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fragSMILES as a chemical string notation
for advanced fragment and chirality
representation
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Generative models have revolutionized de novo drug design, allowing to produce molecules on-
demand with desired physicochemical and pharmacological properties. String based molecular
representations, such as SMILES (Simplified Molecular Input Line Entry System) and SELFIES (Self-
Referencing Embedded Strings), have played a pivotal role in the success of generative approaches,
thanks to their capacity to encode atom- and bond- information and ease-of-generation. However,
such ‘atom-level’ string representations could have certain limitations, in terms of capturing
information on chirality, and synthetic accessibility of the corresponding designs.
In this paper, we present fragSMILES, a novel fragment-basedmolecular representation in the form of
string. fragSMILES encode fragments in a ‘chemically-meaningful’ way via a novel graph-reduction
approach, allowing to obtain an efficient, interpretable, and expressive molecular representation,
which also avoids fragment redundancy. fragSMILES contributes to the field of fragment-based
representation, by reporting fragments and their ‘breaking’ bonds independently. Moreover,
fragSMILES also embeds information of molecular chirality, thereby overcoming known limitations of
existing string notations. When compared with SMILES, SELFIES and t-SMILES for de novo design,
the fragSMILES notation showed its promise in generating molecules with desirable biochemical and
scaffolds properties.

Molecular representations based on strings are getting increasing attention
in the molecular machine learning community, especially in combination
with the so-called ‘chemical language models’ (CLMs), e.g., for de novo
molecule design1–3 and synthesis planning4,5. The Simplified Molecular
Input Line Entry System (SMILES)6 notation is themost well-established of
such notations. By traversing the two-dimensional graph of a molecule, a
SMILES string encodes atoms and bond information using predefined
characters (Fig. 1a)7. Thanks to the increasing success of chemical language
modeling8,9, several alternatives have been proposed to overcome some of
the limitations of SMILES10, e.g., the Self-referencing Embedded Strings11

(SELFIES), which enforce the generation of molecular strings correspond-
ing to valid molecules. While these string notations have successfully led to
experimentally-validated de novo designs12–14, they are not devoid of lim-
itations. In particular, due to the ‘linearization’ of molecular graph infor-
mation, fragments are not univocally represented in ‘atom-level’ strings like

SMILES, and information on atomic neighborhoods can be distributed in
different parts of the string (Fig. 1b). Moreover, de novo designs based on
‘atom-level’ string representations like SMILES might be affected by a
limited synthetic accessibility15,16.

A complementary solution for storing and processing molecular
information is constituted by representing molecules as a collection of
fragments17–21, via fragmentation algorithms like BRICS20,22. Several
fragment-based de novo design approaches have been proposed, which can
constrain the generation of new molecules that are easier to synthesize16.
Several works have focused on how to developmolecular strings at the level
of molecular fragments, e.g., t-SMILES23, aimed to reduce the number of
invalid sequences, although different sequences can be used to describe a
given fragment.

Noteworthy, the strategy to encode fragments as stand-alonewordshas
been documented in the literature, e.g., SMILES Pair Encoding (SPE)24 or
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Group SELFIES25. Such a shift from atom- to fragment-based notation in
chemical languagemodeling resembles the character- toword-level26 shift in
natural language processing (NLP), and it has the potential to yield more
efficient and expressive representations27,28. However, current fragment-
based approaches have several limitations, e.g. they can generate redundant
structural motifs by annotating parts of identical substructures as they were
different fragments. This might yield inefficient representation learning,
since the same chemical information is annotated inconsistently29–31. Other
works have used sets of fragments for de novo design. A notable example is
SAFE32, which obtains an unordered sequence of interconnected fragment
blocks.

To overcome these gaps in molecular representation field, here we
propose fragSMILES, a novel ‘chemical-word’-level molecular string nota-
tion. Our representation is based on graph reduction, i.e., the simplification
of molecular graphs by collapsing selected atoms and bonds into single
fragments, thereby reducing the complexity of the graphwhile retaining key
structural and functional information19,33. The reduced graph is then con-
verted into a string-based notation, which we named fragSMILES.

