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Discovering molecules with desirable molecular properties, including ADMET profiles, is of great importance in drug discovery. Ex-12

isting approaches typically employ deep learning models, such as Graph Neural Networks and Transformers, to predict these molecu-13

lar properties by learning from diverse chemical information. However, these models often lack mechanisms for effective interaction14

among multi-level features. To address these limitations, we propose a Hierarchical Interaction Message Passing Mechanism, which15

serves as the foundation of our model, the Hierarchical Interaction Message Net (HimNet). Our method enables interaction-aware16

representation learning across atomic, motif, and molecular levels via hierarchical attention-guided message passing. This design17

allows HimNet to effectively balance global and local information, ensuring rich and task-relevant feature extraction for downstream18

property prediction tasks. We systematically evaluate HimNet on eleven datasets, including eight widely-used MoleculeNet bench-19

marks and three challenging, high-value datasets for metabolic stability, malaria activity, and liver microsomal clearance, covering20

a broad range of pharmacologically relevant properties. Extensive experiments demonstrate that HimNet achieves the best or near-21

best performance in most molecular property prediction tasks. We believe that HimNet offers an accurate and efficient solution for22

molecular activity and ADMET property prediction, contributing significantly to advanced decision-making in the early stages of23

drug discovery.24

1 Introduction25

Accurate prediction of molecular properties remains a crucial task in small-molecule drug discovery [1].26

Early assessment of features such as bioactivity, solubility, permeability, and toxicity enables medicinal27

chemists to efficiently filter out unsuitable compounds from large screening libraries, thereby reducing28

the need for costly and time-consuming experimental assays [2]. Although in vitro and in vivo exper-29

iments remain the gold standard for property validation, their low throughput and high expense limit30

their practicality for large-scale screening. Consequently, there is a growing shift toward computational,31

data-driven strategies that accelerate lead optimization and mitigate downstream risks in drug develop-32

ment [3].33

Moreover, graph neural networks (GNNs) have emerged as a leading computational strategy for molec-34

ular property prediction[3]. By representing atoms as graph nodes and bonds as edges, GNNs jointly35

capture local chemical environments and global topological context without reliance on manually en-36

gineered descriptors or fixed fingerprints. Seminal architectures, such as graph convolutional networks37

(GCN)[4], graph attention networks (GAT)[5] and message passing neural networks (MPNN)[6] have38

consistently outperformed classical machine-learning baselines. Subsequent refinements, including di-39

rected MPNN (D-MPNN)[7], contextual MPNN (C-MPNN)[8], Graphormer[9] and fragment-aware40

GNNs[10] have further enriched representational power by integrating edge features, bond directionality41

or fragment-level encodings. In addition, hybrid models combining graph encoders with global attention42

mechanisms[11, 12] have demonstrated broad applicability across diverse ADMET (absorption, distri-43

bution, metabolism, excretion, and toxicity) benchmarks, underscoring the maturity and generality of44

hierarchical GNN approaches in the field.45

However, despite this progress, virtually all existing GNN variants remain confined to single-layer in-46

formation flows—either atomic or fragmental—thus failing to model dynamic, context-dependent inter-47

actions among functional groups that critically influence molecular behavior[13, 14]. Recent chemical48
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studies have shown that such synergistic effects are far from additive: for example, K. Chuang et al. in-49

troduced the substructure masking explanation (SME) framework[15] to attribute property variations to50

specific motif combinations, revealing that randomly masking paired substructures produces markedly51

different attribution patterns than masking each motif in isolation. Similarly, Costa et al.[16] demon-52

strated non-linear enhancement of photodynamic-therapy activity in hydrazone-functionalized corroles53

only when hydrazone and N-Boc/N-Ts groups co-occur, and Dawood et al.[17] found that 5-sulfanyl54

thiazole derivatives exhibit potent anticancer activity only with particular aromatic substituent pairs.55

Moreover, Breaking of Retrosynthetically Interesting Chemical Substructures(BRICS) decomposition[18]56

can efficiently identify chemically meaningful motifs that correlate with target properties, yet current57

GNN-based methods typically aggregate these motifs via simple pooling or static embeddings, thereby58

overlooking their cooperative interplay. These observations highlight an urgent need for a model that59

not only processes hierarchical information but also enables learnable, cross-layer interactions among60

motifs and functional groups—only then can we fully capture the complex determinants of ADMET61

properties[13, 14].62

To address these challenges, we propose a novel, to the best of our knowledge, Hierarchical Interaction63

Message Passing mechanism[13, 14] and develop a unified molecular message passing network, HimNet.64

In our approach, atoms, motifs, molecules, and molecular fingerprints are treated as distinct seman-65

tic layers[18, 19]. Crucially, we introduce the Explainable Attention Interaction module[20, 21], which66

enables learnable modeling of interactions between functional groups. This design facilitates the cap-67

ture of cross-motif cooperative mechanisms, including hydrogen bonding[22], π–π stacking[23], and hy-68

drophobic effects[24]. Moreover, we incorporate a Consensus Fingerprint Enhancement module[19, 25]69

that identifies latent functional patterns via multi-fingerprint similarity analysis and fusion, thereby70

guiding global structural optimization. Finally, a multi-head attention fusion mechanism[20] aligns fea-71

tures across hierarchical levels, significantly improving both generalizability and interpretability. Ex-72

tensive experiments on eleven datasets—including eight widely-used MoleculeNet benchmarks[3] and73

three challenging, high-value datasets for metabolic stability[26], malaria activity[27], and liver micro-74

somal clearance[28]—demonstrate that HimNet consistently outperforms existing hierarchical GNN75

models[13, 14] and feature-fusion baselines[12], achieving best or near-best performance in most tasks.76

2 Results77

2.1 Hierarchical Interaction Message Passing Mechanism78

To uncover the intricate dependencies that span multiple structural levels, HimNet incorporates a Hi-79

erarchical Interaction Message Passing Mechanism (HIMPM). Conventional message-passing schemes80

normally operate only on directly bonded atoms or on rigidly pre-defined fragments[6]. In contrast,81

real molecular systems often feature cooperative or competitive interactions that cross covalent bound-82

aries—think of π−π stacking between adjacent aromatic rings[23] or the way a distant polar substituent83

modulates a hydrophobic cluster[24]. HIMPM shatters this single-view limitation by tying together84

atoms, motifs, and the molecule as a whole, enabling seamless information flow across scales and faith-85

fully capturing these non-additive, multi-pathway behaviors[13, 14].86

In practice, HIMPM runs two complementary pathways in parallel. One adopts a directed message-87

passing strategy (akin to D–MPNN)[7], using chemical bonds to precisely encode each atom’s local en-88

vironment. The other leverages hierarchical interaction attention to erect “long-distance bridges” across89

atom–atom, atom–motif, motif–motif, and motif–global links, allowing the model to directly sense and90

weigh the influence between disparate structural fragments[20, 13]. At each iteration, a learnable gating91

mechanism fuses the outputs of these pathways, dynamically balancing strict chemical bond constraints92

with flexible, multi-scale semantic integration[13].93

To better contextualize our approach’s strength in capturing long-range dependencies, we compare it94

with standard graph-based methods. Conventional GNNs (e.g., GCN, MPNN) propagate information95

via iterative neighbor aggregation, which is inefficient for connecting distant nodes in a molecular graph96
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2.2 Model Overview: HimNet

and can lead to the over-smoothing problem. In contrast, our HIMPM, through its hierarchical attention97

pathway, directly establishes ”long-distance bridges” between different structural units (e.g., atoms and98

motifs), effectively bypassing topological bottlenecks in information flow. Furthermore, while attention-99

based methods like GAT or Graph Transformers also exist, they typically operate on a single, flat atomic100

level. HimNet is distinguished by its hierarchical attention, which operates across multiple semantic101

levels—atom, motif, and global—enabling a more precise modeling of the synergistic and antagonistic102

effects between functional groups that are key to determining complex molecular properties.103

This dual-pathway fusion of message passing and attention gives HimNet deep insight into intramolecu-104

lar cooperation. Whether it is adjacent aromatic rings stacking cooperatively or hydrophobic and polar105

groups competing over several bonds, HIMPM makes these effects explicit through its attention weights.106

As a result, HimNet not only achieves notable accuracy gains on tasks such as blood–brain barrier per-107

meability, aqueous solubility, and toxicity prediction[3], but also provides clear, chemically grounded108

rationales for its decisions—substantially enhancing both performance and interpretability[21].109

2.2 Model Overview: HimNet110

Figure. 1b illustrates the overall architecture of HimNet, which integrates four tightly coupled stages to111

transform raw SMILES into a unified embedding for downstream prediction. In the first stage, Molecule112

Preprocessing, each SMILES string is parsed into a 2D chemical graph[29] and then fragmented by the113

