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Frustrated quantum magnetism with Bose gases
in triangular optical lattices at negative absolute
temperatures
Daisuke Yamamoto 1✉, Takeshi Fukuhara 2 & Ippei Danshita 3

Quantum antiferromagnets with geometrical frustration exhibit rich many-body physics but

are hard to simulate by means of classical computers. Although quantum-simulation studies

for analyzing such systems are thus desirable, they are still limited to high-temperature

regions, where interesting quantum effects are smeared out. Here we propose a feasible

protocol to perform analog quantum simulation of frustrated antiferromagnetism with strong

quantum fluctuations by using ultracold Bose gases in optical lattices at negative absolute

temperatures. Specifically, we show from numerical simulations that the time evolution of a

negative-temperature state subjected to a slow sweep of the hopping energy simulates

quantum phase transitions of a frustrated Bose–Hubbard model with sign-inverted hoppings.

Moreover, we quantitatively predict the phase boundary between the frustrated superfluid

and Mott-insulator phases for triangular lattices with hopping anisotropy, which serves as a

benchmark for quantum simulation.
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Frustration is a key concept to understand various emergent
phenomena in modern many-body physics1,2. When
different interactions among particles strongly compete with

each other, e.g., for a geometric reason, the system is “frustrated”
in determining the true ground state. The study on the interplay
of the frustration and strong quantum fluctuations has been one
of the core challenges of quantum many-body physics, presenting
many open problems in connection with nontrivial magnetic
states including quantum spin liquids3 and as a challenge for
numerical techniques to handle highly entangled ground states4,5.
Quantum simulation with the use of ultracold atomic gases in
optical lattices6–8 has been discussed as a promising approach to
make a critical breakthrough in this research area. However, there
still remain many challenges that have to be overcome in realizing
and controlling frustrated quantum systems with cold atoms,
whereas many theoretical proposals have been made9–14.

One straightforward idea for creating frustration is the use of
two-component Fermi gases with (pseudo)spins σ= ↑, ↓15–23

loaded into a nonbipartite (e.g., triangular24 and kagome25)
optical lattice. The second-order hopping process provides anti-
ferromagnetic superexchange interactions between the (pseudo)
spins σ26,27, which result in a frustrated situation, because com-
plete staggered spin configuration is not allowed by the lattice
geometry. Although long-range magnetic correlation over a dis-
tance comparable to the system size has recently been observed in
a square optical lattice21, a further technical breakthrough is
required to realize far lower temperatures to study frustrated
quantum magnetism. Another interesting idea is a fast shaking of
optical lattice, which can effectively invert the sign of the hopping
integral from the natural one28,29. For ultracold Bose gases with
sign-inverted hopping, the relative local phase of Bose–Einstein
condensates (BECs) tends to be π on neighboring sites, analogous
to antiferromagnetic spin coupling, which induces geometric
frustration in nonbipartite lattices. A frustrated classical XY
model has been successfully simulated with this technique30.
However, it is challenging to reach a quantum regime of low
temperature and density, because the lattice shaking can be a
source of heating.

Recently, it has become realistic to create a well-controlled
system at negative absolute temperatures31 in laboratory. A state
in thermal equilibrium is usually described by a statistical
ensemble in which the lower-energy states are more occupied
than higher-energy ones, obeying the probability proportional to
the Boltzmann factor with temperature T ≥ 0. However, if the
system has an upper energy bound, the opposite distribution with
the largest occupation of the highest energy could also manage to

be prepared. Such a state is characterized by a negative absolute
temperature T ≤ 0. In a pioneer work, Braun et al.32 have created
a thermodynamically stable negative-temperature state of Bose
gases in a square optical lattice by achieving the maximum
interaction and potential energies in the regime of negligible
kinetic energy. There the absolute temperature remains so low
that the quantum phase transition from the Mott insulator (MI)
to the superfluid (SF) has been observed.

Here we propose and examine a realistic route to create fru-
strated Bose gases in a quantum regime using the combination of
the phase-imprinting techniques33–35 and the statistics of nega-
tive absolute temperatures. Our proposal is based on the fact that
a negative-temperature state of a system Ĥ at T < 0 realizes the
corresponding equilibrium state of the sign-inverted Hamiltonian
�Ĥ at ∣T∣ > 0. Using this, one can achieve the same effect as
inverting the sign of hopping, instead, by inverting the other
factors, namely interatomic interaction and trap potential, and
then preparing a negative-temperature state. To this end, we
propose a phase-imprinting scheme combined with sudden sign
inversion of the interaction and potential, which causes much
less heating compared with the lattice shaking. Supposing Bose
gases in a triangular lattice, we simulate the dynamics along
the protocol within the time-dependent Gutzwiller approach
(TDGA) to demonstrate that quantum phases of the frustrated
Bose–Hubbard model, including chiral SF (CSF), could indeed be
realized. Moreover, considering more general hoppings with
spatial anisotropy, in which the hopping amplitude in one
direction can be different from those in the other two directions,
we give more quantitative analysis on the quantum phase tran-
sition between frustrated CSF and MI by means of the cluster
mean-field plus scaling (CMF+ S) method36–38 with a two-
dimensional (2D) density matrix renormalization group (DMRG)
solver14. This enables us to discuss the interplay of frustration and
quantum fluctuations, which is a critical factor for producing
various exotic frustrated states. The theoretical predictions pro-
vide a solid guidepost for future experiments to confirm that the
interplay effects are properly captured in the quantum simulator.
We set ℏ= 1, except in the figures.

