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Quantum imaginary time evolution steered by
reinforcement learning
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The quantum imaginary time evolution is a powerful algorithm for preparing the ground and
thermal states on near-term quantum devices. However, algorithmic errors induced by
Trotterization and local approximation severely hinder its performance. Here we propose a
deep reinforcement learning-based method to steer the evolution and mitigate these errors.
In our scheme, the well-trained agent can find the subtle evolution path where most algo-
rithmic errors cancel out, enhancing the fidelity significantly. We verified the method's
validity with the transverse-field Ising model and the Sherrington-Kirkpatrick model.
Numerical calculations and experiments on a nuclear magnetic resonance quantum computer
illustrate the efficacy. The philosophy of our method, eliminating errors with errors, sheds
light on error reduction on near-term quantum devices.
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uantum computers promise to solve some computational

problems much faster than classical computers in the

future. However, large-scale fault-tolerant quantum
computers are still years away. On noisy intermediate-scale
quantum (NISQ) devices!, quantum noise strictly limits
the depth of reliable circuits, which makes many quantum algo-
rithms unrealistic, e.g, Shor algorithm for factorization?2,
Harrow-Hassidim-Lloyd algorithm for solving linear systems of
equations>. Nevertheless, there exist quantum algorithms that are
well suited for NISQ devices and may achieve quantum advantage
with practical applications, such as the variational quantum
algorithms#-12, the quantum imaginary time evolution!3-15,
quantum annealing!®.

The quantum imaginary time evolution (QITE) is a promising
near-term algorithm to find the ground state of a given Hamil-
tonian. It has also been applied to prepare thermal states, simulate
open quantum systems, and calculate finite temperature
properties!”~1. A pure quantum state is said to be k-UGS if it is
the unique ground state of a k-local Hamiltonian H = E;il hljl,

where each local term iz[;] acts on at most k neighboring qubits.
Any k-UGS state can be uniquely determined by its k-local
reduced density matrices among pure states (which is called k-
UDP) or even among all states (which is called k-UDA)2%21. The
QITE algorithm is well suited for preparing k-UGS states with a
relatively small k. We start from an initial state |‘I’imt>, which is
non-orthogonal to the ground state of the target Hamiltonian. The
final state after long-time imaginary time evolution

ﬂli?;o e_ﬁH|\Pinit> (1)
has very high fidelity with the k-UGS state. If the ground state of H
is degenerate, the final state still falls into the ground state space.
Trotter-Suzuki decomposition can simulate the evolution,

efﬂI:I — (efAr}}[l]efATft[Z] . efA‘rl%[m]) " + O(ATZ), (2)

where At is the step interval, n = % is the number of Trotter step.
Trotter error subsumes terms of order A7? and higher. On NISQ
devices, Trotter error is difficult to reduce due to the circuit depth
limits and Trotterized simulation cannot be implemented
accurately?2.

Since we can only implement unitary operations on a quantum
computer, the main idea of the QITE is to replace each non-

unitary step ¢=Ahl] by a unitary evolution =7l such that
7)=

where |W) is the state before this step. A[j] acts on D neighboring
qubits and can be determined by measurements on |¥). For
details of the local approximation see Supplementary Note 1. If
the domain size D equals the system size N, there always exists
A[j], such that the approximation sign of Eq. (3) becomes an
equal sign. However, exp(D) local gates are required to imple-
ment a generic D-qubit unitary, and we also need to measure
exp(D) observables to determine A[j]. The exponential resource of
measurements and computation makes a large domain size D
unfeasible, and we can only use a small one on real devices. This
brings the local approximation (LA) error.

Trotter error and the LA error are two daunting challenges in
the QITE. These algorithmic errors accumulate with the increase
of steps 1, which severely weakens the practicability of the QITE.
On NISQ computers, a circuit with too many noisy gates is
unreliable, and the final measurements give no helpful informa-
tion. Therefore we cannot use a small step interval A7 to reduce

—Ath(j] o
) & ), 3)
(\Ij|e—2ATh[i] |\Ij>

Trotter errors since this would increase the circuit depth, and
noise would dominate the final state. The number of Trotter steps
is a tradeoff between quantum noise and Trotter error. For the
QITE with large-size systems, we need more Trotter steps and
larger domain sizes, which seems hopeless on current devices.
There exist some techniques to alleviate the problem, refs. 23-2°
illustrated some variants of the QITE algorithm with shallower
circuits. Refs. 1926 used Hamiltonian symmetries, error mitiga-
tion, and randomized compiling to reduce the required quantum
resources and improve the fidelity.

