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Fundamental limits and optimal estimation of the
resonance frequency of a linear harmonic oscillator
Mingkang Wang 1,2, Rui Zhang3, Robert Ilic 1, Yuxiang Liu3 & Vladimir A. Aksyuk 1✉

All physical oscillators are subject to thermodynamic and quantum perturbations, funda-

mentally limiting measurement of their resonance frequency. Analyses assuming specific

ways of estimating frequency can underestimate the available precision and overlook

unconventional measurement regimes. Here we derive a general, estimation-method-

independent Cramer Rao lower bound for a linear harmonic oscillator resonance frequency

measurement uncertainty, seamlessly accounting for the quantum, thermodynamic and

instrumental limitations, including Fisher information from quantum backaction- and ther-

modynamically driven fluctuations. We provide a universal and practical maximum-likelihood

frequency estimator reaching the predicted limits in all regimes, and experimentally validate it

on a thermodynamically limited nanomechanical oscillator. Low relative frequency uncer-

tainty is obtained for both very high bandwidth measurements (≈10−5 for τ= 30 μs) and

measurements using thermal fluctuations alone (<10−6). Beyond nanomechanics, these

results advance frequency-based metrology across physical domains.

https://doi.org/10.1038/s42005-021-00700-6 OPEN

1Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, USA. 2 Institute for Research in Electronics
and Applied Physics, University of Maryland, College Park, MD, USA. 3 Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester,
MA, USA. ✉email: vladimir.aksyuk@nist.gov

COMMUNICATIONS PHYSICS |           (2021) 4:207 | https://doi.org/10.1038/s42005-021-00700-6 | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00700-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00700-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00700-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00700-6&domain=pdf
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-2504-4045
http://orcid.org/0000-0003-2504-4045
http://orcid.org/0000-0003-2504-4045
http://orcid.org/0000-0003-2504-4045
http://orcid.org/0000-0003-2504-4045
http://orcid.org/0000-0002-9653-4722
http://orcid.org/0000-0002-9653-4722
http://orcid.org/0000-0002-9653-4722
http://orcid.org/0000-0002-9653-4722
http://orcid.org/0000-0002-9653-4722
mailto:vladimir.aksyuk@nist.gov
www.nature.com/commsphys
www.nature.com/commsphys


Parametrically coupling time-varying unknown quantities to
resonance frequencies of harmonic oscillators enables
measurements that are insensitive to low-frequency

noise sources and drifts in the detection gain and bias. The
unmatched performance of frequency-based sensing makes it the
core of accurate scientific and cost-effective commercial mea-
surement systems, spanning the length scales from kilometer-
long LIGO1 to mesoscopic micro- and nano-electro-mechanical
systems (M/NEMs)2–9 and further to the single-atom tip of a
frequency-modulation atomic force microscope (AFM)10.

Despite the wide applications of frequency-based sensing for
scientific high-precision measurement, a general and fundamental
understanding of the linear oscillator resonance frequency esti-
mation and its uncertainty limits is currently lacking. The ther-
modynamic limit for frequency measurement has been
considered separately in the AFM community11 and M/NEMs
community12,13. However, due to specific assumptions and sim-
plifications regarding measurement conditions and how the fre-
quency is calculated from the position data, the reported
thermodynamic limits are different from each other and only
valid for specific measurement regimes12–16, such as for strongly
driven oscillators with negligible detection noise in the long
averaging time limit. Additionally, the thermodynamic fluctua-
tions of the oscillator motion, typically only considered as a
source of uncertainty, in fact also contain information about the
resonance frequency, evident, for example, from the Lorentzian
peak in its thermal noise power spectral density. Yet this addi-
tional frequency information is not only missed in many fre-
quency measurement settings, but also overlooked when
analyzing the fundamental measurement limits, radically under-
estimating the available precision for frequency estimation
in situations where the magnitude of the available external
driving force is limited.

Information theory provides a Cramer Rao lower bound
(CRLB)17–19 for the uncertainty of unbiased parameter estima-
tion from a set of measured data, valid regardless of any specific
estimation procedure. The bound uses the total Fisher
information20 about the unknown parameter obtained by the
measurement, relying only on the underlying relationship
between the parameter and the data, namely the conditional
probability of obtaining the particular measured data for the
specific value of the parameter. Due to its universality, it has been
widely applied to obtain measurement limits and benchmark
specific measurements, such as super-resolution ultrasonic21 and
optical microscopy22, particle tracking and localization23,24, and
the standard quantum limit for entangled or squeezed states25,26.

Here, we derive the CRLB to obtain general uncertainty limits,
including the fundamental quantum and thermodynamic limits,
as well as the instrumental limits, for resonance frequency
extracted from continuous position measurement of a linear
harmonic oscillator (LHO), subject to dissipation, thermo-
dynamic- and quantum-backaction-induced stochastic fluctua-
tions, instrumental detection uncertainty, and external harmonic
excitation. Acknowledging that a nondemolition frequency
detection is ideal in the quantum regime, we remain focused on
the continuous measurement of position, encountered in most
experimental situations. In addition to recovering the uncertainty
minimum of the standard quantum limit expected for such
measurement under strong coherent external excitation, we pre-
sent the fundamental limits of extracting the frequency infor-
mation from fluctuations driven by the quantum measurement
itself solely, or in combination with thermal and external driving
forces. Besides, we propose a computationally fast and statistically
efficient frequency estimator—a procedure for converting the
detected motion into the frequency in real-time with imprecision

not exceeding their theoretical limits given by the CRLB. The
proposed estimator extracts the frequency information simulta-
neously from the harmonic response and the stochastic fluctua-
tions, while optimally averaging over the detection noise, making
it applicable on all time scales and with any external driving
strength. Far beyond the conventionally used phase14 and Kay’s
(phase gradient)27 estimators, it can be directly applied to data of
low signal-to-noise-ratio(SNR) extracting all available frequency
information. Based on our knowledge, the derived frequency
detection limit and estimator cover all specific conditions con-
sidered in previous works.

Using the proposed frequency estimator, we experimentally
measure resonance frequency of a low-loss stress-engineered
thermodynamically limited nanomechanical resonator with
integrated photonic cavity-optomechanical readout. We demon-
strate the frequency uncertainty (Allan deviation28) reaching the
theoretical lower limit (CRLB) over 4 decades of measurement
bandwidth (averaging time τ) with a relative precision of
≈0.4 × 10−6 for frequency measured without excitation, using
only thermodynamic fluctuations at room temperature, which is
better than the average performance of state-of-the-art NEMs
under strong driving force in this mass range (≈1 pg)15. Distinct
from exploiting the full driven linear dynamic range of our
device, here we focus on quantitatively understanding the
uncertainty limits and making the best possible measurement
with a given driving force. The measurement in the limit of weak
or no driving force works surprisingly well for nanoscale systems
at room temperature and may extend to other domains and to
quantum backaction-driven measurements.