Results
The Bose–Hubbard model on triangular lattice. A system
of Bose gases in a deep optical lattice is described by the
Bose–Hubbard model:

Ĥ ¼ �
X
i;j

J ijb̂
y
i b̂j þ

U
2

X
i

n̂iðn̂i � 1Þ þ V
a2

X
i

jrij2n̂i ð1Þ

Fig. 1 Triangular optical lattice with anisotropic hoppings. a Typical potential landscape of isosceles triangular optical lattice created by three laser beams
in the case where one of the three lasers (in the a1= (a, 0) direction with a being the lattice constant) has a larger intensity than the other two (in the
a2 ¼ ð�a=2;

ffiffiffi
3

p
a=2Þ and a3 ¼ ð�a=2;� ffiffiffi

3
p

a=2Þ directions). b Schematic figures of the modeling with Bose–Hubbard parameters: the hoppings J1 in the a1
direction and J2 in the a2 and a3 directions, and the onsite interparticle interaction U. The size of the arrows schematically shows the difference of the
hopping amplitudes depending on the potential height between the neighboring lattice sites in each direction.
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with hopping integral Jij (for i ≠ j), chemical potential Jii≡ μ,
onsite interaction U, harmonic trap potential V∣ri∣2∕a2, and lattice
constant a. Here we consider a triangular optical lattice with
spatially anisotropic hopping of “isosceles type,” which is para-
meterized by Jij= J1 for nearest-neighbor (NN) sites (i, j) in the
a1= (a, 0) direction and Jij= J2 in the a2 ¼ ð�a=2;

ffiffiffi
3

p
a=2Þ and

a3 ¼ ð�a=2;� ffiffiffi
3

p
a=2Þ directions (see Fig. 1). The spatial aniso-

tropy can be created by tuning the intensity of one of the three
lasers to be different from the others (see Methods). The two
extreme limits, J1/J2= 0 and J1/J2≫ 1, are reduced to square
lattice and one-dimensional (1D) chain, respectively.

Gutzwiller analysis. We first discuss the ground state for V= 0
within the site-decoupling Gutzwiller approach (GA)39–41 to get a
basic insight into the problem. The ground state in the weak-
coupling regime (U≪ ∣Jij∣) is well described within the GA under
the assumption of the BEC order hbii � ψi ¼ ψeiq�riþφ with
momentum q and global phase φ. The kinetic energy of Eq. (1) is

given by �P
i;j≠iJ ijhb̂

y
i b̂ji � εqψ

2M. Here, εq � �2ðJ1 cos q � a1 þ
J2 cos q � a2 þ J2 cos q � a3Þ and M is the number of lattice sites.
For natural-sign hoppings J1, J2 > 0, the minimum kinetic energy
is obtained at q= 0, leading to a uniform SF state. The maximum
of the kinetic energy is achieved at q= ±Q with

Q ¼
ð2π=a; 0Þ � QM for 0 ≤ J1=J2 ≤ 0:5;

ð2 arccos½�J2
2J1

�=a; 0Þ for J1=J2 > 0:5:

(
ð2Þ

Therefore, if sign-inverted hopping (J1, J2 < 0) is prepared, a
frustrated CSF state with finite BEC momentum q= ±Q is rea-
lized. The choice of q=Q or −Q represents the degeneracy with
respect to the chirality of vortex in unit triangles. Hereafter, we
suppose q=Q to be spontaneously selected. In the equilateral
case (J1= J2≡ J), the momentum is Q= (4π/3a, 0)≡QK. There-
fore, the CSF state forms a “three-color” arrangement of the local
phase (Arg½ψi� ¼ 0, 2π/3, and 4π/3 within a global phase shift) as

shown in Fig. 2a. This can be understood as a compromise
solution for the frustration in the bond energy minimization.
For generic J1/J2 > 0.5, the phase factor changes spatially with
incommensurate pitch vector Q. In the parameter range 0 ≤ J1/
J2 ≤ 0.5 and the 1D limit J1/J2≫ 1, a “two-color” (0 and π) pattern
is formed with no chiral degeneracy. The J1/J2 dependence of Q is
analogous to the pitch vector of spin spiral states in spatially
anisotropic triangular antiferromagnets42–45.

For large, repulsive interaction U, lattice bosons undergo a
quantum phase transition to the MI state when the filling factor
ρ � M�1P

ihn̂ii is an integer46. Performing the GA decoupling

b̂
y
i b̂j � ψjb̂

y
i þ ψ�

i b̂j � ψ�
i ψj in Eq. (1), we calculate the order

parameter ψ for ρ= 1 in the unfrustrated (J1, J2 > 0: q= 0) and
frustrated (J1, J2 < 0: q=Q) ground states as a function of U/J2
(see Methods). Figure 2b, c show the GA results for the SF-to-MI
and CSF-to-MI quantum phase transitions, respectively. At J1=
J2 = J, the critical point at which ψ vanishes is given as
U ðGAÞ

c =jJj ¼ 17:5 for the frustrated case, which is a half of
U ðGAÞ

c =J ¼ 35:0 for the unfrustrated case. The strong reduction is
attributed by the fact that the CSF state is less stable due to the
frustrated local-phase arrangement in which the NN bonds are
not fully satisfied in minimizing the local kinetic energy. For
general values of the anisotropy J1/J2 and ρ, the critical point is
given by U ðGAÞ

c ¼ �εqð ffiffiffi
ρ

p þ ffiffiffiffiffiffiffiffiffiffiffi
ρþ 1

p Þ2 with q= 0 (q=Q) for the
unfrustrated (frustrated) case. The ratio ∣εQ/ε0∣ equals to 1 only at
J1/J2= 0 or J1/J2→∞, indicating that the reduction effect due to
frustration exists even in the “two-color” region of 0 < J1/J2 ≤ 0.5.

It is noted that the curves of ψ for the unfrustrated system in
Fig. 2b exactly overlap those for the frustrated system in Fig. 2c,
respectively, for each J1/J2, by changing the scale of the interaction
U by the factor ∣εQ/ε0∣ (specifically, the factor 1/2 when J1= J2).
This is the case for general values of J1/J2 and ρ. Indeed, the
ground-state properties, including the density and order para-
meter, for the unfrustrated system with certain Jij, U > 0 and those
for the frustrated system with negative hopping −Jij and
repulsion ∣εQ/ε0∣U are identical within the GA, except for the
spatial phase distribution Arg½ψi� ¼ Q � ri. This is because the
scale of the kinetic energy for the frustrated system is reduced
by the factor ∣εQ ∕ ε0∣ due to the frustrated phase configuration
(see Methods).

