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Odor prediction of whiskies based on their
molecular composition
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Aroma compositions are usually complex mixtures of odor-active compounds exhibiting diverse
molecular structures. Due to chemical interactions of these compounds in the olfactory system,
assessing or even predicting the olfactory quality of such mixtures is a difficult task, not only for
statistical models, but even for trained assessors. Here, we combine fast automated analytical
assessment tools with human sensory data of 11 experienced panelists and machine learning
algorithms. Using 16 previously analyzed whisky samples (American or Scotch origin), we apply the
linear classifier OWSum to distinguish the samples based on their detected molecules and to gain
insights into the key molecular structure characteristics and odor descriptors for sample type.
Moreover, we use OWSum and a Convolutional Neural Network (CNN) architecture to classify the five
most relevant odor attributes of each sample and predict their sensory scores with promising
accuracies (up to F1: 0.71, MCC: 0.68, ROCAUC: 0.78). The predictions outperform the inter-panelist
agreement and thus demonstrate previously impossible data-driven sensory assessment in mixtures.

Odors are ubiquitous in our environment and are perceived either
consciously or in the background. Most of these odors are a complex
mixture of diverse odor molecules, creating a specific odor impression.
While some characteristic odors are mainly determined by single
molecules, e.g., vanillin', most food aromas consist of a whole range of
molecules. One prominent example is the whisky spirit, whose aroma
profile can be determined from more than 40 compounds’ and which can
consist of even more non-odorous volatiles’. As diverse as these mole-
cules are the aroma impressions and, by proxy, the odor descriptors that
best describe the resulting aroma’. Rapid sensory evaluation methods as
well as analytical methods for analyte detection allow a distinction
between specific types of whiskies’. This shows that aroma evaluation can
also be used to investigate further aspects of food products apart from
smell perception.

Human panels are widely used to evaluate flavors. However, as olfac-
tory perception is rather subjective and acquiring comprehensive quanti-
fiable measurements is difficult, it is important to use odor descriptors based
on the evaluations of multiple subjects for a consensus. Moreover, other
senses, experiences, personality, and biological circumstances can also
influence the final perception of a participant®’. Overall, comparability
between participants when describing odors is limited, no matter if they are
experts or novices'"’, increasing the difficulty to classify odors due to

ambiguity in the chosen descriptors. However, panelist training can
enhance identification performance, consensus, and terminology' b2

Despite difficulties, rapid sensory evaluation methods like rate-all-that-
apply (RATA)" can be effective, but these methods still require an immense
amount of invested time, money, and often trained panelists. Alternatively,
machine learning (ML) methods have the potential to amend the knowledge
of panelists and could be used to predict the odor of molecules quickly,
accurately, and reliably, thus reducing the overall time and effort required.
ML methods could thus support and supplement human sensory evalua-
tion, for example by pre-selecting promising odorants.

In the last few years, enormous progress has been made in automated
odor prediction'*. The most widely utilized methods vary between dif-
ferent machine-learning algorithms like decision trees, Random For-
ests (RF), graph-based approaches, and linear methods. Additionally,
different features are used as inputs, ranging from mass spectra over phy-
sicochemical properties to solely structural characteristics described using
textual inputs such as SMILES™. Although ML methods cannot replace
human panels so far, molecular odor prediction can already reach human-
level performance for specific descriptors™. The aforementioned methods
mainly focus on individual odorant molecules. However, as discussed above,
everyday odors are seldom monomolecular but rather a mixture of diverse
odorants. Thus, in addition to the complexity of structure-odor

"Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany. 2Department of
Psychiatry and Psychotherapy, Friedrich-Alexander-Universitét Erlangen-Niirnberg, Erlangen, Germany. ®Department of Chemistry and Pharmacy, Friedrich-
Alexander-Universitat Erlangen-Niirnberg, Erlangen, Germany. ‘Department of Systems Engineering, Saarland University, Saarbriicken, Germany. °These authors

contributed equally: Satnam Singh, Doris Schicker.

