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Fundamental limits and optimal estimation of the
resonance frequency of a linear harmonic oscillator
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All physical oscillators are subject to thermodynamic and quantum perturbations, funda-
mentally limiting measurement of their resonance frequency. Analyses assuming specific
ways of estimating frequency can underestimate the available precision and overlook
unconventional measurement regimes. Here we derive a general, estimation-method-
independent Cramer Rao lower bound for a linear harmonic oscillator resonance frequency
measurement uncertainty, seamlessly accounting for the quantum, thermodynamic and
instrumental limitations, including Fisher information from quantum backaction- and ther-
modynamically driven fluctuations. We provide a universal and practical maximum-likelihood
frequency estimator reaching the predicted limits in all regimes, and experimentally validate it
on a thermodynamically limited nanomechanical oscillator. Low relative frequency uncer-
tainty is obtained for both very high bandwidth measurements (x10~> for T =30 ps) and
measurements using thermal fluctuations alone (<10€). Beyond nanomechanics, these
results advance frequency-based metrology across physical domains.

TMicrosystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, USA. 2 Institute for Research in Electronics
and Applied Physics, University of Maryland, College Park, MD, USA. 3 Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester,
MA, USA. Memail: viadimir.aksyuk@nist.gov

COMMUNICATIONS PHYSICS| (2021)4:207 | https://doi.org/10.1038/s42005-021-00700-6 | www.nature.com/commsphys 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00700-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00700-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00700-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00700-6&domain=pdf
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-2504-4045
http://orcid.org/0000-0003-2504-4045
http://orcid.org/0000-0003-2504-4045
http://orcid.org/0000-0003-2504-4045
http://orcid.org/0000-0003-2504-4045
http://orcid.org/0000-0002-9653-4722
http://orcid.org/0000-0002-9653-4722
http://orcid.org/0000-0002-9653-4722
http://orcid.org/0000-0002-9653-4722
http://orcid.org/0000-0002-9653-4722
mailto:vladimir.aksyuk@nist.gov
www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00700-6

resonance frequencies of harmonic oscillators enables

measurements that are insensitive to low-frequency
noise sources and drifts in the detection gain and bias. The
unmatched performance of frequency-based sensing makes it the
core of accurate scientific and cost-effective commercial mea-
surement systems, spanning the length scales from kilometer-
long LIGO! to mesoscopic micro- and nano-electro-mechanical
systems (M/NEMs)?~? and further to the single-atom tip of a
frequency-modulation atomic force microscope (AFM)1?,

Despite the wide applications of frequency-based sensing for
scientific high-precision measurement, a general and fundamental
understanding of the linear oscillator resonance frequency esti-
mation and its uncertainty limits is currently lacking. The ther-
modynamic limit for frequency measurement has been
considered separately in the AFM community!! and M/NEMs
community!213, However, due to specific assumptions and sim-
plifications regarding measurement conditions and how the fre-
quency is calculated from the position data, the reported
thermodynamic limits are different from each other and only
valid for specific measurement regimes!2-19, such as for strongly
driven oscillators with negligible detection noise in the long
averaging time limit. Additionally, the thermodynamic fluctua-
tions of the oscillator motion, typically only considered as a
source of uncertainty, in fact also contain information about the
resonance frequency, evident, for example, from the Lorentzian
peak in its thermal noise power spectral density. Yet this addi-
tional frequency information is not only missed in many fre-
quency measurement settings, but also overlooked when
analyzing the fundamental measurement limits, radically under-
estimating the available precision for frequency estimation
in situations where the magnitude of the available external
driving force is limited.

Information theory provides a Cramer Rao lower bound
(CRLB)!7-1? for the uncertainty of unbiased parameter estima-
tion from a set of measured data, valid regardless of any specific
estimation procedure. The bound uses the total Fisher
information2Y about the unknown parameter obtained by the
measurement, relying only on the underlying relationship
between the parameter and the data, namely the conditional
probability of obtaining the particular measured data for the
specific value of the parameter. Due to its universality, it has been
widely applied to obtain measurement limits and benchmark
specific measurements, such as super-resolution ultrasonic?! and
optical microscopy?2, particle tracking and localization?3-4, and
the standard quantum limit for entangled or squeezed states2>-20,

Here, we derive the CRLB to obtain general uncertainty limits,
including the fundamental quantum and thermodynamic limits,
as well as the instrumental limits, for resonance frequency
extracted from continuous position measurement of a linear
harmonic oscillator (LHO), subject to dissipation, thermo-
dynamic- and quantum-backaction-induced stochastic fluctua-
tions, instrumental detection uncertainty, and external harmonic
excitation. Acknowledging that a nondemolition frequency
detection is ideal in the quantum regime, we remain focused on
the continuous measurement of position, encountered in most
experimental situations. In addition to recovering the uncertainty
minimum of the standard quantum limit expected for such
measurement under strong coherent external excitation, we pre-
sent the fundamental limits of extracting the frequency infor-
mation from fluctuations driven by the quantum measurement
itself solely, or in combination with thermal and external driving
forces. Besides, we propose a computationally fast and statistically
efficient frequency estimator—a procedure for converting the
detected motion into the frequency in real-time with imprecision

P arametrically coupling time-varying unknown quantities to

not exceeding their theoretical limits given by the CRLB. The
proposed estimator extracts the frequency information simulta-
neously from the harmonic response and the stochastic fluctua-
tions, while optimally averaging over the detection noise, making
it applicable on all time scales and with any external driving
strength. Far beyond the conventionally used phase!# and Kay’s
(phase gradient)?” estimators, it can be directly applied to data of
low signal-to-noise-ratio(SNR) extracting all available frequency
information. Based on our knowledge, the derived frequency
detection limit and estimator cover all specific conditions con-
sidered in previous works.

