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Topological flocking models in spatially
heterogeneous environments

Parisa Rahmani® 2, Fernando Peruani® 34 & Pawel Romanczuk® 2°%

Flocking models with metric and topological interactions are supposed to exhibit distinct
features, as for instance the presence and absence of moving polar bands. On the other hand,
quenched disorder (spatial heterogeneities) has been shown to dramatically affect large-
scale properties of active systems with metric interactions, while the impact of quenched
disorder on active systems with metric-free interactions has remained, until now, unexplored.
Here, we show that topological flocking models recover several features of metric ones in
homogeneous media, when placed in a heterogeneous environment. In particular, we find
that order is long-ranged even in the presence of spatial heterogeneities, and that the het-
erogeneous environment induces an effective density-order coupling facilitating emergence
of traveling bands, which are observed in wide regions of parameter space. We argue that
such a coupling results from a fluctuation-induced rewiring of the topological interaction
network, strongly enhanced by the presence of spatial heterogeneities.
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locking is a fascinating self-organized phenomenon
Fobserved in a large number of artificial and biological

systems!-2, including bacterial swarms3-9, fish schools’, and
sheep herds®, among many other examples. The large-scale
properties of these active systems crucially depend on the type of
interaction neighborhood of the moving agents. Two funda-
mentally different types of interaction neighborhood have been
explored, the so-called metric® and topological ones!.

In metric models, the neighborhood of a particle is defined via
the Euclidean distance between the focal and the neighboring
particles, and the number of neighbors of the focal particle scales
with the local particle density. As a result of the competition
between velocity alignment among neighbors and noise-induced
decoherence, metric flocking models undergo spontaneous sym-
metry breaking?. In ideally homogeneous media, the order that
emerges in these non-equilibrium systems in two dimensions is
long-ranged (LRO)!LI2, giant density fluctuations!®13 are
observed, and the phase transition is characterized by the pre-
sence of high-order, high-density bands that move across the
system!4-20, The presence of spatial heterogeneities or quenched
disorder (e.g., obstacles, inhomogeneous substrates, etc.), ubi-
quitous in all experimental and real-world active systems?],
dramatically affects the large-scale properties of metric flocking
models. In scalar active matter, it was found that obstacles can
lead to jamming, frozen states, and moving chains?2-2>. For
vectorial active matter in the presence of quenched disorder, it
was shown first numerically?¢ and later analytically?” that order
becomes quasi-long-ranged (QLRO). It was also found, using a
minimal model, there exists an optimal noise that maximizes
collective motion?®, a result later confirmed in more realistic
simulations28. Furthermore, it was also predicted that sponta-
neous particle trapping leading to anomalous transport can
occur??, a prediction in line with recent findings in bacteria30. In
addition, it was also shown the existence of multiple attractors for
flocks flying through the same realization of quenched disorder,
meaning that the fate and history of the flock are strongly
dependent on the initial condition3!. Finally, it was found in
models?? and experiments33, that above a given density of spatial
heterogeneities, polar bands vanish.

While metric flocking models have been successful in repro-
ducing several real active systems, it has been suggested that
animals interact with a specific number of neighbors, regardless
of local density, and thus independently of the relative Euclidean
distance between the individuals!C. The large-scale properties of
topological flocking models are believed to be fundamentally
different from the ones of the metric counterparts. In particular,
the phase diagram of these systems, so far only studied in
homogeneous media, does not seem to possess a coexistence
region characterized by the presence of polar, traveling
bands®4-36; Fig. 1a, d. The absence of traveling bands has been
attributed to an apparent lack of a density-order coupling. On the
other hand, the impact of quenched disorder on the active matter
with topological interactions has, so far, not been addressed.

Here, we address this open question in active matter theory by
studying how the quenched disorder affects the emergent prop-
erties of topological flocking models using k-nearest neighbors
(kNN) and Voronoi tessellation’”. We find that topological
models differ fundamentally from their metric counterparts by
exhibiting long-range order even in the presence of hetero-
geneities. Furthermore, we observe that in topological models,
spatial heterogeneities counter-intuitively facilitate the emergence
of traveling, polar bands (Fig. 1b, e; Supplementary Movies 1 and
2), while such elongated structures are believed not to be present
in homogeneous media3438. Finally, we argue that band forma-
tion is related to the emergence of an effective coupling between
local density and local order (Fig. 1c, f) due to local rewiring of

the interaction network, which is strongly enhanced by the pre-
sence of spatial heterogeneities.

