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Mean path length invariance in wave-scattering
beyond the diffusive regime
Matthieu Davy 1✉, Matthias Kühmayer 2, Sylvain Gigan 3 & Stefan Rotter 2✉

Diffusive random walks feature the surprising property that the average length of all possible

random trajectories that enter and exit a finite domain is determined solely by the domain

boundary. Changes in the diffusion constant or the mean-free path, that characterize the

diffusion process, leave the mean path length unchanged. Here, we demonstrate experi-

mentally that this result can be transferred to the scattering of waves, even when wave

interference leads to marked deviations from a diffusion process. Using a versatile microwave

setup, we establish the mean path length invariance for the crossover to Anderson locali-

zation and for the case of a band gap in a photonic crystal. We obtain these results on the

mean path length solely based on a transmission matrix measurement through a procedure

that turns out to be more robust to absorption and incomplete measurement in the localized

regime as compared to an assessment based on the full scattering matrix.
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A fundamental result of diffusion theory is that the mean
path length of particles diffusing across a certain region of
space is entirely independent of the characteristics of the

diffusion process1–3. In fact, only the shape of the outer boundary
of this region determines the average length of particle trajectories
between entering and exiting this region; whether the paths taken
by the particles are straight lines or convoluted random walks is,
however, completely irrelevant. As such, this mean path length
invariance generalizes the so-called mean chord length theorem
valid in the ballistic limit2 and encompasses applications in
basically all research fields where diffusion processes or random
walks arise—ranging from nuclear physics1 and solar energy
harvesting4 to the movement of bacteria5.

The scope of this invariance property was recently expanded
even further, when it was shown that not only particles, but also
waves that scatter through a region of space are subject to the
same invariance property6. The key insight here is that the
average time-delay associated with a scattering process is directly
linked to the density of states (DOS) inside the scattering
region7–10. From the Weyl law11,12 we then know that the DOS
remains invariant when transforming a homogeneous medium in
the ballistic limit into a diffusively scattering disordered medium
of the same size6. A recent experimental implementation followed
exactly this line of thought by changing the turbidity of a liquid
from nearly transparent to very opaque and demonstrated that
the mean path length of isotropically incoming light inside the
liquid stays, indeed, unchanged over nearly two orders of mag-
nitude in scattering strength13. In spite of its coherent nature,
laser light could thus be observed to obey the same universal
invariance property as particles when scattering ballistically or
diffusively.

Coherent wave effects can, however, also lead to very strong
deviations from any of the transport regimes that particles can be
in. Consider here, e.g., the regime of Anderson localization14,15 or
the formation of a band gap in a photonic crystal16, to cite just
two genuinely wave-like phenomena that both rely on wave
interference. The natural question to ask at this point is whether

any such effects going beyond a trajectory-based description may
lead to a violation of the mean path length invariance since they
clearly fall outside the scope of both the mean chord length
theorem and a random walk picture. More specifically, since both
Anderson localization and a band gap prevent incident waves
from propagating inside the scattering region, one naturally
expects that the mean path length invariance should break down
in these cases. Numerical simulations of the scattering matrix6

suggest that the invariance property may also hold in the localized
regime. This is confirmed by the reconstruction of the DOS from
measurements of the transmission matrix17. None of these studies
however explore the impact of absorption on the estimation of
the mean path length. Moreover, the experimental setup used in
the latter study does not make it possible to verify the invariance
in the ballistic and diffusive regimes as well as for a photonic
crystal in which cases a complete measurement of the transmis-
sion matrix is required.

Insights into such questions are not just of academic interest:
consider, e.g., that the mean path length invariance is strongly
linked to the so-called Yablonovitch limit that imposes a cap on
the optimal intensity enhancement inside solar cells18. A break-
down of the invariance property may thus also provide a strategy
for overcoming current limitations in solar cell design4.