Using the proposed frequency estimator, we experimentally
measure resonance frequency of a low-loss stress-engineered
thermodynamically limited nanomechanical resonator with
integrated photonic cavity-optomechanical readout. We demon-
strate the frequency uncertainty (Allan deviation?8) reaching the
theoretical lower limit (CRLB) over 4 decades of measurement
bandwidth (averaging time 1) with a relative precision of
=~0.4x 107° for frequency measured without excitation, using
only thermodynamic fluctuations at room temperature, which is
better than the average performance of state-of-the-art NEMs
under strong driving force in this mass range (=1 pg)!°. Distinct
from exploiting the full driven linear dynamic range of our
device, here we focus on quantitatively understanding the
uncertainty limits and making the best possible measurement
with a given driving force. The measurement in the limit of weak
or no driving force works surprisingly well for nanoscale systems
at room temperature and may extend to other domains and to
quantum backaction-driven measurements.

Results

Oscillator motion in a rotating frame and the experimental
system. As shown in Fig. 1(a), we consider a LHO subject to
dissipation I', white fluctuating force f, which includes a Langevin
force coming from a thermal bath and a quantum measurement
backaction force. An harmonic driving force F = Fycos(wt) with a
magnitude F at frequency w may also be applied. The equation of
motion for the classical LHO is written as:

éé—i-l"ic—i-w(z)x:w (1)

where x is the position of the LHO, m is the effective mass, and w is
its resonance frequency. The fluctuating force is assumed to be fre-
quency independent, at least over the resonator bandwidth, and
therefore effectively obeying (f(#)f(¢')) = f2,8(t — ') with a con-
stant fZ . Specifically, for thermodynamic fluctuations f2 =
2Tk, Tm based on the fluctuation-dissipation theorem, k; is the
Boltzmann constant, T is the effective temperature, while for quan-
tum backaction 2= 2kh* for position measurement strength k
[Supplementary Note 8: Eq. (S74)].

The LHO undergoes a continuous position measurement,
recorded by a detector with a detection uncertainty. The position
trace is fed into a frequency estimator to obtain an estimated
eigenfrequency @,. The frequency uncertainty o47) is a function
of averaging time t and depends on the driving force, the
stochastic fluctuating forces, and the detection uncertainty. When
the LHO is used for sensing, the eigenfrequency varies in time
due to the parametric interaction between the LHO and the
measured quantities. For a fixed interaction strength, the
uncertainty of the estimated eigenfrequency directly translates
to the uncertainty of the measured quantities, limiting the
measurement precision.

The LHO used in the experiment is a nano-scale tuning
fork made from high tensile stress silicon nitride [false-colored
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Fig. 1 Measurement of resonance frequency. a A linear harmonic oscillator subject to a driving force, stochastic Langevin and quantum measurement
backaction forces (QMB), and detection uncertainty. The time-varying eigenfrequency induced by a parametric interaction with an external system is
extracted from the continuously measured position x [Eq.(1)] by a frequency estimator. Lower panel shows the false-colored scanning electron micrograph
of the nanomechanical tuning fork with a cavity-optomechanical readout. Inset: a magnified view of the coupling gap between them. b The red bubble in the
phase diagram represents the steady-state distribution of the linear harmonic oscillator (LHO) rotating-frame coordinate u= X+ iY [Eq. (2)] subject to
thermal and quantum fluctuations. The purple bubble represents the distribution of uy due to diffusion around the expectation &, in a short time dt after a
known state u;,_;. The blue bubbles show the position detection uncertainty. The red, purple, and blue distributions have a standard deviation of V20,
V264, and /20, respectively, in each of the two dimensions. The distance T, — u,_; is exaggerated for illustration. ¢ LHO position power spectral density
Suw When driven at a small detuning from a constant resonance frequency. The purple area denotes the contribution from the mechanical motion. The blue
area represents the detection noise spectrum. d Real component X of u. Blue and purple dots schematically represent the measured positions with the
detection uncertainty and actual positions without detection uncertainty, respectively.

micrograph in Fig. 1(a)]. The nominal thickness, width, By defining a slowly varying variable u via
and length of the tuning fork are 250 nm, 150 nm, and 20 pm, x = %(ueiw‘ + u'e7"), we use the rotating wave approximation
respectively. The tuning fork is stretched by a tension bar on the (RwA):

right-hand side to provide extra tensile stress. The highly r F fi—if,

enhanced tensile stress leads to a high frequency-Quality 4 —u—ifou = —2 —2L 2 )
factor product of order 10!2. Due to the fluctuation- 2 2iom  iwm

dissipation theorem, low damping leads to a smaller Langevin where Aw=(wy— w)<<w, and fi, are the in-phase and
force, reducing the thermodynamically limited frequency quadrature components of the ﬂuctuation force in the rotating
measurement uncertainty, as derived below. The high resonance  frame near resonance with (f:(fi(t) = 1200t — t')d;;. Note, the

frequency serves to reduce the relative uncertainty of the  choice of the sign of Aw reflects that the accurately known driving/
measurement  further. An electrostatic driving force is reference frequency w is stable, while the resonance frequency w,
applied to the tuning fork from a sharp metal probe positioned s the variable to be determined from the measurement.

in proximity to the fork. The mechanical motion of the tuning In a steady state, u obeys a two-dimensional Gaussian distribution
fork is measured through a near-field cavity-optomechanical

_AT
readout (See Supplementary Note 1)2 with detection noise well o . 2Bt T
below the thermal fluctuation within the fork resonance ma?ol" [red bubble in Fig. 1(b)]. Defining fluctuating-force-induced

linewidth. variance of x around the harmonic response X0 =

around the harmonic response O(Aw) = (u) = where A =
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|O] cos(wt 4+ Z0) as 0* = {(X — Xymonie)) and using (x?) =
{lul’) we obtain {ju — OJ*) = 20? [see Supplementary Note 2],
ie, u has a variance o® for both in-phase, X, and quadrature, Y,
components. For thermodynamic fluctuations, this variance ¢? =

