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A comparative study of machine learning
models on molecular fingerprints for odor
decoding

Check for updates

Jinyoung Suh , Yeonju Hong & Chunho Park

Understanding how molecular structure relates to odor perception is a longstanding problem, with
important implications for fragrance development and sensory science. In this study, we present an
advanced comparative analysis of machine learning approaches for predicting fragrance odors,
examining both individual descriptor‐based models and integrated frameworks. Using a curated
dataset of 8681 compounds from ten expert sources, we benchmark functional group fingerprints,
classical molecular descriptors, and Morgan structural fingerprints across Random Forest, eXtreme
Gradient Boosting, and Light Gradient Boosting Machine. The Morgan-fingerprint-based XGBoost
model achieves the highest discrimination (AUROC 0.828, AUPRC 0.237), outperforming descriptor-
based models. Our findings highlight the superior representational capacity of molecular fingerprints
to capture olfactory cues, not only achieving high predictive performance but also revealing a
continuous, interpretable scent space that aligns with perceptual and chemical relationships. This
paves theway for data-driven research into olfactorymechanisms, alongside the next generation of in
silico odor prediction.

The sense of smell, a fundamental aspect of communication and survival,
transcends the boundaries of species, connecting humans, animals, and
even plants through a shared chemical language. In humans, olfactory
receptors not only reside in the nose but are distributed throughout the
body, suggesting a multifaceted role in perception and interaction1. From
early humanhistory, fragrances have beenused for religious and therapeutic
purposes, and to mask unpleasant odors and enhance beauty. Despite this
long-standing relationship, the exactmechanismof olfaction remains oneof
science’s enduring mysteries, intriguing researchers across disciplines. The
first major revolution in olfactory research came with the discovery of
olfactory receptor genes by Linda Buck and Richard Axel in 19912, an
achievement that earned them theNobel Prize in Physiology orMedicine in
2004. This discovery provided the molecular framework of the olfactory
system, revealing a combinatorial coding mechanism by which odorants
interact with a diverse repertoire of receptors to create an astonishing array
of smells. This foundational work sparked decades of exploration into the
intricate relationship betweenmolecular structures and sensory perception.
In recent years, the integration of cheminformatics and machine learning
(ML) has ushered in the second revolution in olfactory science. Researchers
have developed computational models that bridge molecular structure and
olfactory perception by leveraging diverse datasets, features, and predictive
algorithms. Significant progress has beenmade in this field. In 2016, Nozaki
and Nakamoto3 developed a predictive model based on an artificial neural

network with a deep structure, using mass spectra of chemicals to predict
odor impressionswith notable accuracy (R ≈ 0.76). Theirmethod addressed
the inherent nonlinearity of the biological olfactory system, outperforming
conventional linear models. In 2017, Shang et al.4 proposed a proof-of-
concept machine-learning-based olfactometer to overcome the subjectivity
and cost of human panelists in traditional gas chromatography/olfacto-
metry. They built prediction models using molecular parameters with
support vector machines (SVMs) and the Boruta algorithm for feature
extraction, achieving high predictive accuracy (97.08%) for specific odor
descriptors. In 2021, Sharma et al.5 advanced the field by leveraging deep
neural networks (DNNs) and convolutional neural networks (CNNs) to
decode the structure-odor relationship (SOR) from chemical compounds.
They used physicochemical properties, molecular fingerprints, and 2D
chemical images, with their Xception-based CNN model achieving pre-
dictive accuracies as high as 98.3%. In 2022, Saini andRamanathan6 directly
addressed the quantitative structure–odor relationship (QSOR) using
multi-label classification strategies to predict odor frommolecular structure.
They curated a large dataset and explored techniques like binary relevance
and classifier chains, finding that a binary relevance model with Daylight
fingerprints yielded strong results. In 2023, Schicker et al.7 introduced
Olfactory Weighted Sum (OWSum), a linear classification method relying
solely on structural patterns (chemical fragments) as features. OWSum not
only predicts odor but also provides insights into underlying structure-
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odor-relationships by assigning influence values to patterns, achieving a
predicted accuracy of 67.7%. In 2024, Zhang et al.8 unveiled Molecular
Representation by Positional Encoding of CoulombMatrix (Mol-PECO), a
deep learning model for QSOR that addresses limitations of conventional
graph neural networks (GCNs). Mol-PECO leverages the Coulomb matrix
and Laplacian eigenfunctions for positional encoding to capture molecular
electrostatics anddetailed structural information, outperforming traditional
ML methods and GCNs. These advancements, summarized in Table 1,
demonstrate significant progress in predictive olfactory models while also
highlighting the persistent challenges of fully capturing the multi-
dimensional complexity of odorant properties. In this study, we bench-
marked various feature representations, including functional group (FG)
fingerprints, classical molecular descriptors (MD), and Morgan structural
fingerprints across diverse ML algorithms such as Random Forest (RF),
XGBoost (XGB), and LightGBM (LGBM). Our findings revealed that the
Morgan-fingerprint-basedXGBmodel achieved the highest discrimination,
demonstrated by an area under the receiver operating curve (AUROC) of
0.828 and area under the precision–recall curve (AUPRC) of 0.237, con-
sistently outperforming descriptor-based models.