Our study provides a comprehensive characterization of the
large-scale properties of topological flocking models in hetero-
geneous environments. The results reported here, together with
those by Martin et al.38, strongly suggest that the established
knowledge on topological flocking models needs to be funda-
mentally revised. Specifically, our analysis extends our under-
standing of topological interactions in active matter systems by
showing that topological flocking models in complex environ-
ments behave as metric ones in homogeneous media.

Results

Model. We consider active particles moving at constant speed v
in a two-dimensional, heterogeneous environment with periodic
boundary conditions. The heterogeneous environment is modeled
by a random distribution of “obstacles”, which we also will refer
to as quenched disorder or spatial heterogeneities. Each active
particle interacts with its topological neighborhood (TN), which
defines the particle’s local environment. We use two definitions of
TN: (i) the first k-nearest neighbor (KNN) objects, and (ii) all
objects in the first shell by performing a Voronoi tessellation.
Note that neighboring objects include other active particles, as
well as obstacles. The behavior of particles is different for TN
objects corresponding to active particles and obstacles: particles
align their velocity to that of neighboring active particles and
move away from obstacles. The equations of motion of i-th
particle are given by:

x; = vy V(6)) (D

+ r > sin(ag; — 6;) + né;(t)
n, ;i s€TN,
(2)

where dots on the left-hand side denote temporal derivatives, x; is
the position of the particle, and 0; encodes the moving direction
of the particle given by V(6,) = (cos(8;), sin(8,)). The first term in
Eq. (2) describes the alignment of the particle with TN active
particles (subset TN,), while the second term describes repulsion
from TN obstacles (subset TN,). The symbol TN denotes the set
of topological neighbors of particle i, including n;,; active particles
and n,; obstacles. The position of TN obstacles is given by y,, and
a; denotes the angle, in polar coordinates, of the vector x; — y..
Note that “obstacles” are in fact areas that the active particles
avoid by turning away from their center (y;), which can be viewed
as a soft-core repulsive interaction. Finally, y is a constant and ¢;
is a delta-correlated, dynamic noise such that ({(t)) =0 and
(§(1)E,(t) = 8,;0(t — t'); 1 is a constant that denotes the strength
of the dynamic noise. We studied two options for gi(n,;) that lead
qualitatively to the same results: (a) gi(n,;) =1 for all values of
n,; and (b) gi(n,;) =1— O[n,;] with O[n,,;] =1 if n,;>0. The
latter option of g;(n,;) ensures that in the presence of obstacles,
the active particle gives priority to obstacles, and move away from
them, ignoring other active particles. Since results are easier to
interpret with this rule, and are qualitatively the same as those
obtained with gi(n, ;) = 1, we illustrate the system behavior using
the obstacle priority rule; results for g;(n,,;) =1 can be found in
Supplementary Fig. S1. In the following, we fix y=1, vo=1,
dt = 0.1, and particle density p, = N,/L? = 1, with N;, the number
of active particles in the simulation box of linear size L (see
“Methods” for further details).

Note, that we have studied the dynamics of the above model
recently also in the context of collective information processing®’.

éi = gn,;) {l ) %\1 sin(6; — 6))

1y, i jETN,
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Fig. 1 The role of heterogeneity in flocking with topological interactions. Panels a-c corresponds to k-nearest neighbors interaction (kNN, k=6 where k
is the number of neighboring objects), and panels d-f are for Voronoi interaction. Snapshots indicate macroscopic configurations, a, d in obstacle-free
environments, where obstacle density p, = 0, and b, e in complex environments, with obstacle density p, = 0.051. Black and red dots represent particles
and obstacles, respectively. The insets in b, @ show 1D band profiles, that is 1D particle density p; along the moving direction. ¢, f Local order (r,) vs local
density (p,) measured in small cells of size | =14 in a simulation box with linear size 140 corresponding to the systems in previous panels (see “Methods”
for details). Black scatters are for homogeneous, and red scatters are for heterogeneous environments. Noise intensity is fixed at = 0.65 here.