Results
Oscillator motion in a rotating frame and the experimental
system. As shown in Fig. 1(a), we consider a LHO subject to
dissipation Γ, white fluctuating force f, which includes a Langevin
force coming from a thermal bath and a quantum measurement
backaction force. An harmonic driving force F= F0cos(ωt) with a
magnitude F0 at frequency ωmay also be applied. The equation of
motion for the classical LHO is written as:

€x þ Γ _x þ ω2
0x ¼

FðtÞ þ f
m

ð1Þ

where x is the position of the LHO, m is the effective mass, and ω0 is
its resonance frequency. The fluctuating force is assumed to be fre-
quency independent, at least over the resonator bandwidth, and
therefore effectively obeying hf ðtÞf ðt0Þi ¼ f 2rmsδðt � t0Þ with a con-
stant f 2rms. Specifically, for thermodynamic fluctuations f 2rms ¼
2ΓkbTm based on the fluctuation-dissipation theorem, kb is the
Boltzmann constant, T is the effective temperature, while for quan-
tum backaction f 2rms ¼ 2k_2 for position measurement strength k
[Supplementary Note 8: Eq. (S74)].

The LHO undergoes a continuous position measurement,
recorded by a detector with a detection uncertainty. The position
trace is fed into a frequency estimator to obtain an estimated
eigenfrequency ω̂0. The frequency uncertainty σf(τ) is a function
of averaging time τ and depends on the driving force, the
stochastic fluctuating forces, and the detection uncertainty. When
the LHO is used for sensing, the eigenfrequency varies in time
due to the parametric interaction between the LHO and the
measured quantities. For a fixed interaction strength, the
uncertainty of the estimated eigenfrequency directly translates
to the uncertainty of the measured quantities, limiting the
measurement precision.

The LHO used in the experiment is a nano-scale tuning
fork made from high tensile stress silicon nitride [false-colored
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micrograph in Fig. 1(a)]. The nominal thickness, width,
and length of the tuning fork are 250 nm, 150 nm, and 20 µm,
respectively. The tuning fork is stretched by a tension bar on the
right-hand side to provide extra tensile stress. The highly
enhanced tensile stress leads to a high frequency-Quality
factor product of order 1012. Due to the fluctuation-
dissipation theorem, low damping leads to a smaller Langevin
force, reducing the thermodynamically limited frequency
measurement uncertainty, as derived below. The high resonance
frequency serves to reduce the relative uncertainty of the
measurement further. An electrostatic driving force is
applied to the tuning fork from a sharp metal probe positioned
in proximity to the fork. The mechanical motion of the tuning
fork is measured through a near-field cavity-optomechanical
readout (See Supplementary Note 1)29 with detection noise well
below the thermal fluctuation within the fork resonance
linewidth.

By defining a slowly varying variable u via
x ¼ 1

2 ðueiωt þ u*e�iωtÞ, we use the rotating wave approximation
(RWA):

_uþ Γ

2
u� iΔωu ¼ F0

2iωm
� f1 � if2

iωm
ð2Þ

where Δω= (ω0− ω)≪ ω0 and f1,2 are the in-phase and
quadrature components of the fluctuation force in the rotating
frame near resonance with hfiðtÞfjðt0Þi ¼ 1

2 f
2
rmsδðt � t0Þδij. Note, the

choice of the sign of Δω reflects that the accurately known driving/
reference frequency ω is stable, while the resonance frequency ω0

is the variable to be determined from the measurement.
In a steady state, u obeys a two-dimensional Gaussian distribution

around the harmonic response OðΔωÞ ¼ hui ¼ AΓ
2ΔωþiΓ, where A ¼

F0
mω0Γ

[red bubble in Fig. 1(b)]. Defining fluctuating-force-induced
variance of x around the harmonic response xharmonic ¼

Fig. 1 Measurement of resonance frequency. a A linear harmonic oscillator subject to a driving force, stochastic Langevin and quantum measurement
backaction forces (QMB), and detection uncertainty. The time-varying eigenfrequency induced by a parametric interaction with an external system is
extracted from the continuously measured position x [Eq.(1)] by a frequency estimator. Lower panel shows the false-colored scanning electron micrograph
of the nanomechanical tuning fork with a cavity-optomechanical readout. Inset: a magnified view of the coupling gap between them. b The red bubble in the
phase diagram represents the steady-state distribution of the linear harmonic oscillator (LHO) rotating-frame coordinate u= X+ iY [Eq. (2)] subject to
thermal and quantum fluctuations. The purple bubble represents the distribution of uk due to diffusion around the expectation ûk , in a short time dt after a
known state uk�1. The blue bubbles show the position detection uncertainty. The red, purple, and blue distributions have a standard deviation of

ffiffiffi
2
p

σ,ffiffiffi
2
p

σdt , and
ffiffiffi
2
p

σn, respectively, in each of the two dimensions. The distance buk � uk�1 is exaggerated for illustration. c LHO position power spectral density
Suu, when driven at a small detuning from a constant resonance frequency. The purple area denotes the contribution from the mechanical motion. The blue
area represents the detection noise spectrum. d Real component X of u. Blue and purple dots schematically represent the measured positions with the
detection uncertainty and actual positions without detection uncertainty, respectively.
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Oj j cos ωt þffOð Þ as σ2 ¼ hðx � xharmonicÞ2i and using hx2i ¼
1
2 h uj j2i we obtain h u� Oj j2i ¼ 2σ2 [see Supplementary Note 2],
i.e., u has a variance σ2 for both in-phase, X, and quadrature, Y,
components. For thermodynamic fluctuations, this variance σ2 ¼
kbT
mω0

2 is given by the equipartition theorem, while generally:

σ2 ¼ f 2rms
2Γm2ω0

2
ð3Þ

Consider a continuous position measurement of a series uk at
equal intervals tk ¼ kdt with dt ≪ 1/Γ . As shown in the phase
diagram of Fig. 1(b), the LHO rotates around O at the rate Δω
and decays at the rate Γ

2, following Eq. (2), evolving determi-
nistically from a known position uk�1 to an expected positionbuk ¼ Oþ ðuk�1 � OÞe iΔω�Γ