This research underscores the superior capacity of topological and
conformational fingerprints to effectively capture olfactory cues, thereby
paving the way for data-driven fragrance design and the next generation of
in silico odor prediction.

Methods
Dataset
We assembled a comprehensive human olfactory perception dataset by
unifying ten expert-curated sources, all accessed via the pyrfume-data
GitHub archive (https://github.com/pyrfume/pyrfume-data)9. The indivi-
dual contributions were: Arctander’s dataset, AromaDb, FlavorDb (odor),
FlavorNet, The Good Scents Company Information System (TGSC), the
International Fragrance Association (IFRA) Fragrance Ingredient Glossary,
Leffingwell’s compendium, Sharma_A, Sharma_B, and Sigma’s Fragrance
& Flavor Catalog. Starting from this raw archive, we carried out a rigorous

multistep refinement to produce an analysis-ready matrix of 8681 unique
odorants and 200 candidate descriptors (100 with ≥ 30 occurrences).
Starting from the ten source datasets, we first merged them into a single
unified table keyed by PubChem CID. For each CID, we listed all raw
descriptor labels in full without deduplication and retrieved the canonical
Simplified Molecular Input Line Entry System (SMILES) via PubChem’s
PUG-REST API10. We then prioritized the three odor descriptors provided
by the IFRA (Fragrance IngredientGlossary, April 2020) as themost trusted
descriptors11, supplementing them with commonly used terms (e.g., Fishy,
Odorless) to define a 201-label set (200 labels plus “Others”). Because the
original ten datasets contained inconsistencies—such as leading/trailing
whitespace, typographical errors, language variants, and subjective terms—
we standardized every descriptor to one of these controlled 201 labels under
the guidance of perfumery experts, thereby yielding a fully curated multi-
label dataset ready for ML.

Feature extraction
FG features for the FG model were generated by detecting predefined
substructures using SMARTS patterns12. A full list of FGs and their corre-
sponding SMARTS definitions is provided in Supplementary Table 1.
Molecular features for the MD model were calculated using the RDKit
library13. These features included molecular weight (MolWt), number of
hydrogen donors and acceptors, topological polar surface area (TPSA),
molecular logP (molLogP), number of rotatable bonds, heavy atom count,
and ring count. For theSTmodel,molecularfingerprintswerederivedusing
the Morgan algorithm14 from MolBlock representations15. MolBlock
representations were generated from SMILES16 strings and optimized using
the universal force field algorithm17 to ensure chemically valid
conformations.

Modeling odor complexity
Unlike simple binary classification, all models support multi-label classifi-
cation, reflecting the complex and overlapping nature of olfactory
descriptors. For instance, a molecule can simultaneously exhibit “Floral”

Table 1 | Summary of recent machine learning approaches for odor prediction

Study Machine learning model Number of
odorants

Feature source Performance metrics Reference
number

Nozaki, Y. & Nakamoto,
T. (2016)

Deep ANN 121 Mass spectral data R ≈ 0.76 3

Shang, L. et al. (2017) SVM (Boruta-C),
ELM (PCA)

1026 DRAGON Physicochemical
Parameters (PCA/Boruta)

SVM Accuracy: 97.08%
ELM Accuracy:
97.53 ± 1.35%

4

Sharma, A. et al. (2021) DNN (PPMF), CNN
(Xception on 2D images)

5185 PaDel fingerprints; RDKit 2D
chemical images

DNN Accuracy: 97.3%
CNN Accuracy: 98.3%
Combined Precision: 100%
(64 smells)

5

Saini, K. & Ramanathan,
V. (2022)

Daylight-BR 7374 Mordred, Morgan, Daylight
fingerprints

micro-F1: 0.3523 6

Schicker, D. et al. (2023) Olfactory Weighted Sum
(linear)

64 SMARTS structural patterns Predicted Accuracy: 0.677
Training Accuracy: 0.905
Random Guessing
Performance: 0.214

7

Zhang, M. et al. (2024) Mol-PECO (Deep Learning,
Coulomb Matrix/LPE)

8503 Coulomb matrix + LPE encodings AUROC: 0.813
AUPRC: 0.181

8

This study RF, XGB, LGBM 8681 Morgan fingerprints (ST Model) XGB-ST AUROC: 0.828
XGB-ST AUPRC: 0.237
LGBM-ST AUROC 0.810
LGBM-ST AUPRC 0.228

Table 2

Overview of major studies applying machine learning (ML) models to olfactory prediction tasks. Shown are the model types, number of odorants used for training, feature sources, and key performance
metrics.
ANN artificial neural network,R Pearson correlation coefficient, SVM support vector machine, ELM extreme learningmachine,PCA principal component analysis,CNN convolutional neural network,DNN
deep neural network, PPMF physiochemical properties and molecular fingerprints, BR binary relevance, SMARTS SMILES arbitrary target specification, LPE learned positional encoding, ST structural
(Morgan) fingerprint, AUROC area under the receiver operating characteristic curve, AUPRC area under the precision–recall curve, RF Random Forest, XGB eXtreme Gradient Boosting, LGBM Light
Gradient Boosting Machine.
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and “Spicy” characteristics. ML classifiers are trained for each odor class,
leveraging the multi-dimensional fingerprints to capture non-linear rela-
tionships between structural features and odor labels. Labels are binarized
using aMultiLabelBinarizer, which encodes the presence or absence of each
odor category.