2
2 rms

7= 2Im?w,? ®)

Consider a continuous position measurement of a series 1y at
equal intervals f, = kdt with dt << 1/T . As shown in the phase
diagram of Fig. 1(b), the LHO rotates around O at the rate Aw
and decays at the rate I, following Eq. (2), evolving determi-
nistically from a known position u;_; to an expected position
U = O+ (u_, — 0)e®=)4 in time df. Meanwhile, it also
diffuses in response to the fluctuating force, arriving at the next
actual position u;. In the Markov diffusion process u; depends
only on u,_,, and is independent of the prior history. Given a
known value of u,_;, for dt < 1/T, the probability density
P(uwlu_;) for uy in the phase diagram is a 2-dimensional
Gaussian [purple bubble in Fig. 1(b)] with a mean (expectation)
value of i, accounting for the deterministic evolution and
variance of o3, for each dimension due to the random diffusion:

2
<uk—o>—<uk,1—on(’m"’g dt
1 02 (4)
P(uy|uy_y) = 7702 ¢ e

dt

For dt < 1/T, variance 67, o df can be quantitatively related to
02 by noting that the decay and diffusion balance each other in a
steady state, resulting in [See Supplementary Note 2]:

o3, = Idto? (5)

For illustration, we unphysically exaggerate the evolution of i,
in Fig. 1(b). In the continuous measurement limit (d¢ < 1/T), the
deterministic motion is always smaller than the stochastic one:
iy — ) K /204 as (y_, — O)iAw —Y)dt « o/2Tdt.

Figure 1(c) shows the power spectral density S, of the driven
LHO with a small detuning Aw. The purple and blue areas display
the mechanical noise and detection noise density, S,. The blue
(purple) dots in Fig. 1(d) shows the corresponding in-phase
component of u, ie., real part of u, in the time domain with
(without) detection noise. The points separated by times t <« 1/T
are correlated.

Cramer Rao Lower Bound and the detection uncertainty. To
describe a position measurement with detection noise, we intro-
duce u¥, an independent unbiased measurement of the actual
position u;. We now consider a finite time series UL =
{ul ,..uf . uN} of N complex values ¥ measured over the time
7 = (N — 1)d¢, and answer the question: how well the resonance
frequency can in principle be estimated from such a measure-
ment? With the RWA reference frequency w perfectly known, the
variance of the estimate @, of an unknown resonance frequency

wy is equal to the variance of the estimated relative frequency

Aw = @, — w. Note, the hat-marks denote the measured value.
The theoretical lower bound on this variance is given by the

CRLB!S:
Aw)>}
(6)

is the Fisher

Var(w,) = Var(@) >I(Aw) ' = [<3sz InP(UY

where the quantity I[(Aw) = <a oz n P(UY Aw)>

information, and P(UIIX,Aw) is a 2N dimensional probability

density of obtaining a specific measurement UY, with (...)
denoting the expectation for a given Aw.
For the white detection noise,

& |

27 (7)

k
P(uk |u) = ﬁ e
Similar to 02, and 0%, 02 = ((x,, — x)°) o 1/dt is the white-
noise variance in each of the components of the 2-dimensional
Gaussian in the RWA. Here we introduce a dimensionless
a2 th

parameter 1 = that is the ratio of the detection noise

within the LHO bandw1dth I' and the stochastic position
fluctuations due to the fluctuating forces.

Cramer Rao Lower Bound for frequency measurement of lin-
ear harmonic oscillators subject to detection noise

General classical CRLB for frequency measurement. White detec-
tion noise o2 o 1/df will always exceed diffusion 03, = I'dtg* for
a sufficiently small d¢, such as, for example, in a high bandwidth
measurement of motion and resonance frequency. Explicitly
accounting for the detection noise also allows us to directly
extend the present classical analysis to a quantum LHO under a
continuous quantum position measurement since it is mathe-
matically equivalent to a classical LHO subject to specific levels of
the detection uncertainty and the stochastic quantum backaction
force3031,

In the classical case, while the transition from u;_; to u is a
Markov process, this is not so between the sequentially measured
values uX with detection noise. Each new measured value uf
generally depends on the previous history of measurements U*~!
The probability of P(UY,Aw) must be derived using the
underlying actual motion trajectory U = {u;..., 4, ...uy} gov-
erned by Eq. (4), and the dependence of the measured value u¥,
on the actual position u; via Eq. (7). The probability of obtaining
the k-th measurement 4, after UX~! depends on the conditional
probability distribution of true position uy, given previous
measurements UX~!.

Pk |UE) = /p(ufn|uk)p(uk|ug—l)duk

= /P<ulr(n|uk)/P(uk|uk—l)P(uk—l|Ur];1_1)duk—lduk
(8)

Here the likelihood P (_,|U%™") expresses the knowledge of the
actual position u;_; of LHO after a specific series of recorded
measurements US™ = {ul,..uk"1}. It can be computed via the

recursive Bayesmn update32:
P(u,|UL) = P(uluf, US) o P (k| )P ([ UET)

:P(ulr‘nluk)/P(14k|uk71)P(uk71IUIIE,_l)dukf1

2

(€

u1 —O(Aw)
Starting with P(u;) = 1-e |T with O =
function of the resonance frequency Aw prior to tfle start of the
measurement, P(u,|UX ) defines the knowledge of the LHO state
during the measurement. Since all the functions in Eq. (9) are
Gaussian, their products and integrals are Gaussian as well. For
each time step k, the likelihood is a Gaussian with a mean value
1, and a standard deviation o, defined by:

|0 I

o2
P(u,|UF) = 207 e Mk

(10)
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where &, = &, — O(Aw) shifts the origin to O(Aw), with the §, = 0
and o, = o prior to any measurement.