e-mail: andreas.grasskamp@ivv.fraunhofer.de

Communications Chemistry | (2024)7:293


http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-024-01373-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-024-01373-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-024-01373-2&domain=pdf
http://orcid.org/0009-0006-4229-0554
http://orcid.org/0009-0006-4229-0554
http://orcid.org/0009-0006-4229-0554
http://orcid.org/0009-0006-4229-0554
http://orcid.org/0009-0006-4229-0554
http://orcid.org/0000-0003-2188-1532
http://orcid.org/0000-0003-2188-1532
http://orcid.org/0000-0003-2188-1532
http://orcid.org/0000-0003-2188-1532
http://orcid.org/0000-0003-2188-1532
http://orcid.org/0000-0001-5428-2048
http://orcid.org/0000-0001-5428-2048
http://orcid.org/0000-0001-5428-2048
http://orcid.org/0000-0001-5428-2048
http://orcid.org/0000-0001-5428-2048
http://orcid.org/0000-0002-5895-6529
http://orcid.org/0000-0002-5895-6529
http://orcid.org/0000-0002-5895-6529
http://orcid.org/0000-0002-5895-6529
http://orcid.org/0000-0002-5895-6529
mailto:andreas.grasskamp@ivv.fraunhofer.de
www.nature.com/commschem

https://doi.org/10.1038/s42004-024-01373-2

Article

relationships™, interaction effects also occur between the different odorants.
This is demonstrated by the limited ability of humans to identify odorants in
ternary or higher mixtures’*” even after extensive training™.

For classification of odors, analytical devices such as electronic noses
(e-noses), or mass spectrometric methods can be applied"*”. Regarding
odor mixtures, on the one hand, previous work predicted the responses of
e-noses based on the known responses to their individual components***" as
well as the mass spectra from the odor impressions of mixtures™. On the
other hand, e-noses, combined with artificial neural networks, were shown
to help monitoring environmental odors—consisting of a multitude of
odorants—regarding concentrations and odor classes™.

Prediction of human odor perception per se has already targeted aroma
mixtures regarding intensity” ™, pleasantness”, and sweetness
impression™. Further, previous work has used mass spectra of essential oils
to predict their odor impression™. Therefore, several odor descriptors were
combined in five odor descriptor groups, with the method achieving a true
positive prediction accuracy of ~70% and a true negative prediction of
~50%. Although this is a promising step, there is still room for improve-
ment. Moreover, in their approach, the authors combine descriptors using
pretrained vectors based on English Wikipedia and Fast Text"~*. However,
as discussed in Sisson*, usage of descriptor words might vary significantly in
their common usage and in olfactory context leading to creation of
embedding vectors that carry a different context than intended. Odor
quality in the context of odor mixtures is thus still a challenge and more
research is needed to test different approaches.

Moreover, to not only be useful in research aspects and theory but also
in practice, the whole process for odorant prediction should not only target
odor mixtures, but also keep in mind a fast and easy data generation to be
used as input. This starts with the analysis of an odor, e.g., by chemically
analyzing and decomposing a mixture into its single aroma compounds
with gas chromatography-mass spectrometry (GC-MS). This can be cou-
pled with automatic molecule detection. Within this study, we considered
this whole pipeline by combining data of previously published studies. Thus,
the aim of our work is to extend the current singular structure-odor pre-
diction models to molecular mixtures, which is closer to real-world
applications.

As such, like in our previous work, we used molecular mixtures from
American and Scotch whisky samples that were determined by GC-MS
coupled with automatic compound detection analysis™*. Further, we used
sensory data, generated by a human expert panel using RATA’, to determine
the top-5 odor descriptors per whisky.

For prediction, we used two algorithms: On one hand, we applied the
comprehensive linear model OWSum (Olfactory Weighted Sum) that
provides insight into the classification decision process”. Using OWSum,
we firstly investigated whether the type of whisky can be correctly predicted
based on the detected molecules or the top-5 odor descriptors. This enables
us to also get insight into the molecular and sensory distinguishability of
American and Scotch whisky and the impact of olfactory and molecular
features. Secondly, we used OWSum to predict the top-5 odor descriptors
based on the detected molecules in each sample. On the other hand, we used
a Convolutional Neural Network (CNN) architecture to predict the odor
qualities of the whiskies based on the substructural similarity features of
these detected molecules. We compared our odor prediction results with
inter-subject reliability to estimate their performance as well as against
educated guessing, i.e., guessing the most frequently occurring descriptors in
the dataset and also against two benchmarking methods, i.e., linear Support
Vector Machines (SVM) and RF.