Model development and evaluation
We benchmarked three tree-based algorithms: (i) RF18, selected for its
interpretability and robustness to class imbalance; (ii) XGB19, leveraging
second-order gradient optimization and L1/L2 regularization to excel on
sparse, high-dimensional fingerprints; and (iii) LGBM20, employing leaf-
wise tree growth and histogram-based splitting for fast, memory-efficient
training on large descriptor sets. For each algorithm and each descriptor
combination, separate one-vs-all classifiers were trained per odor label. To
ensure reliable generalization estimates, we performed stratified fivefold
cross-validation on an 80:20 train:test split, maintaining the positive:nega-
tive ratio within each fold. Within each fold, models were fitted on four
subsets and evaluated on the held-out subset, yielding mean metrics across
folds: Accuracy (fraction correctly classified), AUROC, AUPRC, Specificity
(true negative rate), Precision(proportion of positive predictions that are
correct), and Recall (proportion of actual positives that are correctly
identified).

Results
In the comparative evaluation of model performance, we assessed nine
combinations of three feature sets—FG, MD, and ST—with three tree-based
classifiers (RF, XGB, and LGBM). A complete breakdown of performance
evaluation across all odor labels is available in Supplementary Data 1. Across
all tested configurations, XGB consistently demonstrated the strongest results
regardless of feature set. Notably, the ST-XGB model achieved the most
favorable trade-off between discrimination and retrieval, with an AUROC of
0.828 and an AUPRC of 0.237, as well as 97.8% accuracy, 99.5% specificity,
41.9% precision, and 16.3% recall. For comparison, MD-XGB achieved an
AUROC of 0.802 and an AUPRC of 0.200, while FG-XGB attained lower
values (AUROC= 0.753, AUPRC= 0.088). Although RF and LGBM paired
with Morgan fingerprints also performed robustly (ST-RF: AUROC= 0.784,
AUPRC= 0.216; ST-LGBM: AUROC= 0.810, AUPRC= 0.228), neither
surpassed the combined ranking of ST-XGB. These results underscore that
structure-derived fingerprints are highly effective in capturing olfactory cues,
and that gradient-boosted decision trees—particularly XGB—are well suited
to leveraging this information for accurate multi-label odor prediction
(Table 2).

Fivefold cross-validation further confirmed the robustness of our
findings, with the ST-XGB model again exhibiting superior performance
among the nine candidate combinations. Detailed cross-validation results
are available in Supplementary Table 2. In this setting, ST-XGB achieved a

mean AUROC of 0.816 and AUPRC of 0.226, outperforming both ST-RF
(AUROC 0.784, AUPRC 0.215) and ST-LGBM (AUROC 0.801, AUPRC
0.224), while maintaining high specificity (>99%) and precision (>35%)
without a substantial drop in recall (~14%). These cross-validation results
underscore the consistency and generalizability of the fingerprint-based
XGB model for olfactory prediction. In the field of odor prediction ML,
reported accuracies frequently exceed 90%, yet such figures can be mis-
leading when most odor categories are severely imbalanced. Although our
ST-XGB model attains an overall accuracy of 0.978, accuracy alone fails to
capture performance on rare odor labels. Instead, we focus on threshold-
independent metrics—AUROC and AUPRC—which better reflect true
predictive power across all classes. Remarkably, these results derive solely
from straightforward Morgan fingerprints, without resorting to more ela-
borate encodings, and they match or exceed those of complex alternatives.
Fivefold cross-validation further confirms the robustness of this simple
fingerprint plus gradient-boosting strategy.

Modeling and performance summary for the 9 selected
odor labels
We focus on nine carefully selected odor labels—CITRUS, FRUITY,
GREEN, FLORAL, WOODY, MUSK, EARTHY, ODORLESS, and
MEATY—which together span the key notes most prized by perfumers
and formulators. Among these, CITRUS, FRUITY, GREEN, FLORAL,
WOODY, andMUSKnotes were chosen as they represent the fundamental
classifications in the fragrance industry, forming the backbone of perfumery
for their widespread use in fine fragrances and personal-care products. The
inclusion of EARTHY reflects the recent global surge in unisex and niche
fragrances, where mossy, soil-like accords lend depth and universality to
contemporary scent blends. Meanwhile, growing “chemophobia” in the
cosmetics industry has spurred demand for truly neutral or odor‐free
ingredients: consumers now expect their lotions and creams to carry a clean,
unadulterated feel, yet raw‐material suppliers often describe odor only in
vague “characteristic” terms. By incorporatingODORLESS as a target label,
we enable fragrance researchers andproduct developers to rigorously screen
for—and certify—the absence of unwanted notes. Finally, heightened
interest in plant-based and laboratory-grown “meat alternatives” has placed
unprecedented emphasis on olfactory authenticity in alternative-protein
foods. Before even tasting, consumers judge such products by their aroma; a
convincing “meaty” note is therefore vital to adoption. Including MEATY
among our target labels allows us to address this emerging frontier,
equipping both flavor scientists and perfumers with the tools to predict—
and ultimately design—the olfactory profiles that will define next-
generation consumables.