BRICS algorithm[18] into atom-level nodes, motif-level nodes and a single global supernode. Explicit114

atom–motif, motif–motif and motif–global edges link these nodes, preserving fine-grained bond topology115

while exposing higher-order substructure relationships[13].116

Running in parallel, Figure. 1b(ii) introduces the Fingerprint Embedding module, which encodes five117

classical molecular fingerprints—AtomPairs[30], MACCS keys[31], MorganBits and MorganCounts[19],118

and Pharmacophore[32]—into dense vectors. A pairwise cosine similarity matrix highlights high-confidence119

shared dimensions[33], which are extracted as “consensus” features and then fused with the original fin-120

gerprint embeddings via learnable attention weights and a contrastive alignment loss[34], thereby inject-121

ing global chemical priors that complement the graph encoding.122

The third component is the Hierarchical Interaction Message Passing Mechanism (HIMPM) shown in123

Figure. 1b(iii)[13, 14]. One path follows directed message passing (D-MPNN)[7] to rigorously propagate124

local atomic information along chemical bonds, while the parallel interaction-attention path builds long-125

distance bridges among atoms, motifs and the global node to capture non-additive cooperativity such as126

π–π stacking, hydrogen-bond networks and hydrophobic clustering[20]. Learnable gating weights adap-127

tively fuse these two channels at each iteration, ensuring strict adherence to bond constraints together128

with flexible integration of multi-scale semantics.129

Figure. 1b(iv) depicts the Multi-Head Attention Fusion module, which aligns and merges the multi-scale130

graph representations from HIMPM with the consensus fingerprint embedding through data-driven at-131

tention weights[20]. The resulting compact, highly expressive vector drives downstream classifiers and132

regressors, achieving state-of-the-art accuracy on blood–brain barrier permeability, solubility and toxicity133

prediction[3]. Moreover, its attention maps provide clear, chemically grounded explanations that greatly134

enhance interpretability[21].135

2.3 Accurate Molecular Property Prediction with HimNet136

We first evaluated the performance of HimNet on eight classic benchmark datasets defined by Molecu-137

leNet—including five binary classification tasks (BACE, BBBP, Tox21, SIDER, ClinTox) and three re-138

gression tasks (ESOL, FreeSolv, Lipophilicity)[3]—covering a broad range of physicochemical and bioac-139

tivity prediction scenarios. To further assess the applicability of HimNet in more advanced and realistic140

drug discovery contexts, we additionally included three less commonly studied but highly representative141

datasets: Malaria (anti-malarial EC50 regression)[27], LMC (liver microsomal clearance regression across142

species)[28], and MetStab (binary classification of metabolic stability)[26]. Although these three datasets143
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2.3 Accurate Molecular Property Prediction with HimNet

are not newly curated, they have been much less explored in the literature and present challenging tasks144

that better reflect the complexity encountered in real-world pharmaceutical research[14].145

For all eleven datasets, we adopted scaffold-based splitting (80% training / 10% validation / 10% test)146

following the protocol in MoleculeNet[3]. Three independent splits were generated using different ran-147

dom seeds to ensure statistical robustness. Unlike random splitting, scaffold splitting groups molecules148

by their core scaffolds, minimizing the chance of similar chemical backbones appearing in both training149

and test sets, thus providing a more realistic and stringent assessment of model generalization[3]. For150

each split, we performed ten training runs with different random weight initializations, and all models151

were trained using the Adam optimizer for 100 epochs[35].152

To ensure comprehensive and fair comparison, we selected a range of recent state-of-the-art molecular153

graph neural network baselines, covering hierarchical/multiscale modeling, geometry or image augmenta-154

tion, and fingerprint integration strategies. Specifically, the baselines include:155

• Hierarchical/multiscale GNNs (e.g., MolCLR[15], HiMol[13], HimGNN[36]), which represent infor-156

mation at atom, motif, and graph levels but often lack explicit and dynamic inter-level interaction;157

• Geometry and image-enhanced methods (e.g., GEM[37], Uni-Mol[38], ImageMol[39]), which enrich158

graph representations with 3D or visual features, though the integration with chemical semantics is159

often shallow;160

• Fingerprint-augmented GNNs (e.g., FH-GNN[14]), which combine traditional molecular fingerprints161

with learned graph features, but typically only at the final output stage.162

HimNet addresses these limitations by introducing an end-to-end bidirectional hierarchical message pass-163

ing mechanism that allows atom, motif, and graph-level representations to evolve jointly and interac-164

tively. Furthermore, HimNet employs an attention-based fusion of molecular fingerprints and learned165

features throughout the entire architecture, not merely at the output. This unified and flexible frame-166

work enables the model to dynamically balance local chemical detail and global molecular context, thus167

enhancing its capacity to model complex molecular properties.168

The experimental results, summarized in Tables 1 and 2, show that HimNet achieves state-of-the-art169

or highly competitive performance on the majority of tasks. For example, HimNet obtains the highest170

ROC-AUC scores on BACE (0.890), BBBP (0.954), Tox21 (0.826), and ClinTox (0.950)[40]. In regres-171

sion benchmarks, HimNet achieves the lowest RMSE on ESOL (0.710) and FreeSolv (1.441)[41], demon-172

strating its strong capability in modeling physicochemical properties.173

To comprehensively evaluate the performance of HimNet on more challenging tasks, we further com-174

pared it against a series of baseline models on the MetStab, Malaria, and LMC datasets. Recognizing175

that these datasets are less commonly benchmarked in the literature, we deployed four representative176

graph neural networks (MPNN, GCN, GAT, GIN) and additionally included four advanced hierarchi-177

cal models (FH-GNN, MolCLR, HiMol, HimGNN) for a more rigorous evaluation. As shown in Ta-178

ble 2, HimNet demonstrates exceptional performance on these tasks. On both the MetStab and Malaria179

datasets, HimNet’s metrics are significantly better than all competing hierarchical models. For the com-180

plex LMC multi-species clearance prediction task, HimNet also achieves a superior mean RMSE com-181

pared to FH-GNN, MolCLR, and HiMol. These results provide strong evidence of HimNet’s robust gen-182

eralization capabilities and superiority in new and complex scenarios that more closely reflect real-world183

pharmaceutical research.184

A dataset-wise analysis reveals that HimNet also performs robustly on the less commonly studied Malaria[27]185

(RMSE 1.029) and MetStab[26] (AUC 0.896) datasets, outperforming all baselines and highlighting its186

generalization strength in new and challenging tasks. On the LMC dataset[28], HimNet achieves the low-187

est average RMSE (111.0) across the three species, with particularly strong results for human (91.7) and188

rat (109.3). However, on the mouse subset (LMC-M), the model’s performance (RMSE 132.1) is slightly189

behind that of GAT (124.8), likely due to higher experimental noise and inter-species variability, which190

reduce the advantage of hierarchical modeling and make simpler models more robust to noise[14].191

On the SIDER dataset, which involves multi-label classification with highly imbalanced and long-tailed192

label distribution, HimNet achieves an AUC of 0.651. Although competitive, this does not surpass some193
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2.4 Explanation prediction

baselines; the probable reason is that SIDER contains numerous rare adverse reaction labels, making194

it difficult for hierarchical models to learn effective signals, while approaches that rely more on global195

or late-stage feature fusion (such as FH-GNN) may better exploit statistical correlations in imbalanced196

data[14].197

For Lipophilicity regression, HimNet reaches an RMSE of 0.698, which is close to but does not exceed198

the best baseline performance (HimGNN at 0.632). This may be attributed to the limited sample size199

and the nuanced nature of lipophilicity, which depends on both local functional groups and global molec-200

ular context. While HimNet’s hierarchical approach excels when sufficient training data is available to201

capture these dependencies, its effectiveness is somewhat reduced in low-data and context-sensitive sce-202

narios.203

In summary, HimNet delivers state-of-the-art or highly competitive performance on almost all molecular204

property prediction tasks, especially excelling on those where both hierarchical structure and chemical205

priors are crucial. Its relatively weaker results on datasets characterized by extreme label imbalance,206

small sample size, or high experimental noise (such as SIDER, Lipophilicity, and LMC-M) indicate the207

challenges that remain for hierarchical modeling in such settings. Future work could incorporate strate-208

gies such as sample rebalancing[42] or noise-aware training to further improve robustness and adaptabil-209

ity.210

2.4 Explanation prediction211

Understanding how molecular structure influences predictive attention is essential for interpreting the212

decision-making process of graph-based models[20]. To this end, we conducted a case study using the213