Results

Predicting the type of whisky with OWSum

First, we explored the capability of the linear classification algorithm
OWSum using different weighting schemes to accurately distinguish
whiskies into American or Scotch based on either panel descriptors or
detected molecules. When top-5 odor descriptors were used as features, the
same-weighted CP1 variant worked the best with 93.75% accuracy for leave-

Table 1 | Accuracy for LOO to predict the type of whisky
(American or Scotch) using OWSum

Model Features ACC [%]
OWSum (CP1, same-weighted) Descriptors 93.75
OWSum (CP2, same-weighted) Descriptors 81.25
OWSum (CP1, tf-idf-weighted) Molecules 100
OWSum (CP2, tf-idf-weighted) Molecules 100

one-out validation (LOO). When molecules were used as features, applying
term frequency-inverse document frequency (tf-idf) weights worked better
than the same-weighted variant and achieved 100% accuracy for CP1 and
CP2 (see Supplementary Material Table S1 for the performance of all tested
variations). Overall, OWSum could reliably predict the type of whisky in
both cases (see Table 1).

Similar to other explainability methods such as calculation of feature
importance values, the nature of OWSum allows gaining insight into the
classification and thus identify the most important features. Therefore, in a
second analysis, we trained on all detected molecules to gain as much
information as possible for identifying characteristic molecules and struc-
tural patterns corresponding to samples belonging in each of the two classes.
To get a measure of how valid this information is, we predicted for each
whisky its type based on this model and thus “re-created” the type of whisky
based on the features. By this, we got a re-creation accuracy, i.e., the com-
parison of the true with the predicted type if using the same train and test
data, of 100% and 93.75% respectively that justified the validity of the
insight. Caramel-like was identified as the most characteristic odor
descriptor for American whereas apple-like, phenolic, and solvent-like odors
were more pronounced in Scotch whiskies (Fig. 1A). These results show that
there are clear relationships between volatile molecules as well as olfaction
with the type of whisky. Mostly the molecules menthol and citronellol
pushed the classification towards American whereas methyl decanoate and
heptanoic acid had higher impact to classify a whisky as Scotch. Indeed,
these four molecules were always present in one class, but never present in
the other class, in accordance with our previous work on this dataset that
identified these molecules to be exclusive for American or Scotch whiskies’.
However, this accounts for our limited dataset and does not necessarily
represent all Scotch and American whiskies or an exhaustive list of all
molecules found in these whiskies. Though applying the method in real-
world thus could lead to lower accuracies, it still confirms the discriminative
power of odorants to distinguish between whisky types’. Moreover,
OWSum can be used to assign numerical values for all molecules, which
illustrates their predictive power for classifying the whisky as American or
Scotch (see Fig. 1B). Our results show that there are clear relationships
between volatile molecules as well as olfaction with the type of whisky.

Predicting the odor quality of whiskies with OWSum and CNN
In a next step, we wanted to analyze whether the smell of a whisky, repre-
sented by the top-5 odor descriptors, can be predicted using either OWSum
based on molecules or a CNN based on structural patterns. The results are
summarized in Table 2 as well as Fig. 2. Here, 'Subject X' denotes the average
inter-subject performance calculated by treating Subject X as the prediction
and all subjects but X as the ground truth. The performance metrics were
calculated for each of the panelists as Subject X and averaged out. This allows
us to set an inter-panelist baseline performance. Table 2 shows that both
OWSum and CNN performed better than Subject X, with the CNN pipeline
outperforming OWSum. Moreover, both algorithms outperformed the
educated top-5 guessing, i.e., if the five most frequent descriptors in the
dataset are always chosen as the predictions. We also wanted to analyze how
each individual panelist performs compared to the two methods, and if there
is any one particular participant that matches or outperforms the algorithms
but did not find any. The results are shown in Supplementary Fig. S1.
While CNN outperforms OWSum in terms of prediction perfor-
mance, OWSum allows easier insight into the data that is justified by a re-

Communications Chemistry | (2024)7:293


www.nature.com/commschem

https://doi.org/10.1038/s42004-024-01373-2

Article

Prediction of whisky origin

A \
N %
— % — OH
L~ N % 3 , .
— i \
ad @ ® 908 K 7\
American g —06 —04 ~02 0.0 0.2 0.4 0.6 Scotch
o1 ®2
B
\(\/j MCD
‘ ‘ > >_/‘/J
A< k(o ‘\ g A /\/\/\/(l{n /’/J’/J ) /
: 0 o A Q\Q\ \
American e Scotch
~0004  —0003 ~0.002 ~0.001 0.000 0.001 0.002 0.003 0.004
o1 02 o3 o5 ®s @9 @ [ A