While ST-XGB emerged as the top‐performing model on average
across all odor labels, a label‐by‐label analysis reveals a more nuanced
landscape of optimal classifiers. Notably, the FG feature group—relying

Table 2 | Test‐set performance of feature sets and classifiers

Feature set Classifier Accuracy AUROC AUPRC Specificity Precision Recall

FG LGBM 0.696 0.747 0.088 0.695 0.056 0.693

RF 0.733 0.736 0.086 0.732 0.061 0.648

XGB 0.977 0.753 0.088 0.998 0.071 0.018

MD LGBM 0.947 0.800 0.197 0.955 0.169 0.353

RF 0.967 0.730 0.172 0.981 0.221 0.234

XGB 0.977 0.802 0.200 0.995 0.329 0.131

ST LGBM 0.959 0.810 0.228 0.968 0.215 0.327

RF 0.974 0.784 0.216 0.989 0.279 0.187

XGB 0.978 0.828 0.237 0.995 0.419 0.163

ClassificationperformanceofRandomForest (RF), eXtremeGradientBoosting (XGB), andLightGradientBoostingMachine (LGBM)models using three typesofmolecular representations: functional group
descriptors (FG), molecular descriptors (MD), and structural Morgan fingerprints (ST). Reported metrics include accuracy, area under the receiver operating characteristic curve (AUROC), area under the
precision–recall curve (AUPRC), specificity, precision, and recall. All metrics are averaged across binary classification tasks for odor labels represented by 30 or more samples.
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solely on the presence or absence of FGs—consistently yielded the lowest
predictive performance, underscoring that simple SMARTS‐based finger-
prints alone cannot fully capture the complexity of olfactory profiles.
Nonetheless, FG‐based models did perform surprisingly well for the
MEATY note, where FG-XGB attained the highest AUROC (0.929) among
three FG classifiers for 9 labels. By contrast, MD frequently led the field for
individual notes. MD-LGBM achieved the best results for CITRUS
(AUROC= 0.883; AUPRC= 0.370), while MD-XGB dominated ODOR-
LESS (AUROC= 0.973; AUPRC = 0.887). MD-LGBM also recorded an
AUROC of 0.930 onMEATY, andMD-XGB delivered an AUPRC of 0.619
for MUSK—further evidence that physicochemical descriptors provide
powerful, complementary information. Although the ST feature group
generally outperformed FG and MD, the leading tree‐based algorithm
varied by note: within ST, LGBM often surpassed both XGB and RF,
demonstrating that even for structurally rich representations, algorithmic
choice can yield incremental gains (Fig. 1).

Functional group (FG) models
To robustly assess the contribution of each FG, we computed consensus
feature importances by averaging across the three tree-based MLs (Fig. 2).
Three functional‐group motifs stand out as primary drivers of olfactory
classification. First, the acetate pattern dominates the FRUITY axis with an
average importance of 0.26, a finding that resonateswith the known roles of
isoamyl acetate and ethyl butyrate in banana- and pineapple-type aromas.
Second, aldehyde functionality registers a peak importance of 0.21 in the
CITRUS profile, reflecting the sharp, zesty accents imparted by octanal and
citral in lemon and orange accords. Finally, sulfide moieties achieve an
importance of 0.31 for the MEATY note, consistent with the central role of
thiol- and sulfide-containing volatiles in cooked-meat and savory character.
These three FG signals capture the most salient structure–odor relation-
ships, while other SMARTS patterns contribute minimally to sensory
discrimination.

Molecular descriptor (MD) models
MD importance analysis unambiguously identifies three physicochemical
descriptors—molLogP, MolWt, and TPSA—as principal determinants of
odor classification (Fig. 2). molLogP (mean importance ≈ 0.206) under-
scores the pivotal role of lipophilicity in driving high‐affinity interactions
within the hydrophobic binding crevice of olfactory G protein–coupled
receptors (GPCRs).MolWt (mean importance≈ 0.172) emergesnot only as
a key predictor of volatility, delineating the distinction between bright “top
notes” andmore persistent “base notes,” but also serves as a practical proxy
formolecular size. BecauseMolWt is directly proportional tomolecular size,
it provides a useful gauge forwhether a compound can physically fit into the
binding site of an olfactory receptor. TPSA (mean importance ≈ 0.170)

reflects the critical balance between mucosal diffusion and receptor-site
polarity, with excessively polar compounds naturally failing to elicit a per-
ceptible scent. Far frombeingmeremodeling artifacts, thesefindings deliver
actionable guidance for fragrance design, and we are poised to validate their
mechanistic underpinnings in targeted follow-up studies.

