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Leveraging viral genome sequences and
machine learningmodels for identification
of potentially selective antiviral agents
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Viral genome sequencing provides valuable information for antiviral development, yet its integration
with machine learning for virtual screening remains underexplored. To bridge this gap, viral genome
sequences were combined with structural data of approved and investigational antivirals to identify
virus-selective agents. In parallel, quantitative structure-activity relationship (QSAR)modelswere built
to predict pan-antivirals. Robust models were generated with the area under the receiver operating
characteristic curve (AUC-ROC) >0.72 for virus-selective and >0.79 for pan-antiviral predictions.
These models were applied to virtually screen ~360 K compounds for anti-SARS-CoV-2 activity. The
346 compounds identified by the models were tested using two in vitro assays, yielding hit rates of
9.4% (24/256) in the pseudotyped particle (PP) entry assay and 37% (47/128) in the RNA-dependent
RNA polymerase (RdRp) assay. The top compounds showed potencies around 1 µM. This study
provides a framework for virtual screening of virus-selective and pan- antivirals against emerging
pathogens.

Viral pandemics have posed significant challenges to global public health,
with widespread consequences for healthcare systems and economies1–3.
The COVID-19 pandemic, caused by SARS-CoV-2, fully exemplifies this
threat. According toWorldHealthOrganization (WHO) records, as ofMay
30, 2024, COVID-19 has claimed over 7 million lives worldwide, with its
financial impact amounting to85.91%of global healthcare expenditures and
9.13% of gross domestic product (GDP)4,5. The continuous evolution of
viruses, including the emergence of drug-resistant virus strains/variants and
highly pathogenic new viruses, has raised concerns due to the diminished
effectiveness of existing therapeutic regimens. A prominent example is the
acquired immunodeficiency syndrome (AIDS), the most advanced stage of
the human immunodeficiency virus (HIV) infection. Despite the remark-
able success of the highly active antiretroviral therapy (HAART) in con-
trollingHIV infection and improving patient outcomes, the widespread use
of reverse transcriptase inhibitors has led to the development of drug-
resistant HIV strains, thereby significantly reducing the clinical efficacy of
current antiretroviral treatments6. Moreover, many viruses, such as Ebola
and Nipah, still lack effective antiviral drugs, partly due to corporate stra-
tegic decisions in pharmaceutical development and technical challenges,
continuing to pose significant threats to global health and safety7,8. These
challenges underscore the urgent need for the rapid discovery of antiviral
drugs capable of targeting specific pathogenic viruses and emerging strains/
variants for potential outbreaks and future pandemics.

Antiviral drug discovery and development have traditionally been
inefficient, costly, and time-consuming, often involving the experimental
screening of millions of compounds for lead compound discovery9,10.
Advances in computer-aided drug design (CADD) have provided a pro-
mising alternative by integrating bioinformatics, cheminformatics, and
machine learning to streamline the screening of large antiviral compound
libraries and optimization of lead compounds11,12. Among CADD techni-
ques, machine learning-based virtual screening (VS) has emerged as a
powerful tool, capable of modeling complex relationships and processing
high-dimensional data to predict antiviral activity13. Machine learning
algorithms such as support vector machines (SVM), random forests (RF),
and eXtreme Gradient Boosting (XGB) are frequently employed to extract
relevant features fromknownantiviral compounds andpredict their efficacy
against specific viral targets14–16. These methods efficiently prioritize com-
pounds based on predicted antiviral activity, reducing the experimental
search space and accelerating the identification of promising drug
candidates.

Despite their immense potential, current machine learning-based VS
methods for antiviral drug discovery still face significant challenges that
hinder their full effectiveness and utility. Many existing models are often
limited to specific targets against individual viruses, leading to high rates of
false positives and inefficiencies in the drug discovery process15,17. Most
models relyheavily on single-viewdata inputs, suchas compound structures
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or molecular descriptors, without fully incorporating critical information
from viral target protein sequences and structures, which are equally
informative for accurately predicting compound activity18. For example,
analyzing the relationships between variations inHIV-1 genomic sequences
and drug molecular structures through machine learning could lead to the
identification of novel lead compounds with unique mechanisms of action,
potentially addressing drug-resistant HIV-1 infections19. Furthermore,
many studies employ only a single machine learning algorithm, which
limits their ability to capture diverse latent information. For instance,
while SVMsmay be sensitive to outliers, neural networks are typicallymore
robust to noise. Additionally, many models are virus-specific and lack the
flexibility to rapidly screen for antiviral compounds against different viral
subtypes or emerging strains/variants20. This limitation is particularly
concerning for rapidly evolving pathogens, such as influenza viruses, where
new strains or variants frequently render existing vaccines and treatments
ineffective21.

To address the challenges in machine learning-based VS for antiviral
drug discovery, this study presents a novel ensemble framework. Unlike
traditional target-specific approaches that rely on predefined viral proteins,
our method leverages broader drug–virus interaction patterns without
being restricted to a single target. By integrating compound structural data
with viral genome sequences, ourmodels can identify selective inhibitors of
a single virus as well as pan-antiviral agents. The term “pan-antiviral” refers
to broad-spectrum antiviral drugs in this study. The use of multiple algo-
rithms (consensusmodels) allows for amore comprehensive representation
of drug–virus interactions, addressing the limitations of single-algorithm
approaches. We applied this framework to predict potential anti-SARS-
CoV-2 compounds, followed by further testing using in vitro assays. Our
findings demonstrate that this approach enables efficient antiviral discovery
andcanbe extended to rapidly identify therapeutic candidates in response to
emerging viral threats.