Utilizing Eqs. (4), (7) and (10), the Bayesian update Eq. (9) can
be expressed as an update &, = 0, 0, = 0, &,_; — &, 0, — 0}
[Supplementary Note 6: AJ:

1 AT 1
f :[ e(’A‘”_i)dtf 4 _(uicn _ O)
Tl - Idt)oi_| + o, 1T g a1
i
% —
(1-Tdt)o? , + 03, o2
1 1
(12)

R + =
o (A —-Tdt)oi ,+d3 o3
This update can be intuitively understood in two steps. First, the
prior position is evolved in time df via rotation and decay,
&1 — elido—3)deg 1> While the variance is decreased by the decay
and increased by the diffusion o7 | — o7 e + 02 =
(1 —Tdt)o}_, + o3, in the continuous measurement limit (Tdf <
1). Second, the information about the evolved prior position
e(ibo=0)dtg,  iith the evolved variance (1 —Tdt)o?_, + 02, is
updated by an inverse-variance-weighted average with the new
measured position (15, — O) of variance o?.
Similarly, using Egs. (4), (7), and (10), we rewrite Eq. (8) for
the probability of the next measurement as:

2
Aw—L)dr
T Gl ) L

- 2
e 203

1

2
2moy

(13)

P(ub |UE) =

Z Z
where we recall that ¢ = T > ok 170dt for the continuous

measurement limit.
The probability density for a measurement sequence UY is

N
P(UY, Aw) = P(ul,) [ [ P(uk,1UKT)
k=2

j (b, ‘ (14)

= P(u} )I_N[ ! e 203
= o 5
el 2mo%

For continuous measurement, the recursive update (12) for oi
/P41

converges as 0; — 0> = Dro?, where D = +4 " [Supplemen-
tary Note 6: B]. With this constant Varlance the continuous
measurement update of the most likely position Eq. (11) becomes:

8= &y + (18w = 5§y dt + T, 0= &) (15)

By going from the discrete to the continuous time, deriving and
solving differential equations describing the time evolution of
various &,-dependent expectations terms in the Fisher informa-
tion (Eq. (6) with (14)), the following general expression for the
Fisher information can be obtained [Supplementary Note 6: CJ:

I(Aw) = Ingy + Iy (16)

Ao 1— efr(1+zg)r ~ (wa 1(1422))r _ 1 .
T r(1+2€) ;) c.c.

lAwfz(lJrZ

I 1102 4
DRV = 37 5
Lo @) +a

Lot D? {T+ (1+D)1 -1 (4 42D)1 eF(H’J)f}
FL = T X -
T (7+2D)(n + D) D r(1+2§) D r(1+§)
and the CRLB for frequency measurement is

STD(wO) >1/+/1(Aw).
The Fisher information is the sum of two parts. The first part
Igy is proportional to the modulus square of the drive-induced

amplitude |O|?, while the second part I;; is independent of the
drive and is the information contained in the stochastic
fluctuations (thermodynamic and quantum-backaction induced
mechanical fluctuations).

We need to emphasize the generality of the derived CRLB valid
for any unbiased frequency estimator. First, the derivation made
no assumptions for the relative power of white noise, described by
7, meaning that it is valid for the case of any SNR. Second, it is
valid for any detuning including far-detuned drive Aw > T as
long as the RWA is valid Aw <« w,. Third, it is valid for any
averaging time T larger than dt, including the very short averaging
times, where the detection noise dominates over diffusion in the
LHO position uncertainty. Finally, it is valid for any driven
amplitude, including the undriven case where the eigenfrequency
is extracted from fluctuations alone, i.e., I;. We also note that Eq.
(16) is valid even when the stochastic force includes quantum
backaction and uncertainty, as we will discuss in the next sub-
section. The numerical and experimental verifications of the
CRLB will be discussed in the later, estimator and experimental,
Sections. This result is more general than previous work!2-16,
where further assumptions are made regarding measurement
conditions or how the frequency is calculated from the position
data, making them only valid for specific cases, such as with
strong driving force or on long averaging time where the SNR
is high.

This exact general formula simplifies for different useful limits
as follows [Supplementary Note 6: D]:

Simplified classical CRLB for long averaging time limit. For long
averaging time 7 >> r(%#’):

STD (i) \/7/ (q+D)(q+zD)

—1/2

102 4
7 ey
where the uncertainty scales o< 77'/%, as generally expected when

independent, statistically uncorrelated measurements are
combined.

(17)

Simplified classical CRLB for short averaging time limit. For very
short averaging 7 <« &

STD(@0)2 1/ /5 ('O' + 2D2)

where the uncertainty scales oc 7>/, as expected for a velocity
measurement subject to uncorrelated position noise.

(18)

Simplified classical CRLB for weak detection noise limit. For a low
detection noise’ measurement # < 1, on all time scales:

STD(w0)>1/\/ lof ( NIPAET N P 6")

where, as expected, if noise is zero (1 =0), Eq. (19) recovers to
the noiseless case derived independently in Supplementary Note 3
(Egs. S10) and 4 (Eq. S16). A summary of the CRLB is presented
in Supplementary Note 9.