2ð Þdt in time dt. Meanwhile, it also
diffuses in response to the fluctuating force, arriving at the next
actual position uk. In the Markov diffusion process uk depends
only on uk�1, and is independent of the prior history. Given a
known value of uk�1, for dt ≪ 1/Γ, the probability density
P ukjuk�1
� �

for uk in the phase diagram is a 2-dimensional
Gaussian [purple bubble in Fig. 1(b)] with a mean (expectation)
value of ûk accounting for the deterministic evolution and
variance of σ2dt for each dimension due to the random diffusion:

Pðukjuk�1Þ ¼
1

2πσ2dt
e
�
ðuk�OÞ�ðuk�1�OÞe

iΔω�Γ2ð Þdt
��� ���2

2σ2
dt

ð4Þ

For dt ≪ 1/Γ, variance σ2dt / dt can be quantitatively related to
σ2 by noting that the decay and diffusion balance each other in a
steady state, resulting in [See Supplementary Note 2]:

σ2dt ¼ Γdtσ2 ð5Þ
For illustration, we unphysically exaggerate the evolution of ûk

in Fig. 1(b). In the continuous measurement limit (dt ≪ 1/Γ), the
deterministic motion is always smaller than the stochastic one:
ûk � uk�1 �

ffiffiffi
2
p

σdt as ðuk�1 � OÞðiΔω� Γ
2Þdt � σ

ffiffiffiffiffiffiffiffiffi
2Γdt
p

.
Figure 1(c) shows the power spectral density Suu of the driven

LHO with a small detuning Δω. The purple and blue areas display
the mechanical noise and detection noise density, Sn. The blue
(purple) dots in Fig. 1(d) shows the corresponding in-phase
component of u, i.e., real part of u, in the time domain with
(without) detection noise. The points separated by times t ≪ 1/Γ
are correlated.

Cramer Rao Lower Bound and the detection uncertainty. To
describe a position measurement with detection noise, we intro-
duce ukm, an independent unbiased measurement of the actual
position uk. We now consider a finite time series UN

m ¼
fu1m; :::ukm:::; uNmg of N complex values ukm measured over the time
τ ¼ ðN � 1Þdt, and answer the question: how well the resonance
frequency can in principle be estimated from such a measure-
ment? With the RWA reference frequency ω perfectly known, the
variance of the estimate ω̂0 of an unknown resonance frequency
ω0 is equal to the variance of the estimated relative frequencycΔω ¼ ω̂0 � ω. Note, the hat-marks denote the measured value.
The theoretical lower bound on this variance is given by the
CRLB18:

Varðbω0Þ ¼ VarðcΔωÞ≥ IðΔωÞ�1 ¼ � ∂2

∂Δω2 ln PðUN
m ;ΔωÞ

D Eh i�1
ð6Þ

where the quantity IðΔωÞ ¼ � ∂2

∂Δω2 ln PðUN
m ;ΔωÞ

D E
is the Fisher

information, and P UN
m ;Δω

� �
is a 2N dimensional probability

density of obtaining a specific measurement UN
m, with :::h i

denoting the expectation for a given Δω.
For the white detection noise,

PðukmjukÞ ¼ 1
2πσ2n

e
� ukm�ukj j2

2σ2n
ð7Þ

Similar to σ2dt and σ2, σ2n ¼ hðxm � xÞ2i / 1=dt is the white-
noise variance in each of the components of the 2-dimensional
Gaussian in the RWA. Here we introduce a dimensionless

parameter η ¼
ffiffiffiffiffiffiffiffi
σ2nΓdt
σ2

q
that is the ratio of the detection noise

within the LHO bandwidth Γ and the stochastic position
fluctuations due to the fluctuating forces.

Cramer Rao Lower Bound for frequency measurement of lin-
ear harmonic oscillators subject to detection noise
General classical CRLB for frequency measurement. White detec-
tion noise σ2n / 1=dt will always exceed diffusion σ2dt ¼ Γdtσ2 for
a sufficiently small dt, such as, for example, in a high bandwidth
measurement of motion and resonance frequency. Explicitly
accounting for the detection noise also allows us to directly
extend the present classical analysis to a quantum LHO under a
continuous quantum position measurement since it is mathe-
matically equivalent to a classical LHO subject to specific levels of
the detection uncertainty and the stochastic quantum backaction
force30,31.

In the classical case, while the transition from uk�1 to uk is a
Markov process, this is not so between the sequentially measured
values ukm with detection noise. Each new measured value ukm
generally depends on the previous history of measurements Uk�1

m .
The probability of P UN

m ;Δω
� �

must be derived using the
underlying actual motion trajectory U ¼ u1:::; uk; :::uN

� �
gov-

erned by Eq. (4), and the dependence of the measured value ukm
on the actual position uk via Eq. (7). The probability of obtaining
the k-th measurement ukm after Uk�1

m depends on the conditional
probability distribution of true position uk, given previous
measurements Uk�1

m .

P ukmjUk�1
m

� � ¼ Z
P ukmjuk
� �

P ukjUk�1
m

� �
duk

¼
Z

P ukmjuk
� �Z

P ukjuk�1
� �

P uk�1jUk�1
m

� �
duk�1duk

ð8Þ
Here the likelihood P uk�1jUk�1

m

� �
expresses the knowledge of the

actual position uk�1 of LHO after a specific series of recorded
measurements Uk�1

m ¼ u1m; :::u
k�1
m

� �
. It can be computed via the

recursive Bayesian update32:

P ukjUk
m

� � ¼ P ukjukm;Uk�1
m

� � / P ukmjuk
� �

P ukjUk�1
m

� �
¼ P ukmjuk

� � Z
P ukjuk�1
� �

P uk�1jUk�1
m

� �
duk�1

ð9Þ

Starting with Pðu1Þ ¼ 1
2πσ2 e

�
u1�eOðeΔωÞ�� ��2

2σ2 with eO ¼ AΓ

2 eΔωþiΓ being a
function of the resonance frequency fΔω prior to the start of the
measurement, P ukjUk

m

� �
defines the knowledge of the LHO state

during the measurement. Since all the functions in Eq. (9) are
Gaussian, their products and integrals are Gaussian as well. For
each time step k, the likelihood is a Gaussian with a mean value
�uk and a standard deviation σk, defined by:

PðukjUk
mÞ ¼

1
2πσ2k

e
� uk�Oð Þ�ξkj j2

2σ2
k ð10Þ
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where ξk ¼ �uk � OðΔωÞ shifts the origin to OðΔωÞ, with the ξ0 ¼ 0
and σ0 ¼ σ prior to any measurement.