Results
Optimal predictive models for virus-selective antiviral drug
candidates
Complete genome assemblies of 32 strains/variants from ten different
viruses were retrieved as FASTA files from the GISAID, EBI, and NCBI
databases (Supplementary Table S1). The viral genome sequences exhibited
high conservation among strains/variants within the same virus (e.g., >94%
sequence identity among eight SARS-CoV-2 strains/variants) but sig-
nificant divergence across different viruses (e.g., <26% sequence identity
between SARS-CoV-2 and HCV strains/variants) (Fig. 1A). A total of 303
approved and investigational antiviral drugs (AIADs), corresponding to378
drug–virus pairs, were compiled from the NCATS in-house collection and
DrugBank database (Supplementary Table S2). These drug–virus pairs
encompass multiple virus types and mechanisms of action, reflecting the
diverse ways in which antiviral compounds exert their effects. The number
of AIADs available for each virus varied significantly, ranging from 2 (e.g.,
anti-influenza B drugs and anti-HPVdrugs) to 96 (anti-HCVdrugs), with a
median of 20 drugs per virus (Fig. 1B). The 303 AIADs and the ten viruses
form a total of 3030 possible drug–virus combinations. For modeling pur-
poses, if a drug was reported to exhibit antiviral activity against a particular
virus, this drug–virus pair was designated as 1 (positive), and other com-
binationswere designated as 0 (negative). For example, entecavir has known
anti-HBV activity and is not known to target SARS-CoV-2, as such, the
entecavir-HBV combination was assigned an outcome of 1 and the
entecavir-SARS-CoV-2 combination was assigned an outcome of 0. This
resulted in 378positive outcomes and2652negative outcomes that served as
the input for the models. Compound structures (represented as 1024-bit
ECFP4 fingerprints) and viral genome sequences (represented as 100-
dimension vectors) were used as input features to construct and evaluate
virus-selectivemodels usingfivemachine learning algorithms (Fig. 1C). The
detailed model inputs are available on GitHub at https://github.com/TX-
2017/antivirals_prediction. Data were split into training (70%) and test
(30%) sets based on the number of unique compounds. Following

parameter optimization, all five models achieved robust predictive perfor-
mance, with AUC-ROC >0.72, BA >0.70, and MCC >0.33 (Fig. 1D and
SupplementaryTable S3).Among them, the top twomodelswereRF (AUC-
ROC= 0.83 ± 0.02, BA = 0.76 ± 0.02, and MCC= 0.44 ± 0.04), and XGB
(AUC-ROC = 0.80 ± 0.01, BA = 0.74 ± 0.01, and MCC= 0.39 ± 0.02)
(Fig. 1D). The RF model was optimized using feature selection based on
Fisher’s exact test and t-test with a significance threshold of 0.01 (i.e., 160
ECFP4s and 62 viral genome sequence descriptors), followed by data
rebalancing through the application of the up-sampling method. The XGB
model was optimizedusing feature selection based onXGBwith a threshold
of 100 (i.e., 50 ECFP4s and 50 viral genome sequence descriptors), without
any need for data rebalancing.

Optimal predictive models for pan-antiviral drug candidates
A total of 385 non-cytotoxic pharmaceutical compounds (NCPCs) were
selected as negative controls based on their activity profiles in the cell viability
count screens of the Tox21 assays, where each compound was classified as
inactive (non-cytotoxic) in at least 30 out of 55 assays (Fig. 2A and Sup-
plementary Table S4). None of these compounds were inactive across all 55
assays. For classification model development, 303 AIADs were labeled as 1
(active compounds), while 385 NCPCs were labeled as 0 (inactive com-
pounds). Compound structures, represented as 1024-bit ECFP4 fingerprints,
served as input features for QSAR model construction and evaluation using
five machine learning algorithms (Fig. 2C). The detailed model inputs are
available on GitHub at https://github.com/TX-2017/antivirals_prediction.
Structural similarity analysis showed that the average maxTC value
(AmaxTC) among the NCPCs was 0.42 ± 0.18, which was much larger than
that between NCPCs and AIADs (AmaxTC = 0.31 ± 0.13) (Fig. 2B), indi-
cating that the two groups of compounds are structurally distinct. QSAR
models were developed to identify pan-antiviral drugs. All models built on
the fivemachine learning algorithms showed good performance (AUC-ROC
>0.79, BA >0.77, MCC >0.55) (Fig. 2C). The top twomodels were RF (AUC-
ROC= 0.84 ± 0.02, BA = 0.79 ± 0.02, and MCC= 0.59 ± 0.04), and SVM
(AUC-ROC= 0.83 ± 0.03, BA = 0.79 ± 0.03, and MCC= 0.58 ± 0.05)
(Fig. 2C). The RFmodel was optimized through feature selection using XGB
with a threshold of 100 ECFP4s, while the SVMmodel was optimized with a
threshold of 80 ECFP4s. Since the number of NCPCs and AIADs (385 and
303, respectively) was comparable, data rebalancing was not required. A total
of 85 chemical structural features were significantly enriched in AIADs
compared to NCPCs, while nine features showed enrichment in NCPCs
compared to AIADs (Fisher’s exact test with p < 0.05; Supplementary
Table S5). These two groups of enriched structural features partially over-
lapped in certain categories but differed in specific details. For example,
nitrogen-containing bonds were prominent in both classes, such as carba-
mate bonds (bond:C(=O)N_carbamate, p= 4.52 × 10−5) in AIADs and
generic carboxamide bonds (bond:C(=O)N_carboxamide_generic, p = 0.01)
in NCPCs. Similarly, halogen bonds were enriched in both groups, with alkyl
dihalo bonds (bond:CX_halide_alkyl-X_dihalo(1_1-), p = 0.03) associated
with AIADs and inorganic halide bonds (bond:X_halide_inorganic,
p= 4.52 × 10−13) associated with NCPCs. Some structural features
were specific to AIADs compared to NCPCs, including nucleoside/nucleo-
tide analogs such as uracil (group:nucleobase_uracil, p= 0.001), guanine
(group:nucleobase_guanine, p = 0.037), and adenine (group:-
nucleobase_adenine, p= 0.048). Other AIAD-specific features included
heterocyclic systems such as benzimidazole (ring:hetero_[5_6]N_benzimi-
dazole, p= 1.06 × 10−4), pyrrole (ring:hetero[5]N_pyrrole, p = 0.014), and
quinoline (ring:hetero[6_6]_N_quinoline, p = 0.002), as well as functional
groups like phosphate (bond:P =O_phosphate, p= 0.048) and nitrile
(bond:C#N_nitrile, p = 0.027).