Building on the descriptor‐importance results, we next turn our
attention to the underlying physicochemical property distributions—and
how these raw profiles compare to themodel‐optimized exemplars for each
fragrance class (Fig. 3a–c, “Rawvs.Model-Optimal”). First, we compute and
visualize the raw molLogP, MolWt, and TPSA distributions across all
compounds in our dataset, overlaying kernel density estimates to capture
the overall chemical space occupied by each odor labels. We then overlay
minimum–maximum ranges (with the mean indicated by solid points) for
each odor label to highlight the natural variability inherent in the data.
Finally, by training anMD-XGB classifier on the same three descriptors and
identifying, for each class, the test sample with the highest predicted
probability, we pinpoint the “model-optimal” compound that best repre-
sents the most discriminative physicochemical signature. Comparing these
optimal points against the raw distributions not only validates the impor-
tance rankings from Fig. 2 but also refines our understanding of each fra-
grance class by illustrating where the model focuses its predictive power
within the broader chemical landscape.

Molecular LogP (Fig. 3a). Both the raw mean and the model-optimal
value for musk occupy the highest LogP region of the dataset (≈ 5.2), con-
firming that musk compounds are the most lipophilic. This elevated lipo-
philicity underlies their pronounced skin persistence and affinity for the
hydrophobic crevice of olfactory GPCRs and explains why musks serve as
enduring base notes in perfumery. Interestingly, citrus notes also lie in a
relatively high LogP domain (raw mean ≈4.4), owing to the abundance of
non-polar monoterpenes that feature unsaturated hydrocarbon frame-
works. In ethanol-based fine fragrance formulations, this lipophilicity can
even contribute to turbidity over time. At the opposite extreme, the odorless
class exhibits the lowest mean LogP (≈ 1.1) with outliers descending below
−10. Such low lipophilicity prevents traversal of the nasalmucus lipid layer,
precluding receptor engagement and resulting in an absence of perceived
scent.MolecularWeight (Fig. 3b). Woody andmusk categories (excluding
odorless) occupy the highest molecular‐weight regime (≈230–240 Da),
consistent with their roles as persistent base notes. Unexpectedly, citrus
notes appear at the upper end of the top‐note spectrum (≈190Da), illus-
trating that many green and fruity volatiles dissipate almost immediately
upon blotter application (e.g., grass alcohols), whereas some citrus com-
pounds persist significantly longer. The odorless class again defies typical
olfactory wisdom by spanning to the highest weights (>300Da), suggesting
that effective scentmoleculesmust remain below this threshold to access the
binding pocket of olfactory receptors. Topological Polar Surface Area

Fig. 1 | Performance comparison of machine-learning models across odor labels.
a shows the area under the receiver operating characteristic curve (AUROC), and
b shows the area under the precision–recall curve (AUPRC) for each label across

nine selected models. Asterisks indicate the best-performingmodel per label. Colors
correspond tomodel types (see legend in figure). The numerical data underlying this
figure are available in Supplementary Data 1.
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(Fig. 3c). Odorless compounds possess the highest mean TPSA (≈ 55 Å²),
reflecting extreme polarity that inhibits passive diffusion through the lipid-
rich nasal mucosa and perhaps fails to satisfy the predominantly hydro-
phobic binding site of GPCR odorant receptors. Paradoxically, the model-
optimal TPSA for odorless falls to near zero, indicating that the classifier has
also learned that minimally polar (TPSA≈ 0) molecules—unable to solu-
bilize in the aqueous mucus layer—likewise never reach receptor sites and
thus register as odorless.

Structural (ST) models
Recent approaches8 have utilized high-dimensional Coulomb matrix
descriptors to capture pairwise electrostatic interactions, but our stream-
lined pipeline employs only 2D Morgan fingerprints derived from 3D
MolBlock geometries. This strategy markedly reduces computational
demands while still effectively capturing key substructural motifs. Classifi-
cationperformancewith thesefingerprintswas found tomatch, and in some
cases exceed that of Coulomb matrix–based models. Although the XGB-
basedmodel (ST-XGB) achieved the highest mean AUROC, its lower recall
led us to emphasize the LightGBM variant (ST-LGBM) for subsequent
label-specific analyses,wheremaximizing recall is critical for comprehensive
odor profiling and safety. For each of the nine odor labels, we identified the
single test-set compound to which ST-LGBM assigned the highest prob-
ability. This analysis highlights themolecular scaffolds towhich themodel is
most sensitive—such as aliphatic esters for fruity, terpenes for citrus, and
fused tricyclic frameworks for woody notes. These representative motifs
align closely with established fragrance chemotypes, demonstrating that
simple 2D fingerprints can reliably capture essential structural features
underlying olfactory perception. The strong correspondence between these
high-confidence selections and known fragrance scaffolds, as summarized
in Table 3, underscores the robustness of 2D molecular fingerprints as a

foundation for high-throughput odor prediction and rational fragrance
design. The superior performance of the ST model can be attributed to the
structural expressiveness of Morgan fingerprints, which represent atom-
level topological environments with high resolution. Although these fin-
gerprints are inherently two-dimensional and encode only connectivity, we
derive them from molecules that have been pre-optimized in three
dimensions using force-field methods. This preprocessing ensures chemi-
cally valid input structures by standardizing hydrogen placement, bond
configuration, and tautomeric forms. As a result, the model benefits from
both the representational power of topological substructures and the con-
sistency of optimized molecular inputs, allowing tree-based classifiers to
more effectively learn odor-relevantmotifs and distinguish subtle structural
differences among fragrance compounds. To further improve prediction
robustness and capture diverse perspectives within the STmodel family, we
developed an ensemble prediction framework that integrates three tree-
based classifiers trained on Morgan fingerprints: ST-RF, ST-XGB, and
ST-LGBM.