Utilizing Eqs. (4), (7) and (10), the Bayesian update Eq. (9) can
be expressed as an update ξ0 ¼ 0, σ0 ¼ σ, ξk�1! ξk; σk�1! σk
[Supplementary Note 6: A]:

ξk ¼
1

ð1� ΓdtÞσ2k�1 þ σ2dt
e iΔω�Γ

2ð Þdtξk�1 þ
1
σ2n
ðukm � OÞ

� 	
´

1
ð1� ΓdtÞσ2k�1 þ σ2dt

þ 1
σ2n


 ��1 ð11Þ

1
σ2k
¼ 1
ð1� ΓdtÞσ2k�1 þ σ2dt

þ 1
σ2n

ð12Þ

This update can be intuitively understood in two steps. First, the
prior position is evolved in time dt via rotation and decay,
ξk�1 ! e iΔω�Γ

2ð Þdtξk�1, while the variance is decreased by the decay
and increased by the diffusion σ2k�1! σ2k�1e

�Γdt þ σ2dt ¼
1� Γdtð Þσ2k�1 þ σ2dt in the continuous measurement limit (Γdt ≪
1). Second, the information about the evolved prior position
e iΔω�Γ

2ð Þdtξk�1 with the evolved variance 1� Γdtð Þσ2k�1 þ σ2dt is
updated by an inverse-variance-weighted average with the new
measured position ukm � O

� �
of variance σ2n.

Similarly, using Eqs. (4), (7), and (10), we rewrite Eq. (8) for
the probability of the next measurement as:

PðukmjUk�1
m Þ ¼

1
2πσ2n

e
�
ðukm�OÞ�e

iΔω�Γ2ð Þdt
ξk�1

��� ���2
2σ2n

ð13Þ

where we recall that σ2n ¼ η2σ2

Γdt � σ2k�1; σ
2
dt for the continuous

measurement limit.
The probability density for a measurement sequence UN

m is

PðUN
m ;ΔωÞ ¼ Pðu1mÞ

YN
k¼2

P ukmjUk�1
m

� �

¼ Pðu1mÞ
YN
k¼2

1
2πσ2n

e
�

ukm�O�e
iΔω�Γ2ð Þdt ξk�1

��� ���2
2σ2n

ð14Þ

For continuous measurement, the recursive update (12) for σ2k

converges as σ2k ! σ2e ¼ Dησ2, where D ¼
ffiffiffiffiffiffiffiffi
η2þ4
p

�η
2 [Supplemen-

tary Note 6: B]. With this constant variance, the continuous
measurement update of the most likely position Eq. (11) becomes:

ξk ¼ ξk�1 þ iΔω� Γ
2

� �
ξk�1dt þ sΓdt

η ðukm � O� ξk�1Þ ð15Þ
By going from the discrete to the continuous time, deriving and

solving differential equations describing the time evolution of
various ξk-dependent expectations terms in the Fisher informa-
tion (Eq. (6) with (14)), the following general expression for the
Fisher information can be obtained [Supplementary Note 6: C]:

IðΔωÞ ¼ IDRV þ IFL ð16Þ

IDRV ¼
1
Γ

Oj j2
σ2

4
2Δω
Γ η

� �2þη2 þ 4
´ τ þ 1� e�Γ 1þ2Dη

� �
τ

Γ 1þ 2 D
η

� 
 � e iΔω�Γ
2 1þ2Dη
� �� �

τ � 1

iΔω� Γ
2 1þ 2 D

η

� 
 þ c:c:

24 358<:
9=;

IFL ¼
4
Γ

D2

ηþ 2D
� �

ηþ D
� � ´ τ þ ηþ D

� �
D

1� e�Γ 1þ2Dη
� �

τ

Γ 1þ 2 D
η

� 
 � ηþ 2D
� �

D
1� e�Γ 1þD

η

� �
τ

Γ 1þ D
η

� 

8<:

9=;
and the CRLB for frequency measurement is
STDðω̂0Þ≥ 1=

ffiffiffiffiffiffiffiffiffiffiffi
IðΔωÞ

p
.

The Fisher information is the sum of two parts. The first part
IDRV is proportional to the modulus square of the drive-induced

amplitude Oj j2, while the second part IFL is independent of the
drive and is the information contained in the stochastic
fluctuations (thermodynamic and quantum-backaction induced
mechanical fluctuations).

We need to emphasize the generality of the derived CRLB valid
for any unbiased frequency estimator. First, the derivation made
no assumptions for the relative power of white noise, described by
η, meaning that it is valid for the case of any SNR. Second, it is
valid for any detuning including far-detuned drive Δω� Γ as
long as the RWA is valid Δω� ω0. Third, it is valid for any
averaging time τ larger than dt, including the very short averaging
times, where the detection noise dominates over diffusion in the
LHO position uncertainty. Finally, it is valid for any driven
amplitude, including the undriven case where the eigenfrequency
is extracted from fluctuations alone, i.e., IFL. We also note that Eq.
(16) is valid even when the stochastic force includes quantum
backaction and uncertainty, as we will discuss in the next sub-
section. The numerical and experimental verifications of the
CRLB will be discussed in the later, estimator and experimental,
Sections. This result is more general than previous work12–16,
where further assumptions are made regarding measurement
conditions or how the frequency is calculated from the position
data, making them only valid for specific cases, such as with
strong driving force or on long averaging time where the SNR
is high.

This exact general formula simplifies for different useful limits
as follows [Supplementary Note 6: D]:

Simplified classical CRLB for long averaging time limit. For long
averaging time τ � 1

Γð1þD
ηÞ
:

STD ω̂0

� �
≥

ffiffi
Γ
τ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

ηþDð Þ ηþ2Dð Þ þ
Oj j2
σ2

4

η2þ4ð Þþ 2Δω
Γ ηð Þ2

� �r
ð17Þ

where the uncertainty scales / τ�1=2, as generally expected when
independent, statistically uncorrelated measurements are
combined.

Simplified classical CRLB for short averaging time limit. For very
short averaging τ � η

Γ:

STDðω̂0Þ≥ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γτ3
3η2

Oj j2
σ2 þ 2D2

� 
r
ð18Þ

where the uncertainty scales / τ�3=2, as expected for a velocity
measurement subject to uncorrelated position noise.

Simplified classical CRLB for weak detection noise limit. For a ‘low
detection noise’ measurement η� 1, on all time scales:

STDðω̂0Þ≥ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ
Γ

Oj j2
σ2 þ 2

� 

1þ η 1�e�2Γητ

2Γτ � 2η 1�e�Γητ
Γτ

� 
r
ð19Þ

where, as expected, if noise is zero (η= 0), Eq. (19) recovers to
the noiseless case derived independently in Supplementary Note 3
(Eqs. S10) and 4 (Eq. S16). A summary of the CRLB is presented
in Supplementary Note 9.