Negative absolute temperature. To experimentally create the
frustrated quantum states, it is required to prepare sign-inverted
hoppings Jij < 0 with avoiding serious heating of the system.
Below, we explain the details of the protocol through the use of
negative-temperature statistics. Let us suppose an initial state in
which N particles are distributed in a triangular lattice and a
harmonic potential, which realizes the SF ground state of the
standard Bose–Hubbard model (1) with Jij > 0 and U, V > 0. See a
typical example in Fig. 3a obtained within the GA41 for N= 1400,
J1= J2= J= 0.08U0, U=U0, and V= 0.001U0 (with U0 > 0 being
the energy unit). The phase Arg½ψi� is uniform in the unfrustrated
SF state.

First, one needs to introduce the spatial phase distribution
Arg½ψi� ¼ Q � ri to create the frustrated CSF state. To this end,
here we suggest the use of the phase-imprinting techniques33–35.
When a single-particle energy difference δE is introduced
between two sites, the relative phase on the two sites starts to
develop with exp½iδEt� in time t. In a region deep inside the SF
phase, the kinetic energy (∝εq) reaches the maximum when the
BEC momentum takes q=Q given in Eq. (2). One can transfer q
from 0 to Q by introducing a temporary linear gradient potential

V̂
ext ¼ δE

P
iðxi=aÞn̂i for appropriate time δt=Qxa/δE (see

Fig. 3b). Such a temporary potential can be created, e.g., by a

Fig. 2 Predictions from the Gutzwiller approach. a The J1/J2 dependence
of the local phase pattern in the frustrated case J1, J2 < 0 is illustrated. The
colors indicate the sublattice structure in the local phase and the arrows
depict the chirality. b, c The order parameter ψ as a function of ∣U/J2∣
(being the ratio of the interaction and the hopping in the a2 and a3
directions) at the filling factor ρ= 1 for b J1, J2 > 0 and c J1, J2 < 0. The value
of ψ becomes zero at the transition from the superfluid (SF) or chiral
superfluid (CSF) to Mott insulator (MI) phase.
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magnetic field gradient or by an extra 1D optical lattice satisfying
Q=QM or Q=QK (see Methods). One has to perform the
phase-imprinting operation in a much shorter time than the time
scale of the hopping (δt ≪ ∣Jij∣−1), to affect only the local phases.
Besides, the local energy difference δE has to be set to a large
enough value compared with ∣U∣ and ∣V∣ so that one can safely
avoid the influence of the inhomogeneity of the density profile
(see Methods). As such well-controlled phase imprinting has been
successfully made in previous experiments34,35, we will assume in
the theoretical simulations presented below that a perfect phase
imprinting can be achieved. The created CSF state with the
“forced” phase distribution eiQ�ri should of course be dynamically
unstable, as it has the maximum kinetic energy.

By changing U and V to be attractive (U < 0) and anti-trapping
(V < 0), we make the interaction and potential energies also reach
their maximum, to realize a stable negative-temperature ground
state (at T ≈−0) for Jij > 0 and U, V < 0. The created negative-
temperature state should be equivalent to the ground state (at
∣T∣ ≈+0) of the frustrated system with Jij < 0 and U, V > 0, as the
physics of the two systems obey the same factor exp½�Ĥ=kBT�. In
ref. 32 for square (unfrustrated) lattice, this has been performed
simply with U→−U and V→−V by using the Feshbach
resonance47 and blue-detuned lasers. In the present case with
frustration, one has to pay special attention to the change of
the kinetic energy scale after the sign inversion of U and V.
Specifically, the initial state with the density (ni) and order-
parameter (∣ψi∣) distributions shown in Fig. 3a after the phase
imprinting Arg½ψi� ¼ Q � ri is expected to correspond to the
ground state of the frustrated Hamiltonian with the interactions
rescaled by the factor ∣εQ/ε0∣, as explained above in the
homogeneous case. Therefore, the values of U and V have to be
changed as U→−∣εQ/ε0∣U and V→−∣εQ/ε0∣V (e.g., U→−U/2
and V→−V/2 for J1= J2), to adjust the energy scale in
consideration of the reduction of the kinetic energy due to the
frustration.

TDGA simulation. In the framework of the TDGA48,49, we
simulate the time evolution of the initial state in Fig. 3a after
suddenly performing the three operations shown in Fig. 3b. In the
simulation, we implement the phase imprinting on the initial

state by the operation
P

n f
ðnÞ
i nj i ! P

ne
inQK�ri f ðnÞi nj i on the local

wave function at every site i. Here, f ðnÞi is the coefficient of the
Fock basis nj i. In addition, we perform the sudden changes of U
=U0→−U0/2 and V= 0.001U0→−0.0005U0. After those three
operations are performed at t= 0, we calculate the time evolution
of the state fixing the value of ∣U/J∣ for 0 ≤ 200U�1

0 to see the
stability of the created negative-temperature CSF state.

As shown in Fig. 3c, the created negative-temperature state is
predicted to be indeed dynamically stable for a long time
0 ≤ 200U�1

0 . As a reference for the comparison, we also simulate
the case with the same settings but without the phase-imprinting
operation (Fig. 3d). In this case, as shown in Fig. 3e, the state
collapses immediately within t ≲ 2U�1

0 due to the dynamical
instability; the order parameter rapidly decreases, although the
density profile is kept. The difference between the two cases (with
and without the phase imprinting) can be clearly seen in the time

evolution of the density fluctuation δn2 � hn̂2i i � hn̂ii2 averaged
over the center sites within ∣ri∣ ≤ 10a. As shown in Fig. 3f, the
value of δn2 rapidly increases and then exhibits an irregular
oscillation in the case without the phase imprinting, whereas it is
almost constant in the case that the negative-temperature state is
properly created by simultaneously achieving the maximum
kinetic, interaction, and potential energies.