Reinforcement learning (RL) is an area of machine learning
concerned with how intelligent agents interact with an environ-
ment to perform well in a specific task. It achieved great
success in classical games?’-32 and has been employed in
quantum computing problems, such as quantum control33-38,
quantum circuit optimization3®-4!, the quantum approximate
optimization?43, and quantum annealing*$. Quantum comput-
ing, in turn, can enhance classical reinforcement learning#>46.

In this work, we propose a deep reinforcement learning-based
method to steer the QITE and mitigate algorithmic errors. In our
method, we regard the ordering of local terms in the QITE as the
environment and train an intelligent agent to take actions (i.e.,
exchange adjacent terms) to minimize the final state energy. RL is
well suited for this task since the state and action-space can be
pretty large. We verified the validity of our method with the
transverse-field Ising model and the Sherrington-Kirkpatrick
model. The RL agent can mitigate most algorithmic errors and
decrease the final state energy. Our work pushes the QITE
algorithm to more practical applications in the NISQ era.

Results and discussion

In the following, we apply our method to the transverse-field
Ising model and the Sherrington-Kirkpatrick (SK) model. A
QITE circuit, the experimental setup, and a schematic of the SK
model are given in Fig. la-c.

Transverse-field Ising model. We first consider the one-
dimensional transverse-field Ising model. With no assumption
about the underlying structure, we initialize all qubits in the

product state |‘I’mit> = (|0) + [1))®N/+/2N. The Hamiltonian can
be written as

gt = —%‘,(]Z]-Z]-Jrl + hX)). (4)

In the following, we choose J = h = 1. The system is in the gapless

phase. For finite-size systems, the ground state of H " is 2-UGS,
therefore 2-UDP and 2-UDA.

In the standard QITE, the ordering of local terms in each Trotter
step is the same, e.g., we put commuting terms next to each other
and repeat the ordering X,, ..., Xy, ZZ,, 2,2y, ... , Zn_\Zx.
The quantum circuit of the standard QITE with four qubits is
shown in Fig. 1a. Inspired by the randomization technique to speed
up quantum simulation?”+48, we also consider a randomized QITE
scheme where we randomly shuffle the ordering in each Trotter
step. There is no large quality difference between randomizations,
and we pick a moderate one. In the RL-steered QITE, the reward is
based on the expectation value of the output state “Pf> on the

target Hamiltonian

E= (%] |¥). ©)
The lower the energy, the higher the reward. The RL agent updates
the orderings step by step.

For any given 3, the RL agent can steer the QITE path and
maximize the reward. We fix the system size N =4, the number
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Fig. 1 Theoretical and experimental setup. a Quantum circuit of the quantum imaginary time evolution (QITE) for the transverse-field Ising model with 4
qubits and n Trotter steps. U’ represents the unitary operator that approximates e~ for the local Hamiltonian P in the j-th Trotter step. b Molecule
structure and nuclei parameters of the nuclear magnetic resonance processor. The molecule has four Carbon atoms C1, C2, C3, and C4. Diagonal entries of
the table are the chemical shifts in Hz, off-diagonal entries of the table are the J-couplings between two corresponding nuclei. The T, row gives the
relaxation time of each nucleus. ¢ A six-vertex complete graph with weighted edges. Different shades of gray represent different couplings in the

Sherrington-Kirkpatrick model.

of Trotter steps n =4, and the domain size D =2. A numerical
comparison of energy/fidelity obtained by the standard,
the randomized, and the RL-steered QITE schemes for different
B values is shown in Fig. 2a, b. The RL-steered path here is
B-dependent. Throughout this paper, we use the fidelity defined
by F(p,0) = Tr /0'/2pg1/2,

When f is small, RL cannot markedly decrease the energy since
the total quantum resource is limited. With the increase of B, the

imaginary time evolution target state |[¥;)= e I‘I’lmt)
approaches the ground state, therefore the obtained energy of
all paths decrease in the beginning. However, algorithmic errors
increase with f3, and this factor becomes dominant after a critical
point, the energy of the standard/randomized QITE increases
when fB>1/3. Accordingly, the fidelity increases first, then
decreases. The RL-steered QITE outperforms the standard/
randomized QITE for all 8 values. Algorithmic errors in this
path are canceled out. The fidelity between the output state and
the ground state constantly grows to F>0.996. The gap between
the ground state energy and the minimum achievable energy of
the standard QITE is 0.053, and that of the RL-QITE is only
0.016. For a detailed optimized path see Supplementary Note 2
(Supplementary Table 1).