Ensemble framework for olfactory prediction
For every candidate molecule, we compute its probability for each odor
label in each model, then simply pick the three highest‐scoring
label–model pairs. By focusing on these three “ST” models rather
than all nine possible combinations, we retain interpretability and
improve precision. As a quick sanity check, we re‐evaluated three
well–characterized fragrance standards from our training set. Linalool
(CAS 78-70-6) came out as Lavender (0.999 in ST-LGBM), Petitgrain
(0.998, ST-LGBM), and Floral (0.980, ST-RF)—exactly matching its
known dual role in lavender oil and other floral terpenoids. Limonene
(5989-27-5) was predicted correctly as Terpenic (0.988, ST-LGBM), Pine
(0.963, ST-LGBM), and Citrus (0.918, ST-LGBM), capturing both its

Fig. 2 | Feature importances across odor labels.
Heatmap showing the average normalized feature
importances of functional‐group and molecular
descriptors across Random Forest (RF), eXtreme
Gradient Boosting (XGBoost), and Light Gradient
Boosting Machine (LightGBM) models for each
odor label. The numerical data underlying thisfigure
are available in Supplementary Data 2.
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citrus zest and conifer‐like notes. Phenyl Ethyl Alcohol (60-12-8)
emerged as Honey (0.986, ST-LGBM), Rose (0.966, ST-LGBM), and
Floral (0.940, ST-RF), reflecting its classic rose scent. We then inputted
three cosmetic raw materials. Isoamyl Laurate is added to skin care
products for its silky skin feel, but can sometimes betray an alcoholic and
greasy odor. Originally labeled in our data only as Fatty, Oily, and
Alcoholic, our ensemble reinterpreted it as Brandy (0.983, ST-LGBM),
Apricot (0.971, ST-LGBM), and Alcoholic (0.950, ST-LGBM), neatly
describing its characteristic odor. Glutathione (70-18-8) inherently
contains an SH group—and can smell like rotten egg—but our model
interestingly predicted it as Yeast (0.999, ST-LGBM), suggesting a fer-
mentation‐like nuance rather than raw sulfur. Squalane (111‑01‑3),
which is virtually odorless and was not present in our dataset, was
nevertheless predicted as Fishy (0.983, ST‑LGBM). Interestingly, its
unsaturated analogue, squalene, was included in the dataset and labeled
as Floral and Oily, with no association to Fishy descriptors. However,
squalene is known to oxidize into aldehydes with fishy odor character-
istics. The prediction of “Fishy” for odorless squalane suggests that the
ST‑LGBM model may infer latent odor-relevant features based on
structural similarity and external chemical behavior. Finally, we screened

all 400 dipeptides constructed from the twenty amino acids and high-
lighted the two strongest Meaty candidates. Gln-Met scored Meaty
(0.892, ST-LGBM), Savory (0.689, ST-XGB), and Cheesy (0.647, ST-
XGB) without invoking any Sulfurous note—making it a prime flavor
precursor. This aligns with Damian et al.’s finding21 that free Met con-
tributes directly to meatiness. Pro-Ala achieved Meaty (0.747, ST-
LGBM). Because it lacks Met’s sulfur, it avoids overt off‐smells yet still
delivers a high meaty probability, suggesting it could be a “clean”meaty
peptide. We also noted a dipeptide, Pro-Phe with a strong Floral score—
borderline odorless—that might even be explored as a novel fragrance
ingredient. A summary of these predictions for fragrance standards,
cosmetic materials, and dipeptides is provided in Table 4. In sum, this
streamlined ST-only ensemble not only reproduces known scent
descriptors for classic fragrance molecules but also generalizes well to
cosmetic materials and uncovers new fragrance and flavor candidates
from peptides. By concentrating on fingerprint‐driven models, we
achieve equally interpretable, more precise predictions—provides a
practical foundation for discovering novel fragrance and flavor ingre-
dients across perfumery, cosmetics, and food industries. While the
ensemble results demonstrate strong predictive performance, we further

Table 3 | Representative test-set compounds with highest model-predicted probabilities for each odor label

Odor label Compound CID Compound name Assigned odor descriptors Probability

CITRUS 20797 Nookatone CITRUS, FRUITY, GRAPEFRUIT 0.974

FRUITY 16324 Allyl butyrate FRUITY, APRICOT, PINEAPPLE 0.973

GREEN 324382 Methyl 2-decynoate WAXY, NUTTY, GREEN 0.977

FLORAL 10176245 (5R)-2,5,6-trimethylheptan-2-ol FLORAL, TERPENIC, ROSE 0.972

WOODY 24758199 Methyl cedryl ether GREEN, WOODY, CINNAMON 0.984

MUSK 71332160 4-tert-butyl-2,6-dimethyl-3,5-dinitrobenzaldehyde MUSK 0.997

EARTHY 32065 Nutty pyrazine EARTHY, OTHERS, ROASTED 0.973

ODORLESS 135565913 Dipotassium guanylate ODORLESS 0.999

MEATY 47649 2-methyl-3-(methyldisulfanyl)furan OTHERS, CHEMICAL, MEATY 0.995

For each odor label, the ST-LGBMmodel selected the test-set compound with the highest predicted probability. In all cases, the predicted label was among the compound’s assigned odor descriptors,
suggesting consistency between model output and expert annotation.
CID PubChem compound identifier, ST structural (Morgan) fingerprint, LGBM Light Gradient Boosting Machine.