(19)

Quantum regime

General quantum CRLB for frequency measurement. The quan-
tum LHO subject to a continuous measurement of position is
mathematically equivalent to the classical LHO with the appro-
priate level of measurement uncertainty and stochastic backaction
force3%:31. Therefore, the conclusions of the frequency uncertainty
of classical LHO, shown in Eq. (16), can be directly extended to
the quantum regime. By considering the quantum uncertainty
and backaction, and using the quantum-mechanical expression
for the fluctuation-dissipation theorem33, we derive the
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Fig. 2 Quantum limited frequency uncertainty for long measurement times. a Zero-temperature case (T = 0). From the blue to red lines,

'O‘z =0,1072,107",10°, 10, 102, 103, respectively. For a strong coherent external drive, the Standard Quantum Limit (SQL) minimum at optimal
measurement strength is evident. With the weaker drive, a transition occurs, whereby the stochastic measurement backaction becomes the dominant
excitation to the system, and the system’s response to backaction is the dominant source of the frequency information (slope becomes -1). Dashed black
lines are guides for the eye, depicting constant, linear, and square-root dependencies in the log-log plot. b Finite-temperature cases, with (solid lines

'O‘ =10") and without (dashed lines I lor

= 0) external drive. From blue to red, Zk" =0, 10", 102, 103, 10°, 10°, 107, respectively. Increasing temperature

|ncreases the driven system uncertalnty in the vicinity of the SQL, but only until the increased stochastic thermal force overtakes the drive. Larger thermal
excitation at higher temperatures improves the frequency measurement in the low measurement strength regime. The detuning is set to be O, 2?“’ =0.

equivalent classical position uncertainty o resulting from the
temperature fluctuations and backaction. Using it together with
the quantum measurement uncertainty provides the equivalent
classical uncertainty ratio #. For ideal continuous quantum
position measurements with zero classical detection noise and
unity quantum efficiency, we obtain [See Supplementary Note 8
(Eq. S74-S76) for the derivations and the more general expres-
sions including classical noise and non-unity quantum efficiency]:

hw
= coth W TP

(20)

ZPM

1

2p (cothmﬂ))

Ky . .
where p =42 is a dimensionless measurement strength
parameter, k is the measurement strength30,

"~ 1)

Xoppy = %‘Uo is the
square of the zero-point fluctuation amplitude, # is the reduced
Plank constant.

By applying Egs. (20) and (21) for the parameters o2, 7 to
Eqs.(16)-(19), we obtain the full quantum and thermodynamic
lower limits for frequency estimation uncertainty from ideal
continuous quantum position measurement.

Simplified quantum CRLB for long averaging time limit. Specifi-
cally, Eq. (17) for the long averaging time limit becomes

STD((DO) Z 1/ V IDRV + IFL

2| 1— L

H»Bp(cothzkl )

L (22)
FL=T 1+—r ——
(o)
_z I 2 1
IDRV =T

Xzpm cothzlf“—b‘)T +o+3 [1+(2ATw)2]

Simplified quantum CRLB for strong force noise limit. In the limit
of high temperature or high measurement strength, we obtain:

STD(@y) > 1/ \/

The standard quantum limit for frequency estimation and CRLB
for quantum-backaction-driven limit. Frequency uncertainty for
long averaging times [Eq. (22)] in the zero-temperature limit

) +2 23)

Xpan C"thzka +p

Zk % = 1) is shown in Fig. 2(a) as a function of measurement

strength for several drive strengths including zero-drive. At high
drive strength (red) the term Iy, dominates and we observe the
typical minimum in the frequency measurement uncertainty
associated with the standard quantum limit (SQL). However, with
decreasing drive strength we smoothly transition to the zero
external drive limit (blue) dominated by Iy, in which information
about the frequency is obtained from the measured system
dynamics under the stochastic perturbation induced solely by the
quantum measurement itself. In this zero-drive regime, the fre-
quency measurement uncertainty linearly improves with
increasing measurement strength, and then approaches a limit
value 1/+/2 at the measurement strength p > 1 (the time-averaged
position perturbation > xZp),).

In the conventional regime of drive strength larger than the
measurement backaction, the frequency uncertainty monotoni-
cally increases with increasing measurement strength above the
SQL. In a stark contrast, the frequency uncertainty of this new,
backaction-driven measurement regime reaches a plateau at high
measurement strength and does not get worse even for the
measurement strength far beyond the SQL wvalue. This
backaction-dominant limit obtained at the large measurement
strength, shown in Eq. (23), is independent of the stochastic force
strength, provided that the stochastic fluctuations are larger than
the position detection uncertainty.

Figure 2(b) shows the temperature dependence of the
frequency uncertainty with and without drive. The no-drive
dashed lines show the uncertainty due to the Fisher information
I, obtained from the system driven stochastically by the
combination of the quantum backaction and thermal fluctua-
tions. As the mechanical fluctuation amplitude increases with
higher temperatures, the uncertainty obtained for low quantum
measurement strength improves.
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For the driven solid lines, most of the frequency information is
obtained from the response to the applied drive, I,z The typical
minimum of the uncertainty at the SQL is evident for T =0
(blue), and deteriorates with increased temperatures due to the
thermal fluctuations obscuring the driven response. However, the
uncertainty increase stops at the STD(&)O)\/% = 1/+/2, explained
by the additional frequency information that can be obtained
from the fluctuation dynamics, I, and that information becomes
independent of the temperature and the measurement strength as
shown in Eq. (23).

Maximum likelihood estimator

General frequency estimator for linear harmonic oscillators. In this
section, we develop practical on-line maximum likelihood esti-
mators for resonance frequency wg from the continuously mea-
sured motion data. We demonstrate that the estimator is
statistically efficient, a term used to describe estimators that reach
the lowest possible uncertainty given by the CRLB.

To motivate developing an accurate frequency estimator, we
note that the resonance frequency w, of a resonator driven at w is
most commonly estimated by considering the steady-state
response phase relative to a harmonic driving force weakly
detuned from resonance: @y = w + % (¢ + Z) where ¢ = Z0(Aw)
is the phase angle of O(Aw)= |O(Aw)|e’” . However, this
estimator entirely neglects stochastic fluctuations, providing no
frequency information when the driving force is zero. Further-
more, it is only valid for averaging times 7 >> {1, well above the
LHO relaxation time, while for smaller 7 it is biased, under-
estimating the frequency detuning from the drive since the
motion does not have enough time to fully respond to fast
frequency fluctuation. To extract the frequency at 7<{ and to
estimate frequency from fluctuations alone, one needs to properly
consider the time derivative of the phase dg/dkt.