Prediction of whisky odor desciptors

| Flowery

° Apple

VanillaZ 57" l
\ = Y

—0.0015 —0.0010  —0.0005 0.0000 0.0005

o1 e2

Fig. 1 | Insight into feature-class relationships using OWSum. The x-axis values
represent the differences between the influence values of the two respective classes.
A Prediction of the whisky type (American vs. Scotch) based on descriptors with
same-weighted CP1 OWSum, re-creation accuracy: 93.75%. B Prediction of the
whisky type based on molecules with tf-idf-weighted CP1 OWSum, re-creation
accuracy: 100%. C Prediction of the odor descriptors of a whisky based on molecules
with tf-idf-weighted CP2 OWSum, re-creation accuracy: 96.88%. We show the
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importance of features for “caramel” vs. “apple”. D Bokeh-diagram of the dissim-
ilarity between descriptors, the arc width displays the pairwise dissimilarity by
summing all influence value differences per class (for better visualizing arc

width = 1.17abs(“sum of influence values differences” x 1000)). Dots represent the
number of respective descriptors (for A) or molecules (for B, C). We depict some of
the molecules as examples. This image was created with resources from Freepik.com.

Table 2 | Performance to predict the top-5 odor descriptors
using OWSum and CNN, as well as inter-subject performance
(Subject X) and educated top-5 guessing

Model F1 MCC ROCAUC
OWSum (CP1, same-weighted) 0.45 0.20 0.60
OWSum (CP1, tf-idf-weighted) 0.46 0.22 0.61
OWSum (CP2, same-weighted) 0.56 0.38 0.69
OWSum (CP2, tf-idf-weighted) 0.61 0.44 0.72
CNN (with feature scaling) 0.58 0.58 0.71
CNN (without feature scaling) 0.71 0.68 0.78
Subject X 0.35 0.15 0.57
Top-5 guessing 0.52 0.29 0.65
SVM 0.59 0.40 0.70
RF 0.61 0.44 0.72

Rows in bold represent the respective best result for either OWSum or CNN.

creation accuracy of 96.88% using tf-idf-weights and CP2. As such, mole-
cules can be identified that drive the decision towards a specific descriptor.
An example for apple-like vs. caramel-like is depicted in Fig. 1C. The three
molecules with the highest influence value per odor descriptor can be found
in Supplementary Material Table S4, however, it should be noted that these

influence values should not be interpreted in absolute terms, but rather in
relative terms between the classes. Moreover, the aroma of the individual
molecules with the highest influence might not be the same as the aroma of
the mixture. Further, different descriptors could have a rather similar or
distinct shared molecular importance composition. This molecular dis-
similarity between descriptors, calculated based on the influence values of
OWSum is visualized in Fig. 1D. For example, butter-like has a profile quite
distinct from wood-like (as the arc width is wide), whereas fruity and honey-
like are quite similar.

In addition to odor quality classification, we performed a regression of
the RATA scores using CNN. For classification, we found that the CNN
with no feature scaling performed slightly better than with scaled features,
similar for the regression problem (Table 3).

Discussion

Even with recent milestone advances in predicting the odor impression of
molecules by their structure*"”, it has remained notoriously difficult to
assess the odor impression of a complex mixture based only on the
supposed knowledge of its molecular composition. Besides the known
hurdles in identifying individual contained chemicals beyond all rea-
sonable doubt even with state-of-the-art analytical-instrumental solu-
tions, this is mainly due to widely different and often unknown odor
thresholds and derived odor activity value of single molecules which also
vary between matrices (e.g., air, water, or oil). Therefore, even if all
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Fig. 2 | Insight into the evaluation metrics. Insight into the evaluation metrics using
all 16 LOO iterations for CNN pipeline (shown in blue for classification and orange
for regression), OWSum (pink) and Subject X (yellow) results using a raincloud plot
(code based on ptitprince 0.2.7°°). For CNN and OWSum, dots represent the
respective evaluation metric per LOO iteration and as such per whisky. For Subject
X, dots represent the respective evaluation metric per subject, aggregated over all
whiskies. Clouds illustrate the data distribution. Crosses in the boxplots depict the

mean value of the respective metric, solid black lines within the boxplots the median.
Black dashed lines show the metrics for educated guessing, i.e., if the five most
occurring descriptors of all but one whisky are predicted for the omitted whisky. Blue
dashed lines show the metrics for RF and red dashed lines for SVM. See Table S2 for
statistical details. F1 micro F1-Score, ROCAUC Area Under the Receiver Operating
Characteristic Curve, MCC micro Matthews Correlation Coefficient, PCC Pearson
Correlation Coefficient.