Quantum regime
General quantum CRLB for frequency measurement. The quan-
tum LHO subject to a continuous measurement of position is
mathematically equivalent to the classical LHO with the appro-
priate level of measurement uncertainty and stochastic backaction
force30,31. Therefore, the conclusions of the frequency uncertainty
of classical LHO, shown in Eq. (16), can be directly extended to
the quantum regime. By considering the quantum uncertainty
and backaction, and using the quantum-mechanical expression
for the fluctuation-dissipation theorem33, we derive the
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equivalent classical position uncertainty σ resulting from the
temperature fluctuations and backaction. Using it together with
the quantum measurement uncertainty provides the equivalent
classical uncertainty ratio η. For ideal continuous quantum
position measurements with zero classical detection noise and
unity quantum efficiency, we obtain [See Supplementary Note 8
(Eq. S74-S76) for the derivations and the more general expres-
sions including classical noise and non-unity quantum efficiency]:

σ2

x2ZPM
¼ coth _ω0

2kbT
þ ρ ð20Þ

η ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρ coth _ω0

2kbT
þρ

� 
r
ð21Þ

where ρ ¼ 4 kx2ZPM
Γ is a dimensionless measurement strength

parameter, k is the measurement strength30, x2ZPM ¼ _
2mω0

is the
square of the zero-point fluctuation amplitude, _ is the reduced
Plank constant.

By applying Eqs. (20) and (21) for the parameters σ2, η to
Eqs.(16)–(19), we obtain the full quantum and thermodynamic
lower limits for frequency estimation uncertainty from ideal
continuous quantum position measurement.

Simplified quantum CRLB for long averaging time limit. Specifi-
cally, Eq. (17) for the long averaging time limit becomes

STDðω̂0Þ≥ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IDRV þ IFL

p

IFL ¼ τ
Γ

2 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8ρ coth

_ω0
2kbT
þρ

� 
r
0BB@

1CCA
2

1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8ρ coth

_ω0
2kbT
þρ

� 
r
IDRV ¼ τ

Γ
Oj j2
x2ZPM

1

coth _ω0
2kbT
þ ρ þ 1

8ρ 1þ 2Δω
Γð Þ2

� �
ð22Þ

Simplified quantum CRLB for strong force noise limit. In the limit
of high temperature or high measurement strength, we obtain:

STDðω̂0Þ≥
ffiffi
Γ
τ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oj j2

x2ZPM coth _ω0
2kbT
þ ρ

� 
þ 2
s

ð23Þ

The standard quantum limit for frequency estimation and CRLB
for quantum-backaction-driven limit. Frequency uncertainty for
long averaging times [Eq. (22)] in the zero-temperature limit
(coth _ω0

2kbT
¼ 1) is shown in Fig. 2(a) as a function of measurement

strength for several drive strengths including zero-drive. At high
drive strength (red) the term IDRV dominates and we observe the
typical minimum in the frequency measurement uncertainty
associated with the standard quantum limit (SQL). However, with
decreasing drive strength we smoothly transition to the zero
external drive limit (blue) dominated by IFL, in which information
about the frequency is obtained from the measured system
dynamics under the stochastic perturbation induced solely by the
quantum measurement itself. In this zero-drive regime, the fre-
quency measurement uncertainty linearly improves with
increasing measurement strength, and then approaches a limit
value 1=

ffiffiffi
2
p

at the measurement strength ρ≥ 1 (the time-averaged
position perturbation ≥ x2ZPM).

In the conventional regime of drive strength larger than the
measurement backaction, the frequency uncertainty monotoni-
cally increases with increasing measurement strength above the
SQL. In a stark contrast, the frequency uncertainty of this new,
backaction-driven measurement regime reaches a plateau at high
measurement strength and does not get worse even for the
measurement strength far beyond the SQL value. This
backaction-dominant limit obtained at the large measurement
strength, shown in Eq. (23), is independent of the stochastic force
strength, provided that the stochastic fluctuations are larger than
the position detection uncertainty.

Figure 2(b) shows the temperature dependence of the
frequency uncertainty with and without drive. The no-drive
dashed lines show the uncertainty due to the Fisher information
IFL obtained from the system driven stochastically by the
combination of the quantum backaction and thermal fluctua-
tions. As the mechanical fluctuation amplitude increases with
higher temperatures, the uncertainty obtained for low quantum
measurement strength improves.

Fig. 2 Quantum limited frequency uncertainty for long measurement times. a Zero-temperature case (T= 0). From the blue to red lines,
Oj j2
x2ZPM
¼ 0; 10�2; 10�1; 100; 101; 102; 103, respectively. For a strong coherent external drive, the Standard Quantum Limit (SQL) minimum at optimal

measurement strength is evident. With the weaker drive, a transition occurs, whereby the stochastic measurement backaction becomes the dominant
excitation to the system, and the system’s response to backaction is the dominant source of the frequency information (slope becomes -1). Dashed black
lines are guides for the eye, depicting constant, linear, and square-root dependencies in the log–log plot. b Finite-temperature cases, with (solid lines
Oj j2
x2ZPM
¼ 104) and without (dashed lines Oj j2

x2ZPM
¼ 0) external drive. From blue to red, 2kbT_ω0

¼ 0; 101; 102; 103; 105; 106; 107, respectively. Increasing temperature
increases the driven system uncertainty in the vicinity of the SQL, but only until the increased stochastic thermal force overtakes the drive. Larger thermal
excitation at higher temperatures improves the frequency measurement in the low measurement strength regime. The detuning is set to be 0, 2ΔωΓ ¼ 0.
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For the driven solid lines, most of the frequency information is
obtained from the response to the applied drive, IDRV . The typical
minimum of the uncertainty at the SQL is evident for T= 0
(blue), and deteriorates with increased temperatures due to the
thermal fluctuations obscuring the driven response. However, the
uncertainty increase stops at the STDðω̂0Þ

ffiffi
τ
Γ

p ¼ 1=
ffiffiffi
2
p

, explained
by the additional frequency information that can be obtained
from the fluctuation dynamics, IFL, and that information becomes
independent of the temperature and the measurement strength as
shown in Eq. (23).

Maximum likelihood estimator
General frequency estimator for linear harmonic oscillators. In this
section, we develop practical on-line maximum likelihood esti-
mators for resonance frequency ω0 from the continuously mea-
sured motion data. We demonstrate that the estimator is
statistically efficient, a term used to describe estimators that reach
the lowest possible uncertainty given by the CRLB.