Basedon an interpretable tokenization technique, our ‘chemicalword’-
level representation allows to easily identify building blocks. This allows (a)
each fragment to be univocally encoded, irrespective of its molecular
neighborhoods, (b) achieving a richer ‘fragment semantics’, while simpli-
fyinghow fragment linkers are encoded, and (c) obtaining shorter sequences
for chemical language modeling, that still preserve key chemical informa-
tion. In what follows, after introducing the theory of fragSMILES, we show
that this new notation advances the state of the art thanks to a better
specificationofmolecular chirality, alongwith a goodcapacity to explore the
chemical space when combined with de novo design algorithms, e.g., to
achieve desirable physico/biochemical properties, synthesizability and
scaffold novelty. Additionally, fragSMILES can improve many drug dis-
covery related tasks34 in a broader sense, such as database storing35, chemical
reaction predictions36 and bioactivity prediction37.

Results and discussions
Representing molecules as fragSMILES
The fragSMILES notation is generated via molecular graph reduction
(Fig. 2a). In particular, the conversion of molecular graphs to fragSMILES
consists of three phases (a):
1. Disassembling. This phase ‘breaks’ a given molecule according to cus-

tomizable set of cleavage rules. Breaking bonds are constituted by either
(a) exocyclic single bonds, except for bonds between oppositely charged
atoms (e.g., nitro groups), or (b) user-customizable rules, including for
example rotatable bonds. In our approach, molecular fragments were

obtained by cleaving all the exocyclic single bonds but other user-
defined fragmentation rules could also be set (e.g., BRICS)20,22.

2. This phase leads to a set of unique fragments. Each unique fragment is
also annotated with indexes to track the ‘breaking’ bonds.

3. Graph reduction. This phase condenses molecular fragments and the
‘breaking’ bonds into the respective nodes and edges of a reduced
molecular graph. Bidirected edges specify the correct fragment com-
bination (i.e., by identifying which atoms belong to the ‘break-
ing’ bonds).

4. Conversion into fragSMILES. The reduced molecular graph is then
converted into string notation, where, for interpretability, the SMILES
alphabet is used to identify fragment-level nodes.
The ‘syntactic’ rules of the obtained fragSMILES are the following:

• The nodes representing the fragments are expressed as canonical
SMILES, to preserve interpretability of the corresponding chemical
information.

• The edges are provided with numerical indexes, with the notation “<
index >” to indicate the connecting atoms between neighboring frag-
ments. In the case of fragments including only a single linking atom
(i.e., a single atom having replaceable hydrogen atoms), the numerical
index is not shown.

• Branches are described in parentheses. Before and after the opening
parenthesis, numerical indexes indicate how the branches are con-
nected to the fragments.

• The configuration of chiral centers (Fig. 2b) is indicated as suffix tag to
the indices in the case of connector atoms (e.g., <2 R > C1CCOC1 <
4S> to represent the tetrahydrofuranwith two given connector carbon
atoms inR and S absolute configurations) or as special suffix in the case
of non-connector atoms (e.g., C1CC2CNC2CN1 | 2R5S to represent
the 3,8-diazabicyclo[4.2.0]octane with the two bridgehead carbon
atoms in R and S absolute configurations). The stereochemical
configuration of fragments having unspecified connector atoms is also
reported as suffix (e.g., C | R to represent the carbon in R absolute
configuration).