The CSF-to-MI phase transition. For the stable negative-
temperature CSF state shown in Fig. 3c, we slowly increase
the value of ∣U/J∣ for t > 200U�1

0 to observe the CSF-to-MI
transition. In experiments, the tuning of ∣U/J∣ is performed by
controlling the height of the optical lattice46. Here we assume
that ∣U/J∣ increases simply through J decreasing linearly with

Fig. 3 Dynamical stability of the negative-temperature chiral superfluid (CSF) state within the time-dependent Gutzwiller approach. a Profiles of
density ni (solid lines) and order parameter ∣ψi∣ (dashed lines) in the harmonic trap along the cut of yi ¼ a=

ffiffiffi
3

p
(with a being the lattice constant) in the

initial state. b The three operations to make frustrated negative-temperature states (for spatially isotropic hoppings J1= J2= J). The single-particle
spectrum εq in units of J is plotted as a function of the wave vector q in units of πa−1. The illustrations depict a tilting of the optical lattice by energy
difference δE for the phase imprinting, the inverting from replusive (U > 0) to attractive (−U/2 < 0) interaction, and the inverting from confinement (V > 0)
to anti-confinement (−V/2 < 0) trap potential, respectively. c Negative-temperature CSF state after time 200 in units of the inverse of the initial interaction
strength U�1

0 , which shows its stability for a sufficiently long time. The case without the phase imprinting operation (d) is shown in e for a comparison.
f The evolution of the density fluctuation δn2 of the initial state with and without the phase imprinting.
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J= 0.08U0− 0.0001(tU0− 200)U0 for t > 200U�1
0 . As shown in

Fig. 4a, when ∣U/J∣ increases, the MI plateau is gradually formed
and ∣ψi∣ in the trap center decreases towards zero. Until the
transition point, the three-color phase profile in the CSF state is
properly kept within a global phase shift (Fig. 4b, c).

To show the transition process more clearly, we plot in Fig. 4d
the time evolution of the scaled value of the density fluctuation
δn2(t) ∕ δn2(0). There we see that δn2(t) ∕ δn2(0) decreases with
∣U/J∣ and almost vanishes at jU=Jj � jU ðGAÞ

c =Jj ¼ 17:5, which is
consistent with the GA prediction of the critical point for the
frustrated system. In the case of a box-shaped trap potential50,51,
which is modeled by V= 0 and the open boundary at ∣ri∣= 36a,
the transition is more sharply observed (the blue dashed line in
Fig. 4d for N= 4692). We also plot in Fig. 4e the unfrustrated
case of the standard SF-MI transition as a reference, which shows
a sharp difference from the frustrated case in the values of ∣U/J∣ of
the transition region.

At the end of this section, let us briefly mention the validity
and limitation of the TDGA method with respect to the

calculations presented above. The mean-field analysis with the
site-decoupling approximation reproduces the exact wave func-
tion in the weak-coupling (U ≈ 0) and strong-coupling (U→∞)
limits, and is thus expected to reasonably interpolate the two
limits in two or higher dimensions6,39,52. In fact, the TDGA
simulation has been often used to describe the dynamics of
Bose–Hubbard systems53–56, which should be fairly reliable, at
least, in the absence of strong quantum correlations, e.g., in
the deep-SF regime or in three dimensions (3D)57. It is therefore
expected that the above TDGA simulation gave a proper
description for the dynamical stability of the negative-
temperature CSF state after the quench in the deep-SF regime.
On the other hand, the site-decoupling treatment could fail to
capture some quantitative features in the vicinity of the CSF-MI
transition, including the location of the critical point and the
values of critical exponents, as the intersite quantum correlations
become important.

Quantitative analysis by CMF+ S with DMRG. We provide
more quantitative estimation of the CSF-MI critical point for
V= 0 beyond the site-decoupling approximations (GA and
TDGA) to predict the interplay effect of frustration and quantum
fluctuations as a guideline necessary for experiments. The quan-
tum effects on frustrated Bose gases in 2D lattices have been
poorly studied due to the lack of effective computational meth-
ods. Here we generalize and apply the numerical CMF+ S
method with 2D DMRG solver, which recently established in
studies on frustrated quantum spins14, to the present system. We
consider the NC-site cluster Hamiltonian on a triangular-shaped
cluster (see the illustrations in Fig. 5a) under the mean-field
boundary condition. We work in the twisted frame, ~bi � e�iQ�ri b̂i,
with optimizing Q= (Qx, 0) (see Methods). The CMF+ S
method permits the systematic inclusion of quantum intersite
correlations by increasing NC, which connects between the GA
(NC= 1) and exactly quantum (NC→∞) results.

Figure 5a summarizes the NC= 10, 15, 21 data and the CMF+
S (NC→∞) result for the ρ= 1 CSF-MI (SF-MI) critical point in
the frustrated (unfrustrated) case with J1, J2 < 0 (J1, J2 > 0). The
value of Uc/∣J2∣ for the frustrated case exhibits a nonmonotonic
behavior with a dip around J1/J2 ≈ 0.8, whereas the unfrustrated
one simply increases as the total hopping J1+ 2J2 increases. This
is indeed the frustration effect, which destabilizes the CSF state.
Besides, the value of Uc is strongly reduced from the GA
prediction U ðGAÞ

c due to the inclusion of the intersite quantum
correlations. It should be noted that the relative difference
ðU ðGAÞ

c � U cÞ=U ðGAÞ
c between the GA and CMF+ S values is

much larger for the frustrated case (~40–50%) than the
unfrustrated case (~20%) as shown in Fig. 5b. This indicates
that the quantum effects are strongly enhanced by the interplay
with frustration. Figure 5c shows that the BEC momentum Qx in
the CSF state is little affected by the inclusion of quantum
correlations. The slight variance of Qx from 4π/3 at J2/J1= 1 is
thought to be due to the finite cluster-size effect (see Methods).