Dynamic noise vs. quenched disorder. The system considered
here contains two sources of fluctuation that promote misalign-
ment among the active particles: the dynamic noise and the
quenched disorder (i.e., the obstacle field). For vanishing dynamic
noise—i.e., in the limit of “cold” active matter—the initial con-
dition and specific distribution of obstacles determine the tem-
poral evolution of the flock, implying that the system is not
ergodic’!. By including a non-vanishing dynamic noise, the sys-
tem remains strictly speaking non-ergodic; however, time average
quantities over long time-intervals can become independent of
the initial condition. Furthermore, we can expect that quenched
disorder realizations sharing the same statistical properties—e.g.,
same density of randomly distributed obstacles—lead to similar
time average quantities, as occurs for flocking models with metric
interactions?°.

To disentangle the level of fluctuation resulting from dynamic
noise and quenched disorder, we compare the polar order

—com-

parameter—defined as r = (r(t)) = <| N%Zi exp(i@,-)|>

puted over different realizations of statistically identical disorders;
Fig. 2 (see Supplementary Fig. S2 for the corresponding plots of
kNN, k=6). Note that the standard error of the mean, r, over
disorder realizations (red vertical lines), is either smaller than or of
the same order of the variance of the polar order r(f) over time for a
single disorder realization (black curves). This strongly suggests that
the large-scale properties of the system are highly similar among
disorder realizations that share the same statistical properties.
Finally, it is worth mentioning that for a given disorder realization
in a finite system, though order can emerge in a large number of
directions, not all of them exhibit the same probability.

Optimal noise and long-range order. As shown in Fig. 3a-c, the
polar order parameter is a monotonically decreasing function of

the noise strength # in homogeneous environments with van-
ishing obstacle density p, = 0, whereby p, = N,/L? and N, is the
number of obstacles in the system. One of the most remarkable
features of metric flocking models in complex environments, i.e.,
for p, >0, is the non-monotonic functional form of the curve r vs.
n that puts in evidence the presence of an optimal noise that
maximizes collective motion?°, This optimal noise is absent in
topological flocking models with kNN interaction: the curve r vs.
1 decreases monotonically with # for all tested values of p,, as
occurs in homogeneous media, see Fig. 3b (see Supplementary
Fig. S3 for the transition plots of other k values). The situation for
Voronoi interaction is rather different. By increasing obstacle
density p, from zero, a weak maximum appears in the curve r vs.
1, see Fig. 3¢, which tends to become weaker by further increasing
Po- One possible explanation for the lower order observed at low
noise values is the formation of moving, high-density clusters that
are only weakly interconnected among them, see Fig. 3d-f and
Supplementary Movie 3. As observed for active particles with
metric interactions in heterogeneous media2®32, we also find for
Voronoi interaction, that small, yet finite values of dynamical
noise facilitate exchange of directional information between
clusters. At the optimal noise value, the different clusters merge
into a band-like structure and the global orientational order
becomes maximal. A further increase of dynamical noise leads
then to a monotonous decrease in order. In short, the existence of
an optimal noise in topological flocking models seems to be
model-dependent.

A fundamental difference between topological and metric
flocking models in complex environments is observed at the
level of the emergent order. Metric flocking models in
homogeneous media display LRO, while in heterogeneous
media, the order was shown, first numerically?® and later by an
RG argument?’, to become QLRO: the polar order parameter r
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Fig. 2 Dynamical noise vs quenched disorder. Panels a-c: Black curves correspond to probability density functions of polar order r(t) obtained from
stationary regime of 40 simulations with Voronoi interaction and different obstacle configurations, at obstacle density p, = 0.15 and noise intensity
n=0.05, 0.20, and 0.45 from left to right respectively. Red vertical lines correspond to the mean (time-averaged) polarization of each of the 40
distributions. Panels d-f: Probability density function of the mean polarization values.
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Fig. 3 Disorder to order transition. Polar order parameter r versus noise intensity # at different obstacle densities p, for different types of interaction
neighborhoods, metric (a), k-nearest neighbors (kNN, k = 6 where k is the number of neighboring objects) (b), and Voronoi (¢). d The snapshot shows a
typical configuration forming in a system with Voronoi interaction in heterogeneous environments at low noise values, here n = 0.05, and p, = 0.051. Black
and red dots represent particles and obstacles respectively. The arrow shows the instantaneous polarization of the system. e, f Show magnification of the
region displayed in (d). In e, black arrows show the particles' instantaneous moving direction. In f the underlying (undirected) Voronoi interaction network
is depicted. A link exists between two particles, if they are neighbors in the Voronoi tessellation, and if at least one of them does not have an obstacle in its
neighborhood. The green circles point out clusters that are connected by long links, i.e., long-distance interactions. Error bars represent the standard
deviation of the polar order parameter over different realizations of the obstacle field (see “Methods"). Note that error bars are often comparable or smaller

