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Covalent chemical probes
Check for updates

Communications Chemistry is
pleased to introduce a Collection of
research works focused on recent
developments within the
interdisciplinary field of Covalent
chemical probes. Here, the Guest
Editors highlight key themes and look
towards the future of this
research field.

W
hat do aspirin, penicillin, ome-
prazole, and ibrutinib have in
common? At first glance an anti-
inflammatory drug, an antibiotic

derived from Flemming’s penicillium mold, a
proton pump inhibitor that blocks stomach
acid production, and a kinase inhibitor to treat
chronic lymphocytic leukaemia may simply
seem like a disparate group of blockbuster
drugs. However, this disparate group perfectly
illustrates the power of covalency to effectively
and safely treat wide-ranging illnesses. Thus,
and often inspired by these breakthrough
drugs, covalency has made a comeback both
clinically and in basic research applications.
Chemical biomacromolecule labeling uniquely

offers the ability to study andmanipulate biology.
Chemical probes with a covalent mode of action
represent powerful tools that can be used for
biology discovery, target validation (or off-target
identification), and as starting points for drug
discovery programmes. Bio-orthogonal chemis-
tries alongside methods that harness the biosyn-
thetic machinery to precisely integrate reporter
functionality into biomacromolecules similarly
facilitate our collective navigation of the dynamic
cellular interactome to unveil new mechanistic
understanding of biological processes, opportu-
nities for intervention and new therapeutic
modalities. In turn, this has stimulated develop-
ment of new regioselective chemistries, compu-
tationalmethods andanalyticalmethods toprobe
the complex environment of the cell. Collectively,
this offers new opportunities to modulate, track
and isolate proteins of interest in/from the com-
plex cellular milieu. Covalent compounds are
safe, efficacious, and useful for wide-ranging
therapeutic applications, spanning cancers,
autoimmune disorders, and infections. Cova-
lency also uniquely enables functional biology,
spanning discovery of new post translational
modifications via proteomics, trapping of non-

covalent interactions via latent electrophiles,
including for both small molecules and biomo-
lecules, and even the discovery and optimization
of hyper-potent biologics that function via irre-
versible tethering of various therapeutic mod-
alities to their targets.
Casting a broad net, in this Collection, we

present a selection of manuscripts that capture
the current state of research in covalent probes.
This Collection begins with chemistries tailored
to enhance covalency, including new electro-
philes and their applications. Then, by showcas-
ing the technical advances of combining
proteomics with covalency, our set of chemo-
proteomic studies showcase the current state-of-
the art for target deconvolution and mode-of-
action studies, enhanced by new reagents and
platforms. Lastly, we turn to the biological
applications of covalency, spanning protein,
aptamers, and glycan interactomes. Taken toge-
ther these studies unveil new mechanistic
understanding of biological processes, opportu-
nities for intervention and new therapeutic
modalities and showcase the unique strengths of
covalency to enable high throughput biochem-
istry, chemical probes and drug discovery.

Covalent chemistry for ligand and
drug discovery
Covalent chemical probes are bioactive ligands
that form a covalent bond with their target bio-
macromolecule(s). Drugs with a covalent mode
of action have been known and used for over a
century, although historically, pursuit of such
bioactive compounds has been avoided due to
concerns over lack of selectivity. Over the last
three decades however, the use of ligands bearing
reactive handles has seen increased interest
spawning efforts to rationally design covalent
drugs and new approaches to study protein
function such as activity-based protein-profiling.
Where covalent bioactive ligands are concerned,
increased selectivity and duration of action
represent advantages. In this Collection, exciting
developments are described for small-molecule
growth factor inhibitors1,2, immunomodulatory
glycolipids3, E3 ligases4, and peptide-based
inhibitors of PPIs5& viral targets6. Powerful
new methods based on sulfur-fluoride
exchange are facilitating inhibitor discovery for
challenging molecular and disease targets e.g.,
phosphodiesterases7 and T. Brucei8. Alongside
this progress, new methods are facilitating rapid

discovery of inhibitors by integrating labeling
chemistries with biological selection9,10, high-
throughput plate-based synthesis and
screening11, andmapping covalent chemistries to
evermorediverse ligand types suchas aptamers12.
Underpinning these efforts are the development
of new chemistries that may act as amino acid
side chain warheads13,14. Finally, computational
methods development is accelerating develop-
ment of covalent inhibitors15.

Chemical proteomics
Chemical proteomics involves the use of chemi-
cal probes to study the proteome. It can be
enormously powerful in target and off-target
identification. This is exemplified with reagents
that profile palmitoylation16, ligand identification
for monoacylglycerol lipids17 and photoaffinity
profiling of pharmacophores for kinase
inhibitors18. The approach can be similarly
powerful for profiling binding sites19. Finally, the
ability to effect controlled temporal or organelle
specific activation of chemical probes offers
opportunities to resolve signaling pathways with
much greater precision20. Underpinning these
efforts are studies to understand the fundamental
reactivity of covalent labeling chemistries in the
cell e.g., thiol-ene chemistry21 andnewreagents to
facilitate higher resolution analyses of
proteomes22.

New tools and covalent chemistry for
biology
The opportunity to be creative with new syn-
thetic methods and workflows for biology draws
synthetic chemists to the arena of chemical
biology. Bio-orthogonal chemistry received the
Nobel prize in 2022, however there remains a
need for improved and new biorthogonal
reactions23–25, to facilitate new approaches for
proteomics, imaging and proximity-induced
workflows like “traceless” protein labeling26,27

and controlled protein assembly28. Even small
modifications incorporated through metabolic
labeling e.g., isotopes offer promise to delineate
signaling specificities29, whilst click chemistry can
be used to induce labeling of low affinity glycan
ligands through chelate co-operativity30, and
detect biological processes such as NETosis
through turn-on fluorescence31. Underpinning
these efforts are the development of multi-
functional reagents derived from unsaturated
saccharides which can react with cysteine and
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release carboxylic acids32 and methods for
assembly of proteins bearing site specific com-
plex post-translational modifications33.

Outlook
To conclude, we hope to also inspire ongoing and
future efforts to further enhance covalent che-
mistries. As aspirin and penicillin revealed,
covalent molecules and chemistries are ubiqui-
tous, with many still likely waiting to be dis-
covered, hidden in screening decks, natural
products, and metabolites, around the globe.
Enabled by a high-powered emerging suite of
technologies, pinpointing whichmolecules could
be covalent and what proteins (or other biomo-
lecules) they label has never been easier. That
being said, covalents do pose unique challenges
that remain to be fully explored. In some cases,
ultra-long half-lives of covalents, intimately tied
to the protein of interest, can raise concerns about
idiosyncratic toxicity, as does the possibility of
scavenging endogenous redox active cofactors,
such as glutathione.We urge the field to take care
when progressing new covalent chemotypes and
to rigorously characterize both the specific and
more generalized physiologic effects of each
screening hit. This rigor, together with the ever-
evolving new technologies, chemistries, and
creative applications, will ensure a bright future
for covalent probes across drug, chemical probe,
and molecular mechanistic studies. We hope
researchers will continue to be inspired by all
aspects of covalency, spanning fortuitous dis-
coveries and the unexpected covalent mechan-
isms through to next generation clinical
candidates and breakthrough drugs.
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