Detection method. The BEC momentum Q in the CSF state and
the transition to the MI can be simply detected by time-of-flight
(TOF) images of momentum distributions46. A more precise
determination of the critical point can be made by extracting the
condensate fraction from the TOF images58, by observing
the critical velocity using a moving optical lattice57, or by
measuring the density fluctuation δn2 using the quantum-gas
microscope18–23. The frustrated CSF-MI transition is easily dis-
tinguishable from the standard SF-MI transition thanks to the
sharp difference in the value of Uc/∣J2∣.

Fig. 4 Quantum phase transition from chiral superfluid (CSF) to Mott
insulator (MI) within the time-dependent Gutzwiller approach. a Time
evolution of the profiles of density ni (solid lines) and order parameter ∣ψi∣
(dashed lines) in the harmonic trap along the cut of yi ¼ a=

ffiffiffi
3

p
(with a

being the lattice constant) for the negative-temperature CSF state when
∣U/J∣ increases for t> 200U�1

0 . b, c Color plots for the local phase near the
center of the trap at b t ¼ 100U�1

0 and c 700U�1
0 . d, e Time evolution of the

density fluctuation δn2(t)∕δn2(0) for d a negative-temperature CSF state
and e an unfrustrated superfluid (SF) state. The red solid and blue dashed
lines represent the cases of harmonic and box-shaped trap potentials,
respectively. The time schedule for increasing the ratio of the interaction
and the hopping, ∣U/J∣, is plotted together. The time t is measured in units
of the inverse of the initial interaction strength U�1

0 .

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-0323-5 ARTICLE

COMMUNICATIONS PHYSICS |            (2020) 3:56 | https://doi.org/10.1038/s42005-020-0323-5 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


Discussion
We made a proposal and provided the necessary theoretical
analysis for analog quantum simulation of frustrated quantum
magnetism by using ultracold Bose gases in triangular optical
lattices. We proposed an experimental protocol to create a fru-
strated quantum state at negative absolute temperature by per-
forming a phase imprinting together with sudden inversion of the
interatomic interaction and the trap potential. Simulating
the time evolution, we demonstrated that a dynamically stable SF
state with chiral symmetry breaking was indeed realized
and underwent the quantum phase transition to the MI as the
hopping amplitude decreased. Moreover, we performed state-of-
the-art numerical calculations on the quantum critical point as a
function of the spatial hopping anisotropy, which predicted a
significant interplay of frustration and quantum fluctuations.
The quantum dynamics in the presence of such enhanced fluc-
tuations near the criticality is out of reach with the currently
available numerical methods and thus gives a strong motivation
for future experimental quantum simulations as an interesting
and important subject to be investigated.

A connection of the present synthetic system to real materials
of frustrated antiferromagnets can be obtained by using the

approximate mapping from the bosonic to spin-1 operators59:

b̂i !
ffiffi
ρ
2

q
Ŝ
�
i ; n̂i ! Ŝ

z
i þ ρ, which is valid in the vicinity of the

transition between the CSF and MI phases at integer fillings ρ.
The Hamiltonian (1) is mapped onto the spin-1 XY model

Ĥspin ¼ �
X
i;j

JXYij ðŜxi Ŝ
x
j þ Ŝ

y
i Ŝ

y
j Þ þ D

X
i

ðŜzi Þ
2

ð3Þ

with the XY spin exchange JXYij ¼ �ρJij and the single-ion ani-
sotropy D=U/2. Therefore, the physics discussed in the present
study is deeply related to the pressure-induced phase transition
from the “120∘” magnetic order (corresponding to CSF) to non-
magnetic state (MI) in spin-1 easy-plane triangular antiferro-
magnets such as CsFeCl360,61, which has recently attracted
considerable attention in the connection with the novel excita-
tions near quantum criticality62. From the standpoint of funda-
mental statistical physics, the CSF-to-MI transition should be
associated with the spontaneous U(1) ´Z2 symmetry breaking
with respect to the global phase and the chirality determined
by q=Q or −Q, whose quantum critical phenomena and uni-
versality class have not yet been established. The present bosonic
system of synthetic antiferromagnets is advantageous for ex-
ploring exotic quantum critical phenomena in low dimensions,
whereas the real materials have strong 3D couplings between the
triangular layers60,61.

Moreover, it has been expected that adding long-range
interatomic interaction to the present system may give rise to
an exotic chiral MI state63 in between possible separate U(1) and
Z2 symmetry breakings. This is essentially equivalent to the so-
called “chiral liquid” expected in a spin-1 frustrated magnet64.
Besides, our protocol for direct creation of a frustrated quantum
state is advantageous for preparing the phases that are not
neighboring to the MI phase, such as quantum spin liquids
expected for ρ= half integers3,11. Thus, the present study gives a
crucial guidepost for cold-atom quantum simulations of those
exotic quantum frustrated physics.