Virtual screening of potential anti-SARS-CoV-2 drug candidates
A virtual screening of ~360 K compounds was conducted, followed by a
five-step filtering process to identify potential anti-SARS-CoV-2 drug
candidates (Fig. 3A). First, compounds predicted positive by both the RF
and XGB models were identified as potential selective antiviral drugs.
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Virus-selective anti-SARS-CoV-2 drugs were defined as those predicted to
be positive against at least four of the eight SARS-CoV-2 strains/variants
(including the original strain and variants such as alpha, beta, delta, gamma,
lambda, mu, and omicron). Second, compounds predicted positive by both
the SVM and RF (pan-antiviral) models were identified as potential pan-
antiviral drugs. Third, compounds exhibiting structural similarity (maxTC
>0.25) to at least one of 83 known anti-SARS-CoV-2 drugs (Details in
Supplementary Table S2) were selected for further analysis. The purpose of
this approach was to ensure that the compounds selected fall within the

applicability domain of the model, which includes compounds that share a
certain level of structural similarity to the compounds used for model
training. Predictions made on compounds outside of this domain are
generally deemed less reliable. Fourth, QSAR models (based on chemical
structure) were developed to predict compound cytotoxicity using ECFP4
fingerprints derived from the chemical structures. QSARmodels, including
NB, SVM,NNET,RF, andXGB,were applied to identifynon-cytotoxic anti-
SARS-CoV-2 candidates based on the outcomes from the cell viability
counter screens of the PP and CPE assays. In total, 4595 compounds

Fig. 1 | Comprehensive analysis and predictive modeling of virus-selective drugs.
AHeatmap visualization of pairwise genomic similarity among commonpathogenic
viruses. Green indicates sequence dissimilarity, while orange denotes sequence
similarity. B Distribution of approved and investigational antiviral drugs. The left
panel displays the overall distribution of these drugs, while the right panel shows the
number of drugs corresponding to each type of virus. C Flowchart outlining the
feature components used for selective antiviral drug modeling. D Performance
evaluation of the optimal predictive models and their corresponding parameter
combinations. Results are presented as mean ± standard deviation (SD), with error
bars representing the SD from 20 independent iterations. AUC-ROC area under the

receiver operating characteristic curve, BA balanced accuracy, ECFP4 extended
connectivity fingerprint 4, FASTA fast alignment search tool for DNA/RNA
sequences; F&T Fisher’s exact test and t-test, FS feature selection, HBV hepatitis B
virus, HCV hepatitis C virus, HHV human herpesvirus, HIV human immunode-
ficiency virus, HPV human papillomavirus, HSV herpes simplex virus, MCC Mat-
thews correlation coefficient, NB naïve bayes, NNET neural network, RF random
forest, ROSE random over-sampling examples, SARS-CoV-2 severe acute respira-
tory syndrome coronavirus 2, SMILES simplified molecular input line entry system,
SVM support vectormachine, VARV variola virus, XGB eXtreme gradient boosting.
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comprising 3857 non-cytotoxic anti-SARS-CoV-2 compounds (NCACs)
and 738 cytotoxic anti-SARS-CoV-2 compounds (CACs), were identified
(Fig. 3B and Supplementary Table S6). Structural similarity among the
cytotoxic compounds (AmaxTC = 0.46 ± 0.21) was significantly higher
than that between the cytotoxic and non-cytotoxic compounds
(AmaxTC = 0.30 ± 0.11) (Fig. 3C). The QSAR models achieved strong
predictive performance across five machine learning methods (AUC-ROC
>0.77, BA >0.72, MCC >0.34) (Fig. 3D). Among them, the RF model per-
formed the best, with an AUC-ROC of 0.84 ± 0.01, BA of 0.77 ± 0.01, and
MCC of 0.42 ± 0.02. This model was optimized through feature selection
using Fisher’s exact test with a significance threshold of 0.05, and data
rebalancing was implemented using the up-sampling method. Detailed
model inputs are available on GitHub at https://github.com/TX-2017/
antivirals_prediction. Ultimately, compounds predicted positive by at least
three of the five models were identified as potential non-cytotoxic anti-
SARS-CoV-2 candidates. Finally, these compounds were clustered into 100
groups using the k-means algorithm to ensure structural diversity (Fig. 3A).
After excluding compounds that had been previously tested or were

unavailable in the NCATS in-house compound library, the remaining
candidates were selected for further testing using in vitro assays.

Testing of predicted anti-SARS-CoV-2 drug candidates using in
vitro assays
A total of 346 predicted anti-SARS-CoV-2 compounds were subjected to
experimental validation, including 256 tested for PP entry inhibition and 128
tested for RdRp inhibition, across 11 concentrations (Supplementary
Tables S7, S8). In the PP entry assay, 24 of the 256 compounds were tested
active, resulting in a hit rate of 9.4%. Of the active PP entry inhibitors, four
were known compounds with documented biological activity, though not
reported as antiviral drugs. The remaining 20 inhibitors were diverse com-
pounds without previously reported biological activity (Supplementary
Table S7). In the RdRp assay, 47 of the 128 compounds were confirmed as
active, yielding a hit rate of 37%. Of the active RdRp inhibitors, six were
known compounds with documented biological activity, one of which,
azeliragon, was reported to exhibit anti-SARS-CoV-2 activity22, while the
others were not known as antivirals. The remaining 41 inhibitors were

Fig. 2 | Comprehensive analysis and predictive modeling of pan-antiviral drugs.
A Distribution of non-cytotoxic approved and investigational drugs in the Tox21
cell viability assays. Compounds were selected based on a stringent criterion of being
inactive (non-cytotoxic) in at least 30 assays. B Structural similarity analysis of
approved and investigational antiviral drugs compared to non-cytotoxic pharma-
ceutical compounds (NCPC) using the Tanimoto coefficient. C Performance eva-
luation of the optimal predictive models and their respective parameter

combinations. Results are presented as mean ± standard deviation (SD), with error
bars representing the SD from 20 independent iterations. AUC-ROC area under the
receiver operating characteristic curve, BA balanced accuracy, FS feature selection,
MCC Matthews correlation coefficient, NB naïve Bayes, NCPC non-cytotoxic
pharmaceutical compounds, NNET neural network, RF random forest, SVM sup-
port vector machine, XGB eXtreme gradient boosting.
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diverse compounds without previously reported biological activity (Supple-
mentary Table S8). Six representative PP entry inhibitors are highlighted in
Fig. 4. Of these compounds, two showed high potency with IC₅₀ <2 μM:
NCGC00014029 (IC₅₀= 1.31 ± 0.32 μM, efficacy =−76.63 ± 14.92%) and
NCGC00166392 (IC₅₀ = 1.37 ± 0.00 μM, efficacy =−83.25 ± 8.42%). One
compound had moderate potency with IC₅₀s between 2 and 5 μM:
NCGC00633127 (IC₅₀ = 4.59 ± 0.37 μM, efficacy =−67.42 ± 5.30%). Three
compounds showed lower potency with IC₅₀ ≥5 μM: NCGC00622469
(IC₅₀ = 5.91 ± 7.00 μM, efficacy =−64.06 ± 9.68%), NCGC00608516 (IC₅₀=