BBBP dataset, which contains annotated information on the blood–brain barrier permeability of a wide214

range of compounds[3]. This property is particularly relevant in the early stages of central nervous sys-215

tem (CNS) drug development, where identifying molecules capable of penetrating the barrier is critical216

for reducing potential toxicity and improving therapeutic efficacy[43].217

The visualizations in Figure. 2 and Figure. 3 illustrate how different molecular substructures contribute218

to blood–brain barrier permeability as interpreted by the model’s attention mechanisms[21]. Regions219

with higher attention scores—depicted as brighter areas—are considered to have a greater influence on220

the model’s prediction of permeability[20]. In these visualizations, red-colored regions indicate molecular221

components that are predicted to facilitate BBB penetration, whereas blue-colored regions correspond to222

structural elements that are predicted to hinder it.223

Analysis of Molecule 1: CC1COc2c(N3CCN(C)CC3)c(F)cc3c(=O)c(C(=O)O)cn1c23 Figure. 2a dis-224

plays the distribution of attention weights at the atomic level within the hierarchical molecular graph.225

The hue and intensity of each atom indicate both the direction and magnitude of its contribution to226

BBB permeability as assessed by the model. Notably, red regions are concentrated on the piperazine227

ring and its adjacent carbon atoms on the left side of the molecule, as well as certain segments of the228

fused ring skeleton. From a chemical perspective, the piperazine ring, despite containing nitrogen atoms,229

exhibits a more aliphatic character compared to regions such as carboxyl groups[44]. This property in-230

creases the molecule’s overall lipophilicity, which may be attributed to enhanced permeability across the231

lipid-rich blood–brain barrier[43]. Thus, the model’s assignment of red coloration—indicating a positive232

contribution—is consistent with established chemical understanding.233

Conversely, blue regions are predominantly found on the carboxyl (–COOH) group at the right side of234

the molecule, along with nitrogen and carbonyl oxygen atoms within the fused ring structure. The car-235

boxyl group, being highly polar, is likely to dissociate into a negatively charged carboxylate (–COO−)236

at physiological pH[45]. Its strong polarity, negative charge, and capacity for hydrogen bonding substan-237

tially increase the polar surface area and reduce lipophilicity[46], both factors known to hinder BBB238

penetration. Similarly, the presence of polar ring nitrogen and carbonyl oxygen atoms, which can form239

hydrogen bonds, further elevates the polar surface area, thereby impeding BBB permeability[47]. This240

suggests that the model’s attention allocation closely aligns with fundamental chemical principles[21].241

Figure. 2b aggregates atomic contributions into larger chemical motifs or functional groups, illustrat-242

ing their collective attention weights. In this visualization, the red region on the left corresponds to the243
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2.4 Explanation prediction

piperazine ring (M1), the blue region on the right represents the carboxyl group (M2), and the light red244

area in the center denotes the core fused ring scaffold (M0). The model thus identifies the piperazine245

motif as generally facilitating blood–brain barrier permeability, while the carboxyl motif acts as a bar-246

rier—findings that are consistent with the chemical rationale discussed above.247

Figure. 2c provides an integrated, hierarchical perspective on attention allocation within the molecu-248

lar graph. This visualization reveals that the model’s prediction of blood–brain barrier permeability is249

shaped not only by the intrinsic properties of individual motifs, but also by the patterns of interaction250

among them[21].251

Crucially, these findings directly reflect the internal working mechanism of HimNet, which leverages hi-252

erarchical message passing across atomic, motif, and graph levels to encode chemically meaningful multi-253

scale dependencies[13, 14]. Within HimNet, atomic-level messages are first aggregated into motif-level254

representations via learnable, context-aware attention[20, 21], capturing the essential chemical environ-255

ments of functional groups. Subsequently, motifs communicate with each other and with the graph-level256

node through cross-level attention pathways, allowing the model to explicitly encode the non-additive,257

context-dependent interactions between different structural components[20, 13].258

This mechanism is fundamentally distinct from conventional node-level message passing: instead of sim-259

ply summing local neighborhoods[48], HimNet’s hierarchical structure enables a motif to reference not260

only its own atoms but also other motifs and even remote atomic environments[13, 14]. For example, in261

this molecule, the positive effect of the fluorinated aromatic motif (M0) and the pyridine motif (M1) is262

not simply a result of their local features, but is contextually modulated and even amplified in the pres-263

ence of the polar ester motif (M2)[15]. Conversely, the negative contribution of M2 is intensified when264

considered together with neighboring hydrophobic motifs, reflecting a chemically accurate picture where265

polarity and hydrophobicity are in competition[24].266

This direct, multi-scale message exchange and attention aggregation empower HimNet to model higher-267

order cooperative and antagonistic effects (such as conjugation, hydrogen bonding networks, or lipophilic268

clustering)[22, 23, 24] that underlie complex molecular properties.269

In practice, each motif node in HimNet acts both as an aggregator of atomic information and as an ac-270

tive agent in hierarchical interactions[13]. Motif-to-motif and motif-to-atom attention edges, which can271

extend beyond motif boundaries, provide a mechanism for encoding the chemical “fuzziness” of func-272

tional group effects[21]—allowing, for example, the ester motif (M2) to reference adjacent aromatic car-273

bons (in M0), and vice versa[15]. These cross-hierarchy, cross-context interactions mean that property274

predictions arise not from linear combinations of isolated features, but from coordinated, emergent be-275

havior across the molecular graph, providing a rigorous theoretical foundation for chemical interpretability[21].276

A closer examination reveals that each motif node functions not only as an aggregator of its constituent277

atomic information, but also as an active participant in interactions with atoms outside its defined278

boundaries[20, 13]. For instance, the ester motif (M2) establishes links with aromatic carbon atoms279

in the fluorinated core (M0), thereby enhancing its disruptive polarity in an otherwise lipophilic envi-280

ronment. Conversely, M0 accesses information from carbonyl oxygen atoms in M2, potentially coun-281

teracting the negative effects of excessive polarity via local contextual adjustment[13]. These cross-282

motif and motif–atom interactions indicate that the model learns context-aware semantic representa-283

tions for each structural unit, allowing it to assess the contribution of each motif within its broader284

chemical environment[20]. Ultimately, this demonstrates that molecular properties constitute necessary285

consequences of coordinated component interactions, rather than mere linear combinations of isolated286

motifs[21].287

Analysis of Molecule 2: CCC(=O)C(CC(C)N(C)C)(c1ccccc1)(c1ccccc1) In the case of the second288

molecule, the atomic-level attention map displays a distinct distribution pattern. As depicted in Fig-289

ure. 3a, regions of high attention—marked in red—are primarily located on the carbon atoms of the290

two benzene rings and parts of the central carbon framework. This pattern suggests that the model291

identifies these hydrophobic domains as positive contributors to blood–brain barrier permeability, align-292

ing well with established chemical knowledge that lipophilic aromatic groups tend to facilitate BBB293

penetration[43].294
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2.5 Ablation Study

Conversely, areas of blue coloration are centered around the nitrogen atom in the dimethylamino group295

(–N(CH3)2) and the oxygen atom in the carbonyl group (C=O). While tertiary amines may, in some296

contexts, promote BBB permeability, the model here assigns a negative contribution to this functional297

group, which may be attributed to unfavorable interactions with neighboring structural motifs[47]. The298

carbonyl oxygen is also assigned negative attention, consistent with its high polarity and capacity to299

serve as a hydrogen bond acceptor, both of which are known to impede BBB permeability[47].300

The motif-level attention analysis in Figure. 3b highlights three principal functional groups, each char-301

acterized by a distinct attention weight. The first, the dimethylamino fatty chain (M1), receives a light302

blue score of 0.21. The ketone motif (M0) is similarly assigned 0.21, reflecting its polar character. Among303

the aromatic moieties, one phenyl ring (M2) is rendered in strong red with a score of 0.47, while the304

other ring (M3) appears in blue with a lower score of 0.10. This clear disparity between two structurally305

similar benzene rings demonstrates the model’s ability to differentiate aromatic systems based on their306

specific molecular environments and contextual interactions, rather than treating them as equivalent307

substructures[15].308

Figure. 3c provides further insight into how the HimNet model’s hierarchical message passing mechanism309

enables the emergence of chemically meaningful, context-dependent interactions among structural mo-310

tifs. Within this integrated view, each motif not only aggregates information from its constituent atoms311

but also exchanges messages with other motifs and, crucially, interacts with both adjacent and remote312

atomic environments across the molecule[13, 20]. The attention pathways learned by HimNet reflect a313

multi-scale theoretical framework, in which atom-level messages are first pooled into motif representa-314

tions via attention, and subsequently, motifs propagate their semantic information to the global graph315

node through additional cross-level message passing[48].316

A key manifestation of this mechanism is that the two phenyl motifs (M2 and M3), though structurally317

similar, are contextually distinguished: one receives strong positive attention, while the other is nega-318

tively weighted, depending on the influence of their spatial and electronic environment—such as proxim-319

ity to polar carbonyl (M0) or amine (M1) motifs[15]. This non-additive and position-sensitive differenti-320

ation cannot be achieved by conventional graph networks relying solely on local aggregation, but arises321

naturally from HimNet’s explicit cross-hierarchy message flow[13].322

Moreover, polar motifs (M0, M1) exert inhibitory effects not only through their intrinsic properties but323

also by influencing the contribution of nearby aromatic regions, mirroring competitive and cooperative324

interactions between hydrophobic and polar domains seen in real chemical systems[24, 22]. Motif–atom325

and motif–motif interactions further illustrate the model’s capability to capture “boundary effects” and326

extended chemical context, reflecting inductive, conjugative, or steric effects that propagate beyond sim-327

ple substructure boundaries.328

The patterns observed in both molecules thus exemplify the model’s ability to construct a hierarchical,329

context-aware representation of molecular structure—progressing from atom-level features to motifs, and330

ultimately to global property prediction[21]. HimNet’s layered message passing and explicit multi-scale331

aggregation capture not only local chemical attributes but also their broader contextual significance, en-332

suring that property prediction is grounded in the structured, emergent interactions among all relevant333

molecular components[13].334

2.5 Ablation Study335

To rigorously assess the contribution of each module in HimNet, we conducted ablation experiments336

by selectively removing key components and evaluating each variant on eight widely-used MoleculeNet337

benchmarks[3, 13]. These benchmarks span both classification and regression tasks and are well-established338

in the literature for systematic model analysis. The three additional datasets (Malaria, LMC, and Met-339