Here we will address these questions through an experiment
that gives us direct access to these scattering regimes beyond both
the ballistic and the diffusive limit. We test the invariance of the
mean time-delay in microwave measurements using a multi-
channel cavity for which the scattering strength of a random
sample can be tuned by changing the number of scatterers within
the cavity and for which an ordered arrangement of the scatterers
mimics a photonic crystal.

The scattering region is formed by an effectively two-
dimensional cavity (see “Methods”) of length L= 0.5 m and
width W= 0.25 m with two arrays of N= 8 antennas attached on
the left and right interfaces, respectively19. The antennas are
single-mode waveguides fully coupled to the cavity between 11
and 18 GHz (see Fig. 1a). Having full control over all these
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Fig. 1 Experimental setup and path length spectra. a Sketch of the experimental setup, where the cavity is represented for a random arrangement of 40
aluminum cylinders. The top plate has been removed to visualize the interior of the sample. The embedded intensity distribution corresponds to the highest
transmitting transmission eigenstate in this scattering configuration obtained from a numerical simulation. b Experimental data for the variation of the
inverse of the statistical conductance, ð1=g0Þ ¼ 3varðsaÞ=2 as a function of the conductance g to estimate whether the experiment operates in the diffusive
½ð1=g0Þ< 1� (green shaded area) or in the localized regime ½ð1=g0Þ> 1� (red shaded area)21. c Spectra of the mean path length s(ω)= s[2Qt(ω)] for a
chaotic cavity (blue line), a diffusive sample with nscat= 100 scatterers (green line) and a localized sample with nscat= 280 scatterers (red line). The values
of 1=g0 corresponding to these samples are shown with red, green and blue markers in (b).
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waveguides enables the measurement of the frequency-dependent
N ×N transmission matrix (TM) tba(ω), which contains the
complex and flux-normalized transmission coefficients between
the two arrays. The TM is complete, but strong internal reflec-
tions occur at the left and right interfaces of the cavity as the
spacing between two adjacent antennas is metallic (unlike in open
waveguides).

To induce a transition from the ballistic to the chaotic, diffusive
and the localized regime we gradually increase the scattering
strength within the cavity. Specifically, we measure the trans-
mission matrix t(ω) for an empty cavity (ballistic system), for a
cavity with an aluminum semicircle of 53 mm diameter [chaotic
system, see Supplementary Note 1 for details] and for disordered
samples with nscat randomly distributed aluminum cylinders of
radius rs= 3 mm. For the disordered systems the conductance
g ¼ hΣN

n¼1τni (i.e., the frequency-averaged sum of transmission
eigenvalues τn of t†t) ranges over more than two orders of
magnitude from 4.36 for the empty cavity to 0.01 for the sample
with the strongest disorder (nscat= 280).

Because of dissipation within the system and strong internal
reflections, the scaling of the conductance g may not reflect the
crossover from diffusive to localized waves found at g= 1 in open
random systems20. We exploit instead the statistics of the
transmitted intensity as a reliable indicator of the localization
transition even in the presence of absorption21. Specifically, the
variance of the normalized total transmission sa= Ta/〈Ta〉, with
Ta= Σb∣tba∣2, is given for non-dissipative diffusive samples by var
(sa)= 2/(3g). In the case of finite dissipation the so-called sta-
tistical conductance g 0 ¼ 2=½3varðsaÞ� has been found to indicate
localization reliably when taking on values ð1=g 0Þ> 121. In Fig. 1b,
we thus show the change of 1=g 0 with the conductance g and
observe values for ð1=g 0Þ that considerably exceed 1 for g < 0.6.
This confirms that the increased disorder in our two-dimensional
system leads to wave localization.

In multichannel systems, the mean path length can be esti-
mated from measurements of the Wigner-Smith (WS) time-delay
operator Q=−iS−1∂ωS applied to the scattering matrix S which
relates incoming and outgoing channels22–30. The operator Q is a
multichannel generalization of the phase derivative dϕba/dω,
which provides the time-delay of a spectrally narrow pulse
between two channels a, b. Averaging over all channels leads to
the mean Wigner–Smith time-delay given by
�tWSðωÞ ¼ Tr½QðωÞ�=ð2NÞ.