11.68 ± 2.82 μM, efficacy =−93.10 ± 32.33%), and NCGC00494973 (IC₅₀=
12.08 ± 10.23 μM, efficacy =−79.39 ± 29.14%) (Fig. 4). Figure 5 illustrates six
representative RdRp inhibitors, including one potent compound with IC₅₀
<5 μM: NCGC00014952 (IC₅₀ = 3.83 ± 4.83 μM, efficacy =−121.90 ±
50.78%), four moderately potent compounds with IC₅₀s between 5 and
10 μM: NCGC00378383 (IC₅₀= 5.51 ± 1.33 μM, efficacy =−66.44 ± 6.99%),
NCGC00506397 (IC₅₀= 6.84 ± 3.21 μM, efficacy =−61.84 ± 11.65%),
NCGC00347258 (IC₅₀= 7.43 ± 2.38 μM, efficacy =−56.66 ± 16.43%), and
NCGC00506876 (IC₅₀= 7.68 ± 0.62 μM, efficacy = -88.14 ± 13.15%), and

Fig. 3 | Virtual screening for potential anti-SARS-CoV-2 drugs. A Workflow
outlining the identification process for potential anti-SARS-CoV-2 drugs.
B Comparative distribution of non-cytotoxic anti-SARS-CoV-2 compounds
(NCACs) and cytotoxic anti-SARS-CoV-2 compounds (CACs). C Structural simi-
larity analysis of the NCACs and CACs using the Tanimoto coefficient.
D Performance evaluation of the optimal predictive models and their respective
parameter combinations. Results are presented as mean ± standard deviation (SD),

with error bars representing the SD from 20 independent iterations. AUC-ROC area
under the receiver operating characteristic curve, BA balanced accuracy, PAM pan-
antiviral drug model, FET Fisher’s exact test, FS feature selection, MCC Matthews
correlation coefficient, NB naïve Bayes, NNET neural network, SAM selective
antiviral drug model, RF random forest, ROSE random over-sampling examples,
NCSMnon-cytotoxic anti-SARS-CoV-2model, SVM support vectormachine, XGB
eXtreme gradient boosting.
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one less potent compound with IC₅₀ ≥10 μM: NCGC00318955 (IC₅₀=
12.96 ± 2.10 μM, efficacy =−145.28 ± 8.39%) (Fig. 5). The representative
compounds were selected based on a combination of factors including
inhibitory potency, efficacy and quality of dose-response curve.

Discussion
In this study, we combined viral genomic sequence information with che-
mical structure data to develop consensus machine learning classification
models for the prediction of antiviral drugs against ten human pathogenic
viruses across 32 strains/variants.Using thesemodels, we conducteda large-
scale virtual screening of ~360 K compounds from the NCATS in-house
library to identify potential anti-SARS-CoV-2 candidates. The predicted
anti-SARS-CoV-2 compounds were further stratified to prioritize a set of
structurally diverse, non-cytotoxic compounds, which were experimentally
validated using a PP entry assay to assess their ability to block SARS-CoV-2
entry intohost cells and anRdRp activity assay to evaluate their effectiveness
in inhibiting SARS-CoV-2 replication.

Selective antivirals target particular viral pathogens by disrupting key
stages of their lifecycle or viral proteins, offering high efficacy withminimal
off-target effects23. In this study, we compiled a dataset of 303 approved and
investigational antiviral drugs (AIADs) against ten human pathogenic
viruses (Fig. 1A, B) to construct virus-selective models for antiviral drug
prediction.The selectionof these 10humanpathogenic viruseswasbasedon
four key criteria: (1) their established or potential impact on public health,
including their ability to cause human diseases and their pandemic poten-
tial, as indicated by historical evidence or risk assessment; (2) the availability
of antiviral drugs or ongoing drug development programs targeting these
viruses; (3) the completeness of genomic data necessary for computational
modeling; and (4) their clinical significance in human infections. Our
analysis of viral genome sequences revealed high similarity among strains/
variants of the same virus but significant variations across different viral
species (Fig. 1A), highlighting the value of viral genomic data in reflecting
taxonomic characteristics and aiding in the construction of antiviral pre-
dictionmodels24,25. The collection ofmultiple viral genome sequences serves
two main purposes. First, viruses exhibit high genetic variability, leading to
multiple variants of the same virus. Collecting multiple sequences helps
capture this natural diversity, enabling the development of more compre-
hensive feature vectors. Second, developing pan-antiviral models necessi-
tates comprehensive access to antiviral drug information across multiple

viral families, which enhances model robustness, adaptability, and pre-
dictive accuracy. Throughparameteroptimization, allfivemachine learning
models achieved strong predictive performance (Fig. 1D), utilizing an
integrated feature set combining compound structural fingerprints with
viral genome sequence descriptors (Supplementary Table S3). This
approach enabled more accurate predictions of compound efficacy against
selective viral strains/variants. Consistent with our study, Deepthi et al.
developed a deep learning ensemble model that combined chemical struc-
tures and viral genomic data for drug repurposing against SARS-CoV-2,
achieving an AUC-ROC of 0.89 under five-fold cross-validation, under-
scoring the effectiveness of this integrative approach for antiviral drug
discovery25. A limitation of our model is its reduced ability to predict
selective antiviral drugs for viruses that areunder-represented in the training
dataset. For example, given that only two antiviral drugs are available for
influenza B andHPV, themodel’s accuracy in identifying selective antiviral
drugs for these viruses may be constrained.

