeding area under the setting of the CAR19IL15NK cell treatment of lymphoma mice models in Li et al.?
(Supplementary Materials 5.1)

Migration restriction: Resistance from physical barriers such as extracellular matrix was modeled by
varying the NK cell migration probability (m,). The original calibrated model used my = 0.9, which was
reduced to 0.7, 0.5, and 0.3 to simulate progressively restricted migration.

Migration distance: The tumor seeding area was varied to represent different distances that NK cells must
travel to reach tumor cells. Distance was quantified as the ratio between tumor seeding area diameter and
the simulation space width. Relatively to the control setup, the distance was increased by 5% and 15% from
the original model setup (control). All other parameters were kept consistent with the calibrated model.



NK cell movement dynamics

We developed a preliminary NK cell agent model that takes into consideration tissue density and movement
modality (Supplementary Materials 5.2). We introduced a modifier function to NK cell movement speed
vy based on TME density as follows:
vy = vn(1 = Acerr/Amax),

where A..;; is the total cell space occupied and A4,,,,, is the maximum capacity. NK cell movement will be
reduced in dense areas to model the difference in movement in liquid tumors versus solid tumors such as
glioblastoma. In addition, based on the experiment by Dondossola et al®, NK cells displayed movement
modalities that are associated with their effector function. Non-engaged NK cells showed an average
moving speed of 5.83 + 0.86 um/min and are less prone to cytotoxic killing, while engaged NK cells
showed an average moving speed of 2.71 + 0.71 wm/min and more prone to cytotoxic killing. Based on
this experiment, we modified the movement function of NK cell agents.

Hypoxic condition

To demonstrate how niches of resistance can suppress NK cell activities, we implemented a proof-of-
concept model for hypoxic regions created tumor oxygen competition and tracked NK cell dynamics
(Supplementary Materials 5.3). Default oxygen concentration of 1.35e-8ml/grid and standard oxygen
consumption rate of 2.16e-9ml/cell/hr per unit activity follows the ABM simulation setup in the study by
Jalalimanesh et al.**? Pathological hypoxia is defined as the oxygen level reaching 20% of the default
oxygen concentration'®, We implemented the following rules: 1) NK cell agents exhibit reduced
proliferation and cytotoxicity under hypoxic conditions; 2) Under prolonged hypoxia, tumor cell agent
proliferation will also reduce.

Statistics and Reproducibility

Two-tailed Mann-Whitney U tests with a significance level of 0.05 were used for testing differences in
simulated overall tumor progression (AUC) between conditions. Student’s t-tests were used for comparing
genetic effects metrics. P-value adjustment for multiple testing was performed using Benjamini-Hochberg
correction. Boxplots show the median (center line), 25th—75th percentiles (box), and 1.5x IQR (whiskers).
Points represent outliers.

Code Availability

The feature selection using LME model was performed in R (v4.2.2)''*. ABM simulations were
performed in Python (v3.9) '** using the MESA framework (v2.2.4)%8. The source code for reproducing
the work is accessible at: https://github.com/KChen-lab/ABMACT.

Data Availability

Data for generating figures are provided in Supplementary Data 4 and at
https://doi.org/10.5281/zen0d0.17818689. Public SCRNA-seq data used in this work can be obtained from
GSE190976, GSE227098, and syn52600685.
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Table 1

cytotoxic NK cell
proliferation rate

Parameter Description Value Unit Source
Pc Proliferation rate | Vary by cell day~! Model fitting on
of cytotoxic NK product data from Liu et
cell al.*
dc Death rate of Vary by cell day~?! Model fitting on
cytotoxic NK cell | product data from Liu et
al.*
T Baseline NK cell | Vary by cell Dimensionless Model fitting on
cytotoxicity mean | product data from Li et
al.®
O Baseline NK cell | 0.01 Dimensionless Fixed
cytotoxicity
standard deviation
b NK cell 0.1 Dimensionless Parameter search
cytotoxicity
genetic effect
coefficient
y Chimeric antigen | CAR: 0.5 Dimensionless Parameter search
receptor effect NT: 1.0
exponent
Benk Coefficient vector | Supplementary Dimensionless LME model
of significant NK | Table S2 fitting on
cell cytotoxicity lymphoma mice
molecular features model data in Li
G etal.®
INK Normalized RNA | Supplementary Dimensionless 23
expressions and Data 1
GOBP densities of
NK cells
my Movement 0.9 Dimensionless Fixed
probability of NK
cells
Uy Movement speed | 39 pum - hr1 116
of NK cells
So Initial NK cell Vary by cell cell Model fitting on
serial killing product data from Marin
capacity etal’
by, Natural decay Vary by cell AT1 Model fitting on
parameter for product data from Liu et

al 19




B Half-maximum 25 Dimensionless Model fitting on
tumor load data from Liu et
al.®®
Cso Half-maximum 70 Dimensionless Model fitting on
cytokine level data from Liu et
al.®®
Y1 Hill’s equation 0.2 Dimensionless Model fitting on
exponent of tumor data from Liu et
antigen effect al.®®
V2 Hill’s equation 0.2 Dimensionless Model fitting on
exponent of data from Liu et
cytokine effect al.®®
t50.105 Half-life of IL-15 | 2.5hr AT? %
t50,,,1 Half-life of IL-21 | 0.2hr AT1 1w
Pevade Probability of B X g{5cp19) Dimensionless 118
cell lymphoma
tumor cells
evading immune
surveillance
Py Proliferation rate | 1e-3 day™? Fixed to be a
of vigilant NK small value based
cells on literature
48,49,82-87
dy Death rate of le-3 day™! Fixed to be a
vigilant NK cells small value based
on literature
48,49,82-87
PE Proliferation rate | O day™? Fixed
of exhausted NK
cells
dg Death rate of Vary by cell day~! Model fitting on
exhausted NK product data from Liu et
cells al.*
kg Transition 1.0 Dimensionless Fixed
probability of N
to Ny
kg, Transition 0.9 Dimensionless Fixed
probability of Ny,
to N,
PBymphoma Proliferation rate | 0.455 day™1 Modeling fitting

of B cell
lymphoma tumor
cell

on data from Li et
al.*®




PB guiobiastoma Proliferation rate | 0.223 day™? Modeling fitting
of glioblastoma on data from
tumor cell Shanley et al.°

dg Death rate of le-4 day~! Modeling fitting
tumor cell on data from Li et
al.?
mp Movement 0.1 Dimensionless Fixed
probability of
tumor cells
Vg Movement speed | 1 grid per step | Fixed
of tumor cells
Pmutate Percentage le-3 Dimensionless Fixed
increase of Peyade
AT Model step length | 4 hr &
l Grid cell size 50 um Fixed
Byrax Maximum number | 25 cell Fixed

of tumor cells per
grid cell
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Editor Summary



ABMACT, an agent-based model of adoptive cell therapy, recapitulated cellular dynamics in two
cancer preclinical models and showed that enhancing immune cell proliferation, cytotoxicity,
and serial killing capacity is critical for optimal efficacy.
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a Tumor progression (AUC) feature importances b

Time to tumor clearance (day)
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