In principle, estimating the mean time-delay requires a mea-
surement of the complete scattering matrix S(ω) including the
two reflection matrices on the left and right sides of the sample,
respectively. Experimentally, such a measurement is highly
challenging, however, since most setups provide access either only
to a one-sided reflection matrix or to the TM. To overcome this
difficulty, we show in Supplementary Note 2 that the trace of
Q(ω) and the trace of the Wigner-Smith operator involving only
the TM from left to right, Qt(ω)=− it−1∂ωt, are connected
through the following equivalence relation:

s½QðωÞ� ¼ s½2QtðωÞ� ; ð1Þ
where sðOÞ ¼ c0Re½TrðOÞ=ð2NÞ� is the mean length obtained with
an operator O. The above simple relation, which extends the
decomposition of the DOS into a superposition of contributions
from each transmission eigenchannel17, is proven in Supple-
mentary Note 2 for non-absorbing systems. The key ingredient is
the correspondence between transmission and reflection eigen-
channels as a consequence of the unitarity of the scattering
matrix, S(ω)S†(ω)= 117,31. The transmission eigenchannel time-
delay tðtÞn ðωÞ ¼ dθn=dω, found from the derivative of a composite
phase shift θn of the singular vectors of the TM17, is then equal to
the average of the corresponding reflection delay times at the

right and left sides of the sample, tðtÞn ðωÞ ¼ ½tðrÞn ðωÞ þ tðr
0Þ

n ðωÞ�=2
(as in 1D systems32), where a prime denotes the quantities at the
other waveguide port. Equation (1) thus provides access to the
mean path length s½QðωÞ� ¼ c0�tWSðωÞ through transmission
measurements only.

Measuring the complete TM between single-mode waveguides,
as opposed to a sub-part of it with a grid of points at the input
and output of a tube17, opens the door to an accurate estimation
of the mean length not only in the localized regime but also in the
ballistic and diffusive regimes. In practice, evaluating s[2Qt(ω)]
requires that eigenchannels of t(ω) with small transmission
eigenvalues τn (typically τn < 10−6) are removed from the
experimental data since these eigenchannels may contain time-
delays tðtÞn ðωÞ that are corrupted by the noise level of the experi-
mental setup. In diffusive and localized systems, eigenchannels
with the smallest transmission values are typically associated with
a small intensity build-up inside the medium and therefore with
small time-delays17. Removing their contribution to s[2Qt(ω)]
thus modifies the estimated length only weakly (see Supplemen-
tary Note 5).

Spectra of the mean path length s[2Qt(ω)] corresponding to a
chaotic cavity, a diffusive sample and a localized sample, are
presented in Fig. 1c. In contrast to the diffusive regime in which
the overlap of many resonances leads to small fluctuations of
s[2Qt(ω)], the peaks observed in the localized regime correspond
to the contributions of spectrally isolated resonances associated
with localized modes. To meaningfully compare the mean path
length obtained in the different propagation regimes, it is thus
necessary to average s[2Qt(ω)] over a frequency range containing
several of these peaks.

Results and discussion
Disordered systems. In Fig. 2 we compare the mean path length
〈s(2Qt)〉 resulting from a frequency-average in single configura-
tions (see Methods) with the theoretical predictions obtained
using the Weyl law6,11,12 given by

stheoðωÞ ¼
1

2Nc0
ωAþ C � B

2
c0

� �
: ð2Þ

This Weyl prediction for the mean path length involves the
scattering area A ¼ LW þ 16lw� nscatπr