Pan-antiviral compounds, in contrast, target conserved viral compo-
nents or essential host cellmechanisms shared acrossmultiple virus families,
offering a more versatile therapeutic option than selective antiviral
compounds26. Our study sought to differentiate pan-antiviral compounds
from non-cytotoxic pharmaceutical compounds (NCPCs), based on the
hypothesis that antiviral drugs may induce cytotoxicity at concentrations
effective against viruses27. We began with a set of 385 known NCPCs, each
demonstratingnon-cytotoxicprofiles in at least 30Tox21cell viability assays
(Fig. 2A)28. Structural analysis revealed that AIADs share structural features
that are distinct from those of NCPCs (Fig. 2B), supporting the hypothesis
that these structural features are crucial for antiviral efficacy and play a
significant role in the model’s predictive power15. Our optimized pan-
antiviral models, developed using chemical structure data, exhibited strong
performance in predicting pan-antiviral compounds (Fig. 2C). In com-
parison, Speck-Planche and Kleandrova29 developed a multi-condition
QSAR model using artificial neural networks (mtc-QSAR-ANN) that suc-
cessfully predicted molecules with both pan-antiviral and anti-cytokine
storm activities. Their model achieved >80% accuracy and identified key
molecular fragments that could be assembled into novel compounds with
predicted dual activity. By integrating diverse experimental conditions,
including multiple biological targets and assay protocols, the mtc-QSAR-
ANN model effectively predicted antiviral activities across different viral
pathogens29. Many chemical features significantly enriched in AIADs

Fig. 4 | Concentration-response curves of representative SARS-CoV-2 PP entry inhibitors. Results are presented as mean ± standard deviation (SD), with error bars
representing the SD of two independent experiments. PP pseudotyped particle, TOX cytotoxicity assay, IC50 half-maximal inhibitory concentration.
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compared toNCPCs in this studywereknown tobe associatedwith antiviral
properties. For example, nucleoside analogs represented the largest class of
smallmolecule-based antivirals, forming the backbone of chemotherapy for
infections caused by multiple viruses, such as ribavirin, a nucleoside analog
effective against various RNA viruses30. Some heterocyclic compounds also
played key roles in antiviral drug design, such as 2-substituted-5-amidino-
benzimidazoles targeting adenovirus, herpesvirus, coxsackievirus B, and
echovirus31, fostemsavir incorporating pyrrole effective against HIV32, and
chloroquine containingquinoline for treatment against SARScoronavirus33.
Specific functional groups have also demonstrated significant antiviral
properties, such as PF-07304814 containing a nitrile group against SARS-
CoV-234, and cidofovir containing a phosphate group against varicella
zoster virus (VZV), Epstein–Barr virus (EBV), human herpesvirus-6
(HHV-6), human herpesvirus-8 (HHV-8), HPV, polyomaviruses, and
orthopoxviruses35.

To validate the practical application of our prediction models, we
employed both the virus-selective and pan-antiviral models to identify
potential anti-SARS-CoV-2 drugs from a library of ~360 K compounds
(Fig. 3A). Consensus predictions were generated by combining multiple
individual models to leverage their complementary strengths while mini-
mizing their weaknesses. This approach captured diverse aspects of the data
that might be overlooked by a single model, thereby improving overall
performance28,36. In this study, RF combined with XGB for virus-selective
models and RF with SVM for pan-antiviral models were used in consensus
predictions to enhance accuracy. We further stratified the candidate com-
pounds based on their anti-SARS-CoV-2 potency and structural diversity.
First, structural analogs of known AIADs were prioritized, as they are
recognized as important leads for anti-SARS-CoV-2 drug discovery37.
Compounds exhibiting structural similarity (maxTC>0.25) to at least oneof
the 83 known anti-SARS-CoV-2 compounds in this study were selected for
further screening. Second, the challenge of compound cytotoxicity in SARS-
CoV-2-infected cellswas addressed, as some compounds, such as ponatinib,
remain harmless to normal, uninfected cells but become toxic in SARS-
CoV-2-infected cells due to immunological changes and/or altered drug

metabolism38–40. To address this, five robust machine learning classification
models were developed to flag anti-SARS-CoV-2 compounds that may be
cytotoxic. These models were based on compound outcomes from the
cytotoxicity counter screens, conducted inparallelwith the SARS-CoV-2PP
entry assay and the live virus CPE assay (Fig. 3B–D). Both the PP entry and
CPE assays are cell-based with luminescence readouts15,41. The PP entry
assay, using pseudotyped viral particleswith SARS-CoV-2 Spike proteins, is
used to identify viral cell entry inhibitors in biosafety level 2 laboratories.
This assayprimarilymodels keymechanismsof viral entry intohost cells42,43,
including: (1) inhibition of the ACE2-RBD interaction, preventing viral
attachment; (2) inhibition of S protein processing, such as blocking
TMPRSS2- or furin-mediated cleavage, thereby affecting membrane fusion
or endocytic entry; (3) inhibition of membrane fusion by interfering with
viral-host membrane interactions required for genome release; and (4)
inhibition of endocytic entry, for example, by disrupting endosomal acid-
ification or lysosomal protease activity, thereby preventing viral uncoating.
The CPE assay is employed tomeasure the ability of compounds to prevent
live SARS-CoV-2-induced cytopathic effects involving viral entry and
replication in cells. The cytotoxicity counter screen data from both assays
were used to minimize false positives in our cytotoxicity prediction models
to enhance the model's robustness in identifying safe and effective anti-
SARS-CoV-2 compounds. In the consensusmodel approach, non-cytotoxic
anti-SARS-CoV-2 compounds were identified as compounds predicted to
be non-toxic by at least three of the five models, thereby improving pre-
diction reliability. Finally, k-means clustering was employed to ensure
structural diversity among the selected compounds, balancing potency with
variety to broaden therapeutic possibilities (Fig. 3A). This comprehensive
strategy, integrating multiple analytical approaches, aimed to identify
structurally diverse, potent, and safe anti-SARS-CoV-2 compounds.