To motivate developing an accurate frequency estimator, we
note that the resonance frequency ω0 of a resonator driven at ω is
most commonly estimated by considering the steady-state
response phase relative to a harmonic driving force weakly
detuned from resonance: ω̂0 ¼ ωþ Γ

2 φþ π
2

� �
where φ ¼ ffOðΔωÞ

is the phase angle of O Δωð Þ ¼ O Δωð Þ
�� ��eiφ 14. However, this

estimator entirely neglects stochastic fluctuations, providing no
frequency information when the driving force is zero. Further-
more, it is only valid for averaging times τ � 1

Γ, well above the
LHO relaxation time, while for smaller τ it is biased, under-
estimating the frequency detuning from the drive since the
motion does not have enough time to fully respond to fast
frequency fluctuation. To extract the frequency at τ< 1

Γ and to
estimate frequency from fluctuations alone, one needs to properly
consider the time derivative of the phase dφ=dt.

Here we propose a general yet computationally simple
estimator that uses the full trace data UN

m to obtain a frequency
estimate with uncertainties reaching the CRLB limit for averaging
times above and below the relaxation time 1

Γ, for any driving force,
including zero driving force, and any signal-to-noise ratio.

The frequency estimator for a measurement UN
m returning the

most likely Δω, satisfies ∂P UN
m ;Δω

� �
=∂Δω ¼ 0, or, equivalently,

∂
∂Δω ln P UN

m ;Δω
� � ¼ 0. Taking a logarithm of Eq. (14), in the

continuous limit, e iΔω�Γ
2ð Þdt ! 1:

lnPðUN
m ;ΔωÞ ¼ Γ

σ2η2
Rτ
0
½um � ðξ þ OÞ�½um � ðξ þ OÞ�*dt ð24Þ

If a good initial approximation Δω0 is available for the
frequency detuning Δω, the Δω ¼ Δω0 þ δω can be obtained by
differentiating Eq. (24) and solving to the first order in δω
[Supplementary Note 7]:

δω ¼
R τ
0½ðumðtÞ � ðξ þ OÞÞðξ þ OÞ0* þ c:c:�dtR τ

0 2ðξ þ OÞ0ðξ þ OÞ0* � fðumðtÞ � ðξ þ OÞÞðξ þ OÞ00* þ c:c:g
h i

dt
¼ ÎðτÞ

ĴðτÞ

ð25Þ
The frequency estimate δω can be obtained with low latency by

real-time numerical integration of measured data ukm, to obtain
the most likely position ξ and its derivatives at each time step via
Eq. (15), without storing UN

m in memory (Method section and
Supplementary Note 7).

Simplified frequency estimator for no-detection-noise limit. With-
out detection noise, the general estimator can be simplified to

[Supplementary Note 5]:

Δω̂ ¼ ∑k½ðiuk _u*k�iu*k _ukÞ�
2∑k uku

*
k

þ ∑k ðukþu*kÞAΓ
2½ �

2∑k uku
*
k

ð26Þ

with _uk defined as _uk ¼ ukþ1 � uk
� �

=dt. The first term shows the
frequency information contained in the phase gradient, while the
second term stands for the conventional phase part. This noise-
less form generalizes the commonly used phase14 and phase
gradient27 estimators.

Numerical verification. To numerically verify the derived CRLB
and the estimator we apply them to simulated LHO motion data
uk obtained using Eq. (2) with the LHO parameters from our
experimental system with ω0=2π � 27:8MHz, Γ=2π ≈ 620 Hz
(Q ≈ 44800), m � 1 pg, and T � 293K. The random Langevin
forces f1;2 are picked from a zero-mean Gaussian with the var-

iance Varðf1Þ ¼ Varðf2Þ ¼ ΓkbTm
dt

19,34. We add artificial Gaussian
detection noise to the simulated uk, and extract the frequency
Δωnτ from the processed data set UN;n

m using Eq. (25) [see Method
section and Supplementary Note 7 for the detail of the algorithm].

We compare the CRLB from Eq. (16) to the Allan variance of
the frequency estimates Δωnτ generated from a series of simulated
motion segments UN;n

m , each of length τ. The Allan variance is
calculated as a weighted average:

σ2f ðτÞ ¼
1
2

Wnτ ½Δωðnþ1Þτ=2π � Δωnτ=2π�2
D E

T0

ð27Þ

where :::h iT0
represents the average of the data over the total time

T0 for all segments and Wnτ represents the weight of each

element. The inverse-variances-weights Wnτ ¼ Ĵn=ĥJniT0

� 
2

account for the changes in the variance between the frequency
estimates for τ<1=Γ. The weights converge to Wnτ � 1 as in the
conventional Allan variance [28] when averaging time is long
τ � 1=Γ, or the drive is strong OðΔωÞ � σ.[Supplementary
Note 5 or 7 for the case with or without detection noise]

Figure 3(a) shows the Allan deviation (ADEV) of the estimated
frequency from the numerically simulated data with artificial
Gaussian detection noise of η ¼ 0:1. Both undriven and driven
cases present a good agreement to the CRLB given by Eq. (16).
Besides the good agreement, one would also notice that at τ � η

Γ,
ADEV and CRLB are / τ�3=2 as predicted by Eq. (18), while at
τ � η

Γ, ADEV and CRLB are / τ�1=2 as in Eq. (17). We show the
driven case of different detuning of 0, Γ and 10Γ in Fig. 3(b). The
uncertainty of the estimated frequency increases with the
detuning as the steady-state LHO amplitude becomes lower.
The proposed estimator and the CRLB work for any detuning
within the RWA validity.

Figure 3(c), (d) show the undriven and driven cases with
different detection noise η ¼ 0:01; 0:1; 1; 10. For the driven case
Fig. 3(d), the detection noise negligibly affects the ADEV at long
time scale, evident by the good agreement between ADEV and the
noiseless CRLB (dashed line) at τ � η

Γ. However, for the undriven
case Fig. 3(c), when η>1, the detection noise not only affects the
short time scale frequency estimation but also degrades precision
at the long time scale (τ � η

Γ), where the detection noise becomes
comparable to the fluctuating mechanical motion signal.

Overall, the proposed computationally simple and general
frequency estimator works over broad time scales, any driving
force, detuning, and detection noise levels. Importantly, it can be
directly applied to low signal-to-noise-ratio data, which makes it
work well for very high-bandwidth measurements. In compar-
ison, the conventional phase estimator fails when the driving
force is weak or for short averaging times, and the phase-gradient
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estimator fails at all time scales when the detection noise is non-
negligible. The maximum likelihood estimator reaches the CRLB
limit which shows the estimator is statistically efficient, i.e.,
extracting the maximum degree of frequency information and
producing the lowest possible uncertainty. The numerical
validation indicates that both the frequency estimator and the
CRLB are valid. We further verify them experimentally.