2
s corresponding here to

the surface of the cavity, including the attached channels of length
l= 38 mm and aperture w= 15.79 mm, from which the area of
the impenetrable metallic scatterers is subtracted. A first-order
correction term takes into account the external boundaries C=
16w and the internal boundaries B of the scattering system, that
include the metallic boundaries of the cavity and the circumfer-
ences of the metallic cylinders6. Smaller values of g are reached
with an increasing number of these cylinders, which reduces the
effective scattering area and increases the length of the internal
boundaries. The theoretical estimate of the mean path length
〈stheo(ω)〉 is then the average of stheo(ω) over the frequency range
and decreases from 2.05 m for an empty cavity to 1.76 m for a
sample with 280 cylinders. The theoretical mean path length for
an empty cavity 〈stheo(ω)〉 ~ 4L strongly exceeds its value for open
waveguides 〈stheo(ω)〉= πL/26. This enhancement is due to the
metallic spacings between the antennas at the right and left
interfaces of the cavity. Numerical simulations presented in
Supplementary Fig. 2 also show the existence of states with very
long delay times in the empty cavity, corresponding to path
lengths of a few hundred meters. These states are caused by
bouncing orbits between the top and bottom interfaces of the
cavity (in the y-direction).

Figure 2a shows perfect agreement between the Weyl
prediction (red line) and the mean path length 〈s(2Qt)〉 obtained
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in numerical simulations (black crosses) of the experimental
setup in absence of absorption (see Methods). Even the small
reduction in the mean path length predicted for an increasing
number of scatterers is well reproduced. This confirms the
validity of the mean path length invariance across the onset of the
localization transition.

Also the experimental data shown in Fig. 2b (blue circles) are
in good agreement with 〈stheo(ω)〉. How non-trivial this
invariance property is, can be appreciated when contrasting it
with the strong enhancement (reduction) of the transmission
(reflection) time-delays across the localization transition (blue
squares and triangles). We also observe that the mean path length
is slightly underestimated, especially in the ballistic regime, which
can be attributed to the presence of absorption.

Influence of absorption. Even though the DOS integrated over
frequency is independent of absorption33, the presence of
absorption within the cavity makes the scattering matrix sub-
unitary34 and leads to a violation of the mean path length
invariance6 so that this deviation comes as no surprise. Indeed,
the experimental data are well reproduced by numerical simula-
tions when dissipation is included. For the data shown in Fig. 2a
(black circles), we introduce uniform absorption by adding an
imaginary part to the effective refractive index of the cavity. We
here use for the empty cavity as well as for all disorder config-
urations an average uniform imaginary part of the refractive
index (ni= 2 × 10−4) found by comparing the frequency-

averaged transmission measured for the empty cavity with the
numerical simulations.

In addition to its detrimental effect on the mean path length
invariance, dissipation also breaks the unitarity of S and therefore
the correspondence between s[Q(ω)] and s[2Qt(ω)] in Eq. (1). In
the diffusive regime, all of these effects are sufficiently weak such
that losses through outgoing channels dominate over uniform
absorption over the sample. From the broadening of the average
linewidth with respect to the number of ports connected to the
cavity, we estimate that the ratio of losses through ports relative
to uniform losses within the cavity is equal to 5.4 (see
Supplementary Note 3). With the scattering matrix then still
being sufficiently close to unitarity, 〈s(2Qt)〉 provides a reliable
estimator of the theoretical value 〈stheo〉 in absence of absorption.
Interestingly, the stronger deviations found for the empty cavity
are a consequence of very specific states that bounce many times
between the top and bottom cavity boundary (in the y-direction).
Due to their long cavity dwell times, these states are very strongly
affected by dissipation and therefore lead to significant deviations
from the mean path length invariance (see Supplementary
Note 3). The existence of these states is reflected by the large
fluctuations of the mean path length in Fig. 2. In the diffusive
regime, the disorder scattering naturally leads to a suppression of
such states with strongly enhanced time-delays and thereby to a
better agreement with the theoretical predictions.