than the symbol size.

decays algebraically with system size. On the other hand,
topological models in homogeneous media and non-vanishing
p» = Np/L2, with N, being the number of active particles, also
exhibit LRO3%35. By keeping p, and p, constant, while
increasing N, and N,, we provide solid numerical evidence
indicating that the polar order parameter r converges towards a
constant value in the thermodynamic limit for both kNN and
Voronoi neighbors at low and high obstacle densities.
Specifically, lim, )y _,,r — o, with r., a non-vanishing con-
stant; Fig. 4.

This result can also be obtained by studying (V(r)V(0)), where
V(r) refers to the local, average velocity of active particles in
position r, that as expected for LRO converges to a non-zero
value for |r| — oo, see Supplementary Fig. S4. In addition, we have
also confirmed the robustness of the observed LRO with respect
to variation in the particle density p, by simulating systems with a
larger and smaller density, p, = 1.5 and p, = 0.5 respectively (see
Supplementary Fig. S5).

00>

In short, topological flocking models in heterogeneous media
exhibit LRO, in contrast to the QLRO reported for the metric
counterpart. We note that as discussed further below, we observe
the formation of large-scale bands for a wide range of parameters,
in particular for the KNN model with k=6. Thus the
corresponding LRO results are obtained in the presence of such
emergent spatial structures.

Traveling polar bands. In metric flocking models in homo-
geneous media, the emergence of polar bands has been explained
as the result of a coupling between local polar order r, and local
density p,!7 (see “Methods” for details regarding calculation of r,
and p,). On the other hand, topological flocking models have
been introduced as active models that lead to large-scale collective
motion independently of the local density of the active particles!.
In short, it has been assumed that in topological flocking models
the above-mentioned order-density coupling is not present. Thus,
traveling polar bands are not expected to emerge, as illustrated in
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Fig. 4 Probing the existence of long-range order. Polar order parameter r vs inverse system size 1/N,, at different noise values (1) and obstacle densities
(po). Panels a, ¢ correspond to k-nearest neighbors interaction (kNN, k = 6 where k is the number of neighboring objects), and panels b, d are for Voronoi
interaction. a, b p, = 0.051 and ¢, d p, = 0.153. Error bars represent the standard deviation of the polar order parameter over different realizations of the
obstacle field (see “Methods"”). Note that error bars are often comparable or smaller than the symbol size.
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Fig. 5 Emergent bands in k-nearest neighbors interaction (kNN). a Typical macroscopic configurations observed in a system with k-nearest neighbor
interaction (kNN, k= 6, where k is the number of neighboring objects), for different obstacle densities p,, and noise intensities #. Black dots are particles
and red dots are obstacles. In obstacle-free environments (p, = 0), we observe rather homogeneous structures with no bands. As we introduce obstacles,
band-like structures emerge; at a fixed noise, by increasing obstacle density, bands become sharper. For a fixed obstacle density, the sharpest bands are
observed at low noise values. Snapshots specified by |, II, and Ill have been used to calculate 1D band profiles in panel (¢). b Density modulation parameter
B in different regions of phase space specified with obstacle density p, and noise intensity 7 corresponding to the system in panel (a). 1D band profiles
related to |, II, and Ill are shown in (c). ¢ 1D band profiles—1D particle density p; along the moving direction L (x or y)—corresponding to the specified
regions of panels (a, b) (regions |, Il, and Ill). d § vs obstacle density p,, showing the promoting effect of obstacles in band formation, corresponding to

n=0.25 in panel (b). e Density modulation parameter g for k=1.