Further, we implement the same unitary evolutions on a
4-qubit liquid state nuclear magnetic resonance (NMR) quantum
processor®”. We carry out the experiments with a 300-MHz
Bruker AVANCE III spectrometer. The processor is !3C-labeled
trans-crotonic acid in a 7-T magnetic field. The resonance
frequency for 13C nuclei is about 75 MHz. The Hamiltonian of
the system in a rotating frame is

T PN
znuz+ Z ~1iZ:Z;,

1<z<]<42

(6)

where v; is the chemical shift of the j-th nuclei, J;; is the J-coupling
between the i-th and j-th nuclei, Zj is the Pauli matrix o, acting
on the j-th nuclei. All the parameters can be found in Fig. 1b. The
quantum operations are realized by irradiating radiofrequency
pulses on the system. We optimize the pulses over the fluctuation
of the chemical shifts of the nuclei with the technique of gradient

ascent pulse engineering®?. The experiment is divided into three
steps: (i) preparing the system into a pseudo-pure state using the
temporal average technique’l; (ii) applying the quantum opera-
tions; (iii) performing measurements

Denote the NMR output state as p, whose density matrix can
be obtained through quantum state tomography. p is a highly
mixed state since quantum noise is inevitable. We use the virtual
distillation technique to suppress the noise®>>4. The dominant
eigenvector of p, lim,;_, ., p/ Tr (pM), can be extracted numeri-

cally. Its expectation value on A" and its fidelity with the
ground state are shown in Fig. 2a, b with unfilled markers.
Consistent with our numerical results, the RL-steered path
significantly outperforms the other two for large p. For
postprocessing of NMR data see Supplementary Note 3.

In our simulation, we have four orderings to optimize and 28
local unitary operations to implement. Denote ‘\I’k> as the state

after the k-th operation, W;) as the temporal target state with the
ideal imaginary time evolution. The instantaneous algorithmic
error during the evolution can be characterized by the squared

Euclidean distance between |¥,) and W;{),

€ag =l ‘\Pk> - ‘W;<>||2~

For 8= 0.9, Fig. 2c shows €, as a function of evolution step k.
Although e, fluctuates in all paths, it accumulates obviously in
the standard QITE and eventually climbs to ey, =0.082. The
randomized QITE performs slightly better and ends with
€a1g = 0.030. The RL-steered QITE is optimal, the trend of €4
shows no accumulation and drops to €,=0.007 in the end.
Although we cannot directly estimate €., in experiments, we can
minimize it via maximizing the reward function.

One question that arises is whether we can enhance the QITE
algorithm with RL for larger systems? Now we apply our
approach to the transverse-field Ising model with system sizes
N=2,3, ..., 8 to demonstrate the scalability. Still, we consider the
QITE with 4 Trotter steps. Denote the target state with “evolution

™)
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Fig. 2 Different QITE schemes for the transverse-field Ising model. Filled
markers represent the numerical data; unfilled markers represent the
experimental data. The experimental errors were mitigated by virtual
distillation. Blue diamonds/dotted lines represent the standard quantum
imaginary time evolution (QITE); green triangles/dashed lines represent
the randomized QITE; red circles/lines represent the reinforcement
learning (RL)-steered QITE. a Energy versus f, the black dashed line
represents the ground state energy. b Fidelity versus . ¢ Algorithmic errors
during the evolution.
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Fig. 3 Scaling of different QITE schemes. Blue diamonds represent the
standard quantum imaginary time evolution (QITE); green triangles
represent the randomized QITE; red circles represent the reinforcement
learning (RL)-steered QITE. a Energy versus system size, and the energy
ratio Er./Esg versus system size (inset). The black dash-dotted line
represents the ground state energy. b Fidelity versus system size.