Like SMILES strings, any molecule can be represented as multiple
fragSMILES (depending on the starting point to traverse the reduced
graph). This aspect can be leveraged for data augmentation. Alter-
natively, fragSMILES can be also canonicalized, via graph traversal and
fragment prioritization rules (see Materials and Methods). Moreover,
Fig. 2b shows that, irrespective of the graph traversal order, in fragS-
MILES the chiral centers are consistently annotated, unlike in the case of
SMILES.
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Fig. 1 | Molecular string notations based on graph traversal. a An example of graph traversal to obtain a SMILES string for the molecule paracetamol. b Examples of
SMILES, SELFIES and fragSMILES of three known drugs sharing the indole fragment highlighted in red.
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Effect of fragmentation and tokenization rules
Several tokenization techniques can be employed to split molecular por-
tions, textually represented, into computer-manageable ‘units’ (tokens)24,38.
fragSMILES notation separates molecular fragments, their connector indi-
ces and branching brackets, and considers them as tokens.

We compared the effect of two fragmentation rules for fragSMILES,
based on the cleavage of: (a) all the exocyclic single bonds17, and of (b) all the
rotatable bonds39. To this end, we used ZINC-250K40 database, which
contains 249,414 molecules. Cleaving all exocyclic single bonds generated a
more compact vocabulary of token types (5869 vs 13,035), thus mitigating
the risk of redundancy29–31 (Table 1). Moreover, such fragmentation rule
awards the occurrence of ‘generic’ (e.g., amino group, carbon atoms, and
phenyls) instead of specific tokens (e.g., aniline and the toluene). An
example of different fragmentation rules for a genericmolecular structure is
depicted in Supplementary Fig. 1.

As a result, the fragmentation based on exocyclic single bonds con-
stitutes a good trade-off between (a) the number of tokens necessary to
represent a molecule, and (b) the number of token types. Hence, fragS-
MILES works as syllable-level language, which is capable of better
performances41 and lower complexity42.

For completeness, we implemented in the t-SMILES23 a word-level
tokenization, where tokens encode fragments. By comparing the vocabulary
size and the number of tokens for t-SMILES word-level, fragSMILES rota-
table bonds and fragSMILES exocyclic single bonds, we noticed that t-
SMILES, due to its sequence lengths, was unsuitable for fragment tokeni-
zationalthough its vocabularywas larger than~12 K(SupplementaryFig. 2).

Based on these observations, the default fragmentation strategy for
fragSMILES uses exocyclic single bonds.

Compact encoding of molecular information via fragSMILES
The fragSMILES approach allows to encode molecules with a smaller
number of elements (‘tokens’43) than SMILES and SELFIES strings given

that its tokenization is based on fragments descending from reduced
molecular graph. Notably, other tokenization techniques could return
shorter sequences24 and whose structure is not always related to any parti-
cular molecular fragment (e.g., Byte Pair Encoding)38.

When analyzed on ZINC-250K40 database, fragSMILES returned an
average length of 17 tokens (Fig. 3), remarkably smaller than the length of
Group-SELFIES25, SELFIES11 and SMILES (which have an average of 30, 37
and 44 tokens, respectively). Representations with fewer tokens in combi-
nation with deep learning have the potential advantage to reduce compu-
tational complexity and memory usage44.

Noteworthy, the top occurring tokens are those made by the single
carbon atom fragment, irrespective if it is a terminal methyl or a poly-
substitued carbon, and connectivity tags as <0> or <3 > . Rare tokens are
instead made by cyclic fragments provided with unambiguous chirality
and occurring in very few molecular structures. The high frequency of
fragments such as single carbon or nitrogen atoms demonstrates that
fragSMILES captures mainly the occurrence of non-redundant tokens.
For instance, aniline and toluene are represented by two different
structural tokens. They are the amino group and the aromatic ring for
the aniline and the carbon atom and the aromatic ring for the toluene
(Supplementary Fig. 3).