Fig. la, d for Voronoi and kNN neighbors in homogeneous
media. Figure 1b, e and Figs. 5a, 6a show that, counter-intuitively,
by introducing inhomogeneities in the system, ie., for p,>0,
traveling polar bands spontaneously emerge in topological
flocking models across a wide range of parameters (see also

Supplementary Movies 1 and 2). Moreover, for p, > 0 an effective
order-density coupling, not observed for p, =0, is present using
both, Voronoi and kNN neighbors (Fig. 1c, f). To quantify the
emergence of traveling, polar bands we introduced a density
modulation parameter 3, defined via the amplitude of the largest

COMMUNICATIONS PHYSICS| (2021)4:206 | https://doi.org/10.1038/s42005-021-00708-y | www.nature.com/commsphys 5


www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00708-y

(a) Voronoi

o
=
[9;]
w

obstacle density
o
)
w
=

0.0

0.05 0.20 0.45

noise

0.55

Fig. 6 Bands in Voronoi interaction. a Typical macroscopic configurations observed in a system with Voronoi interaction, for different obstacle densities
po, and noise intensities 7. Black dots are particles and red dots are obstacles. In obstacle-free environments (p, = 0), we observe rather homogeneous
structures with no density segregation in the form of cluster or band. In heterogeneous environments, we observe cluster-like structures at low noise
values, here 5 =0.05, these clusters connect together to form bands at noise around # = 0.20 and lead to a maximum in polar order parameter (see
Fig. 3c). Bands continue to form at higher noise values. b Density modulation parameter g in different regions of phase space specified with obstacle
density p, and noise intensity 5 corresponding to the system in panel (a). It should be noted that since macroscopic structures for Voronoi interaction are
different from those with k-nearest neighbors interaction (kNN, where k is the number of neighboring objects), with clusters at low noise values and bands
at higher noise values, the same color (i.e., reddish regions) may refer to different types of structures when comparing to kNN interaction, and even for

Voronoi when comparing high and low noise values.

Fourier mode with finite wave number g>0 of the Fourier-
transformed coarse-grained density field (see “Methods” for
details). Figure 5b-e indicates § at different noise values 7 and
obstacle densities p, for k=1 and k=6. For k=1, bands are
observed only near transition point (orange and red regions). By
increasing k—e.g., to k = 6—and p,, bands are observed for all 7
values such that #<#.y where 5.y is the critical value in
homogeneous media (Fig. 5). We have confirmed that band
structures emerge also for larger k (e.g., k = 12) over a wide range
of parameters, in particular, different noise intensities also away
from the order-disorder transition (see Supplementary Fig. S6).

A core finding is that for fixed values of # and k, bands become
more pronounced as the obstacle density p, is increased; Fig. 5
(and Fig. 6 for Voronoi interaction). This means that counter-
intuitively the spatial heterogeneities promote band formation,
while in metric models they hinder the formation of bands2°. It is
worth clarifying that this does not mean that spatial hetero-
geneities promote polar order, which decreases as p, increases.
However, the presence of obstacles induces, as explained below, a
coupling between local density and local (polar) order that leads
to band formation. An important observation is that the speed
of bands is independent of p,—i.e., of quenched disorder—and
set by the amplitude # of dynamic noise (see Supplementary
Fig. S7a—d). As the density p, is increased, the number of active
particles traveling in the bands diminishes, the disorder gas
density increases, and as a result of this, the global polarization of
the system decreases. One important lesson to draw is that it is
not possible to reduce the impact of spatial heterogeneities to a
re-normalized dynamic noise, since this would imply that the
band speed depends on p,, which, we show, it does not.

Discussion

How can spatial heterogeneities promote band formation? In the
following, we argue that (local) rewiring of the underlying
dynamical network leads to an effective density-order coupling.
Our argument is based on the following observations: (i) local
(orientational) order is strongly regulated by the level of (local)
rewiring facilitating the fast exchange of orientational informa-
tion between different sets of particles, (ii) obstacles induce local

rewiring, and (iii) rewiring is strongly density-dependent, i.e., at
high densities, it will occur highly localized in space. This, toge-
ther with the two previous points results in an emergent coupling
between local (particle) density and local order, a necessary
condition for band formation.