Here we propose a general yet computationally simple
estimator that uses the full trace data UY to obtain a frequency
estimate with uncertainties reaching the CRLB limit for averaging
times above and below the relaxation time £, for any driving force,
including zero driving force, and any signal-to-noise ratio.

The frequency estimator for a measurement U} returning the
most likely Aw, satisfies IP(UY, Aw) /0Aw = 0, or, equivalently,

%lnP(Uﬁ,Aw) = 0. Taking a logarithm of Eq. (14), in the

continuous limit, (224 _ 1.
In P(UY, Aw) = oL [y, — (E+ O)[u, — E+O'dt (20)
0

If a good initial approximation Aw, is available for the
frequency detuning Aw, the Aw = Aw, + dw can be obtained by
differentiating Eq. (24) and solving to the first order in dw
[Supplementary Note 7]:

[l — € + O)(E + O0)" + c.cldt i@
[3 |26+ 0V E+ 0" = ({10 = G+ ONE+0) +ec)|ar T@
(25

dw =

The frequency estimate §w can be obtained with low latency by
real-time numerical integration of measured data u*, to obtain
the most likely position £ and its derivatives at each time step via
Eq. (15), without storing Uﬁ in memory (Method section and
Supplementary Note 7).

Simplified frequency estimator for no-detection-noise limit. With-
out detection noise, the general estimator can be simplified to

[Supplementary Note 5]:

Syl —iuine)]
'
227 e,

Zk[(“k+u;)A%]
25w,

Aw = (26)
with i defined as i, = (uk+1 — u;)/dt. The first term shows the
frequency information contained in the phase gradient, while the
second term stands for the conventional phase part. This noise-
less form generalizes the commonly used phase!* and phase
gradient?” estimators.

Numerical verification. To numerically verify the derived CRLB
and the estimator we apply them to simulated LHO motion data
uy obtained using Eq. (2) with the LHO parameters from our
experimental system with w,/27 ~ 27.8 MHz, I'/2n =~ 620 Hz
(Q = 44800), m ~ 1pg, and T ~ 293 K. The random Langevin
forces f, , are picked from a zero-mean Gaussian with the var-

iance Var(f;) = Var(f,) = rkﬁ# 1934 We add artificial Gaussian
detection noise to the simulated uy, and extract the frequency
Aw,, from the processed data set UY" using Eq. (25) [see Method
section and Supplementary Note 7 for the detail of the algorithm].

We compare the CRLB from Eq. (16) to the Allan variance of
the frequency estimates Aw,,, generated from a series of simulated
motion segments UL, each of length 7. The Allan variance is
calculated as a weighted average:

0‘]%(‘[) = % <Wnr[Aw(n+l)r/27T - Awnr/2ﬂ12> (27)

TO
where (...} represents the average of the data over the total time
Ty for all segments and W,  represents the weight of each

N 2
element. The inverse-variances-weights W, = (]n/ (]n)T(])

account for the changes in the variance between the frequency
estimates for 7<1/T. The weights converge to W,, = 1 as in the
conventional Allan variance [28] when averaging time is long
7> 1/T, or the drive is strong O(Aw) >> o.[Supplementary
Note 5 or 7 for the case with or without detection noise]

Figure 3(a) shows the Allan deviation (ADEV) of the estimated
frequency from the numerically simulated data with artificial
Gaussian detection noise of # = 0.1. Both undriven and driven
cases present a good agreement to the CRLB given by Eq. (16).
Besides the good agreement, one would also notice that at T < 4,
ADEV and CRLB are oc 77%/2 as predicted by Eq. (18), while at
7>> 1, ADEV and CRLB are 7712 as in Eq. (17). We show the
driven case of different detuning of 0, I and 10T in Fig. 3(b). The
uncertainty of the estimated frequency increases with the
detuning as the steady-state LHO amplitude becomes lower.
The proposed estimator and the CRLB work for any detuning
within the RWA validity.

Figure 3(c), (d) show the undriven and driven cases with
different detection noise = 0.01, 0.1, 1, 10. For the driven case
Fig. 3(d), the detection noise negligibly affects the ADEV at long
time scale, evident by the good agreement between ADEV and the
noiseless CRLB (dashed line) at 7 > % However, for the undriven
case Fig. 3(c), when #>1, the detection noise not only affects the
short time scale frequency estimation but also degrades precision
at the long time scale (7 > %), where the detection noise becomes
comparable to the fluctuating mechanical motion signal.

Overall, the proposed computationally simple and general
frequency estimator works over broad time scales, any driving
force, detuning, and detection noise levels. Importantly, it can be
directly applied to low signal-to-noise-ratio data, which makes it
work well for very high-bandwidth measurements. In compar-
ison, the conventional phase estimator fails when the driving
force is weak or for short averaging times, and the phase-gradient
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Fig. 3 Frequency Allan deviation and Cramer Rao lower bound for simulated data with added Gaussian detection noise. a Undriven (A =0, top line) and
driven cases (A = 400, bottom line) with # = 0.1 and Aw = 0. Black circles are Allan deviation (ADEV) of the frequency estimated by Eq. (25), red solid
lines are the corresponding Cramer Rao lower bound (CRLB), Eq. (16), black dashed lines are noiseless CRLB Eqg. (19) with = 0. The blue and gray shades
label r<¥ and 1< % respectively. b Driven case (A = 4006) with detuning Aw = O, I', and 10T" (from bottom to top), and # = 0.1. ¢, d Undriven (A =0) and
driven (A =400) cases, respectively, with varying added noise level = 0.01, 0.1, 1, 10 (from bottom to top) and constant Aw = 0. The one standard
deviation uncertainties of the data points obtained from the numerical simulation are smaller than the symbol size.

estimator fails at all time scales when the detection noise is non-
negligible. The maximum likelihood estimator reaches the CRLB
limit which shows the estimator is statistically efficient, i.e.,
extracting the maximum degree of frequency information and
producing the lowest possible uncertainty. The numerical
validation indicates that both the frequency estimator and the
CRLB are valid. We further verify them experimentally.