Testing of the predicted anti-SARS-CoV-2 compounds using in vitro
assays yielded 24 active PP entry inhibitors and 47 RdRp inhibitors (Sup-
plementary Tables S7, S8). Among these compounds, azeliragon
(NCGC00506876) was distinguished as the only compound previously
reported to exhibit anti-SARS-CoV-2 activity. As a small molecule

Fig. 5 | Concentration-response curves of representative SARS-CoV-2 RdRp inhibitors. Results are presented as mean ± standard deviation (SD), with error bars
representing the SD of two independent experiments. RdRp, RND-dependent RNA polymerase, IC50 half-maximal inhibitory concentration.
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antagonist of the receptor for advanced glycation end products (RAGE),
azeliragon has demonstrated promising antiviral effects in previous studies,
where the internalization of infectious SARS-CoV-2 particles was sig-
nificantly reduced in monocytes pretreated with 2 μM azeliragon. These
results suggested that our method was useful for identifying antiviral
compounds. In our study, azeliragon was tested active in the RdRp assay
with an IC50 of 7.68 ± 0.62 μM(Fig. 5), further supporting its potential as an
anti-SARS-CoV-2 agent. In addition, glaziovine (NCGC00408842), a
compound not previously associated with SARS-CoV-2, has been reported
tobe anantiviral against thehepatitisBvirus (HBV)by inhibitinghepatitisB
surface antigen (HBsAg) secretion with an IC50 of 8.0 μM in the Hep
G2.2.15 cell line44. The potential antiviral spectrum of glaziovine was
expanded by our study, with it being identified as active in the RdRp assay
with an IC50 of 10.49 ± 3.36 μM (Supplementary Table S8), indicating its
potential effectiveness against SARS-CoV-2. The antiviral activities of the
remaining active compounds identified in either the PP entry or RdRp
assays havenot beenpreviously reported in the literature.As such, this novel
dataset offers a valuable resource for the identification and development of
new anti-SARS-CoV-2 drugs, presenting new opportunities for further
investigation and drug development efforts.

Several key limitations should be considered when using in vitro
assays like the PP entry assay and the RdRp assay to verify model pre-
dictions, since our models were trained on antivirals that do not neces-
sarily act through these mechanisms. While the in vitro assays provide
valuable tools for initial screening, theymay not fully capture the complex
interactions between the virus and host in a living organism, as they often
target specific viral mechanisms in isolation. For example, the PP entry
assay is effective in identifying viral entry inhibitors but may not simulate
the complete dynamics of viral infection, as it lacks the full viral genome41.
Similarly, the RdRp assay, which detects inhibitors of SARS-CoV-2 RNA-
dependent RNA polymerase (RdRp) using fluorescent-labeled substrates,
focuses solely on viral genome replication and may overlook compounds
that act through alternative mechanisms, such as modulating host
immune responses or disrupting viral assembly and release45. To address
these limitations, future studies should include systematic assessments of
in vivo antiviral efficacy, alongside comprehensive pharmacokinetic and
pharmacodynamic characterizations. Additionally, thorough safety eva-
luations in relevant animal models are crucial to bridge the gap between
model predictions and the development of clinically viable anti-SARS-
CoV-2 therapies. Such a holistic approach will be essential for translating
these promising in vitro results into effective therapeutic options for
treating SARS-CoV-2 infections.

In summary, we developed robust machine learning models to
identify virus-selective and pan-antiviral drugs by integrating com-
pound structural information with viral genome sequence data. These
models demonstrated robust predictive performance and were
applied to a large-scale virtual screening of ~360 K compounds from
the NCATS in-house library. Novel anti-SARS-CoV-2 drug candi-
dates were identified using optimal consensus models that combined
multiple algorithms, including RF, XGB, and SVM. A stratification
process was further applied to the predicted compounds to minimize
unwanted cytotoxicity and maximize structural diversity. A total of
24 novel PP entry inhibitors and 47 RdRp activity inhibitors were
experimentally confirmed using in vitro assays. Among these, aze-
liragon demonstrated promising anti-SARS-CoV-2 activity, while
others showed potential efficacy against SARS-CoV-2 for the first
time. These findings demonstrated the predictive power of our
computational models and provided a valuable set of lead com-
pounds for further anti-SARS-CoV-2 drug development. Further-
more, the study’s integrative approach, combining chemical structure
analysis, viral genomic data, and advanced machine learning tech-
niques, offers a promising framework for discovering small molecule
antivirals targeting both current and emerging viral threats.

Materials and methods
Feature vectors for viral genome sequences
Complete viral genome sequences were downloaded as FASTA files from
three databases, including the Global Initiative on Sharing All Influenza
Data database (GISAID, https://www.gisaid.org/, e.g., SARS-CoV-2 strains/
variants), the European Bioinformatics Institute (EBI, https://www.ebi.ac.
uk/genomes/virus.html, e.g., HPV-11), and the National Center for Bio-
technology Information (NCBI, https://www.ncbi.nlm.nih.gov/genomes/
GenomesGroup.cgi?opt=virus&taxid=10239&host=human, e.g., influenza
A virus). The sequences were processed using R software with two key
packages: “msa” (version 1.28.0) for sequence import and “seqinr” (version
4.2-23) for calculating pairwise alignment distances based on sequence
identity. Recognizing the analogy between viral genomes and natural lan-
guage, the genome sequences were treated as sentences, with k-monomeric
units (where k = 6) serving as “words”. This analogy allowed us to apply
natural language processing techniques to genomic data. Specifically, we
employed the FastText embedding model to generate a “continuous bag of
nucleobases” representation. This was implemented using the “fastText”
package in R, with the following parameters: 100 epochs, a “softmax” loss
function, a learning rate of 0.1 (default), and a word vector size of 100
(default). This approach converted viral genomes of varying lengths into
uniform 100-dimensional feature vectors (real values), suitable formachine
learning-based predictive analysis.