time” f§ as

e

\/<\Pinit ’ e ’\Ijinit>

In the following, we use an adaptive § for different N such that

the expectation value (¥ BIH TFItl‘I’/f (B)) is always higher than

the ground state energy of a" by 1x1073. The results are
illustrated in Fig. 3, the RL agent can efficiently decrease the
energy and increase the fidelity between the final state and
the ground state for all system sizes. The ratio of the RL-steered
energy (Egy) to the standard QITE energy (Egyq) is also given. This
ratio increases steadily with the number of qubits. Note that the
neural networks we use here only contain four hidden layers.
The hyperparameters were tuned for the N =4 case. We apply
the same neural networks to larger N, the required number of
training epochs does not increase obviously. If we want to
increase the fidelity further for N> 4, we can use more Trotter
steps and tune the hyperparameters accordingly. There is little

~ TFI
H

¥ (B) =

| Winit > . 8)
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doubt, however, the training process will be more time-
consuming. For comparison between the QITE and quantum
annealing see Supplementary Note 4.

Sherrington-Kirkpatrick model. The second model we apply
our method to is the Sherrington-Kirkpatrick (SK) model>®, a
spin-glass model with long-range frustrated ferromagnetic and
antiferromagnetic couplings. Finding a ground state of the SK
model is NP-hard®®. On NISQ devices, solving the SK model can
be regarded as a special Max-Cut problem and dealt with by the
quantum approximate optimization algorithm®>7. Here we use
the QITE to prepare the ground state of the SK model. Compared
with the quantum approximate optimization algorithm, the QITE
does not need to sample a bunch of initial points and implement
classical optimization with exponentially small gradients>S.

Consider a six-vertex complete graph shown in Fig. 1c. The SK
model Hamiltonian can be written as

H" =222 ©)

we independently sample J; are from a uniform distribution
Jij ~ U(=1, 1).

Since ZZ-terms commute, there is no Trotter error in Eq. (2)
for the SK model. The ground state of H *% is twofold degenerate.
The QITE algorithm can prepare one of the ground states. We fix
B=5, n=6, D=2, sample J; and train the agent to steer the
QITE path. Define the probability of finding a ground state of

i through measurements as Pg,. Energy and Py, as functions of
B are shown in Fig. 4. Remember that the RL-steered path here
was only optimized for a specific § value (ie., f=5) since we
want to verify the dependence of the ordering on f.

For each path, we observe a sudden switch from a high
probability of success to a low one when 4 < 8 < 5. The reason is
that for some states when the step interval exceeds a critical value,
there is an explosion of LA error which utterly ruins QITE. After
the critical value, the QITE algorithm loses its stability, and the
energy E fluctuates violently. The randomized QITE performs
even worse than the standard one, where the highest success
probability is only 0.60. In the RL-steered QITE, Py falls down a
deep “gorge” but can recover soon. When f8 = 5, most algorithmic
errors disappeared and Py, = 0.9964. In comparison, the standard
QITE ends with Pg=0.0002 and the randomized QITE ends
with Pgs = 0.0568, they dropped sharply and cannot be recovered
even if we further improve f. For detailed couplings and QITE
path see Supplementary Note 2 (Supplementary Tables 2 and 3).
For additional numerical results of the SK model see Supple-
mentary Note 5. For the control landscape see Supplementary
Note 6.

Conclusions

We have proposed an RL-based framework to steer the QITE
algorithm for preparing a k-UGS state. The RL agent can find the
subtle evolution path to avoid error accumulation. We compared
our method with the standard and the randomized QITE;
numerical and experimental results demonstrate a clear
improvement. The RL-designed path requires a smaller domain
size and fewer Trotter steps to achieve satisfying performance for
both the transverse-field Ising model and the SK model. We also
noticed that randomization cannot enhance the QITE con-
sistently, although it plays a positive role in quantum simulation.
For the SK model, with the increase of the total imaginary time S,
a switch from a high success probability to almost 0 exists. The
accumulated error may ruin the QITE algorithm all of a sudden
instead of gradually, which indicates the importance of an
appropriate 8 for high-dimensional systems. The RL-based

(a)
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B

Fig. 4 Different QITE schemes for the Sherrington-Kirkpatrick model.
Blue dotted lines represent the standard quantum imaginary time evolution
(QITE); green dashed lines represent the randomized QITE; red lines
represent the reinforcement learning (RL)-steered QITE. a Energy versus
the imaginary time . The black dash-dotted line represents the ground
state energy. b Success probability versus the imaginary time g.

method is a winning combination of machine learning and
quantum computing. Even though we investigated only relatively
small systems, the scheme can be directly extended to larger
systems. The number of neurons in the output layer of the RL
agent only grows linearly with system size N. A relevant problem
worth considering is how to apply the QITE (or the RL-steered
QITE) for preparing a quantum state that is k-UDP or k-UDA
but not k-UGS.