Experimental verification. As shown in Fig. 1(a), the resonance
frequency of the nanoscale tuning fork (w,/2m ~ 27.8 MHz) is
estimated from its mechanical displacement signal produced by a
cavity-optomechanical readout (see Supplementary Note 1)3°. Fig-
ure 4(a) shows the statistical distributions in the phase-diagram of
the time-domain mechanical displacement of the tuning fork under
driving forces of different magnitude, indicating Gaussian profiles
with similar variance 02 &~ 2.3x 1078 V2, Figure 4(b) shows the
power spectral density of the tuning fork driven by only the Lan-
gevin force. The Lorentzian fit and energy autocorrelation analysis
show I'/2m = 620 Hz [see Supplementary Note 1]. The detection
noise ratio # = 0.08 is independently estimated from the position
noise power spectral density spectra.

Four groups of data are analyzed for independently extracted
A =0, 5.10, 10.40, 16.50, shown in Fig. 4(c), corresponding to
the four groups of data shown in Fig. 4(a). The data shows similar
features to Fig. 3(a), and good agreement with the CRLB is
observed over three to four decades of averaging time, without
adjustable parameters. At small 7, the frequency stability tends
toward 7732 due to detection noise. The frequency uncertainty
reaches the thermodynamic limit for these drive strengths at 7 ~
0.1ms < 1/T and remains at this limit for up to 7~ 0.5s.

Notably, the relative frequency bias stability of the undriven
stress-engineered resonator (light blue line) is measured to be
lower than 0.4 x 107 for up to =1 s averaging. This is better than

the average performance of the state-of-the-art strongly driven
NEMS in such mass range (=~ 1pg)!®>, demonstrating that
continuous passive frequency measurement from thermal fluc-
tuations is a viable practical approach for high-performance
frequency-based sensing. Using thermal fluctuations simplifies
the device by eliminating the actuator and simplifies the detection
apparatus by removing the need to apply an electrical or optical
drive signal. Naturally present white Langevin force substitutes
for the often-used frequency tracking feedback circuitry needed to
keep the drive frequency on resonance. Multiple, separately
detected mechanical resonators can be used, e.g. for differential
measurements, without the risk of errors and frequency locking
due to drive signal crosstalk. The frequency estimator we have
developed makes the real-time continuous measurement of
frequency from thermal fluctuations practical. In one example,
multiple unpowered frequency-based NEMS sensors connected
by an optical fiber cable can be remotely interrogated with a
single tuneable low-power continuous-wave laser, without the
need for electrical connections of any kind.

With increasing driving force, the CRLB of frequency goes down.
Impressively, the experimental measurement of the frequency of the
strongly driven resonator (purple line) illustrates that very fast
changes in the resonance frequency on the time scales 30-100 pus
(K 1/T) can be continuously tracked with only a few parts per
million (ppm) uncertainty on average — opening up yet another
high performance sensing regime for practical applications.
Importantly, it is clearly experimentally observed that the t—1/2
scaling continues well below 1/I" [about 1/(3T') here], before being
taken over by the instrumental noise contribution scaling as T—3/2.
This agrees with our theoretical analysis, and firmly establishes the
thermodynamic limit for v < 1/T. It also practically shows that
frequency changes can be sensed with low noise on short time scales
not limited by the resonator relaxation time. In fact, longer
relaxation times (lower I') will lead to lower frequency uncertainty
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Fig. 4 Experimental data. a Thermal fluctuation of the nanomechanical resonator in the phase diagram. Different colors correspond to different driving
forces (OV, 0.5V, 1V, and 1.5 V). The driving/reference frequency is set near the resonance frequency. The inset shows the distribution density of the
quadrature component. b Mechanical vibration power spectral density in vacuum. The black line indicates the Lorentzian fit. ¢ Allan deviation (ADEV) of
the frequency from the experimental data without drive (light blue) and with increasing driving forces (from top to bottom). The ADEVs are from the data
sets of the corresponding colors in (a). Dashed lines are the corresponding Cramer Rao lower bound. The deviation at ©>0.1s is due to bias drift. The

marked experimental statistical uncertainties are one standard deviation.

for the given linear drive, provided the detection is sufficiently low
noise. Our analysis quantitatively defines the measurement
bandwidth over which the measurement is thermodynamically,
rather than detection-noise, limited, and shows how this bandwidth
increases with decreasing detection noise.

The frequency uncertainty deviates from the thermodynamic limit
at long averaging times. For 7 longer than = 1.18s5, 0.24 s, 0.26 s, and
0.19 s, from undriven to strongly driven cases, the ADEVs reach the
relative bias stability of (0.363 +0.062) x 1076, (0.194 +0.018) x
1075, (0.133 +0.038) x 1075, and (0.108 + 0.012) x 10~. The relative
bias stability improves with increasing drive strength. We attribute
the observed slow bias drift to slow changes in temperature,
mechanical stress, or electrostatic charging in the device.