Table 3| Regression performance (PCC) for descriptor ratings
using CNN

Model PCC
CNN (without feature scaling) 0.68
CNN (with feature scaling) 0.47

molecules found in a mixture were known, their amounts would not give
much of an indication towards their influence on the resulting odor
impression. Lastly, even the human nose as a reference will yield results
with large inter-subject variability.

Within this work, we investigated the relationship between molecules,
odor descriptors, and type of whisky more in detail and predicted the odor of
whiskies exemplary for complex odorant mixtures with promising
accuracies.

Firstly, we examined the relationships between the two whisky types
(American and Scotch) with automatically detected molecules and odor
descriptors. Using our own algorithm OWSum®" we accurately predicted
whether a whisky is American or Scotch based on its molecular composition
obtained by efficient analytical assessment of the samples. OWSum not only
offers a method to quickly classify whiskies, but also allows us to analyze
their ingredients or characteristic features in one step. Making use of this
valuable insight into feature-class relationships, we validated our previous
work showing that classification of both origins of whisky samples was due
to very characteristic components™. This way, we can also gain certainty
that the list of detected molecules is sufficiently meaningful to discriminate
between whisky origins. In addition to predict the type of whisky using
detected molecules, OWSum achieved high accuracy based on the top-5
odor descriptors, i.e., the five highest descriptors per whisky sample in the
dataset. This shows the different and distinguishable sensory profiles of
Scotch and American whiskies.

Further, we applied OWSum and CNN to predict the top-5 odor
descriptors of the whiskies. It is important to note that, in contrast to the
CNN-approach utilized here, we applied OWSum with no structural
information for this task, but qualitative lists of molecules. Using high-
quality analytical data and modern statistical modeling approaches, we were
able to predict the odor impression of complex mixtures with an accuracy
that lands within the inter-subject variability. Our algorithmic predictions
overall performed even better than the mean trained human subject com-
pared to the rest of the panel as well as better than educated guessing on the

top-5 odor descriptors of all-but-one whisky (LOO). As such, in our study
we found that educated guesses were more likely to match odor perception
of a panel than the rating of an individual subject. Even better, however, are
the predictions generated by OWSum and, in particular, CNN. We also
trained two different models to use as reference, namely, a RF and a SVM to
compare the performances. OWSum performed slightly better than the
linear SVM, and just as good as the nonlinear RF. More importantly, the
variance between different splits across these methods was higher than
OWSum, i.e., OWSum provided more consistent predictions, as shown in
Table S2.

None of our input data for the CNN and OWSum contained infor-
mation about, nor referred directly to, odor activity values or human smell
receptor properties. We relied solely on the detected molecules (for
OWSum) or the encoding of structural information of each detected
molecule (for CNN). Additionally, our CNN-approach worked best when
removing information about GC relative peak areas and therefore contained
no information about molecule amounts for classification, presumably due
to the class weights provided to the Binary Cross Entropy (BCE) loss
function having a stronger influence on the loss function than the scaled
features.

Another observation of interest is the variation of the evaluation
metrics in each LOO iteration. Using each sample in test and train sets
iteratively helps avoid favorable splits along with introduction of class
weights, though, the few amounts of data points are still a big constraint for
training a model, and availability of more data points would enable a
stronger validation of the model. However, these are some of the most
decisive factors in this scope of problems. Moreover, this also limits us to
evaluate if these results also transfer across different regions of origin and to
validate our model on whisky samples from new regions.