Surprisingly, we observe that our estimate for the mean path
length, 〈s(2Qt)〉, is more robust to absorption in the localized
regime than in the empty cavity even though Anderson
localization also gives rise to the large time-delays in the cavity
and large fluctuations of the mean path length (see Fig. 2b). Using
a toy model, we demonstrate analytically in Supplementary
Note 4 that in the limit of strong absorption s[2Qt(ω)] converges
towards the most direct path in transmission 〈Ldirect〉. As shown
in Fig. 3, all eigenchannels feature a quasi-ballistic propagation in
this limit providing the same contribution to the mean path
length. In this way, the flux in the empty system (with ni= 10−2,
see Supplementary Fig. 6) becomes almost perfectly aligned with
the x-direction from left to right as strong absorption suppresses
all longer paths35. Indeed, the resulting estimate for the most
direct path hLempty

direct i � 0:31hstheoi is in very good agreement with

Fig. 3 Influence of absorption. a, b Normalized transmission eigenchannel
contribution to the mean path length as a function of the index n, where
n= 1 (n= 8) corresponds to the highest (lowest) transmitting
eigenchannel for the empty sample (a) and a localized sample (b).
Increasing absorption leads to a redistribution of the transmission time-
delays which all converge to the length of the most direct path in the limit
of strong absorption (see Supplementary Note 4). The horizontal black
dashed line marks an estimation of the most direct path in the empty
system. Error bars represent the standard deviation of the channel delay
times in transmission for each eigenchannel.050100150200250
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Fig. 2 Mean path lengths with respect to the number of scatterers.
a Mean path length evaluated as 〈s(2Qt)〉, see Eq. (1), obtained in
simulations without (black crosses) and with (black circles) absorption as a
function of the number of metallic cylinders within the cavity. The red solid
line is the theoretical length calculated from the Weyl law (see Eq. (2)).
Absorption reduces the estimated mean path length. Background colors in
rose, green, and white mark the localized, diffusive, and the ballistic regime
as in Fig. 1b. b The same quantity, 〈s(2Qt)〉, found experimentally (blue
circles). The squares and triangles are the mean path length in transmission
and in reflection, respectively (see Supplementary Note 1 for details). Error
bars represent the standard deviation.
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the numerical value of 〈s(2Qt)〉= 0.32〈stheo〉. In the localized
regime, the presence of metallic and hence impenetrable
scatterers elongates the direct path, which is found to be
comparable to the mean path length (〈s(2Qt)〉= 0.66〈stheo〉 for
the sample with 280 scatterers and ni= 10−2). The increased
absorption-stability of the mean path length in the localized
regime as compared to the ballistic regime is thus explained by
the difference in the most direct scattering contributions in these
two cases. We emphasize that this robustness of s[2Qt(ω)] in the
localized regime is in stark contrast to the much stronger
dependence on absorption we observe for a corresponding
estimate using the full Wigner-Smith matrix s[Q(ω)] (see
Supplementary Fig. 6). Q(ω) contains the full scattering matrix
and thus depends on the sum of phase delay times of both
transmitted and reflected waves36. In analogy to our analysis from
above, the strong absorption reduces these contributions to those
coming from the shortest possible paths. However, since the
shortest paths contributing here are those that are directly
reflected when entering the cavity, their extremely short time-
delay values will dominate in the strong absorption limit (see
Supplementary Note 4). Compared to transmission eigenchannels
whose direct paths have to traverse the whole system, the
convergence of s[Q(ω)] to the direct paths in reflection leads
eventually to a pronounced underestimation of the mean path
length for strongly scattering samples.

Photonic crystal. After having explored the validity of the mean
path length invariance in the crossover to very strong disorder, we
will now consider the opposite limit of a structured medium with
periodic order. For this purpose, we form a photonic crystal (PC)
by a periodic arrangement of alternating aluminum and Teflon
cylinders (see Methods). The structure with 15 layers of scatterers
in logitudinal direction exhibits a band gap centered at f0=
12 GHz with a width Δf0 ≈ 2 GHz as can be seen in Fig. 4a.
Because the PC only fills the middle part of the entire scattering
area of the cavity, the mean path length includes the contribution
of the PC as well as the free space between the PC and the
interfaces of the cavity. To isolate the impact of the PC, we
subtract the theoretical free space contribution to s[2Qt(ω)],
except in the band gap for which the transmission remains in
the noise floor of the experimental setup (≈10−6) and we set
s[2Qt(ω)]= 0.