Fig. 3 | Comparative raw and model‐optimal distributions of three molecular
descriptors (MD). Kernel density estimates for a molecular Log P, b molecular
weight, and c topological polar surface area (TPSA). Each plot overlays class-specific
min–max ranges and mean values (●), alongside model-optimized values (▲)
derived from the molecular descriptor-based eXtreme Gradient Boosting (MD-

XGB) model for each odor label. Mean points (●) represent average descriptor
values of all raw samples with that label; model-optimal points (▲) represent the
most confident predictions per odor label. The numerical data underlying this figure
are available in Supplementary Data 3.
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investigated whether the ST models learn deeper structural regularities
among odor descriptors that go beyond discrete label assignments.

Mapping the learned odor topology
To explore latent relationships among odor labels, we computed
pairwise distances between label-specific feature importance vectors
obtained from independently trained ST-LGBM classifiers. These
1024-dimensional vectors were first embedded into a three-
dimensional space using Uniform Manifold Approximation and
Projection (UMAP)22 with a cosine distance metric. Euclidean dis-
tances among the embedded points were then calculated, followed by
classical multidimensional scaling (MDS) to generate a two-
dimensional projection that preserves global inter-label relation-
ships (Fig. 4). Based on this projection, fragrance experts identified
several distinct and interpretable clusters. For example, the “Lactic
Fermentation” cluster includes odor labels such as buttery, cheesy,
and dairy, which are strongly associated with milk-derived fermen-
tation and fatty acids. In contrast, the “Alcoholic Fermentation”
cluster contains clean, alcoholic, and fermented odor labels. While
not spatially adjacent to Lactic Fermentation, it appears to lie along a
perceptual gradient originating near Fruity, progressing toward
ethanol-related impressions. Following this axis further, one
encounters a more aversive region—the “Putrefaction” cluster—
encompassing unpleasant, pungent, fishy, and gassy odor labels. In
the lower part of the map, the “Sulfuric” cluster emerges, defined by
odor labels such as onion, garlic, meaty, and alliaceous, which are
commonly linked to sulfur-containing food volatiles. Adjacent to it is
the “Cooked” cluster, characterized by roasted, burnt, and cooked
odor labels, likely reflecting thermal transformations of sulfuric or
protein-based compounds. At the upper region of the projection, a
distinct axis of woody and forest-related odor labels becomes evident.
The “Leathery & Smoky” cluster includes leathery and smoky,
evoking charred wood impressions, while the neighboring “Amber &
Woody” cluster includes woody and sandalwood, consistent with
heartwood olfactory profiles. Adjacent to these are the “Herbal &
Forest” clusters, which comprise terpenic, pine, and camphor odor
labels, often associated with forest volatiles and phytoncides.
Although partially informed by expert interpretation, these spatial
arrangements exhibit perceptual continuity and chemical coherence
aligned with known olfactory taxonomies. Notably, they reflect

sensory transitions shaped by microbial degradation, thermal pro-
cesses, and the chemical diversity of natural raw materials. Collec-
tively, these findings suggest that fingerprint-based learning models
can reconstruct not only discriminative features, but also emergent,
continuous structures that resemble higher-order perceptual orga-
nization in the olfactory domain.

Conclusions
This study demonstrates the effectiveness of various ML models in
predicting fragrance categories, with particular emphasis on the
superior performance of the structural (ST) model that utilizes 2D
Morgan fingerprints derived from 3D MolBlock geometries. Among
all tested models, the ST-based approach consistently achieved the
highest predictive accuracy across diverse odor labels, owing to its
ability to encode detailed substructural information and to learn
chemically meaningful patterns directly from molecular topology.
Unlike FG models, which rely on predefined SMARTS patterns and
human-curated rules, the ST model leverages data-driven fingerprints
to represent a broader and more nuanced range of substructures,
including chemically relevant motifs that may not be explicitly
defined. This expressive capacity enhances its generalizability and
makes it particularly suitable for the structure-based discovery of
novel fragrance molecules.

A critical factor underlying this performance is the quality of the
training data. This study prioritized official descriptors from the IFRA,
which are curated to reflect olfactory properties. When IFRA data were
available for a compound, no other descriptors were used. For compounds
not listed in the IFRA database, fragrance experts meticulously mapped
alternative descriptors to the IFRAtaxonomy.This rigorous standardization
reduced semantic ambiguity and enabled more reliable model training
across all feature types, including FG, MD, and ST.