Experimental verification. As shown in Fig. 1(a), the resonance
frequency of the nanoscale tuning fork (ω0=2π � 27:8MHz) is
estimated from its mechanical displacement signal produced by a
cavity-optomechanical readout (see Supplementary Note 1)35. Fig-
ure 4(a) shows the statistical distributions in the phase-diagram of
the time-domain mechanical displacement of the tuning fork under
driving forces of different magnitude, indicating Gaussian profiles
with similar variance σ2 � 2:3´ 10�8 V2. Figure 4(b) shows the
power spectral density of the tuning fork driven by only the Lan-
gevin force. The Lorentzian fit and energy autocorrelation analysis
show Γ=2π ≈ 620Hz [see Supplementary Note 1]. The detection
noise ratio η � 0:08 is independently estimated from the position
noise power spectral density spectra.

Four groups of data are analyzed for independently extracted
A= 0, 5:1σ; 10:4σ, 16:5σ, shown in Fig. 4(c), corresponding to
the four groups of data shown in Fig. 4(a). The data shows similar
features to Fig. 3(a), and good agreement with the CRLB is
observed over three to four decades of averaging time, without
adjustable parameters. At small τ, the frequency stability tends
toward τ�3=2 due to detection noise. The frequency uncertainty
reaches the thermodynamic limit for these drive strengths at τ �
0:1ms< 1=Γ and remains at this limit for up to τ � 0:5 s.

Notably, the relative frequency bias stability of the undriven
stress-engineered resonator (light blue line) is measured to be
lower than 0.4 × 10−6 for up to ≈1 s averaging. This is better than

the average performance of the state-of-the-art strongly driven
NEMS in such mass range (� 1 pg)15, demonstrating that
continuous passive frequency measurement from thermal fluc-
tuations is a viable practical approach for high-performance
frequency-based sensing. Using thermal fluctuations simplifies
the device by eliminating the actuator and simplifies the detection
apparatus by removing the need to apply an electrical or optical
drive signal. Naturally present white Langevin force substitutes
for the often-used frequency tracking feedback circuitry needed to
keep the drive frequency on resonance. Multiple, separately
detected mechanical resonators can be used, e.g. for differential
measurements, without the risk of errors and frequency locking
due to drive signal crosstalk. The frequency estimator we have
developed makes the real-time continuous measurement of
frequency from thermal fluctuations practical. In one example,
multiple unpowered frequency-based NEMS sensors connected
by an optical fiber cable can be remotely interrogated with a
single tuneable low-power continuous-wave laser, without the
need for electrical connections of any kind.

With increasing driving force, the CRLB of frequency goes down.
Impressively, the experimental measurement of the frequency of the
strongly driven resonator (purple line) illustrates that very fast
changes in the resonance frequency on the time scales 30–100 μs
(� 1=Γ) can be continuously tracked with only a few parts per
million (ppm) uncertainty on average – opening up yet another
high performance sensing regime for practical applications.
Importantly, it is clearly experimentally observed that the τ−1/2

scaling continues well below 1/Γ [about 1/(3Γ) here], before being
taken over by the instrumental noise contribution scaling as τ−3/2.
This agrees with our theoretical analysis, and firmly establishes the
thermodynamic limit for τ < 1/Γ. It also practically shows that
frequency changes can be sensed with low noise on short time scales
not limited by the resonator relaxation time. In fact, longer
relaxation times (lower Γ) will lead to lower frequency uncertainty

Fig. 3 Frequency Allan deviation and Cramer Rao lower bound for simulated data with added Gaussian detection noise. a Undriven (A= 0, top line) and
driven cases (A = 40σ, bottom line) with η ¼ 0:1 and Δω= 0. Black circles are Allan deviation (ADEV) of the frequency estimated by Eq. (25), red solid
lines are the corresponding Cramer Rao lower bound (CRLB), Eq. (16), black dashed lines are noiseless CRLB Eq. (19) with η ¼ 0. The blue and gray shades
label τ< η

Γ and τ< 1
Γ, respectively. b Driven case (A= 40σ) with detuning Δω ¼ 0, Γ, and 10Γ (from bottom to top), and η ¼ 0:1. c, d Undriven (A= 0) and

driven (A= 40σ) cases, respectively, with varying added noise level η ¼ 0:01; 0:1; 1; 10 (from bottom to top) and constant Δω= 0. The one standard
deviation uncertainties of the data points obtained from the numerical simulation are smaller than the symbol size.
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for the given linear drive, provided the detection is sufficiently low
noise. Our analysis quantitatively defines the measurement
bandwidth over which the measurement is thermodynamically,
rather than detection-noise, limited, and shows how this bandwidth
increases with decreasing detection noise.

The frequency uncertainty deviates from the thermodynamic limit
at long averaging times. For τ longer than ≈ 1.18 s, 0.24 s, 0.26 s, and
0.19 s, from undriven to strongly driven cases, the ADEVs reach the
relative bias stability of (0.363 ± 0.062) × 10−6, (0.194 ± 0.018) ×
10−6, (0.133 ± 0.038) × 10−6, and (0.108 ± 0.012) × 10−6. The relative
bias stability improves with increasing drive strength. We attribute
the observed slow bias drift to slow changes in temperature,
mechanical stress, or electrostatic charging in the device.

Discussion
We have derived the Cramer Rao Lower Bound on the uncer-
tainty of the resonance frequency measurement under a wide,
general range of measurement conditions. The CRLB defines
fundamental quantum and thermodynamic limits of the best
possible frequency estimation from a continuous position

measurement [see Supplementary Note 9 for a summary of CRLB
in different conditions]. Mathematically, the measured trajectory
contains two distinct and independent contributions to the Fisher
information about frequency–the first coming from the system’s
response to the applied harmonic drive and the second coming
from the response to the stochastic forces: the Langevin force and
the quantum measurement backaction. The information-
theoretic approach for deriving the fundamental measurement
limits is general and explicit, avoiding any hidden assumptions
about the system physics, making our results exact for any system
described by the linear harmonic oscillator model, either classical
or quantum.