Numerical simulations are then performed in a cavity whose
scattering region has the same dimensions as the PC with small
disorder in the scatterer positions and absorption being added to
mimic the situation in the experiment (see Methods). The central
frequency of the band gap is now f0= 12.6 GHz with a width of
3.3 GHz, which is larger than in measurements. We attribute
these differences to tiny air gaps between the top plate and the
aluminum cylinders in the experimental setup, where scattering
at the top cylinder edge causes the excitation of evanescent
modes. The effective properties of the scatterers are thus modified
locally due to the coupling of such evanescent modes to
neighboring Teflon scatterers. The mean path length is also
strongly reduced within the band gap in simulations (see Fig. 4b),
but s[2Qt(ω)] is not vanishing as a consequence of the finite
length of the PC. We also note that the dwell time can be negative
as a result of absorption37 and since the dwell time operator is
related to the time-delay operator and thus also to s[2Qt(ω)], this
explains the negative values in Fig. 4b.

From such an observation one may be tempted to conclude
that the mean path length invariance does not hold in such
periodic systems. Following prior theoretical work on frequency
sum rules33,38, we know, however, that in a sufficiently broad
spectral window, reductions and enhancements of the DOS

should compensate each other in arbitrary systems including the
case of photonic band gap materials. Due to the connection
between the DOS and the mean path length, we should find,
correspondingly, that the strong decrease of s[2Qt(ω)] within the
band gap is compensated by a corresponding enhancement right
outside of the band gap. As can be seen in Fig. 4b, we indeed
observe such an enhancement of the mean path length close to
the band edges, with values for s[2Qt(ω)] even exceeding 3stheo(ω)
in measurements and in simulations.

In Fig. 4c we now show the mean path length normalized by
the Weyl prediction, s[2Qt(f)]/stheo(f), integrated over a frequency
window Δf centered around the middle of the corresponding
band gap f0 obtained in the experiment or the simulation,

NsðΔf Þ ¼
R f 0þΔf

2

f 0�Δf
2

s½2Qtðf Þ�=stheoðf Þ df . The Weyl law prediction

for this quantity is Ns(Δf)= Δf. Note that the band gap is not
located in the center of our frequency range. Thus, once the lower
end of the integration frequency window has reached 9.5 GHz, we
continue the integration with only the higher frequency range. In
the experiment, this average ratio Ns(Δf) now almost vanishes for
a spectral window Δf smaller than the width of the band gap but

Fig. 4 Path lengths in a photonic crystal. a, b Frequency spectra (a) of the
transmission and (b) of the mean path length in a photonic crystal obtained
in measurements to which the free space contribution has been removed
outside the band gap (blue line) and in simulations with absorption (black
line). A transmission band gap is clearly observed for this sample with
15 longitudinal layers of regularly spaced scatterers. c Integral of the mean
path length normalized by its theoretical value over a frequency window
spanning Δf around the center of the band gap. The black dashed line is the
result of simulations in absence of absorption. The decrease of the mean
path length within the band gap is followed by a strong enhancement
starting at the band edges such that the frequency-averaged value
progressively converges towards the theoretical Weyl prediction. The
experimental data (blue solid line) shows the same trend, but stays slightly
below the Weyl prediction for large Δf due to absorption (see agreement
with the simulations including absorption, black solid line).
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then increases rapidly and progressively converges towards
Ns(Δf) ≈ 0.86Δf as Δf= 8.5 GHz. As in the case of the empty
system or the disordered configurations, this 14% deviation from
the Weyl law is due to absorption within the sample. This is
confirmed by simulations without absorption for which Ns(Δf)
indeed reaches Ns(Δf) ≈ 0.975Δf. The convergence of Ns(Δf) now
demonstrates that the pronounced enhancements of s[2Qt(ω)] at
the edges of the band gap compensate the vanishing mean path
length within the band gap. The fact that we observe the
experimental data and the simulations with absorption to
converge towards the same value of Ns for large Δf in spite of
the different band gap sizes for these two cases, further
substantiates the invariance property of the mean path length.