The first assertion can be shown using a simple model. Assume
a finite system of N; spins that when not connected to each other
obey 6, = n&(t). At a rate, v pick a pair i—j of spins and connect
them for a finite time during which 6; = ysin(6; — 6,) + n¢;(t)
and éj = ysin(6; — 6)) + né i(1); for details see “Methods”. In this
simple model, order—i.e., [> exp(if,)/N,| —increases with
rewiring rate v (Supplementary Fig. S8a). This non-spatial model
serves to prove that local rewiring can promote order.

The next step of the argument is to understand that the spatial
motion of agents implies rewiring. This is evident for diffusing
spins with metric interactions, where the order is enhanced at
larger densities or by using larger diffusion coefficients3®. Here,
both effects result in a faster exchange of interaction partners. In
actual flocking models, however, the situation is more complex
since particle velocity is coupled to 6; and it is not possible to
control the rewiring rate v—defined as the inverse of the average
time an edge survives in the dynamical network—without
affecting the dynamics of 6, However, simulations performed
with topological flocking models in small systems—Supplemen-
tary Fig. S8b and “Methods”—allow us to show that (local) polar
order and the rewiring rate v increase with the density of active
particles p,. Furthermore, in the vicinity of obstacles, active
particles are forced to modify their trajectories, which affects the
distance to neighboring particles, and leads, in consequence, to
rewiring. Figure 7a, d confirms that, as expected, v increases with
the density of obstacles p,. Here, we note that a finite obstacle
density introduces naturally a characteristic maximal metric
length scale of rewiring of the order of average obstacle distance
1/./p..
Fin%lly, to quantify the coupling between local density p, and
local order parameter r, we calculate the mutual information
MI(py, 1) as a measure of the non-linear correlation between p,
and ry, i.e., we quantify how much knowledge we gain on r, by
knowing p, (see Fig. 7b, ¢, e, f). It is important to note that r, is by
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Fig. 7 Quantifying rewiring and the (local) density-order coupling in the k-nearest neighbor interaction (kNN). The number of neighbors is k = 1 (a-c)
and k = 6 (d-f). a, d The rewiring rate v as a function of obstacle density p, for different values of dynamical noise. Error bars represent the standard
deviation of rewiring over different realizations of the obstacle field. Note that error bars are often comparable or smaller than the symbol size. b, e Local
order r, versus local particle density p, for different obstacle densities p, (see “Methods” for details); the corresponding value of mutual information
MI(p,, rp) is also reported. ¢, f Mutual information MI(p,, r,) versus dynamical noise and obstacle density. The dashed lines indicate the dynamical noise
strength 7 = 0.35 used in (b, e), with points indicating the corresponding obstacle densities.

definition bounded to values smaller or equal to 1. For certain
parameter choices, r, saturates to almost 1 for all p, values. This
occurs for instance at low dynamic noise and low obstacles
densities. In these situations, it is evident that r, is independent of
pe» and thus MI(p,, r,) adopts low values. Note that for r,~ 1
particles are highly aligned and the relative distance between
particles remains relatively constant implying a low rewiring rate.
On the other hand, in the disordered state, we observe r, =~ 0 for
all p,. Overall, in order for r, to be dependent on p,, the system
cannot be too disordered but also the level of polar order in the
system should not be too high. This suggests, as actually observed,
that sharper bands are observed at larger obstacle densities, where
the level of global order is lower (see Supplementary Fig. S7e). In
particular, for a fixed dynamic noise, MI(p,, 7,) is higher, indi-
cating a stronger correlation between r, and p,, for larger obstacle
densities p,, where the rewiring rate v is also higher; see Fig. 7 and
compare band snapshots in Figs. 5 and 6.