RL has a bright prospect in the NISQ era. In the future, one
may use RL to enhance Trotterized/variational quantum
simulation®-62 similarly, but the reward function design will be
more challenging. Near-term quantum computing and classical
machine learning methods may benefit each other in many ways.
Their interplay is worth studying further.

Methods

The RL process is essentially a finite Markov decision process®>. This process is
described as a state-action-reward sequence, a state s, at time £ is transmitted into a
new state s, together with giving a scalar reward R, ; at time ¢ + 1 by the action
a, with the transmission probability p(s;.1; Re+1lss 4,). In a finite Markov decision
process, the state set, the action set, and the reward sets are finite. The total
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Fig. 5 Schematic of steering the quantum imaginary time evolution with
reinforcement learning. The colored symbols represent single-qubit (blue
dots) and two-qubit (green rectangles) non-unitary operations {e=271},
The reinforcement learning (RL) agent, realized by neural networks,
interacts with different environments (Env 1, Env 2, ..., Env 12) and
optimizes the operation order to minimize the output state energy.

discounted return at time ¢ is
Sk
G = kgoy Rkt (10)

where y is the discount rate and 0<y<1.

The goal of RL is to maximize the total discounted return for each state and
action selected by the policy 7, which is specified by a conditional probability of
action a for each state s, denoted as 7(als).

In this work, we use distributed proximal policy optimization (DPPO)45, a
model-free reinforcement learning algorithm with the actor-critic architecture. The
agent has several distributed evaluators, and each evaluator consists of two com-
ponents: an actor-network that computes a policy 7, according to which the actions
are probabilistically chosen; a critic-network that computes the state value V(s),
which is an estimate of the total discounted return from state s and the following
policy 7. Using multiple evaluators can break the unwanted correlations between
data samples and make the training process more stable. The RL agent updates the
neural network weights synchronously. For more details of DPPO see Supple-
mentary Note 7.

The objective of the agent is to maximize the cumulative reward under a
parameterized policy 7g:

J(m) = B |5 7RG ay

In our task, the environment state is the ordering of local terms in each Trotter
step, and the state space size is (m!)". The agent observes the full state space at the
learning stage, i.e., we deal with a fully observed Markov process. We define the
action set by whether or not to exchange two adjacent operations in Eq. (2). Note
that even if two local terms h[j] and A[j + 1] commute, their unitary approxima-
tions e~"All and ¢~A7AU+1 are state-dependent and may not commute. The
ordering of commuting local terms still matters. For a local Hamiltonian with m
terms, there are m — 1 actions for each Trotter step. Any permutation on m ele-
ments can be decomposed to a product of O(m?) adjacent transpositions. There-
fore our action set is universal, and a well-trained agent can rapidly steer the
ordering to the optimum. The agent takes actions in sequence, the size of the
action-space is 2m=1). A deep neural network with n(m — 1) output neurons
determines the action probabilities. We iteratively train the agent from measure-
ment results on the output state “I’,->, the agent updates the path to maximize its
total reward. Figure 5 shows the diagram of our method.

The reward of the agent received in each step is

0, te{0,1,... ,N;,— 1}
R, = (12)
R, t=Ny

where N, is the time delay to get the reward, R is the modified reward function. In
particular, we define R as

if E<Egy

otherwise

-1,
R= . i (13)
—1/log[clip ((E/Ey — 1),0.01,1.99)],
where E is the output energy given by our RL-steered path, Eygq is the energy given by
the standard repetition path without optimization. In order to avoid divergence of the
reward, we use a clip function to clip the value of (E/Eqq — 1) within a range (0.01, 1.99).

Data availability
Generated data that support the plots are available at https://github.com/Plmono/RL-
qite.

Code availability

Source codes are available at https://github.com/Plmono/RL-gite.
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