De novo molecule design with fragSMILES
We benchmarked fragSMILES for de novo molecule design in comparison
with SMILES, SELFIES and t-SMILES. To this end, we employed Recurring
Neural Networks (RNNs)45 with Long Short TermMemory (LSTM) cells46,
as implemented in the MOSES benchmarking platform47. While many
architectures for de novo design exist, LSTMs have been widely adopted in
this field and extensively validated in the wet-lab3,12,48–50. The MOSES plat-
form was chosen as it provides a curated dataset, predefined metrics, and a
ready-to-use LSTM model for benchmarking on de novo drug design
purposes.
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Fig. 2 | Graph reduction framework and fragSMILES representation. aGeneration
of fragSMILES based on disassembling, graph reduction and textual representation; b
chiral center configurations for a generic chemical structure specified as SMILES, and

fragSMILES notations (traditional stereochemical labels are highlighted in red, green
and blue).
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Models were trained on the MOSES dataset (approximately 1.9M
molecules) using a five-fold cross validation and on each of the repre-
sentations separately.

The trained models were used to sample 6000 molecules for each
representation (i.e., fragSMILES, SELFIES, SMILES, and t-SMILES), for
each cross-validation fold, obtaining 30,000 in total for each representation.
For each set of generated strings, we computed (a) validity, capturing the
number of ‘chemically valid’molecules generated from each representation
(b) uniqueness, capturing the number of non-duplicatedmolecules, and (c)
novelty, quantifying the number of de novo designs that were not present in
the training set (Table 2). Detailed explanations about the metrics are
reported in theMaterials andMethods. In this context, fragSMILES strings
showed an intermediate behavior between SELFIES and t-SMILES (best) vs
SMILES (worst). SELFIES showed consistently better values of validity and
uniqueness as t-SMILES, while the latter showed best novelty value, and
fragSMILES reached statistically significant better than SMILES strings for
validity and uniqueness (Table 2). Validitywas computed on the initial 6000
generated samples, while uniqueness and novelty were computed on the
number of valid, and valid and unique molecules, respectively.

To further investigate the quality of the generated de novo designs, we
sampled an additional set of 6000 (per 5-fold of the cross-validation) novel
molecules for each representation. We computed an array of metrics to
quantify the similarity of the designs to the knownmolecules. In particular,
we computed (Table 2):
• Fréchet ChemNet Distance (FCD)51, which captures the differences of

biological and chemical properties between de novo designs and a
reference set of molecules (test set molecules here, Table 2). The lower
the FCD, the more similar two sets are.

• Physicochemical properties, i.e., lipophilicity (logP)52, Synthetic Acces-
sibility (SA)53, Quantitative Estimation ofDrug-likeness (QED)54,55 and
molecular weight (MW). The differences of these properties between
de novo designs and training set molecules were reported as
Wasserstein-1 distance56 (the lower, the more similar the two sets).

In this context, fragSMILES showed consistently superior performance
across all the analyzedmetrics, with statistically significant improvements in
two out of five cases with SMILES, four out of five cases with SELFIES and
four out of five cases with t-SMILES (Table 2). These results suggest that
fragSMILES are an ideal trade-off between chemical space exploration
(validity, uniqueness, novelty) and the identification of designs with desir-
able properties (i.e., similar to the training set molecules).

Considering that the training set contains drug-like molecules, fragS-
MILES generated new molecules with a desirable property profile in terms
of logP, QED, andMW. A similar consideration can be extended to the SA
values. For the sake of comparison, results are shown in Supplementary
Figs. 4 and 5.

Chemical space exploration with fragSMILES
In what follows, we focus our de novo design efforts using a training set of
270,408 bioactive molecules57 (for Kd/KI/IC50/EC50 < 1 μM) from
ChEMBL58 v22. Unlike the previously used MOSES molecules, this set
contains stereochemistry information, and is aimed at a specific task,
namely, generating drug-like molecules. This test was used to elucidate
various properties of fragSMILES: (a) the effect of string augmentation on
the quality of de novo designs, (b) the representation capability to capture
chirality, and (c) the potential to explore novel molecular scaffolds. These
aspects are discussed below. Supplementary Fig. 6 shows how alternative
representations of fragSMILES are obtained for the same molecule.