Conclusion
In summary, we experimentally demonstrated with microwave
measurements that the knowledge of the transmission matrix
alone provides a robust way of estimating the invariant mean
path length, even in scattering systems with strong wave-
interference and weak absorption. Our results clearly show that
this invariance property reaches far beyond the diffusive regime
and thus provides a comprehensive bound on enhancement of
the mean path length of broadband light in a medium.

Methods
Experimental setup. Sixteen antennas that are waveguide-to-coax adapters
operating in the Ku-band are attached to the system and fully coupled to the
cavity between 11 and 18 GHz. We operate in a frequency window smaller than
c0/2h= 18.75 GHz where only the fundamental mode in the vertical z-direction is
excited, making the cavity effectively two-dimensional. Measurements of the fre-
quency spectra of the TM are carried out with two ports of a vector network
analyzer connected to two N × 1 electro-mechanical switches to successively excite
each transmitting and receiving antenna. The ports of the switches that are not
excited are terminated with 50 Ω loads so that the antennas mimic absorbing
boundary conditions. The metallic spacing between adjacent antennas generate
strong internal reflections at the interfaces of the cavity. The TM is measured
between 11 and 13 GHz in the ballistic and diffusive regimes and between 11 and
12 GHz in the localized regime, with frequency steps of 0.4 MHz.

Photonic crystal. The period of the square lattice between a metallic and a dielectric
Teflon scatterer is d= 1.2 cm in both the longitudinal and transverse direction. A
picture of the experimental setup is shown in Supplementary Fig. 1. The photonic
crystal consists of 15 longitudinal layers of scatterers. The variations of the theoretical
mean path length stheo(ω) with frequency for a sample of 300 cylinders is given by Eq.
(2), where the area of the Teflon cylinders has to be multiplied with their refractive
index squared to account for the increased DOS in dielectric materials.

Numerical simulations. We solve the two-dimensional scalar Helmholtz equation
Δþ n2ðrÞk20
� �

ψðrÞ ¼ 0 using a finite element method39,40 (https://ngsolve.org).
Here, Δ is the Laplacian in two dimensions, n(r) is the refractive index distribution,
r= (x, y) is the position vector, k0= 2π/λ is the vaccum wavenumber and ψ(r) is
the z-component of the TE-polarized electric field. In our simulations we use the
exact dimensions of the experimental setup (see Fig. 1), where the single mode
leads are terminated with perfectly matched layers which absorb the outgoing
waves without any back-reflections and thus mimic semi-infinite leads. To account
for the global losses in the experiment, we add a frequency-independent uniform
imaginary part of 2 × 10−4 to the effective refractive index of the cavity which
yields the same frequency-averaged transmission in the empty system as in the
experiment.

In the case of the disordered systems, we use—just like in the experiment—a
single random configuration for each number of scatterers and average the
calculated mean path lengths in the range of 11–13 GHz (11–12 GHz for
280 scatterers).

The simulations of the photonic crystal are performed in the frequency interval of
9.5–17 GHz. To mimic experimental uncertainties, we introduce a slight disorder to
the positions of the scatterers, i.e., we displace scatterers in the transverse and
longitudinal direction by a random value drawn from the interval [−rs/10, rs/10]. We
then define our band gap as the frequency interval in which the transmission in the
numerical simulation reaches the experimental noise floor (≈10−6).

To calculate the time-delay operators Q, Qt, Qr and Qr0 we have to invert the
corresponding scattering, transmission or reflection matrices. Since these matrices
can be singular, we perform a singular value decomposition and project our
matrices onto subspaces containing only singular vectors corresponding to singular
values greater than 10−10 which enables us to compute their pseudo-inverse41,42.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.
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