Both, the CNN approach and OWSum currently do not consider odor
activity values or concentration in making their decisions. Following
research should therefore be directed at gaining insight into whether and
how odor activity levels or thresholds and odorant-receptor-kinetics can be
derived from this or similar approaches. Intuitively, the inclusion of all
procurable odor activity levels should lead to even better results. It should
also be investigated whether the list of odor descriptors might be further
improved to ward off ambiguity® and unify expert assessments as well as
account for non-expert sensory data. Finally, as future work, it might be
interesting to evaluate the prediction of the aroma of whiskies in a more
flexible way, i.e., not considering only the top-5 values but predicting the
most applicable probabilities as an aroma profile.
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reference set. The resulting MCS result is compared to two molecules from the
training dataset. The lack of presence of this MCS substructure in the second
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molecule means that it is assigned an applicability value of zero. This process is then
repeated over all MCS substructures, and all molecules detected across each whisky
sample to generate the feature applicability matrix shown. Image created with
biorender.com.

Methods

Database

Most data used in this project was taken from previously published works
In total, 16 different whiskies, of which nine were Scotch and seven were
American whiskies, were previously analyzed using GC-MS and subse-
quently molecular components automatically matched based on mass
spectra and retention indices using an in-house reference library (results
previously published in refs. 5,44). The analytical data is hence referred to as
“molecular composition” within this work. However it has to be noted that
this does not cover the exhaustive chemical composition but refers to the
detected (volatile) compounds reported in our previous work, as explained
in detail in ref. 5. Additionally, an expert panel previously evaluated the
whiskies” odor qualities using RATA" on 40% ABV samples as reported in
our own work’. Each panelist rated the intensities of a maximum of five most
applicable attributes out of 17 attributes that were pre-selected by a trained
sensory panel. For results and a detailed explanation of these methods, see
refs. 5,44.

Resulting molecules detected per whisky were used as input for the
OWSum algorithm with the aim to predict the type of whisky. Further,
substructural patterns were extracted from these molecules and used as
inputs for the CNN to predict the odor qualities of the whiskies. These
methods are further described here.

544

Substructural feature extraction

To extract the substructural features from the detected molecules, we cre-
ated an applicability matrix that describes the “applicability” or relevance of
different substructural patterns that are found across all molecules in our
dataset. For this purpose, we first created a reference dataset consisting of
390 commonly found molecules in whisky mixtures from literature™ %,
The idea behind using molecules commonly found in whiskies was to
extract domain-specific substructural features based on molecules that are
expected to be detected using rapid analytical approaches. Thus, allowing
this approach to be tuned for different use-cases.

These molecules were then compared pairwise to extract the different
substructural features by finding the maximum common substructure
(MCS, see Fig. 3) between each of these pairs. Finally, an overlap was
calculated between each of the molecules in the training dataset, i.., all
molecules detected across all whisky samples and the MCS results to assign
an applicability weight to each of the substructures. These varied from 0 (not
relevant) to the length of the overlap (very relevant) and can be considered as

the frequency of occurrence of the substructures. The resulting matrix was of
the shape (279, 3979) since there were 279 unique molecules detected across
all whisky samples and a total of 3979 substructural features were extracted
from the reference dataset. An example of this pipeline is shown in Fig. 4.
The applicability matrix obtained here was also used for training the CNNs
described below.

Odor descriptor labels

Based on the sensory data evaluation® and on previous work for predicting
odor descriptors™, we chose to predict the top-5 odor descriptors. To
generate labels for predicting the top-5 descriptors per whisky, RATA scores
of all panelists were summed and the five descriptors with the highest sum
were chosen. In case of a tie, labels were selected randomly. To ensure that
the results from OWSum and CNN approaches can be compared, this
process was performed once with a fixed seed to ensure that the label
selection does not change the top-5 descriptors in cases of ties across dif-
ferent training and evaluation runs. Table 4 provides an overview of the
distribution of the descriptors, showing class imbalance. Whereas flowery
and honeydew melon-like are only amongst the top-5 descriptors in two
whiskies, while fruity occurs in 13 whiskies.

Moreover, the class coconut-like was removed for the classification
process as it was tied for the 5th place in the top-5 selection and random
selection led to the class being dropped, yielding 16 classes, as opposed to the
regression where all classes were considered.