fragSMILES augmentation
‘Atom-level’ representations like SMILES and SELFIES are non-univocal,
since they can be obtained starting from any non-hydrogen atom, and by
reading the graph in different directions. As a result, a molecule can be
represented by multiple valid strings for training purposes: such ‘data
augmentation’ can improve the quality of molecules produces via chemical
language modeling59–61. The new fragSMILES notation can also be aug-
mented: since any node of the reduced graph can be the starting point for

Fig. 3 | Encoding length benchmarking. Token
number distribution of fragSMILES, Group SELF-
IES, SELFIES and SMILES, computed on ZINC-
250K molecules. The boxplot represents the length
distribution of fragSMILES (whiskers indicate 1st

and 3rd quartiles, median, the central line and the
cross indicate the median and mean values, respec-
tively, and circles indicate the outliers).

Table 1 | fragSMILES chemical words obtained through different molecular fragmentation rules

Fragm. Rule Vocab. size N (amino group) C (carbon atom) c1ccccc1 (phenyl) Nc1ccccc1 (aniline) Cc1ccccc1 (toluene)

Exocyclic single bonds 5869 247,050 815,799 203,681 0 0

Rotatable bonds 13,035 191,522 258,876 102,798 843 18,981

Vocabulary size (number of total tokens) for fragSMILES, according to the chosen fragmentation rule, applied to ZINC-250kmolecules. The occurrence of some representative token types is also reported.
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traversal, multiple fragSMILES can be obtained from the same molecule.
This property allows to perform data augmentation, as for SMILES and
SELFIES. Furthermore, the reduced graph allows to explicitly account for
the chiral centers of stereoisomers. In this respect, the corresponding
fragSMILES reports the absolute configurations, tokenized as R and S,
respectively. Thus, the chiral centers in fragSMILES are univocally assigned,
irrespective of the order of their substituents in the string notation. Unlike
SMILES62, this makes fragSMILES tokens univocal and invariant to graph
traversal order once the chiral centers have been defined.

On the selectedmolecular set, RNNmodelswere trained for each string
notation (SMILES, SELFIES, t-SMILES and fragSMILES notations), and on
their single- (canonical representation) and five-fold augmented versions.
61,870 fragSMILES representations were not augmentable until to five-
folds, because they were composed of fully linear graphs. As far as fragS-
MILES is concerned, we calculated an average of 10 alternative repre-
sentations asmaximumnumber permolecule of the Zinc250K dataset. Our
results align with what observed for SMILES strings, where augmentations
larger than 10 do not lead to remarkable improvements in the model
quality8,60,63.

Five-fold cross validation was carried out, and each fold was used to
generate 6000 strings to compute validity, uniqueness andnovelty (Table 3).
The (bio)chemical properties previously discussed (Table 2) were also
evaluated, using a pool of 6000 novel designs per each fold (Table 3).

In agreement with existing literature59,63,64, the augmentation improved
the quality of de novo designs for SMILES and SELFIES in terms of novelty,
uniqueness and validity. This is also visible on fragSMILES (Table 3). The
same trend in performance was observed (i.e., SELFIES and t-SMILES
yielding the best values of validity, uniqueness, and novelty), with fragS-
MILES de novo designs being themost similar to the referencemolecules in
terms of chemical and biological properties (FCD in Table 3). Inmost cases,
string augmentation led to a small decrease in (bio)chemical similarity to the
reference set (Supplementary Figs. 7-9).

Capturing chirality with fragSMILES
The previously generated 6000 strings for each foldwere used to analyze the
capacity of each representation to capture chirality. In particular, for each of
the representations, the 6000 strings were filtered to a subset containing
tokens referring to chirality information (i.e., 1770 ± 70 for SMILES × 1 and
1800 ± 200 for SMILES × 5, 1820 ± 40 for SELFIES × 1 and 1900 ± 100 for
SELFIES × 5, 1840 ± 90 for t-SMILES × 1 and 1900 ± 100 for t-SMILES × 5,
1770 ± 90 for fragSMILES × 1 and 2000 ± 100 for fragSMILES × 5). Each of
these strings was then converted into a molecule (if possible), and the
number of (in)valid, unique and novel molecules was quantified.