Stab), introduced in our main performance comparison to further demonstrate HimNet’s generalizability340

on challenging real-world endpoints, are not included in the ablation study. This choice ensures clarity341

and interpretability of the ablation results, as the selected benchmarks already provide a comprehen-342

sive and representative testbed for isolating the effect of each architectural component[14]. The ablation343

settings are as follows:344
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2.5 Ablation Study

A summary of results is presented in Table 3 and visualized in Figure 4, where each row (table) and345

colored bar (figure) corresponds directly to a specific model variant.346

Table 3 quantitatively reports the mean and standard deviation of performance metrics (e.g., ROC-AUC347

for classification, RMSE for regression) across three runs on each benchmark dataset[3]. Figure 4 pro-348

vides a visual comparison, in which the performance of each ablated variant is shown alongside the full349

model. This enables a direct and intuitive understanding of the impact of each component.350

Across all datasets, the full HimNet model consistently achieves the best or near-best results (bolded351

in the table, leftmost bars in the figure). Removing any individual module results in a noticeable per-352

formance drop across most tasks, as clearly seen in both the numerical values in Table 3 and the rela-353

tive bar heights in Figure 4. In particular, removing the global-local attention (w/o I) or the consensus354

fingerprint enhancement (w/o C) leads to especially large decreases in both classification (e.g., Tox21,355

SIDER) and regression (e.g., FreeSolv, ESOL) datasets. This is evident in Table 3 by the lower scores356

in these columns, and in Figure 4 where the corresponding bars dip most significantly below the full357

model[13]. The necessity of multi-head attention fusion (w/o A) is most apparent in tasks such as Clin-358

Tox and Lipophilicity, where its removal causes a marked reduction in performance (also highlighted359

in both the table and figure). Even the core hierarchical message passing modules (w/o M and w/o H)360

remain foundational, as their ablation consistently results in less accurate predictions across all datasets.361

A comprehensive assessment of model complexity, training duration, and inference speed is essential for362

real-world applications, particularly in large-scale virtual screening. We conducted a comparative eval-363

uation of HimNet against two other hierarchical architectures, FH-GNN and HIMoI, on the ClinTox364

and Freesolv datasets. As the experimental results in Table 4 demonstrate, a compelling trade-off is re-365

vealed: HimNet attains significantly stronger predictive performance with a more lightweight parameter366

footprint, yet it requires more computational time for both training and inference than its counterparts.367

In summary, the ablation results—numerically detailed in Table 3 and visually corroborated by Fig-368

ure 4—demonstrate that each module in HimNet plays a vital and complementary role. Furthermore,369

the comparative analysis presented in Table 4 confirms that our model achieves a favorable balance be-370

tween predictive accuracy and parameter efficiency against other hierarchical architectures. The system-371

atic drop in performance upon any module’s removal validates that these architectural components are372

indispensable for robust and accurate molecular property prediction[14].373

As shown in Figure 5, a comprehensive ablation study was conducted to visually illustrate the impact of374

each fingerprint and their combinations. Figure 5a depicts single-fingerprint ablations and visually under-375

scores the task-dependent importance of each feature set. For example, the relatively low ROC-AUC bar376

for the SIDER dataset within the morgan counts subplot, when compared to its counterparts in other377

subplots, visually confirms the critical role of this fingerprint in that specific task. Furthermore, Figure 5378

also provides strong visual evidence for the synergistic effects among fingerprints. This effect is most ap-379

parent when comparing the paired-ablation results presented in Figure 5b to the single-ablation results380

in Figure 5a. A compelling visualization of this synergy can be observed on the CLINTOX dataset. The381

ROC-AUC bar in the morgan bits+pharmacophore subplot is markedly lower than the corresponding382

bars in both the individual morgan bits and pharmacophore subplots. This visual comparison reinforces383

that the combined removal of two fingerprints often leads to a disproportionately larger performance384

drop than removing either one alone. In aggregate, the widespread performance degradation shown385

across the entire grid of plots robustly supports our main conclusion. The strength of our model lies386

in the effective integration of a diverse and multifaceted set of chemical fingerprints, whose contributions387

are both task-dependent and highly synergistic.388

As visually summarized in Figure 6, we conducted a comprehensive ablation study to elucidate the rela-389

tive importance of different hierarchical interactions. The figure illustrates the performance of five model390

variants, each lacking a specific interaction mechanism. This visualization clearly demonstrates that the391

contribution of each interaction pattern is highly task-dependent, reinforcing the rationale for their inte-392

gration in a multifaceted model.393

The critical role of certain interactions for specific tasks is visually apparent. For instance, the subplot394

for CLINTOX shows that the atom-atom bar is markedly lower than all others, signifying that the removal395
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2.6 Hyperparameter Sensitivity Analysis

of atomic-level message passing leads to the most severe performance degradation for this task. This396

underscores the fundamental importance of local atomic information in predicting clinical toxicity.397

Conversely, for regression tasks, a different pattern emerges. The subplots for ESOL and Lipophilicity398

reveal that the atom-motif bar is the highest among all RMSE values, indicating that ablating the inter-399

action between atoms and motifs is most detrimental. This finding suggests that capturing relationships400

between local atomic environments and larger, chemically meaningful motifs is essential for accurately401

predicting these physicochemical properties.402

Notably, on the FreeSolv task, removing certain complex interactions, especially motif-graph, led to403

improved performance. This reveals a deeper insight: for some tasks with relatively simple features, an404

overly complex interaction model may capture noise or lead to overfitting. In summary, Figure 6 pro-405

vides compelling visual evidence that no single interaction is universally dominant or dispensable.406

2.6 Hyperparameter Sensitivity Analysis407

To assess the robustness of our proposed model, HimNet, and validate our hyperparameter selections, we408

conducted a comprehensive sensitivity analysis. We systematically investigated the model’s performance409

in response to variations in four critical hyperparameters: encoder depth, learning rate, hidden size, and410

the number of attention heads.411

Our methodology involved varying one hyperparameter at a time while holding others constant at their412

optimized default values. For each setting, the model was trained and evaluated across all eight bench-413

mark datasets, with performance averaged over three independent runs. The results are visualized in414

Figure 7.415

Overall, HimNet exhibits remarkable robustness across a practical range of hyperparameter configura-416

tions:417

• Encoder Depth. As shown in Figure 7a, the model’s performance is highly stable for encoder depths418

ranging from 3 to 9. Notably, several regression tasks, such as ESOL and Lipophilicity, achieve a419

slight performance peak at a depth of 7, validating our default choice.420

• Learning Rate. The results in Figure 7b indicate that this parameter displayed the most pronounced421

sensitivity. While a higher rate of 0.001 led to a discernible performance degradation on datasets422

such as SIDER and Lipophilicity, the range from 5× 10−5 to 5× 10−4 consistently yielded strong re-423

sults. This suggests that the latter range represents an optimal trade-off for balancing performance424

across diverse tasks. Our final choice of 1× 10−4 falls within this robust region, ensuring stable and425

reliable performance.426

• Hidden Size. According to Figure 7c, HimNet is largely insensitive to variations in hidden size427

within the 256 to 1024 range, maintaining strong and consistent performance. Conversely, a smaller428

dimension of 128 resulted in a noticeable decline on certain tasks, thus justifying the selection of a429

larger model capacity to capture complex molecular interactions.430

• Number of Heads. Figure 7d demonstrates the model demonstrates exceptional structural robust-431

ness, with performance being nearly invariant to the number of attention heads for values between432