Collectionofapprovedand investigational antiviral drugs (AIADs)
The collection of AIADs was conducted in two main steps: initial iden-
tification and selection fromdatabases, followed by systematic verification
through literature review. First, compounds were sourced from the
NCATS in-house collection of antivirals and the DrugBank database
(https://go.drugbank.com/), ensuring a diverse and comprehensive
representation of both approved and investigational antiviral compounds.
Particular emphasis was placed on potential anti-SARS-CoV-2 com-
pounds that had progressed to phase III clinical trials, reflecting their
advanced status in the drug development pipeline. Other antiviral agents
were included based on demonstrated efficacy against a range of viral
pathogens across all clinical trial phases. Second, the antiviral activity
of each compound was systematically verified through PubMed
literature searches (https://pubmed.ncbi.nlm.nih.gov/) using a standar-
dized keyword-based strategy, combining the compound name with
terms such as “antiviral,” “antiviral activity,” and “viral inhibition.”
Notably, the selected antiviral compounds target a wide spectrum of viral
and host proteins involved in various stages of the viral lifecycle, including
but not limited to viral entry, replication, assembly, and host
immune modulation. Details of the AIADs collected were provided in
Supplementary Table S2.

Collection of non-cytotoxic pharmaceutical compounds
(NCPCs) based on Tox21 cell viability assay data
The NCATS Pharmaceutical Collection (NPC)46, consisting of ~3000
approved and investigational drugs, was systematically evaluated for cyto-
toxicity using in vitro cell-based high-throughput screening (HTS) assays as
part of the Tox21 program. Detailed data and descriptions of these assays
were accessed through the NCATS Tox21 public data browser (https://
tripod.nih.gov/pubdata/). Each compound was screened in triplicate at 15
distinct concentrations, with activity quantified using a curve rank ranging
from−9 to 947. Negative values (−9 to−1) indicated decreasing inhibitory
activity, while positive values (1 to 9) indicated increasing activation activity.
A curve rank of 0 signified inactivity. Compounds were classified as NCPCs
if they exhibited a curve rank of 0 in at least 30 of the 55 cell viability assays.
This threshold ensured the selection of compounds demonstratingminimal
cytotoxic effects across a diverse range of cellular models. Details of NCPCs
based on Tox21 cell viability assay data were provided in Supplementary
Table S4.
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Collection of anti-SARS-CoV-2 pharmaceutical compounds
based on the PP and cytopathic effect (CPE) assays
We identified potentially cytotoxic and non-cytotoxic anti-SARS-CoV-2
compounds using cell viability counter screen data for both the PP andCPE
assays based on our previous study41. For modeling purposes, compounds
were designated as cytotoxic (assigned a value of 1) if theymet the following
criteria: AC50 <10 µM, efficacy <−50%, and curve rank <−1 in the cell
viability counter screen. Compounds that did not meet these criteria were
designated asnon-cytotoxic (assigned a value of 0). To ensure a conservative
cytotoxicity assessment, an additional rule was applied: any compound
exhibiting cytotoxicity in either the PP or CPE cell viability counter screen
was classified as cytotoxic. Conversely, compounds that did not exhibit
cytotoxicity in either assaywere designated as non-cytotoxic. By prioritizing
compounds with both efficacy against SARS-CoV-2 and minimal cyto-
toxicity, this approach enhances the potential for identifying potential anti-
SARS-CoV-2 candidates with favorable safety profiles.

Conversion of chemical structures to fingerprints and structural
analysis
Chemical structures of compounds were converted to two types of com-
monly used structure fingerprints, i.e., extended connectivity fingerprints
radius 4 (ECFP4) and ToxPrint. ECFP4 was used to build classification
models and evaluate the structural similarities between compounds, while
ToxPrint was used to identify chemical structural features significantly
enriched in AIAD compounds. Molecular structures encoded in SMILES
(simplified molecular input line entry system) were converted into ECFP4,
which represents chemical compounds as 1024-bit binary vectors, where
each bit indicates the presence (1) or absence (0) of a specific structural
feature. This conversion was performed using the Chemistry Development
Kit (CDK) integrated into the Konstanz Information Miner (KNIME)
platform, version 4.7.1. Structural similarity between compounds was
assessed by calculating the Tanimoto coefficient (TC) based on their ECFP4
fingerprints. The TC, which ranges from 0 to 1, measures similarity by
dividing the number of shared structural features by the total number of
features present in either compound. For each compound, its closest
structural neighbor was identified by calculating the TC between it and all
other compounds in the set, with the highest TC value defined as maxTC.
This maxTC value was used to assess the structural similarity between
compound sets. The ToxPrint fingerprints (729 bits) were generated using
the publicly available ChemoTyper application (https://chemotyper.org/).
Fisher’s exact test was used to determine the significance of structure fea-
tures enriched inAIADs orNCPCs based on the ToxPrint fingerprints, and
a p value <0.05 was considered statistically significant.

Implementation and evaluation of machine learning
classification models
The machine learning modeling process was performed following meth-
odologies in our previous studies48–53. Virus-selective models were built
using a combination of chemical structural features (ECFP4 fingerprints)
and viral genome sequence descriptors. Pan-antiviral models were built
using chemical structural features only. The dataset was randomly split into
a training set (70%) and a testing set (30%), with this process repeated 20
times to ensure robustness and mitigate sampling bias. Here, “the dataset”
refers to the data used to build each individual model. Five classification
models were built: Naïve Bayes (NB) and SVM using the “e1071” package,
neural networks (NNET) with the “nnet” package, RF via the “Random
Forest” package, and XGB using the “xgboost” package. Laplace smoothing
was applied to the NB classifier to address zero probability issues, while the
SVM classifier employed a Gaussian radial basis function kernel. Default
parameters were maintained for the RF and NNET classifiers. In the XGB
model, parameterswere set to include amaximumtree depth of 3, a learning
rate of 0.01, and a subsample ratio of 0.5 for constructing each tree. Model
performance was evaluated using area under the receiver operating char-
acteristic curve (AUC-ROC) and balanced accuracy (BA) via the “pROC”
package, and Matthews correlation coefficient (MCC) computed using the

“mltools” package. The entire machine learning modeling procedure was
executed in R version 4.2.1.