It is important to note that the conversion of fragSMILES into a valid
molecule can only happen when chiral fragments (tokens) preserve their

stereocenters (i.e., they have four different substituents). Several SMILES,
SELFIES and t-SMILES strings can contain errors as they report achiral
carbon atoms as chiral (Table 3, Supplementary Fig. 10), which become
syntactically valid only after sanitization and canonization with RDKit65.

In this context, fragSMILES produce a significantly higher number of
molecules with unambiguously annotated and correct chirality (Table 3),
thereby advancing upon known limitations of existing molecular strings
(Supplementary Fig. 11)62,66.

Exploration of novel scaffolds with fragSMILES
Finally, we performed a scaffold analysis on the 6000 novel molecules
previously generated per fold. In particular, Bemis-Murcko scaffolds67 were
computed to identify the number of unique and novel scaffolds (Table 4).

In this context, SELFIES outperformed both SMILES, t-SMILES and
fragSMILES. In their non-augmented version, SMILES and fragSMILES
show comparable performance of scaffold uniqueness (no statistical dif-
ference achieved) unlike t-SMILES that performed worse. When five-fold
augmentation is performed, SMILES outperforms fragSMILES, with a 3%
higher scaffold novelty. t-SMILES achieved the same trend as the non-
augmented version.

To further elucidate the characteristics of the novel scaffolds, we
computed the total number of novel scaffolds containing new fragments
compared to the training set molecules (reported as “No. novel fragments”
and computed based on fragSMILES fragments, in Table 4).

SMILES, SELFIES and t-SMILES can generate a higher number of new
scaffolds compared to fragSMILES. However, many of these scaffolds are
newprimarily because they include cyclic fragments thatwerenot present in
the training set. This behavior is likely due to their character-level
tokenization68, which allows a very high number of possible combinations,
independently on the chemical relevance.Noteworthy, fragSMILEScan also
generate new cyclic systems and promote scaffold novelty (Supplementary
Table 1) if an atom-level tokenization is set. On the other hand, fragSMILES
on word-level tokenization is more effective at capturing the scaffolds
present in the training set and generating genuinely novel cores by
recombining different cyclic elements. This ability to create novel cores
through recombination bears potential for de novo molecule design, as it
ensures that the generated molecules are more likely to possess desired
chemical properties, to be chemically stable and synthetically feasible.

Conclusions
This work introduced fragSMILES, a novel ‘chemical-word’-level notation
for molecules. Unlike previous fragment-based representations, fragS-
MILES possesses desirable qualities, i.e., it (a) reports fragments and their
‘breaking’ bonds independently, (b) allows canonical encoding of fragments
without redundancy, and (c) strikes an ideal balance between sequence

Table 2 | Quality of de novo designs generated using SMILES, SELFIES, t-SMILES and fragSMILES, employing an RNN trained
on MOSES

6000 (x5 fold) sampled strings 6000 (x5 fold) sampled novel molecules

Notation Validity (↑) Uniqueness (↑) Novelty (↑) FCD•101 (↓) ΔlogP•101 (↓) ΔSA•102 (↓) ΔQED•102 (↓) ΔMW (↓)

SMILES 5790 ± 20
(97%)

5790 ± 20
(100%)*

5270 ± 40*
(91%)*

3.9 ± 0.3* 1.2 ± 0.3* 7 ± 2 1.0 ± 0.4 6 ± 2

SELFIES 6000 ± 0*
(100%)*

5999 ± 1*
(100%)*

5550 ± 50*
(93%)*

10.0 ± 0.6* 1.7 ± 0.7* 21.9 ± 0.9* 2.5 ± 0.4* 4.2 ± 0.9

t-SMILES 6000 ± 0*
(100%)*

5966 ± 6*
(99%)*

5740 ± 20*
(96%)*

6.7 ± 0.3* 0.9 ± 0.2 15 ± 2* 1.8 ± 0.5* 6 ± 1*

fragSMILES 5810 ± 10
(97%)