4 and 16. This finding suggests that the hierarchical interaction mechanism is not overly dependent433

on a precise number of heads, enhancing its practical applicability.434

In summary, this analysis establishes the robustness of HimNet, demonstrating that it does not require435

exhaustive fine-tuning to achieve high performance. This inherent stability validates the rationale be-436

hind our hyperparameter selection and strongly suggests the model’s capacity for generalization to new437

molecular prediction tasks.Thus, we present the best hyperparameter our model use in Table 5.438

2.7 Model Complexity and Efficiency Analysis439

To evaluate the practical potential of HimNet, we analyzed its computational efficiency in comparison440

to HiMol and FH-GNN under a unified environment. The results in Table 4 indicate that HimNet is441
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the most optimal in terms of parameter count, demonstrating higher parameter efficiency. However, its442

training and inference times are longer than the other two models, a fact we attribute to its more com-443

plex cross-level attention and gating fusion mechanisms. We argue that in the context of drug discovery,444

this increased computational cost is a justifiable trade-off for superior predictive performance. A more445

accurate model can more reliably prioritize candidate compounds, potentially saving substantial costs446

associated with expensive experimental validation. Therefore, while HimNet is not superior in training447

speed, its significant improvement in predictive accuracy makes it a more valuable and compelling choice448

for practical applications.449

3 Discussion450

3.1 Research Findings and Contributions451

This study presents HimNet, a hierarchical molecular graph neural network grounded in the principle of452

hierarchical interaction learning[13]. By explicitly modeling interactions across atomic, motif, and molec-453

ular graph levels, HimNet captures non-additive synergistic effects between functional groups, effects454

often neglected by conventional GNN architectures[14]. This multiscale interaction mechanism improves455

the model’s ability to represent complex structure-property relationships, thus improving both predictive456

precision and interpretability, as confirmed by benchmark evaluations (Section 2, Tables 1, 2).457

A central innovation of HimNet lies in its dual-pathway message passing architecture, which, in conjunc-458

tion with multi-level attention, enables the encoding of cross-scale, nonlinear dependencies and func-459

tional group cooperativity—critical features for accurate molecular property prediction[20]. Comple-460

menting this architecture, a consensus fingerprint fusion module is introduced to adaptively extract and461

integrate shared chemical information from diverse fingerprint types[19]. This enrichment of molecular462

representation facilitates alignment between global and local semantic features. Furthermore, HimNet463

leverages multi-head attention to align fingerprint-based and graph-based representations at different464

levels, promoting both generalization and interpretability in its predictive outputs.465

Empirical results demonstrate that HimNet consistently outperforms established baselines in accuracy466

and generalizability[3]. Beyond performance metrics, ablation experiments and visualization analyses467

highlight that explicitly capturing hierarchical cooperative effects leads not only to improved predictive468

power but also to chemically meaningful interpretability of model behavior[21].469

3.2 Applicability and Limitations470

HimNet offers a general and effective framework for modeling multi-scale molecular interactions, with471

particular advantages in scenarios where molecular properties are influenced by the cooperative behavior472

of substructures—such as in small molecules, drug-like compounds, and ligands of moderate topological473

complexity.474

Nonetheless, the framework exhibits limitations in handling molecules with high conformational flex-475

ibility, complex stereochemistry, or macrocyclic structures. In such cases, the current BRICS-based476

decomposition[18] and two-dimensional graph representation[29] may fall short, as they do not fully477

capture essential three-dimensional conformational effects or dynamic interactions. Properties like con-478

formational entropy, chiral recognition, and shape-dependent permeability often depend on these spatial479

characteristics, underscoring the need for incorporating 3D structural information or alternative decom-480

position strategies in future developments.481

Moreover, while attention mechanisms in HimNet provide a degree of interpretability by highlighting482

influential atoms or motifs, it is important to acknowledge their limitations: attention weights, although483

informative, do not inherently reflect causal relationships and should be interpreted as heuristic guides484

rather than definitive indicators of feature importance.485
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3.3 Addressing Limitations

3.3 Addressing Limitations486

To mitigate the outlined limitations, several practical improvements can be pursued. First, enhancing487

computational efficiency through model compression or streamlined attention mechanisms would en-488

able scaling HimNet to larger datasets without compromising performance. Second, data augmenta-489

tion and robustness techniques, such as SMILES enumeration, graph perturbations, or self-supervised490

pretraining[15], can improve generalization, particularly in settings with limited or imbalanced data.491

Third, to bolster interpretability, attention-based methods can be complemented with more rigorous ex-492

plainable AI approaches—such as Shapley value analysis or counterfactual explanations—which provide493

deeper insights into model decision-making[21].494

3.4 Future Research Directions495

Building on the current work, several avenues merit further investigation. Integrating 3D geometric and496

stereochemical information into the hierarchical representation—as demonstrated in Uni-Mol[38]—would497

extend the model’s applicability to flexible and chiral molecules. Additionally, scaling HimNet to sup-498

port large-scale datasets and high-throughput screening applications, or adapting it for transfer learning499

in related domains (e.g., protein–ligand interaction prediction or materials informatics), offers substan-500

tial promise. Finally, incorporating multimodal molecular data, including protein structures, experimen-501

tal spectra, or molecular dynamics trajectories, could establish a comprehensive framework for property502

prediction that captures the full complexity of real-world chemical systems.503

4 Conclusion504

In this work, we have addressed the critical challenge of accurately predicting small-molecule proper-505

ties—particularly ADMET profiles—in modern drug discovery by introducing a Hierarchical Interac-506

tion Message Passing Mechanism at the core of our model, HimNet. Unlike existing deep learning ap-507

proaches (e.g., GNNs[6] and Transformers[20]) that treat molecular graphs in a largely flat or fragment-508

centric manner, HimNet explicitly models atoms, motifs, and whole-molecule fingerprints as interlinked509

semantic layers. Through hierarchical attention-guided message passing, our framework enables dynamic,510

interaction-aware representation learning that balances global topology and local chemical environments.511

Extensive evaluation on benchmark datasets—including classic tasks such as BBBP, Tox21, and ESOL[3],512

as well as three challenging, high-value datasets for metabolic stability (MetStab)[26], malaria activity513

(Malaria)[27], and liver microsomal clearance (LMC)[28]—demonstrates that HimNet achieves state-of-514

the-art or near–state-of-the-art performance across diverse molecular property prediction tasks. More-515

over, the built-in Explainable Attention Interaction[21] and Consensus Fingerprint Enhancement mod-516

ules grant HimNet a strong degree of hierarchical interpretability, aligning model attributions with estab-517

lished chemical intuition on representative compounds. These results confirm that explicitly capturing518

cross-layer functional-group synergies is key to improving both predictive accuracy and mechanistic in-519

sight.520

Despite these advances, several avenues remain for further improvement. First, extending HimNet to521

incorporate three-dimensional conformational data and solvent effects (e.g., as in Uni-Mol[38]) may en-522

hance its ability to predict stereospecific and environment-sensitive properties. Second, reducing the523

computational overhead of multi-layer attention mechanisms will be essential for large-scale virtual524

screening campaigns. Finally, integrating our hierarchical paradigm into multi-task or multi-omics frame-525

works could unlock deeper insights into polypharmacology and mechanism-of-action inference.526

In summary, HimNet offers an accurate, efficient and interpretable solution for molecular activity and527

ADMET prediction, thereby contributing significantly to informed decision-making in the early stages of528

drug discovery. Future work will focus on scaling and generalizing this hierarchical interaction approach529

to meet the evolving demands of small-molecule design and optimization.530
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5 Methods531

This section details our proposed HimNet model from three aspects: first, the construction of hierar-532

chical molecular graphs; second, the core mechanisms including the Hierarchical Interaction Message533

Passing Network (HIMPM), molecular fingerprint encoding module, and attention fusion; finally, the534

experimental setup and parameter configurations.535

5.1 Hierarchical Molecular Graph Construction536

To comprehensively capture molecular features and interactions at different scales, we constructed a537

three-level hierarchical graph representation including atom-level, motif-level, and global-level[13, 14].538

This multi-scale representation simultaneously encodes local chemical details and complex topological539

relationships among molecular substructures.540

Formally, the hierarchical molecular graph is defined as G = (V,E), where the node set V = {Va, Vm, Vg}541

consists of atom nodes Va, motif nodes Vm, and a global node Vg[13]. The edge set E = {Ea, Em, Eam, Emg}542

comprises atom-atom bonds Ea, motif-motif relationships Em, atom-motif associations Eam, and motif-543

global connections Emg.544

The construction process is illustrated in Figure 8. The process begins by parsing the molecular topol-545

ogy from SMILES strings to obtain atom nodes and chemical bonds, as shown in Figure 8c. Next, we546

apply the BRICS (Breaking of Retrosynthetically Interesting Chemical Substructures) decomposition547

algorithm to identify functional groups, generating the motif node set displayed in Figure 8b. Based on548

the decomposition results, we establish atom-motif associations by creating an edge between each motif549

and all of its constituent atoms. Simultaneously, motif-motif connections are formed as depicted in Fig-550

ure 8d: an edge is created between two motif nodes if their respective constituent atoms were linked by551

a chemical bond prior to decomposition. Finally, we introduce a virtual global node, which acts as an552

information aggregation hub, and establish connections between it and all motif nodes. This completes553

the hierarchical molecular graph, with its final structure presented in Figure 8e. This hierarchical graph554

structure concurrently captures both local chemical environments and global structural features.555