Discussion

We have derived the Cramer Rao Lower Bound on the uncer-
tainty of the resonance frequency measurement under a wide,
general range of measurement conditions. The CRLB defines
fundamental quantum and thermodynamic limits of the best
possible frequency estimation from a continuous position

measurement [see Supplementary Note 9 for a summary of CRLB
in different conditions]. Mathematically, the measured trajectory
contains two distinct and independent contributions to the Fisher
information about frequency-the first coming from the system’s
response to the applied harmonic drive and the second coming
from the response to the stochastic forces: the Langevin force and
the quantum measurement backaction. The information-
theoretic approach for deriving the fundamental measurement
limits is general and explicit, avoiding any hidden assumptions
about the system physics, making our results exact for any system
described by the linear harmonic oscillator model, either classical
or quantum.

The theoretical frequency uncertainty limits are only reached
practically if the frequency is calculated from the recorded posi-
tion trajectory by a statistically efficient estimator procedure, i.e.,
a procedure that uses all available information without infor-
mation loss. We derive a maximum-likelihood estimator for
eigenfrequencies that seamlessly includes Fisher information
from the system response to both the driving and stochastic
forces, and verify it on simulated position data. For all time scales
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considered, including very short time scales, the estimated
eigenfrequency agrees with the simulation-specified value and the
Allan deviation achieves the CRLB limit, showing the estimator is
unbiased and statistically efficient. Importantly, the estimator can
be used for data with any degree of detection noise, and its
noiseless form unifies the commonly used phase and phase gra-
dient estimators. The estimator can be applied to any physical
system that can be validly described as a linear harmonic oscil-
lator with continuously measured position, including both clas-
sical and quantum LHO.

In this work, we assume both the position noise (quantum and
classical) and the force noise (backaction and thermal) are
uncorrelated white noises at least over the frequency window
given by the highest measurement bandwidth and centered on the
resonance. This assumption is often valid, particularly for the
narrow measurement bandwidths used in resonance-based
metrology of high-quality factor oscillators. For broad band-
width measurements of oscillators subject to correlated noise
sources, one can rederive the frequency detection limit and the
estimator for the specific form of correlated noises using the
method proposed in this work, although there may not be a
simple analytical expression anymore.

We use the estimator to experimentally measure the resonance
frequency of a high-quality-factor nanomechanical resonator with
an integrated cavity-optomechanical readout, and demonstrate
that, quantitatively and without adjustable parameters, the fre-
quency uncertainty reaches the predicted CRLB thermodynamic
limits over a broad range of integration times and drive strengths.
The nanomechanical resonator shows low frequency uncertainty
in the undriven/weakly driven regime and at very high mea-
surement bandwidths (short averaging times). Beyond the field of
nanomechanical sensing and transduction, the presented theo-
retical and experimental results are broadly applicable to
mechanical, optical, acoustic, radiofrequency, and other linear
oscillator systems. This work advances the general understanding
of harmonic oscillator frequency measurement by generalizing
and extending the better-understood and commonly used regime
of strong drive and long averaging time to, first, the regime of
weak or no drive and, second, of very short averaging times. It
firmly establishes opportunities and provides theoretical limits for
very high bandwidth sensing and for fluctuation-based frequency
sensing without external power, such as frequency-sensing solely
using quantum measurement backaction. It provides a universal
prescription for extracting harmonic oscillator frequency from its
continuously measured position that is both practical and
achieving fundamental limits of precision. Finally, this work
combines a rigorous description and a simple, intuitive inter-
pretation of the quantum limits covering all these regimes.

Methods
Maximum likelihood estimator Eq. (25) via direct numerical integration. Here
we summarize a computationally efficient on-line integration procedure for esti-

. iAL y i
mating dw. Note, we have O = -2, O/ = o' =- ﬁ and a known
1 (U*E

43
ibw—3 (inw-1)"
Aw with w(0) = 0. In the continuous detection limit where s = s, = D, we have
the following from Eq. (15) and its first- and second-order derivative on Aw:

d(€ + 0) = (ibw = §)(E + 0) — O)dt + PT(u,, — (§ + O)dt (28)

d(€ +0) = i((§ + 0) — O)dt + (ibw —§) (€ + 0) — O')dt — BT(§ + O dt
(29)

d+0)" = 2i(( + O) — O)dt + (itw — 5)((§ + 0)" — 0")dt — 2T(¢ + 0)’
(30)

Going back to the discrete-time and defining variables:

o =(E+0)
B = (E+ O (31)
Y = (E + O)Z

we start with ay = oy preyious Where ay preyio, is from the previous segment of data,
By, = ¥, = 0. Initial detuning Aw, needs to be provided with §w(0) = 0. Then we
begin finite difference time domain integration.

From Egq. (28), we have:
o — oy = (ihwy — 1) [% - O] dt + %F [ufn - %} dr (32)

Note, we use the averaged value of two adjacent points to do the integration for
numerical accuracy.
Similarly, from Egs. (29) and (30) we have:

ﬁk — ﬁk—l = i(‘xk—l — O)dt + (iAwO _ %) {(ﬂk‘*’f}(—\) _ Or} dt — %F(ﬁ”f*"‘)dt (33)

T

Ve = Yoy = 2i(B, — O)dt + (wa(, - E) [w - o”] dt — %F%dt (34)
Defining two more variables following updates:
L=1I_, + [(ufn -y c.c.] dt (35)
" *
Jo =T+ [Zﬁkﬁk - {(u’r‘n _ _(ak+;k,,)) ()’ | c.c.}]dt (36)

with initial conditions I, = J, = 0.
After doing N iterations during measurement time 7 = Ndt, based on Eq. (25)
we obtain the frequency estimated as:

1,
dw, =X
T ]N

The measured frequency during this measurement time interval is then

(37)

I
Aw, = Awy + 0w, = Awy + X
In

We can then continue to the next measurement by setting
oy < ay

and resetting B, =y, = I, = J, = 0 and dw, = 0.
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