5800 ± 10
(100%)

5160 ± 20
(89%)

3.2 ± 0.2 0.7 ± 0.2 4 ± 2 0.8 ± 0.4 3.8 ± 0.3

The metrics are reported as average ± standard deviation. Validity, uniqueness and novelty were computed on a set of 6000 strings, with 5-fold cross-validation. The other properties were computed on
6000novel designs,with 5-fold cross-validation: FréchetChemNetDistance (FCD); octanol-water partitioning coefficient (logP), Synthetic Accessibility (SA),Quantitative Estimationof Drug-likeness (QED)
and molecular Weight (MW). logP, SA, QED and MW were reported as the Wasserstein-1 distance to the properties of the training set molecules (the lower, the better). Arrows indicate the optimal
directionality of eachmetric (↑: the higher, the better; ↓: the lower, the better), and * indicates statistically significant differences (t-test, α = 0.05)with relative values of fragSMILESnotation. The best value of
each metric is indicated in boldface, while underlining indicates the second-best performance.
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length and vocabulary size. Our systematic analysis shows that fragSMILES
possess desirable properties for de novo design and a good capacity to
explore the chemical space while preserving desirable physico- and bio-
chemical properties. Importantly, the fragSMILES notation excels in cap-
turing molecular chirality, a critical aspect often overlooked by traditional
string-based representations62.

Thanks to its ‘chemical-word’-level character and expressive repre-
sentation of chemical information, we expect the fragSMILES notation to
advance current capabilities of chemical languagemodeling, not only for de
novomolecule design. Specifically, it could improve but reaction properties
or molecule properties69,70, synthesis planning15, prediction of challenging
bioactivity prediction tasks, e.g., fields involving activity cliffs37 and chiral
activity cliffs71, due to fragSMILES improved detection of chirality. More-
over, its textual representation could help database storing35 and fragment-
based molecule searching, avoiding substructure searching by employing
the use of slower graph-based algorithms.

By settingword-level or atom-level tokenization rules, fragSMILES can
be employed to effectively explore uncharted regions of the chemical space.
The applicability of fragSMILES can be further extended to new tasks in the
molecular sciences, e.g., by incorporating additional fragmentation rules or
incorporating additional chemical information relative to the fragments.
Finally, we expect the development of neural network architectures tailored
to word-level processing to further propel the potential of fragment-based
notations for generative artificial intelligence in chemistry.

Methods
Graph reduction procedure for fragSMILES
After interpreting atom-based molecular graphs as RDKit (v. 2023.9.5)65

‘Mol’ objects, fragSMILES are obtained with the following procedure:
1. Cleavage bond definition. Cleavage bonds pattern can be defined and

customized via SMARTS72 notation.
2. Molecule fragmentation. Based on the defined cleavage bonds, mole-

cules are divided into fragments. In this work, this was performed via
the ‘Chem.FragmentOnBonds’ function of RDKit.

3. Conversion into a reduced graph. All information on obtained frag-
ments (nodes) and cleavage bonds (edges) are converted into a bidir-
ectional graph. In this work, this was handled via NetworkX73 package
(v. 3.2.1) and interpreted as a bidirectional graph carrying all attributes
for nodes and edges.

fragSMILES canonicalization
The canonicalization of the reduced graph is achieved via the follow-
ing steps:
1. longest paths are recognized;
2. paths that branch out earlier along the way are retained;
3. paths with more numerous branching are retained;
4. Equal paths are compared by the sequence of their component nodes.

Each node, depending on the fragment it represents, is identified by a
unique numeric ID that places it in a ranking. The path with the most
importance is considered.