For feature initialization, atom node features include atom type, hybridization state, formal charge, and556

chemical environment information[48, 3]; motif node features are obtained by aggregating their con-557

stituent atoms’ features; and the global node feature is formed by aggregating all motif features[13].558

This structured hierarchical representation lays the foundation for subsequent message passing and fea-559

ture fusion.560

5.2 Hierarchical Interaction Message Passing Network (HIMPM)561

The Hierarchical Interaction Message Passing Mechanism (HIMPM) is the core innovation of our model,562

designed specifically to address the limitations of existing hierarchical GNNs by grounding its architec-563

ture in chemical first principles. Unlike models that rely on static, topology-based connections (e.g.,564

HiMol, FH-GNN), which cannot capture non-local functional correlations, or those that employ late-565

stage fusion (e.g., HimGNN), which overlook the continuous interplay between different scales during566

learning, HIMPM introduces two key theoretical advancements. First, it employs a dynamic cross-level567

attention mechanism, breaking free from physical connectivity to learn a ”functional interaction graph.”568

This allows any atom or motif to directly interact with any other, enabling the model to capture long-569

range synergistic effects, such as conjugation, that are fundamental to determining molecular properties.570

Second, HIMPM features a deep, layer-wise gated fusion of two channels: a D-MPNN pathway for local571

bond-centric information and a hierarchical interaction attention pathway for global, multi-scale con-572

text. By integrating these channels at each update step via an adaptive gate, HIMPM ensures that the573

representation of each node continuously evolves under the dual influence of its local chemical environ-574

ment and the global functional landscape. This process more faithfully simulates the emergent nature of575

molecular properties, where local and global effects are inextricably and dynamically coupled throughout576

the entire molecule.577
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5.2 Hierarchical Interaction Message Passing Network (HIMPM)

As shown in Figure.1a, HIMPM consists of three organically integrated functional modules: an innova-578

tive message passing module, a multi-scale interaction module, and a global-local attention module[13].579

The innovative message passing module transcends the limitations of traditional GNN message passing580

by adopting a dual-channel architecture that deeply integrates directed message passing with hierarchi-581

cal interaction attention mechanisms[7, 5]. In the D-MPNN base channel, messages are propagated along582

directed chemical bonds from source node v to target node w[7]:583

m(t)
vw = Message

(
h(t−1)
v ,h(t−1)

w , evw
)

(1)

mt
vw denotes the message vector transmitted from the source nodev to the target node w at step t. This584

message is generated by our message function, Message(·) which takes as input the hidden states of the585

involved nodes from the previous layer ht−1
v for the source and ht−1

w for the target—along with the fea-586

ture vector of the intervening edge evw.587

The aggregated message for node v is obtained by summing the information from all adjacent edges[48]:588

m(t)
v =

∑
w∈N (v)

m(t)
vw (2)

where mt
v is the aggregated message vector for node v. This process is executed iteratively for T time589

steps, allowing information to propagate and enrich across the graph. Upon completion of the final time590

step, T , the resulting aggregated message vector encapsulates the complete information that node v has591

gathered from its local bond topology. We formally denote this final output of the D-MPNN channel as592

mD-MPNN
v .593

Unlike traditional message passing paradigms, we introduce a hierarchical interaction attention channel594

that not only captures long-range dependencies between nodes, but more importantly, enables structure-595

aware information exchange across hierarchies[5, 13]. These two channels are not simply running in par-596

allel, but are deeply integrated through an innovative learnable gating fusion mechanism[49]:597

m(l)
v = αv ·mD-MPNN

v + (1− αv) ·mHIAtt
v (3)

where αv = σ(Wgate[m
D-MPNN
v ||mHIAtt

v ]) is an adaptive gating parameter, and mD-MPNN
v represents the598

message from local topological bonds, while mHIAtt
v represents the message from the Hierarchical Interac-599

tion Attention mechanism capturing long-range dependencies. The resulting m
(l)
v is the final, adaptively600

fused message vector used to update node v at layer l.601

It is crucial to emphasize that this dual-channel, parallel architecture is a core design principle of HIMPM,602

intended to synergistically integrate both local and non-local molecular information. In this design, the603

atom-, motif-, and global-level graph representations interact at the feature level, rather than being ex-604

plicitly fused at the structural level. To effectively suppress redundancy and noise during cross-hierarchy605

information passing, we have incorporated a multi-level control mechanism. First, within the local infor-606

mation pathway, the DMPNN, through its directed, edge-based message passing paradigm, inherently607

reduces trivial information feedback, forming the first line of defense against redundancy. Second, when608

handling cross-level and long-range dependencies, the Hierarchical Interaction Attention (HIAtt) acts609

as a dynamic information filter via its learned weights. Ultimately, the gating fusion mechanism αv in610

Equation (3) serves as an adaptive arbitrator, dynamically balancing the contributions of the two path-611

ways to ensure a synergistic integration of local chemical topology constraints and cross-scale semantic612

information. The efficacy of this design is empirically validated in our ablation study (see Section 3.5),613

which confirms its necessity and robustness for achieving superior model performance.614

It is crucial to clarify that our approach employs an explicit fusion strategy at the graph construction615

stage. Specifically, the atom-, motif-, and global-level nodes are integrated into a single, structured hi-616

erarchical molecular graph before being input to the network (see Section 2.1 and Figure 1). Therefore,617

the subsequent message passing does not operate on parallel graphs, but rather unfolds within this uni-618

fied, explicitly fused structure.619

The multi-scale interaction module, as the core unit of HIMPM, systematically models three key inter-620

action patterns through carefully designed multi-head interaction attention mechanisms[20, 13]: atom-621
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5.3 Molecular Fingerprint Encoding Module

atom interactions capture local chemical environments and long-range electronic effects[23, 24]; motif-622

motif interactions encode cooperative actions between higher-order functional groups[18, 14]; and atom-623

motif interactions integrate microscopic chemical properties with macroscopic substructures[13].624

For example, the interaction between atom node a and other atom nodes i is:625

hnew
a =

∑
i∈N (a)

αai ·MultiScaleInteraction(ha, hi) (4)

Here, MultiScaleInteraction is our specially designed interaction function that adaptively adjusts interac-626

tion patterns according to the representation spaces of nodes at different hierarchies[20, 13].627

Similarly, the bidirectional interaction between motif node m and atom node a is given by:628

hnew
m =

∑
a∈N (m)

αma ·MultiScaleInteraction(hm, ha) (5)

hnew
a =

∑
m∈N (a)

αam ·MultiScaleInteraction(ha, hm) (6)

These formulations extend conventional attention to heterogeneous node types and dynamically adjust629

interaction modes based on hierarchical position[5, 15], enabling HIMPM to capture complex cross-scale630

synergistic effects.631

The global-local attention module, as the highest-level component of HIMPM, achieves deep integration632

of global molecular representations with local structural features. This module employs a bidirectional633

attention mechanism that allows the global node to selectively aggregate critical information from both634

atom and motif levels[5, 20]:635

H(a)
g = Wg ·

∑
a∈N (g)

αga · ha (7)

H(m)
g = Wg ·

∑
m∈N (g)

αgm · hm (8)

The final global representation integrates multi-level information through a carefully designed fusion636

function:637

Hfinal
g = GL-Fusion({H(a)

g , H(m)
g }) (9)

Through this hierarchical fusion architecture, HIMPM breaks the barriers of information exchange be-638

tween layers in traditional GNNs, achieving seamless information flow from atoms to motifs to global639

molecular representations, greatly enhancing the model’s ability to model complex molecular structures640

and properties[13, 14].641

5.3 Molecular Fingerprint Encoding Module642

As shown in Figure.1b(ii), we designed a multi-modal molecular fingerprint encoding module that inte-643

grates five complementary molecular fingerprints: Atom Pairs (AtomPairs)[30], MACCS keys[31], Mor-644

gan Bits (MorganBits)[19], Morgan Counts (MorganCounts)[19], and Pharmacophore fingerprints[32].645

Each fingerprint is processed through an independent encoder to obtain a fixed-dimensional representa-646

tion:647

Fi = Encoderi(FPi) (10)

To extract common information between different fingerprint types, we calculate the cosine similarity648

matrix Si,j between fingerprint encodings[33] and extract shared features based on similarity:649