Methods
Triangular optical lattice with anisotropic hoppings. A triangular optical lattice
can be created by superposing three laser beams that intersect in the x–y plane with
wave vectors k1= kL(1, 0), k2= kLð�1=2;� ffiffiffi

3
p

=2Þ, and k3= kLð�1=2;
ffiffiffi
3

p
=2Þ, and

equal frequency ωL
24. All beams are linearly polarized orthogonal to the plane and

each has field strength Ei (i= 1, 2, 3). The total electric field is given by

Etotðr; tÞ ¼
X3
i¼1

Ei cosðki � r� ωLt þ ϕiÞez : ð4Þ

The dipole potential generated by the electric field is proportional to its squared
amplitude,

VðrÞ / Etotðr; tÞj j2

¼ E2
1 þ E2

2 þ E2
3

2
þ E2E3 cosðb2 � r� ϕ23Þ

þ E1E3 cosððb1 � b2Þ � rþ ϕ13Þ
þ E1E2 cosðb1 � rþ ϕ12Þ þ AðtÞ;

ð5Þ

where b1= k1− k2, b2= k3− k2, ϕij= ϕi− ϕj, and A(t) represents the terms
dependent on time t. As the frequency of light is quite large, only the time-averaged
value of ∣Etot∣2 can affect atoms. All the terms in A(t) oscillate at frequency 2ωL and
thus can be dropped. Finally, we obtain a periodic dipole potential

VðrÞ ¼ � V1 cosðb2 � r� ϕ23Þ
� V2 cosððb1 � b2Þ � rþ ϕ13Þ
� V3 cosðb1 � rþ ϕ12Þ þ const:;

ð6Þ

where V1, V2, and V3 are proportional to E2E3, E1E3, and E1E2, respectively. A
variation of the phases ϕi of the laser beams yield only a global shift of the lattice in
position. The primitive lattice vectors a1 and a2 are given so that ai ⋅ bj= 2πδij. We
define a3=− a1− a2 for convenience. For red-detuned lasers with Vi > 0, the
potential minima form a geometrically equilateral triangular lattice in lattice
constant: a= ∣ai∣= 4π/3kL= 2λL ∕ 3 with λL being the laser wavelength. The spatial
anisotropy in the hopping amplitudes can be introduced by the difference in V1,
V2, and V3 through tuning the laser intensities E1, E2, and E3. For example, the set

Fig. 5 Quantitative analysis on the quantum critical point. a The critical
points Uc /∣J2∣ between the chiral superfluid (CSF) or superfluid (SF) state
and the Mott insulator (MI) as functions of the hopping anisotropy J1 /J2.
The values obtained by the cluster mean-field plus scaling (CMF+ S)
analysis are compared with those obtained by the Gutzwiller approach
(GA). In the CMF+ S results, the error bars estimated from the variation in
the linear fittings for different pairs of the NC= 10, 15, 21 data are smaller
than the symbol size. The bar on the vertical axis marks the quantum
Monte-Carlo result on the square lattice66 as reference. b The relative
difference between the GA and CMF+ S results for the critical point. c The
momentum of the Bose–Einstein condensates, Q= (Qx, 0), in units of πa−1

(with a being the lattice constant) at the critical interaction strength U= Uc.
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of the field strengths with the relation of E1= 1.6E2= 1.6E3 (1.6V1= V2= V3)
yields the potential landscape shown in Fig. 1a, which gives anisotropy of “isosceles
type” in the nearest-neighbor hopping amplitudes.

Tilting triangular optical lattice with an additional 1D optical lattice. To per-
form the phase-imprinting process in the protocol proposed here, one has to
introduce a single-particle energy difference δE between adjacent two sites. This
could be directly implemented by a magnetic field gradient, which introduces an
extra linear gradient potential. Here, let us also provide another way to perform the
phase-imprinting process for preparing the commensurate Q=QM≡ (2π/a, 0)
(two-color) and Q=QK≡ (4π/3a, 0) (three-color) states by the use of an additional
1D optical lattice. We suppose that a potential of 1D optical lattice is created with
additional laser beams in the a1 direction:

V1DðxÞ ¼ V 0cos2ðk0Lx þ ϕ0Þ ð7Þ
with amplitude V 0 , wave vector k0L ¼ 2π=λ0L, and phase ϕ

0. Here, let us set ϕi= 0 (i=
1, 2, 3) for the triangular optical lattice without loss of generality.

Let us first consider the range of 0 ≤ J1/J2≲ 0.5 (V1≫V2=V3), in which the
configuration of the local phase factor is expected to form the two-sublattice (say A
and B) structure with the pitch vectorQ=QM as illustrated in the left panel of Fig. 2a.
For creating the local phase configuration by the phase imprinting, it is required to
introduce a temporary single-particle energy difference δE only between the two-
sublattice groups of sites for time δt= 2π/δE. This can be achieved by using an
additional 1D optical lattice of magic wavelength defined by λ0L ¼ 4λL=3 and phase
shift ϕ0 ¼ 0 or π/2 (mod π). Figure 6a, b show an example of the total potential
V(r)+V1D(x) with the parameters 2V1 ¼ V2 ¼ V3 ¼ V 0 and ϕ0 ¼ 0. It is
noteworthy that the two options in ϕ0 correspond to the exchange of A and B.

In a similar way, using a 1D periodic potential with λ0L ¼ 2λL, one can also
implement a temporary energy difference δE between the three-sublattice groups of
sites, say A, B, and C. The additional lasers are shined for time δt= 4π/3δE to
imprint the three-color phase configuration illustrated in the middle panel of
Fig. 2a to the initial SF state. Figure 6c, d show an example of the total potential
V(r)+ V1D(x) with the parameters V1 ¼ V2 ¼ V3 ¼ V 0 and ϕ0 ¼ π=12. It is
noteworthy that the phase shift ϕ0 has six options, (2n− 1)π/12(n= 1, 2, ⋯, 6),
reflecting the possible permutation of A, B, and C.