An interplay between r, and p, mediated by rewiring is argu-
ably also present in spatially homogeneous systems. For fixed
dynamic noise, it is expected that v decreases with k and increases
with particle density p,. Both trends are straightforward to
understand under the assumption that the level of positional
fluctuations of the particles is set by dynamic noise. For large
values of k, positional fluctuations only lead to the replacement of
the farthest neighbors, and this implies that most links (those
corresponding to closer neighbors) are long-lived. In con-
sequence, the average time an edge survives increases with k, and
its inverse, v, decreases. On the other hand, at high densities the
average inter-individual distance between particles is small, and
for the same level of positional fluctuations, a higher rewiring rate
is expected. Simulations performed in an homogeneous medium,
Fig. 8, are consistent with these arguments. In addition, all this
suggests that the coupling between r, and p, in homogeneous
media should be particularly strong for small k values in the
vicinity of the onset of order. Figure 8c shows that in an
homogeneous medium for k = 1 traveling bands robustly emerge,
whereas they become quickly more diffuse with increasing k and
at k=6 are not observable in our simulations anymore (see
bottom panels in Fig. 5a). This finding provides additional sup-
port for our arguments. At this point, we also would like to point
the reader to a recent publication?, which we learnt about at the
time of submission, providing an alternative explanation for band
formation in homogeneous media of flocking models with
topological interaction. We note that the different mechanisms

(a) (b)
2
1.0 v
% 14
0.5
T T T 0-I T T T
1 3 5 1072101 10° 107
Kk Pb

Fig. 8 Observed bands for the k-nearest neighbor interaction (kNN) in
homogeneous environments. k is the number of neighbors and the density
of obstacles is fixed at p, = 0. a Rewiring v versus k for a system with
N, = 625 particles (particle density p, =1.0), interacting with kNN.

b Rewiring v measured for the system with N, = 625 at different particle
densities py, by varying box size L (k= 6). ¢) Snapshot showing band
formation for kNN interaction with k =1. The black dots represent particles,
and the green arrow shows the moving direction of the band. Noise
intensity is # = 0.55 for all the panels.

are not mutually exclusive in facilitating band formation in active
matter with topological interactions.

Conclusions

We performed a comprehensive study of flocking models with
topological interactions in heterogeneous environments. We
investigated two different types of topological interactions, kNN
and Voronoi, which are the two most studied active topological
models in the literature!%34-36:38_ Similarly to what occurs in an
equilibrium system, where only few macroscopic details affect the
emergent macroscopic behavior, here we found that the large-
scale properties of these systems do not depend on the details of
the implementation of the model—e.g., on the choice of g;(n,;)—
but on the nature of these interactions: i.e., topological (metric-
free) interactions of polar symmetry. In that sense, our results are
generic and we expect them to apply to other variations of
topological interactions, as for example the spatially balanced
kNN-model*’. The two main results of our work on flocking
models with topological interactions in heterogeneous environ-
ments are: (1) We found that in sharp contrast to metric models
—where we observe quasi long-ranged order (QLRO) in hetero-
geneous environments—for topological models, according to our
numerical study and up to the systems sizes investigated, the
order is long-ranged (LRO) in the presence of spatial hetero-
geneities. (2) We showed that spatial heterogeneities promote the
emergence of an effective density-order coupling that allows
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active particles with topological interactions to form traveling
polar bands, which share similar features to the bands observed in
metric models. Importantly, bands are observed in parameter
ranges in which metric models in homogeneous media do not
develop bands. Furthermore, we argued that the counter-intuitive
emergence of the density-order coupling for topological interac-
tions is the result of the (local) rewiring of the underlying
dynamical networks of active particles induced by the spatial
heterogeneities. Finally, we expect that the numerical finding of
LRO in heterogeneous media for nonmetric active models—
arguably related to the presence of long-ranged connections
between distant clusters—will be supported by a RG calculation,
as occurred in the past with the observation QLRO in metric
models in the presence of quenched disorder20-27,

In summary, our results show that topological flocking models
in the presence of spatial heterogeneities—which introduce a
characteristic distance (1/ /P,)—behave as metric ones in
homogeneous media, an observation that invites to a reconsi-
deration of “metric-free” interactions in active systems.

Methods
Simulation details. The model was implemented in C++ programming language.
Stochastic differential equations were solved using the Euler—Maruyama method
with an integration time step of dt = 0.1. Topological interactions including kNN
and Voronoi implemented using the CGAL computational geometry algorithm
library*!. For kNN, k-d tree algorithm is used, where in order to account for
periodic boundary conditions, the main simulation box has been repeated in dif-
ferent directions. In order to find particles in the first shell of Voronoi neighbors,
the dual graph of Voronoi diagram i.e., (periodic implementation of) Delaunay
triangulation is used.