CommonFeaturei,j =

(
Fi + Fj

2

)
⊙ I(ElementSimi,j > τ) (11)

where ElementSimi,j = F̂i ⊙ F̂j represents element-wise similarity of normalized vectors.650
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5.4 Attention Fusion

The shared features are aggregated via a weighted sum, where the weights are derived from the pairwise651

cosine similarities, and then combined with the original fingerprint features:652

Ffinal = ϕ(Wf [Fweighted;Fenhanced]) (12)

where Fweighted =
∑5

i=1 αi · Fi is a dynamically weighted combination of fingerprints, and Fenhanced repre-653

sents enhanced shared features[19].654

5.4 Attention Fusion655

As illustrated in Figure.1b(iv), the attention fusion module integrates features from HIMPM-generated656

molecular graph representations and fingerprint encoding through a multi-head self-attention mechanism[20].657

Each attention head contains three linear transformations: Query (Q), Key (K), and Value (V), enabling658

feature interactions across different representation spaces:659

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (13)

The outputs of the multi-head attention are concatenated and linearly transformed to obtain the final660

fused representation:661

Xfused = WO[head1; head2; . . . ; headn] (14)

This module achieves complementary feature fusion, effectively integrating the structural interaction662

information captured by HIMPM and the chemical property information encoded by molecular finger-663

prints, forming a comprehensive molecular representation for downstream task prediction[20].664

5.5 Experimental Settings665

We evaluated our HimNet model on a total of eleven datasets: eight widely used benchmark datasets,666

including five classification tasks and three regression tasks (BBBP, BACE, Tox21, SIDER, ClinTox,667

ESOL, FreeSolv, and Lipophilicity)[3]—as well as three challenging high-value datasets introduced in668

this work: Malaria (antimalarial activity regression)[27], LMC (liver microsomal clearance regression)[28],669

and MetStab (metabolic stability classification)[26]. Table 6 summarizes the basic information of each670

dataset.671

To ensure rigorous evaluation of model performance, we adopted scaffold-based splitting with an 8:1:1672

ratio for training, validation, and test sets across all datasets, following the protocol in MoleculeNet[3].673

This splitting method ensures that test molecules have scaffold structures different from those in the674

training set, effectively assessing the model’s generalization capability. For classification tasks, we used675

the ROC-AUC metric[40]; for regression tasks, we evaluated performance using the root mean square676

error (RMSE)[41].677

The HimNet model was implemented using PyTorch 1.12.0[50] and PyTorch Geometric 2.2.0[51], and678

trained on NVIDIA GPU environments (CUDA 11.3). Molecular operations and fingerprint genera-679

tion were implemented using the RDKit 2022.03.5 library[52], with BRICS decomposition for motif680

identification[18] and five types of molecular fingerprints (AtomPairs[30], MACCS keys[31], Morgan Bits681

& Counts[19], and Pharmacophore[32]) for feature extraction. All experiments on all datasets followed682

the same preprocessing pipeline and evaluation protocol to ensure fair comparison with baseline meth-683

ods.Our choice of ROC-AUC and RMSE aligns with the standard evaluation protocols of prominent684

benchmarks such as MoleculeNet, ensuring a fair and direct comparison with previously published state-685

of-the-art methods.686
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Figure 1: Overview of the proposed HimNet framework. (a) Hierarchical Interaction Message Passing Module (HIMPM).
(i) Message Passing: Combines a dual-channel architecture consisting of directed message passing (D-MPNN) and a hier-
archical interactive attention mechanism. (ii) Interaction Module: Models multi-scale interactions including atom–atom,
motif–motif, and atom–motif relationships using cross-hierarchical attention mechanisms. (iii) Global-Local Attention
Module: Aggregates information from atom-level and motif-level nodes into a unified graph-level representation through
hierarchical attention fusion. (b) HimNet Architecture. (i) Molecule Preprocessing: Converts SMILES strings into 2D
molecular structures and constructs hierarchical molecular graphs comprising atom, motif, and global nodes. (ii) Molecular
Fingerprint Representation Learning: Encodes multiple types of molecular fingerprints and extracts common features via
similarity-guided fusion strategies. (iii) HIMPM: Applies the hierarchical message passing and interaction mechanisms
described in (a) to the hierarchical graph representations. (iv) Attention Fusion: Integrates multi-source features from
fingerprints and hierarchical graphs using multi-head self-attention to produce expressive molecular embeddings for down-
stream tasks.
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Dataset BACE BBBP Tox21 SIDER ClinTox ESOL Freesolv Lipophilicity

MolCLR 0.890(0.003) 0.736(0.005) 0.798(0.007) 0.680(0.011) 0.932(0.017) 1.110(0.010) 2.200(0.200) 0.650(0.080)
GEM 0.856(0.011) 0.724(0.004) 0.781(0.001) 0.672(0.004) 0.901(0.013) 0.798(0.029) 1.877(0.094) 0.660(0.008)
ImageMol 0.839(0.005) 0.739(0.002) 0.773(0.001) 0.660(0.001) 0.851(0.014) 0.970(0.070) 2.020(0.070) 0.720(0.010)
MolMCLGIN 0.850(0.011) 0.741(0.006) 0.775(0.003) 0.667(0.008) 0.957(0.012) – – –
MolMCLGPS 0.861(0.013) 0.736(0.007) 0.790(0.006) 0.687(0.002) 0.951(0.005) – – –
Uni-Mol 0.857(0.002) 0.729(0.006) 0.796(0.005) 0.659(0.013) 0.919(0.018) 0.788(0.029) 1.480(0.048) 0.603(0.010)
MESPool 0.855(0.039) 0.848(0.046) 0.787(0.019) 0.576(0.026) 0.902(0.065) 1.276(0.246) 2.779(0.762) 0.708(0.042)
HimGNN 0.856(0.034) 0.928(0.027) 0.807(0.017) 0.642(0.023) 0.917(0.030) 0.870(0.154) 1.921(0.474) 0.632(0.016)
HiMol 0.846(0.002) 0.732(0.008) 0.762(0.003) 0.625(0.003) 0.808(0.014) 0.833 2.283 0.708
FH-GNNa 0.882(0.029) 0.949(0.016) 0.824(0.014) 0.639(0.002) 0.945(0.046) 0.904(0.070) 1.873(0.263) 0.744(0.091)
HimNet 0.890(0.026) 0.954(0.020) 0.826(0.018) 0.651(0.009) 0.950(0.051) 0.710(0.016) 1.441(0.223) 0.698(0.037)

Table 1: Comparative performance of HimNet and baseline models on eight benchmark datasets. For all baselines except
FH-GNNa, results are cited from the original publications. As the original FH-GNN did not disclose its dataset splitting
protocol, we reproduced FH-GNNa under the same scaffold-based split and experimental settings as HimNet to ensure a
fair and direct comparison. Results marked in bold indicate the best performance.

Dataset MetStab Malaria LMC-H LMC-R LMC-M LMCmean

MPNN 0.823(0.020) 1.056(0.037) 104.0(5.8) 162.9(27.4) 125.9(20.6) 130.9(4.1)
GCN 0.696(0.055) 1.057(0.043) 103.7(5.7) 161.6(26.2) 126.4(20.2) 130.6(3.6)
GAT 0.767(0.031) 1.048(0.040) 102.6(5.5) 159.4(24.6) 124.8(17.3) 128.9(3.6)
GIN 0.773(0.041) 1.045(0.038) 102.7(6.3) 158.4(22.9) 126.7(19.4) 129.3(2.2)
FH-GNN 0.876(0.014) 1.053(0.035) 96.664(9.6) 144.785(8.2) 167.860(25.9) 136.436(6.7)
MolCLR 0.746(0.052) 1.086(0.072) 98.471(1.4) 127.396(15.9) 197.507(41.3) 141.125(10.2)
HiMol 0.844(0.034) 1.081(0.056) 95.785(16.8) 112.170(11.4) 143.301(36.6) 117.085(10.1)
HimGNN 0.699(0.115) 1.084(0.113) - - - -
HimNet 0.896(0.008) 1.029(0.030) 91.7(11.9) 109.3(0.7) 132.1(39.5) 111.0(9.8)

Table 2: Comparative performance of HimNet and four widely used GNN baselines (MPNN, GCN, GAT, GIN) and four
hierarchical GNN baselines(FHGNN,MolCLR,HiMol,HimGNN) on MetStab, Malaria, and LMC (human, rat, mouse)
tasks. All experiments were conducted under identical scaffold-based data splits. For each model, results are averaged over
multiple runs with three different splits and random initializations; mean and standard deviation are reported. Results
marked in bold indicate the best performance.