OWSum
OWSum is a linear classification algorithm that is based on statistical
measures like conditional probabilities to calculate influence values per
feature that further are used to predict one or several classes’’. OWSum was
firstly used to predict the type of whiskies, i.e., Scotch or American whisky.
Two types of features were used for this task, on the one hand the detected
molecules, on the other hand descriptors identified by the panel for each
sample. The labels were binary class labels denoting class Scotch or
American whisky. Secondly, we also used OWSum to predict the odor
qualities of the whiskies, where, once again, the detected molecules were
used as features and the top-5 descriptors as targets. For this case, OWSum
predicts the five descriptors that were assigned the highest scores instead of
the single highest class.

The respective predictions were performed using either the conditional
probability CP1 Pr(C;, F;) for a feature F; and a class C; or the conditional
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and molecule SMILES. Using the MCS approach, features are extracted using the

training and reference dataset. These features are stacked and zero padded to create a
feature cube that is passed into the CNN along with the labels for training and the
resulting top-5 descriptors are compared to their ground truths. Image created with
biorender.com.

Table 4 | Distribution of the descriptors across each sample
when only the top 5 descriptors are considered shows a class
imbalance

Descriptor
Solvent-like 8

Top-5 occurrence

Apple-like 9

Flowery 2

w

Butter/Butter-Rum-like

-
w

Fruity

Honey-like

Caramel-like

Peach-like

Smoky

Phenolic

Vanilla-like

Pear-like

Woody

Honeydew melon-like

Coconut-like

Spicy/Clove-like

AlW|OINV|WIN|WwW|O|~|O[lO|O

Orange-like

probability CP2 Pr(F;, C;) combined with different weighting schemes as
described in ref. 21.

In the first weighting scheme, no additional weights were used (same-
weighted OWSum). In the second case we used tf-idf-weights that were
calculated for each LOO iteration based on the training set. The tf-idf value
considers the term frequency as well as its specificity and was calculated for
each feature per class in the training set according to equation 1. The term

frequency is the number of occurrences of a particular feature F; within a
class C; ((F}, C;)) divided by the total number of features in this specific class
len(C;). The inverse document frequency is the logarithmically scaled
division of the number of classes | C| by the number of classes containing the

feature . 1.
ZCn :FeC,

tf_idfi,j:

#(:¢) .1og< . ) M)

len (Ci) ch:Fjecn 1

F=feature j

C;=class i

|C|=number of classes

C,=class n.

To account for class imbalance and standardize the dataset on each
fold, we used StandardScaler from scikit-learn version 1.2.1. Features that
were scaled to positive values were automatically considered as present for
this object by OWSum, while those scaled to negative values were con-
sidered non-present.

CNN

The second approach we undertook for predicting odor qualities of whisky
samples was to train a CNN on the applicability matrix generated by
pairwise comparison of molecules in our dataset. For this purpose, a “stack-
and-pad” approach was undertaken since each whisky has a different
number of detected molecules, wherein the applicability features for each
whisky sample in a batch were stacked together and padded to a common
length. For example, whisky 1 could have 195 detected molecules while
whisky 2 could have 180 molecules, the applicability features for each of
these detected molecules were extracted from the global applicability matrix
based on the molecules detected in both samples and stacked together to
create a sample specific feature matrix. To ensure that this data could be fed
into a 2D-CNN pipeline, further zero padding was performed for each
batch. This is shown in Fig. 4. The CNN pipeline consisted of two 2D
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convolutional layers, an adaptive max pooling layer followed by two fully
connected layers to classify the top-5 descriptors. For training, a LOO
approach was undertaken where each sample was placed once in the test set
and all others were used for training. A binary cross-entropy loss with
sample weights was optimized using Optuna™ hyperparameter optimiza-
tion for the ideal training parameters. Additionally, a second weight was
introduced for the applicability feature matrix. These are the relative peak
areas calculated for each molecule during the analytical assessment of the
whisky samples, quantified by their abundance relative to an internal
standard 4-chloro-2-methoxyphenol over all molecules detected in each
sample’.

These relative peak areas were used to scale the input features to serve
as a proxy for the concentration or amount of the different substances
allowing for different influence of similar compounds found across different
whisky samples. Additionally, during the hyperparameter optimization, we
allowed the models to also be trained without any feature scaling to observe
the change in the evaluation metrics and to compare if the relative peak areas
can be in fact used as a proxy for concentration values for both, classification
and regression.