The GA analysis for finite-momentum BEC states. Within the site-decoupling
mean-field approximation, known as the GA, the effective local Hamiltonian at site
i is given by

ĤGA
i ¼ �

X
j≠i

J ij ψj b̂
y
i þ ψ�

j b̂i � ψ�
i ψj

� �
� μn̂i

þ U
2
n̂iðn̂i � 1Þ þ V

a2
jrij2n̂i;

ð8Þ

as the result of the decoupling b̂
y
i b̂j � ψj b̂

y
i þ ψ�

i b̂j � ψ�
i ψj in the original Hamil-

tonian (1). The results displayed in Fig. 2b are calculated under the assumption of
finite-momentum BEC, ψi ¼ ψeiq�riþφ , for V= 0. In this case, one has only to
consider a certain single site i, e.g., the site at the origin ri= 0, and φ= 0 without

loss of generality. Equation (8) becomes

ĤGA
i ¼ εqψ b̂

y
i þ b̂i � ψ

� �
� μn̂i þ

U
2
n̂iðn̂i � 1Þ; ð9Þ

for the origin site i. The minimization of the kinetic energy gives q= 0 for J1, J2 > 0

and q=Q given in Eq. (2) for J1, J2 < 0. The Hamiltonian ĤGA
i can be easily

diagonalized on the Fock state basis for the local wave function,

Ψij i � Pnmax
n¼0 f

ðnÞ
i nj i, in which the maximum one-site occupation number nmax

must be sufficiently large (we take nmax ¼ 10). The order parameter is obtained

from ψ ¼ P
n

ffiffiffi
n

p
f ðn�1Þ�
i f ðnÞi with eigenvector f ðnÞi in a self-consistent way.

It is worth noting that the effective one-body Hamiltonians ĤGA
i in the

unfrustrated and frustrated cases differ only in εq (ε0 or εQ). Therefore, if the values
of all the other terms are multiplied by ∣εQ/ε0∣, the results of the GA calculations,
such as the value of ∣ψi∣, for the unfrustrated system become exactly the same as
those for the frustrated system, except for the chiral phase distribution eiQ�ri and the
overall energy scale (which is also multiplied by ∣εQ/ε0∣).

In the presence of the trap potential V ≠ 0, the mean field ψi can no longer
be assumed to have spatially uniform amplitude. Therefore, one has to deal with
Eq. (8) on the entire lattice sites, each of which is connected to the six neighboring
sites through the mean fields fψi ± an

; n ¼ 1; 2; 3g. To prepare the initial state

shown in Fig. 3a, we solve the set of self-consistent equations ψi ¼P
n

ffiffiffi
n

p
f ðn�1Þ�
i f ðnÞi for all sites within a cutoff length lc from the trap center. We take

lc= 36a. The chemical potential μ is determined from the global number equationP
ihn̂ii ¼ N , which must be solved simultaneously with the equations for ψi. To

efficiently achieve the convergence in the self-consistent calculations, we take the
uniform solution for ψi obtained in the absence of the trap potential as the initial
condition and employ the Newton–Raphson method.

The TDGA simulation in a trap potential. The TDGA equation is given by

i
∂

∂t
ΨiðtÞj i ¼ ĤGA

i ΨiðtÞj i: ð10Þ

From Eq. (8) with ΨiðtÞj i ¼ P
nf

ðnÞ
i ðtÞ nj i, Eq. (10) becomes

i _f
ðnÞ
i ðtÞ ¼ �

X
j≠i

J ij
ffiffiffi
n

p
ψjðtÞf ðn�1Þ

i ðtÞ
�

þ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
ψ�
j ðtÞf ðnþ1Þ

i ðtÞ � ψ�
i ðtÞψjðtÞf ðnÞi ðtÞ

�
þ U

2
ðn� 1Þ þ V

a2
jrij2 � μ

� �
nf ðnÞi ðtÞ

ð11Þ

with ψjðtÞ ¼ hΨjðtÞjb̂jjΨjðtÞi ¼
P

n

ffiffiffi
n

p
f ðn�1Þ�
j f ðnÞj ðtÞ.

We numerically solve the set of equations of motion for f ðnÞi ðtÞ using the
Crank–Nicolson method65. We first rewrite Eq. (11) in a matrix form:

i_f iðtÞ ¼ HGA
i ðfψjðtÞgÞf iðtÞ; ð12Þ

where fi is the vector with the components f ðnÞi (0 ≤ n ≤ nmax) and HGA
i is the

Fig. 6 Periodically tilted triangular optical lattice. a Potential landscapes of triangular optical lattice without and with an additional 1D periodic potential
(whose amplutude and phase are V0 and ϕ0, respectively) for 2V1 ¼ V2 ¼ V3 ¼ V0 and ϕ0 ¼ 0. The amplutudes of the three standing waves forming the
triangular optical lattice are denoted by V1, V2, and V3. The cuts along r= r(1, 0) and r ¼ rð1=2; ffiffiffi

3
p

=2Þ are shown in b. The spatial coordinate r= (x, y) and
its norm r are measured in units of the lattice constant a. c, d Same as a and b, respectively, for V1 ¼ V2 ¼ V3 ¼ V0 and ϕ0 ¼ π=12.
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ðnmax þ 1Þ ´ ðnmax þ 1Þ matrix form of the GA local Hamiltonian, which is time-
dependent via the order parameters ψj(t) of neighboring sites of site i. The explicit
components of HGA

i are easily obtained from Eq. (11). The value of fi after time
evolution in a short time Δt is given by

f iðt þ ΔtÞ ¼ I� iΔtHGA
i ðfψjðtÞgÞ=2

Iþ iΔtHGA
i ðfψjðtÞgÞ=2

f iðtÞ; ð13Þ

where I is the identity matrix. Here, Δt must be sufficiently shorter than the time
scale of the physics considered. The time evolution of the system is numerically
calculated, step by step, with short time interval Δt. To calculate fi(t+ Δt) at site i,
the values of ψj(t) on its neighboring sites are required. Therefore, one has to

calculate ψjðtÞ ¼
P

n

ffiffiffi
n

p
f ðn�1Þ�
j f ðnÞj ðtÞ and update fi(t) according to Eq. (13) in

parallel for all sites (within ∣ri∣ ≤ lc). The local particle number at time t can be

calculated by niðtÞ ¼
P

nnjf ðnÞi ðtÞj2.