The theoretical frequency uncertainty limits are only reached
practically if the frequency is calculated from the recorded posi-
tion trajectory by a statistically efficient estimator procedure, i.e.,
a procedure that uses all available information without infor-
mation loss. We derive a maximum-likelihood estimator for
eigenfrequencies that seamlessly includes Fisher information
from the system response to both the driving and stochastic
forces, and verify it on simulated position data. For all time scales

Fig. 4 Experimental data. a Thermal fluctuation of the nanomechanical resonator in the phase diagram. Different colors correspond to different driving
forces (0 V, 0.5 V, 1 V, and 1.5 V). The driving/reference frequency is set near the resonance frequency. The inset shows the distribution density of the
quadrature component. b Mechanical vibration power spectral density in vacuum. The black line indicates the Lorentzian fit. c Allan deviation (ADEV) of
the frequency from the experimental data without drive (light blue) and with increasing driving forces (from top to bottom). The ADEVs are from the data
sets of the corresponding colors in (a). Dashed lines are the corresponding Cramer Rao lower bound. The deviation at τ > 0.1 s is due to bias drift. The
marked experimental statistical uncertainties are one standard deviation.
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considered, including very short time scales, the estimated
eigenfrequency agrees with the simulation-specified value and the
Allan deviation achieves the CRLB limit, showing the estimator is
unbiased and statistically efficient. Importantly, the estimator can
be used for data with any degree of detection noise, and its
noiseless form unifies the commonly used phase and phase gra-
dient estimators. The estimator can be applied to any physical
system that can be validly described as a linear harmonic oscil-
lator with continuously measured position, including both clas-
sical and quantum LHO.

In this work, we assume both the position noise (quantum and
classical) and the force noise (backaction and thermal) are
uncorrelated white noises at least over the frequency window
given by the highest measurement bandwidth and centered on the
resonance. This assumption is often valid, particularly for the
narrow measurement bandwidths used in resonance-based
metrology of high-quality factor oscillators. For broad band-
width measurements of oscillators subject to correlated noise
sources, one can rederive the frequency detection limit and the
estimator for the specific form of correlated noises using the
method proposed in this work, although there may not be a
simple analytical expression anymore.

We use the estimator to experimentally measure the resonance
frequency of a high-quality-factor nanomechanical resonator with
an integrated cavity-optomechanical readout, and demonstrate
that, quantitatively and without adjustable parameters, the fre-
quency uncertainty reaches the predicted CRLB thermodynamic
limits over a broad range of integration times and drive strengths.
The nanomechanical resonator shows low frequency uncertainty
in the undriven/weakly driven regime and at very high mea-
surement bandwidths (short averaging times). Beyond the field of
nanomechanical sensing and transduction, the presented theo-
retical and experimental results are broadly applicable to
mechanical, optical, acoustic, radiofrequency, and other linear
oscillator systems. This work advances the general understanding
of harmonic oscillator frequency measurement by generalizing
and extending the better-understood and commonly used regime
of strong drive and long averaging time to, first, the regime of
weak or no drive and, second, of very short averaging times. It
firmly establishes opportunities and provides theoretical limits for
very high bandwidth sensing and for fluctuation-based frequency
sensing without external power, such as frequency-sensing solely
using quantum measurement backaction. It provides a universal
prescription for extracting harmonic oscillator frequency from its
continuously measured position that is both practical and
achieving fundamental limits of precision. Finally, this work
combines a rigorous description and a simple, intuitive inter-
pretation of the quantum limits covering all these regimes.

Methods
Maximum likelihood estimator Eq. (25) via direct numerical integration. Here
we summarize a computationally efficient on-line integration procedure for esti-

mating δω. Note, we have O ¼ iAΓ
2

iΔω�Γ
2
, O0 ¼ AΓ

2

iΔω�Γ
2ð Þ2, O

00 ¼ � iAΓ
iΔω�Γ

2ð Þ3 and a known

Δω with δω 0ð Þ ¼ 0. In the continuous detection limit where s ¼ se ¼ D, we have
the following from Eq. (15) and its first- and second-order derivative on Δω:

dðξ þ OÞ ¼ iΔω� Γ
2

� �ððξ þ OÞ � OÞdt þ D
η Γðum � ðξ þ OÞÞdt ð28Þ

dðξ þ OÞ0 ¼ iððξ þ OÞ � OÞdt þ iΔω� Γ
2

� � ðξ þ OÞ0 � O0
� �

dt � D
η Γðξ þ OÞ0dt

ð29Þ

dðξ þ OÞ00 ¼ 2iððξ þ OÞ0 � O0Þdt þ iΔω� Γ
2

� �ððξ þ OÞ00 � O00Þdt � D
η Γðξ þ OÞ00

ð30Þ

Going back to the discrete-time and defining variables:

αk ¼ ðξ þ OÞk
βk ¼ ðξ þ OÞ0k
γk ¼ ðξ þ OÞ00k

8><>: ð31Þ

we start with α0 ¼ αN; previous where αN; previous is from the previous segment of data,
β0 ¼ γ0 ¼ 0. Initial detuning Δω0 needs to be provided with δω 0ð Þ ¼ 0. Then we
begin finite difference time domain integration.

From Eq. (28), we have:

αk � αk�1 ¼ iΔω0 � Γ
2

� � ðαkþαk�1Þ
2 � O

h i
dt þ D

η Γ ukm � ðαkþαk�1 Þ2

h i
dt ð32Þ

Note, we use the averaged value of two adjacent points to do the integration for
numerical accuracy.

Similarly, from Eqs. (29) and (30) we have:

βk � βk�1 ¼ iðαk�1 � OÞdt þ iΔω0 � Γ
2

� � ðβkþβk�1Þ
2 � O0

h i
dt � D

η Γ
ðβkþβk�1 Þ

2 dt ð33Þ

γk � γk�1 ¼ 2iðβk � O0Þdt þ iΔω0 �
Γ

2


 � ðγk þ γk�1Þ
2

� O00
� 	

dt � D
η
Γ
ðγk þ γk�1Þ

2
dt ð34Þ

Defining two more variables following updates:

Ik ¼ Ik�1 þ ukm � ðαkþαk�1 Þ2

� 

β*k þ c:c:

h i
dt ð35Þ

Jk ¼ Jk�1 þ 2βkβ
*
k � ukm � ðαkþαk�1 Þ2

� 

ðγkþγk�1 Þ

2

* þ c:c:
n oh i

dt ð36Þ

with initial conditions I0 ¼ J0 ¼ 0.
After doing N iterations during measurement time τ ¼ Ndt, based on Eq. (25)

we obtain the frequency estimated as:

δωτ ¼
IN
JN

ð37Þ
The measured frequency during this measurement time interval is then

Δωτ ¼ Δω0 þ δωτ ¼ Δω0 þ
IN
JN

We can then continue to the next measurement by setting

α0  αN

and resetting β0 ¼ γ0 ¼ I0 ¼ J0 ¼ 0 and δωτ ¼ 0.

Data availability
The data that support the plots within this paper are available from the corresponding
author upon a reasonable request.

Code availability
The code that supports the theoretical plots within this paper is available from the
corresponding author upon a reasonable request.
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