In particular, the latent scent space derived fromMDS projection of
UMAP-embedded fingerprint vectors reveals a continuous and chemi-
cally meaningful spatial organization of odor descriptors. The spatial
layout—highlighting both familiar fragrance clusters and plausible
transitions among food-related descriptors—suggests that the model
captures perceptual and chemical relationships in a continuous manner.
This suggests that the ST model serves not only as a high-performing
predictive tool but also as a data-driven and interpretable framework for
advancing our understanding of the mechanisms underlying olfactory

Table 4 | Predicted odor profiles of fragrance standards, cosmetic raw materials, and dipeptides using structure-based
classifiers

Category CAS
number

Compound name Predicted label 1 Predicted label 2 Predicted label 3

Fragrance 78-70-6 Linalool LAVENDER (0.999,
ST-LGBM)

PETITGRAIN (0.998,
ST-LGBM)

FLORAL (0.980, ST-RF)

5989-27-5 Limonene TERPENIC (0.988,
ST-LGBM)

PINE (0.963, ST-LGBM) CITRUS (0.918, ST-LGBM)

60-12-8 Phenyl ethyl alcohol HONEY (0.986, ST-LGBM) ROSE (0.966, ST-LGBM) FLORAL (0.940, ST-RF)

Cosmetic raw
material

6309-51-9 Isoamyl laurate (skin-
conditioning agents)

BRANDY (0.983,
ST-LGBM)

APRICOT (0.971, ST-LGBM) ALCOHOLIC (0.950,
ST-LGBM)

70-18-8 Glutathione (skin brightening) YEAST (0.999, ST-LGBM) ODORLESS (0.859,
ST-LGBM)

MILD (0.419, ST-LGBM)

111-01-3 Squalane (skin-conditioning
agents)

FISHY (0.983, ST-LGBM) WAXY (0.859, ST-LGBM) CITRUS (0.854, ST-LGBM)

Dipeptide 114659-59-5 Gln-Met MEATY (0.892, ST-LGBM) SAVORY (0.689, ST-XGB) CHEESY (0.647, ST-XGB)

6422-36-2 Pro-Ala MEATY (0.747, ST-LGBM) ODORLESS (0.360, ST-RF) OTHERS (0.325, ST-LGBM)

13589-02-1 Pro-Phe FLORAL (0.852,ST-LGBM) ODORLESS (0.463,
ST-LGBM)

FRUITY (0.200, ST-RF)

For each compound, the top three odor labels were predicted by ST-RF, ST-XGB, and ST-LGBMmodels trained on Morgan fingerprints. Odor descriptors for known substances reflect commonly
recognized or empirically grounded characteristics. Dipeptides, not tested experimentally, were included as exploratory cases to illustrate potential in novel fragrance discovery.
ST structural (Morgan) fingerprint, RF Random Forest, XGB eXtreme Gradient Boosting, LGBM Light Gradient Boosting Machine.
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perception. As one of the few studies conducted within an industrial
fragrance R&D setting, this work connects academic modeling approa-
ches with practical needs and lays a foundation for structure-guided
fragrance design and data-driven olfactory research in perfumery, cos-
metics, and flavor industries.

Data availability
DataRepository:All datasets used in this study are publicly available via the
Open Science Framework (OSF): https://osf.io/vfru6/. Supplementary
Data 1 reports classification metrics for all odor labels across three feature
types (FG, MD, ST) and three classifiers (RF, XGB, LGBM). Labels with
insufficient samples are included but marked as “NaN” where evaluation

wasnot feasible. SupplementaryData 2 provides average feature importance
scores for functional group and molecular descriptor models, aggregated
across the three tree-based classifiers. Supplementary Data 3 summarizes
raw value distributions and model-optimized exemplar values for the three
keymolecular descriptors—MolLogP,MolWt, and TPSA—used in theMD
models. For each odor label, it includes theminimum,maximum, andmean
values observed in the dataset, along with the descriptor values of the
compound with the highest predicted probability from the MD-XGB
model. Supplementary Data 4 contains the 1024-dimensional fingerprint
importance vectors for each odor label (Sheet 1), the pairwise distance
matrix after UMAP embedding (Sheet 2), and the corresponding 2DMDS
coordinates used to generate Fig. 4 (Sheet 3).

Fig. 4 | Two-dimensional MDS projection of inter-label distances derived from
UMAP embeddings of fingerprint importance vectors.Odor label-specific feature
importance vectors obtained from ST-LGBM classifiers were first embedded into a
three-dimensional space using Uniform Manifold Approximation and Projection
(UMAP) with a cosine distance metric. Euclidean distances between the embedded
points were then calculated, and classical multidimensional scaling (MDS) was

applied to generate a two-dimensional projection that preserves inter-label spatial
relationships. Each point represents a single odor descriptor. This geometry-
preserving visualization reveals functional and perceptual proximity among odor
labels within the learned fingerprint space. The numerical data underlying this figure
are available in Supplementary Data 4.
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Code availability
All codes in this work are publicly available via Open Science Framework
(OSF) (https://osf.io/vfru6/).
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