The phase-imprinting operation. In the section “TDGA simulation”, we assume
that the phase imprinting can be theoretically implemented by the operationP

nf
ðnÞ
i nj i ! P

ne
inQK �ri f ðnÞi nj i on the local wave functions. Here we provide a brief

discussion on the experimental conditions for achieving such perfect phase
imprinting.

Let us consider the same initial state as shown in Fig. 3a (with the parameters
N= 1400, J1= J2= J= 0.08U0, U=U0, and V= 0.001U0) and its time evolution
within the TDGA method in the presence of a temporary linear gradient potential

V̂
ext ¼ δE

P
iðxi=aÞn̂i . As seen in Fig. 7a, the chiral structure in the local phase,

Arg½ψi� ¼ Q � ri , could be successfully imprinted by applying the temporary
potential for δt=Qxa/δE (=4π/3δE for J1= J2). Figure 7b indicates that the phase
imprinting becomes almost perfect with no changes other than the local phase
distribution when δE exceeds ~ 10U0. The corresponding imprinting time δt≲
0.4U0

−1 is much shorter than the typical time scale of the experiments on the SF
(CSF)-MI transition (see Fig. 4).

Fig. 7 Phase imprinting. a Time evolution of the phase difference between the neighboring sites in the a1 direction, δφ � ðArg½ψi� � Arg½ψiþa1
�Þ,

averaged over the center sites within ∣ri∣ ≤ 10a, in the presence of a temporary linear gradient potential. The colors correspond to different potential
strengths δE/U0 = 1, 2, 5, 10, and 20, although all the curves are almost overlapped. b The density (solid lines) and order-parameter (dashed lines) profiles
in the final state after applying a gradient potential for time δt.

Fig. 8 Cluster mean-field calculations with 2D density matrix renormalization group. aMapping of the 2D cluster problem with the mean-field boundary
onto an equivalent 1D chain with long-range interactions and mean fields. b Typical behavior of the provisional critical point U�

c=jJ2j as a function of the
given momentum q= (qx, 0) in units of πa−1 for the hopping anisotropy J1∕J2 = 0.7 and the cluster size NC= 21.

Fig. 9 Scaling analysis in the cluster mean-field plus scaling analysis. Cluster-size scalings of the critical points for the transitions (a) between the
superfluid and Mott insulator states in the unfrustrated (J1, J2 > 0) case and b between the chiral superfluid and Mott insulator states in the frustrated
(J1, J2 < 0) case. The extrapolated (λ→ 1) values are plotted as a function of the hopping anisotropy J1/J2 in Fig. 5a.
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The CMF+ S analysis with 2D DMRG solver for bosons. In the CMF+ S
analysis, we consider the NC-site cluster Hamiltonian

~HC ¼ �
X
i;j2C

Jije
iq�ðrj�riÞ~b

y
i
~bj þ

U
2

X
i2C

n̂iðn̂i � 1Þ

� ψ
X
i2∂C

X
j=2C

Jije
iq�ðrj�riÞ~b

y
i þH:C:

0
@

1
A ð14Þ

on a triangular-shaped cluster of NC= 10, 15, 21 sites. The mean-field boundary
condition on the cluster-edge sites ∂C is implemented by the third term and the
twisted frame, ~bi � e�iq�ri b̂i , is adopted. The cluster Hamiltonian (14) is treated with
2D DMRG solver. Here we take the maximum one-site occupation nmax ¼ 4, which
is confirmed to be sufficient for the discussion near the ρ= 1 SF-MI (CSF-MI)
transition. For large-size clusters and especially for the large Hilbert space of bosons,
the exact diagonalization is practically not realistic as a solver for the cluster pro-
blem. Therefore, we employ the DMRG on the equivalent 1D chain model with
long-range hoppings and mean fields (see Fig. 8a). The DMRG calculation is per-
formed in the standard way but with the mean-field terms in Eq. (14)14. The
dimension of the truncated matrix product states kept in the present DMRG
calculations is typically ~103 to obtain numerically precise results. To solve

ψ ¼ 1
NC

X
i2C

h~bii ~HCðψÞ ð15Þ

in a self-consistent way, we iteratively perform the DMRG calculations until
convergence.

It is noteworthy that when we put a real number ψ as an input for ~HCðψÞ in the
fixed global gauge, the output N�1

C

P
i2Ch~bii ~HCðψÞ includes a small but finite

imaginary component (≲4% for NC= 21). This is due to a finite-size effect; the
order with uniform amplitude ψ and spiral phase twist exp½iq � ri� is not fully
commensurate with the shape of the finite-size clusters with the mean-field
boundary. We just ignore the small imaginary component in the calculations for
each NC, as it decreases with NC and is expected to vanish at the limit of NC→∞.

The optimization of the spiral twist q is performed in the following way: For
different values of q= (qx, 0), the “provisional” critical point U�

c=jJ2j (at which
ψ ¼ 0þ) is numerically determined (Fig. 8b). The maximum value of U�

c ðqxÞ=jJ2j
and the corresponding (qx, 0) were adopted as the CMF+ S prediction of the
critical point Uc/∣J2∣ and the BEC momentum Q at the critical point, respectively.
The slight variance of Qx from 4π/3 at J1/J2= 1 (see Fig. 5c) is thought to stem from
the same finite cluster-size effect mentioned above.

The CMF+ S curves in Fig. 5a are obtained from the size scaling of the phase
boundaries for NC= 10, 15, 21. Figure 9 shows the extrapolation of the NC=
10, 15, 21 data to NC→∞ (λ→ 1) for several values of J1/J2 with a linear function
of the scaling parameter λ ≡NB ∕ 3NC

36,37. Here, NB is the number of NN bonds
treated exactly in the cluster (NB= 18, 30, 45 for NC= 10, 15, 21, respectively). The
error bars in Fig. 5a are estimated from the variation in the linear fittings for
different pairs of the NC= 10, 15, 21 data.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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