Variant BACE BBBP Tox21 SIDER ClinTox ESOL Freesolv Lipophilicity

HimNet 0.876(0.002) 0.962(0.002) 0.835(0.006) 0.651(0.002) 0.983(0.002) 0.712(0.017) 1.226(0.033) 0.711(0.002)
w/o M 0.868(0.004) 0.959(0.005) 0.825(0.004) 0.645(0.005) 0.982(0.007) 0.738(0.008) 1.242(0.020) 0.723(0.005)
w/o I 0.863(0.006) 0.958(0.002) 0.827(0.004) 0.636(0.004) 0.979(0.002) 0.768(0.012) 1.310(0.023) 0.728(0.007)
w/o C 0.864(0.001) 0.960(0.004) 0.831(0.008) 0.631(0.008) 0.975(0.009) 0.826(0.010) 1.656(0.056) 0.764(0.013)
w/o A 0.865(0.002) 0.952(0.004) 0.828(0.001) 0.647(0.002) 0.971(0.003) 0.783(0.019) 1.273(0.059) 0.717(0.002)
w/o H 0.865(0.006) 0.955(0.009) 0.826(0.003) 0.645(0.010) 0.972(0.012) 0.792(0.015) 1.238(0.035) 0.731(0.008)

Table 3: Ablation results for HimNet: performance of the full model and its variants with each core module removed. The
best result for each dataset is highlighted in bold. For clarity, the abbreviations for the ablated variants are defined as
follows. w/o M: removes the Dual message passing module; w/o I: removes the Hierarchical interaction module; w/o C:
removes the Consensus fingerprint enhancement module; w/o A: removes the Attention-guided fusion module; w/o H:
removes the Hierarchical message passing module. Results marked in bold indicate the best performance.

Method
ClinTox Fressolv

AUC Params Training Time Inference Speed RMSE Params Training Time Inference Speed

HiMoI 0.808(0.014) 54.81M 2.72min 1.359ms 2.283 54.80M 0.65min 2.002ms
FH-GNN 0.945(0.046) 17.02M 30.57min 21.070ms 1.873(0.263) 17.02M 17.23min 18.881ms
HimNet 0.950(0.051) 12.94M 42.35min 24.127ms 1.441(0.223) 12.94M 7.32min 17.922ms

Table 4: Performance comparison with HIMoI and FH-GNN. Params indicates the total number of model parameters,
Training Time denotes the total time required for model training on the complete dataset, and Inference Speed represents
the average time taken to process a single molecule. Results marked in bold indicate the best performance.
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Figure 2: Hierarchical attention visualization for molecule CC1COc2c(N3CCN(C)CC3)c(F)cc3c(=O)c(C(=O)O)cn1c23.
(a) Atomic-level attention: Highlights atom-wise contributions to BBB permeability, with red indicating positive
and blue negative effects, consistent with chemical intuition that hydrophobic atoms promote and polar atoms inhibit
penetration. (b) Motif-level attention: Aggregates attention to chemically meaningful substructures, showing en-
hanced positive attention on aromatic and fluorinated motifs, and negative attention on polar or acidic fragments. (c)
Hierarchical interaction attention: Integrates atomic, motif, and global graph levels, revealing context-dependent
interactions—such as competitive and cooperative effects—between motifs and their surrounding atomic environments,
thereby supporting chemically interpretable property prediction.

Hyperparameter Value
Batch size 64
Learning rate 0.0001
Hidden layer dimension 512
Molecular encoder depth 7 layers
Cross-attention heads 8
Fusion attention heads 4
Dropout rate 0.1
Training epochs 100
Optimizer Adam (β1 = 0.9, β2 = 0.999)

Table 5: Hyperparameter settings for the HimNet model
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Figure 3: Hierarchical attention visualization of CCC(=O)C(CC(C)N(C)C)(c1ccccc1)(c1ccccc1), illustrating chemically
interpretable multi-level feature interactions for BBB permeability prediction. (a) Atomic-level attention: The model
assigns strong positive attention to the carbon atoms of both phenyl rings and the adjacent aliphatic carbons, reflecting
their role in enhancing hydrophobicity and promoting BBB permeability. In contrast, negative attention is focused on
the carbonyl oxygen and the nitrogen atom of the tertiary amine side chain, indicating these polar centers hinder BBB
penetration. (b) Motif-level attention: The two phenyl rings, though structurally similar, are distinguished by the
model: one is assigned strong positive attention, while the other receives negative attention, reflecting their distinct chemi-
cal environments and contextual influence from neighboring groups. The carbonyl and amine motifs both receive negative
attention, consistent with their polar and hydrogen-bonding character. (c) Hierarchical interaction attention: The
integrated view demonstrates that the model captures competitive and complementary relationships among motifs. The
strongly positive aromatic motif (M2) competes with the negatively weighted aromatic motif (M3) and the polar carbonyl
and amine motifs (M0, M1) in determining the global property. Notably, the context-dependent differentiation of the two
phenyl motifs highlights the model’s ability to capture non-additive and position-sensitive effects, aligning with chemical
intuition regarding the interplay between hydrophobic and polar regions in BBB permeability.
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Figure 4: Performance comparison of HimNet and its ablated variants on eight benchmark datasets. Each bar shows the
mean performance metric of the full model (HimNet) or a variant with a specific module removed (see legend for abbre-
viations). Error bars represent the standard deviation across repeated runs. Removing any module leads to a consistent
performance drop, confirming the necessity of each component.

Figure 5: Visual analysis of the fingerprint ablation study. (a) Performance after removing single fingerprints: Each
subplot corresponds to a model variant where a specific single fingerprint has been ablated. The results highlight the task-
dependent importance of each individual fingerprint, as shown by the varying degrees of performance degradation (lower
ROC-AUC or higher RMSE) across different tasks. (b) Performance after removing paired fingerprints: These subplots
illustrate the model’s performance when two fingerprint types are simultaneously ablated. The generally more substantial
performance degradation compared to the single-fingerprint ablations provides strong evidence for the strong synergistic
effects among the different fingerprint types.
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Figure 6: Visual analysis of the ablation study on hierarchical interaction mechanisms. Each subplot corresponds to a spe-
cific dataset, and the bars represent the model’s performance after the interaction labeled on the x-axis (e.g., atom atom)
has been removed. Performance interpretation is task-dependent: for classification tasks (BACE, BBBP, CLINTOX, SIDER,
TOX21), the metric is ROC-AUC, where a lower bar signifies a greater performance drop. Conversely, for regression tasks
(ESOL, FREESOLV, Lipophilicity), the metric is RMSE, where a higher bar indicates a more significant degradation. Error
bars denote the standard deviation over three independent runs. The results compellingly demonstrate that the contribu-
tion of each interaction is highly task-dependent, validating our model’s multifaceted design.

Figure 7: Sensitivity analysis of HimNet with respect to four key hyperparameters. The subplots illustrate the model’s
performance variation in response to changes in: (a) encoder depth, (b) learning rate, (c) hidden size, and (d) number of
attention heads. For each analysis, one parameter is varied while the others are held constant at their optimal values. The
results demonstrate the model’s overall robustness and validate our final hyperparameter selections.
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Figure 8: Schematic of the hierarchical heterogeneous molecular graph construction process. (a) The original 2D molecular
structure. (b) The molecule is decomposed into chemical motifs using the BRICS algorithm. (c) The corresponding atom-
level graph, where nodes are atoms and edges are chemical bonds. (d) The corresponding motif-level graph, where nodes
are motifs and edges represent covalent connections between them. (e) The final hierarchical heterogeneous molecular
graph, which integrates the atom and motif graphs and includes a central global node connected to all motifs to learn a
holistic molecular representation.
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Data class Dataset # molecules # tasks Metric Type

Physicochemical ESOL (estimating aqueous solubility) 1 128 1 RMSE Regression
FreeSolv (hydration free energy) 642 1 RMSE Regression
Lipophilicity (octanol–water partition coefficient LogP) 4 200 1 RMSE Regression

Bioactivity BACE (β-secretase 1 inhibitor activity) 1 513 1 AUC Classification
Malaria (anti-malarial EC50) 9 998 1 RMSE Regression

Toxicity Tox21 (12 toxicity endpoints) 7 831 12 AUC Classification
SIDER (27 adverse drug reaction labels) 1 427 27 AUC Classification
ClinTox (clinical trial toxicity) 1 478 2 AUC Classification

Pharmacokinetic BBBP (blood–brain barrier penetration) 2 039 1 AUC Classification
LMC (liver microsomal clearance in human, rat, mouse) 8 755 3 RMSE Regression
MetStab (metabolic stability half-life) 2 267 1 AUC Classification

Table 6: Comprehensive summary of the 11 benchmark datasets evaluated in this work, encompassing physicochemical,
bioactivity, toxicity, and pharmacokinetic properties. The table details the number of molecules, tasks, metrics, and task
types for each dataset, including both widely used MoleculeNet benchmarks and several challenging, less-explored datasets,
thereby ensuring a thorough assessment of model performance and generalization.
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