Finally, a second weighting/penalty scheme was employed to counter
the class imbalance that occurs across the different descriptors for the
classification task. As shown in Table 4, upon calculating the top-5
descriptors for each sample, there is a clear class imbalance that can skew the
results towards the majority class, i.e., fruity, apple-like, and solvent-like in
this case. One approach to counter this, is to use LOO that allows each
sample to be treated as a test sample while using the others for training,
allowing us to train a model with a small dataset while ensuring that the test
results are not due to a favorable data split. Taking inspiration from the
Open-POM™, we used inverted class weights in the BCE loss while training.
These were calculated for each fold independently using Eq. 2, where fold
frequency is the number of times a descriptor occurs in the train set for each
fold and all frequency is the overall occurrence of the descriptor in the
dataset. These are, however, not to be confused with the weights derived
from the relative peak areas that were used as a proxy for concentration or
compound amount and used to scale the input features instead of being used
with the loss function.

0, x=0

log(1+2%), x>0, Vx e fold frequency,y € all frequency

@

weights = {

Similarly, for predicting the raw RATA scores, L1 and MSE loss were
chosen and targets were raw RATA scores for each sample. Consequently,
the final output from the network was raw RATA scores and not prob-
abilities for top-5 class assignment. For classification, the CNN was trained
for 11 epochs and for regression, 21 epochs were used. The other hyper-
parameters can be found in Table S3.

SVM and Random Forest

For comparing our methods with other commonly used methods, we used
SVM and RF to classify the whisky RATA data. Both methods were trained
similar to CNN and OWSum in a LOO approach. For SVM, LinearSVC
from sklearn was used as a OneVsRest classifier, i.e., each of the 16
descriptors were considered as a binary classification problem. Moreover,
the data in each LOO iteration was scaled using StandardScaler, i.e., fit
transformed on the train data and only transformed on the test data to avoid
any leakage. Based on the decision scores obtained from each of the SVMs,
the top-5 descriptors were chosen as the predictions.

Similarly, RF was also trained in an LOO approach using a similar
concept with OneVsRest from sklearn before the five highest probabilities
from the RF for class 1 for each descriptor were selected to obtain our
predictions. Both of these methods were also optimized using Grid-
SearchCV from sklearn and LOO cross validation. For SVM, 200 maximum
iterations were used while RF used 100 estimators.

Metrics

Initially, to get insight into the data with OWSum, no train-test-split was
performed, and all molecules were tested. We report re-creation perfor-
mances, i.e., the comparison of the true with the predicted type if using the
same train and test data and as such re-creating the information.

For other approaches, we performed leave-one-out (LOO) cross vali-
dation. For the binary classification of the whisky type using OWSum, we
calculated raw accuracies (ACC). For the multi-label classifications, we used
the micro F1-Score, ROCAUC score (Area Under the Receiver Operating
Characteristic Curve), and micro MCC (Matthews Correlation Coefficient)
and regression results were evaluated with Pearson correlation between the
predictions and the ground truth (PCC, Pearson Correlation Coefficient).
All metrics were calculated using scikit learn™ in Python; due to class
imbalance (see Table 4), we used micro metrics. The results from all
methods are summarized in Table 2.

Inter-subject performance (Subject X)

To compare the performance of our methods to that of the experienced
panelists, we compared the inter-subject performance also using LOO,
i.e,, the top-5 descriptors were determined on all-but-one expert, this
served as our inter-subjected prediction and the top-5 descriptors of the
sum of ratings from all other experts served as test data for comparison
and to calculate our metrics. This was repeated for each expert and then
averaged. As such, we were able to calculate all metrics we used for our
model’s performance measures also for inter-subject performance mea-
sures and thus compare algorithm performance to the performance of an
average panelist.

Educated top-5 guessing

The idea behind educated top-5 guessing is to use experiential inference if no
information regarding odor descriptors is available for a new whisky sample.
One potential method for determining this is through guessing the five most
likely descriptors based on established whiskies. As such, we also estimate
performance metrics for educated top-5 guessing by first taking the five
most frequent descriptors as “educated” guess for each whisky (namely:
solvent-like, apple-like, fruity, caramel, and pear-like) and compare these to
the ground truth for all but one whisky in a LOO fashion and repeat for each
whisky sample.

Data availability

The source code is openly available at https://osf.io/kyu9r/. Corre-
spondence and data requests should be addressed to
andreas.grasskamp@ivv.fraunhofer.de.
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