All codes for tool employing are written as Python language and
available on GitHub link https://github.com/f48r1/chemicalgof or Zenodo
https://doi.org/10.5281/zenodo.12700298.

Data sources and preprocessing
The following datasets and preprocessing steps were used:
• ZINC-250Kdatabase40wasobtained fromrepositoryof a recentwork25.

It contained 249,414 molecules but some of them were discarded
because they contained only one fragment according to the fragmen-
tation framework. Specifically, 86 and 864 molecules were discarded
when the exocyclic single bond rule and rotatable bond rule were
applied, respectively.

• MOSESdataset47 consisted of 1,936,962molecules whose SMILES data
were converted to SELFIES and fragSMILES representations. 269T
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molecules were discarded because they were composed of a single
cyclic fragment.

• The bioactive ChEMBL subset was obtained by a recent work57. It
contained around 650 K structures fromChEMBL v. 22 having Kd/KI/
IC50/EC50 < 1 μM.

For ZINC and the bioactive ChEMBL molecules, isotope information
was removed, and salts chargeswereneutralized keeping the heavierorganic
part. Geometric stereochemical information at the double bond (“/” and “\”
characters) were removed but retaining optical stereochemical (“@” and
“@@” characters) one. Finally, SMILESwere canonized, andduplicateswere
removed. For ChEMBL, only molecules containing 10 to 32 fragSMILES
tokens were retained, obtaining 270,408molecules. MOSES dataset was not
preprocessed further. All datasets used in this work listed molecules as
SMILES strings, which were used to obtain canonical SELFIES and fragS-
MILES notations.

Model training and hyperparameter optimization
The RNN architectures used in this work were taken from the MOSES47

benchmarking platform. Default settings for parameterization do not pro-
vide a customizable embedding size. Therefore, we extended a customizable
setting of embedding size for RNN model trained on fragSMILES repre-
sentations, useful for word-level NLP26. Sampling was performed via soft-
max function with a temperature of T = 1.

For each representation, each cross-validation fold and each level
of augmentation, the following hyperparameters were optimized:
number of hidden layers (2, 3), number of hidden units per layer (256,
512), batch size (256, 512). Adam optimizer and a learning rate of 0.001
were used. Cross-validation loss was used for model optimization, in
combination with early stopping at loss convergency. The details of
the optimized hyperparameters can be found in Supplementary
Tables 2 and 3.

The values of the evaluation metrics shown in the main text refer to
models adopting hyperparameters that maximized novelty metric for
SMILES notation at the sampling phase. Notably, the trend of performance
as the hyperparameters changed was also observed by the other notations.

Evaluation metrics
For each model, strings were sampled at the early-stopping epoch. All
generated strings were converted into canonical SMILES to assess their
validity, uniqueness and novelty. In particular, validitywas calculated on the
total number of sampled SMILES strings that could be converted to
chemically-valid molecules (by RDKit ‘Chem.MolFromSmiles’).
Uniqueness was calculated on the valid (canonical) SMILES that were not
duplicated. Novelty was calculated on the unique canonical SMILES that
were not already included in the training set.

All other metrics were calculated by using software available in
MOSES. Molecular scaffolds were computed via the RDKit (v. 2023.9.5)
‘Chem.Scaffolds.MurckoScaffold’module of RDKit package.

For the sake of completeness, all the results of the metrics provided by
MOSES are reported as Supplementary Data 1.

Data availability
The data employed to conduct our analysis are available on GitHub, at the
following URL https://github.com/f48r1/fragsmiles.

Code availability
The code for graph reduction and obtaining fragSMILES is available in
Python language on GitHub, at the following URL: https://github.com/
f48r1/chemicalgof, and on Zenodo at the following https://doi.org/10.5281/
zenodo.12700298. All code to reproduce our analysis and processing steps
can be found on GitHub, at the following https://github.com/f48r1/
fragsmiles.
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