Featureselectionanddata rebalance formachine learningmodel
optimization
Feature selection was performed using four methods to identify the most
informative features for machine learning model construction, with slight
modifications to previously described approaches48–53. In Fisher’s exact
test and t-test method, p value thresholds ranging from 0.01 to 0.05 in
increments of 0.01were utilized. TheAUC-ROCmethodwas implemented
with cutoff thresholds from 0.52 to 0.56 in increments of 0.02, using the
“pROC” package in R. For the Random Forest (RF) and eXtreme gradient
boosting (XGB) methods, feature importance scores, such as Gini impor-
tance or Gain scores, were calculated using the “Random Forest” and
“xgboost”packages, respectively. Featureswere selected at intervals from the
top 20 to the top 100 ranked features. To address data imbalance, four
sampling methods were employed: down-sampling, up-sampling, random
over-sampling examples (ROSE), and synthetic minority over-sampling
technique (SMOTE), utilizing the “ROSE” and “DMwR”packages inR.This
comprehensive approach to feature selection and data balancing was
designed to enhance the robustness and reliability of the machine learning
models, improving their predictive power for identifying effective antiviral
compounds.

SARS-CoV-2 pseudotyped particle (PP) entry assay
The PP entry assay was performed according to previously described
protocols43. In brief, SARS-CoV-2 Spike protein containing PPs, along with
control PPs (vesicular stomatitis virus glycoprotein PP and bald PP), were
custom-produced by Dexorgen (Rockville, MD). The assay was conducted
in HEK293 cells expressing human angiotensin-converting enzyme 2
(HEK293-ACE2) under biosafety level 2 (BSL-2) conditions. Compounds
were tested in 11-point, 1:3 serial dilutions starting from a concentration of
57.5 μM. After 48 h of incubation at 37 °C with 5% CO₂, luciferase activity
was measured using the bright-glo luciferase assay (Promega) to assess the
PP entry. Data were normalized to wells with SARS-CoV-2 spike PPs
(100%) and bald PPs (0%). Cytotoxicity was evaluated in parallel using an
intracellular ATP assay without the addition of PPs, with cells andmedia as
100 and 0% controls, respectively. The dual assessments provided a com-
prehensive evaluation of both compound efficacy in inhibiting viral entry
and their potential cytotoxicity. All compound libraries used in the study
were assembled by the National Center for Advancing Translational Sci-
ences (NCATS), ensuring high consistency and quality control throughout
the screening process.

RNA-dependent RNA polymerase (RdRp) assay
The SARS-CoV-2 RdRp assay in the time-resolved fluorescence resonance
energy transfer (TR-FRET) assay format was obtained fromBPSBioscience
(SanDiego,CA). The assaywas optimized for high-throughput screening in
a 1536-well plate format. Complete RdRp buffer was prepared by adding
10 µL of 0.5MDTT to 5mLof RdRp assay buffer component 1, followed by
the addition of 20 µL of RdRp assay buffer component 2 (based on the
manufacturer’s protocol). The RNAse inhibitor was then diluted 8-fold in
the prepared complete RdRp buffer. The RdRp enzyme was diluted in the
complete RdRpbuffer to afinal concentration of 60 ng/µL, ensuring that the
enzyme was not refrozen after dilution. The RdRp reaction mixture was
prepared by diluting the digoxigenin-labeled RNA duplex and biotinylated
ATP 50-fold in the complete RdRp buffer. The enzymemix was assembled
for the 1536-well plate according to the following volumes perwell: 0.5 µLof
complete RdRp buffer, 1 µL of RdRp enzyme for test samples (no enzyme
for blanks), 0.5 µL of RNAse inhibitor, and 0.5 µL of the RdRp reaction
mixture, yielding a total volume of 2.5 µL per well. For each 1536-well plate,
a 5mL reactionmix needs to be prepared. Subsequently, 5 µL of the enzyme
mix was dispensed into each well of the 1536-well plate. Test compounds
were added by pintool, dispensing 23 nL of each compound into the
respective wells, and the plate was incubated at 37 °C for 3 h. During the
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incubation period, the TR-FRET detection buffer was thawed on ice. Eu-
labeled antibody was diluted to 1:600, and dye-labeled acceptor was diluted
to 1:200, with 8.3 and 25 µL of each, respectively, added to 5mL of the
detection buffer. Following the incubation, 5 µL of the prepared detection
solution was added to each well, and the plate was shaken on a rotator at
room temperature for 20minutes. Fluorescence intensity was measured
using theBMGPHERAstar plate reader in theHTRF formatwith excitation
at 317 nm and dual emissions at both 620 and 665 nm. For the 620 nm
channel, a lag time of 60 µs and an integration time of 500 µs were set, and
similar settingswere applied for the 665 nm channel. Due to the difficulty in
reading the 620 nm emission simultaneously on the 1536-well plate format,
the primary readout was obtained at 665 nm. The focal height for optimal
665 nm reading was adjusted to 10 nm. This method enabled the high-
throughput screening of RdRp inhibitors using a 1536-well plate format,
facilitating the rapid and sensitive detection of fluorescence signals via
TR-FRET.

Virtual screening and validation using in vitro assays
The optimal machine learning models were applied to screen the NCATS
in-house collection of ~360 K diverse compounds. These compounds
included known bioactive compounds and new small molecules designed
for drug discovery purposes. Consensus predictions from multiple indivi-
dual models were utilized to enhance reliability and accuracy. The con-
sensus score for each compound was calculated as the sum of its probability
scores frommultiple models, weighted by the respective AUC-ROC values
of each model. To ensure the selection of structurally diverse candidate
compounds for validation using in vitro assays, molecules predicted as
positive hits by multiple models were further stratified through clustering
based on structural similarity using the k-means algorithm. This approach
partitioned compounds into k distinct clusters, facilitating the selection of
representative candidates spanning diverse chemical scaffolds. Compounds
achieving the highest consensus scores within their respective clusters were
prioritized for testing using in vitro assays. To analyze the validation results,
concentration-response curves were fitted using four-parameter logistic
regression, where % assay activity was the response variable, and log10
compound concentration served as the independent variable. This analysis
was conducted using the “drc” statistical package in R. Data visualizations
were generated through the “ggplot2” package in R, and representative
chemical structures were rendered using ChemDraw Professional software
(version 23.1.1). The comprehensive workflow, including data collection,
data processing, model building, model evaluation, virtual screening, and
validation using in vitro assays, is illustrated in Fig. S1.

Data availability
All data supporting the findings of this study are included in the manuscript,
supplementary information files, and the machine learning model input data
are available on GitHub at https://github.com/TX-2017/antivirals_prediction.

Code availability
The code is available on GitHub at https://github.com/TX-2017/machine-
learning.
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