All the other calculations and data processing have been done using Python and
dependent libraries, in particular Numpy*2 and Scipy*3. Furthermore, we used
NetworkX library4 for network related calculations.

Local density p, and local order r,. Density-order coupling plots of Figs. 1 and 7
have been obtained by superimposing the r, and p, of 60 snapshots taken from
three time windows of simulations. In order to find these local quantities, the
simulation box is divided into small cells of linear size . Accordingly, local density
is defined by :'7’, where 7, is the number of particles in the cell. And, local order is
defined by r, = | -3, exp(if;)|, where the summation is over the n, particles of the
cell. For the simulation box of size 140, we have used a cell size £=14.

Quantification of bands

1D band profile. In order to obtain 1D band profile, the density field of particles is
smoothed using the kernel density estimation algorithm, then integrated over the
direction perpendicular to the moving direction. Profiles represented in Fig. 1 are
the result of averaging over 200 snapshots taken every 10 time steps.

Band speed. Speed of band is obtained by measuring the displacement of the peak
of 1D band profile during a fixed time period.

Bandwidth. Considering 1D band profile, bandwidth is obtained from the differ-
ence between two points on the horizontal axis where the height of the profile is
equal to a quarter of the maximum value.

Density modulation parameter B. In order to quantify bands occurring in different
regions of the parameter space, i.e., different k, p,, and #, we cannot rely on
bandwidth obtained from 1D band profiles. Since, in addition to single bands, we
also observe band-like density modulations or multiple bands, some of which are
merging and splitting during the course of simulations. Therefore, obtaining a
bandwidth, which is representative of configurations of all the time steps, is in
general not possible. In order to address this problem, we use the Fourier trans-
formation of the coarse-grained density field and identify the maximal amplitude
of the resulting Fourier spectrum for a finite spatial frequency g > 0 (wave number).
The density modulation parameter (maximum amplitude), 3, is obtained after
averaging over the power spectrum of 200 snapshots taken every 10 time steps.
Please note that non-zero values of  may also indicate other density modulation
besides traveling bands, as for example formation of dense clusters in the Voronoi
model for small dynamical noise (see Fig. 6). However, 2 0.5, typically indicates
band formation.

Order parameter fluctuations and error bars. There are two kinds of fluctuations
that affect the value of the polar order parameter in our system. One stems from
different realizations of obstacles in the environment, the so-called quenched disorder,
the other is due to fluctuations in particles orientation, that is dynamic noise. The
variation of the polar order r(f) due to dynamic noise can be measured through its
standard deviation, which will be correlated with the intensity of the dynamical noise.
In the context of heterogeneous environments, the error of the (time-averaged) polar
order parameter due to different realizations of the quenched disorder is the
important quantity. The error bars in Figs. 3 and 4, are calculated from four and five
different realizations of random obstacle fields per parameter point, respectively.

From the non-spatial rewiring model to rewiring in small systems. In order to
show that rewiring can enhance (orientational) order, we consider a simple non-
spatial model. A system of small number, N; = 10, of spins with initial random
orientations is considered. The system is such that at each time step there is only one
link connecting two spins, i and j. These two spins align with these rules, 6, =
ysin(6; — 6;) and Qj = ysin(6; — 6;), while there is a random contribution r(#) to
the orientation of all the spins (s) in the system. The link between i, j remains for m
time steps, then another two spins are selected randomly to interact. With this
simple model, we show that smaller m, in other words, larger rate v=1/t,, (t,,=
dt - m) of rewiring a single link results in a higher polar order r for the system (see
Supplementary Fig. S8a). However, in flocking models, rewiring is associated to the
relative motion of the particles, which in turn is related to the level of order. To verify
that rewiring is correlated to the local level of order in the flocking model, we
performed a series of small size simulations that clearly show such correlation
between the rewiring rate v—which increases with the local density of particles as
well as the density of obstacles —and the level of order r; see Supplementary Fig. S8b.

Data availability
The data-sets generated during the current study are available from the corresponding
author on request.

Code availability
The computer codes used for simulations and analyses are available from the
corresponding authors upon request.
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