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Coherent oscillation between phonons and
magnons
Tomosato Hioki 1,2✉, Yusuke Hashimoto1 & Eiji Saitoh1,2,3

Consider observing two different waves with the same frequency and wavelength. When

these waves are coupled, the amplitude alternates between the two waves periodically, a

phenomenon called coherent beating oscillation. Such phenomena can be seen in familiar

coupled pendulums and, on a cosmic scale, neutrino oscillations: the oscillation between

different types of neutrinos. In solids, on the other hand, there are various wave excitations

responsible for their thermal and electromagnetic properties. Here we report the observation

of coherent beating between different excitation species in a solid: phonons and magnons. By

using time-resolved magneto-optical microscopy, magnons generated in Lu2Bi1Fe3.4Ga1.6O12

gradually disappear by transforming to phonons, and after a while, they return to magnons.

The period of the oscillation as a function of the field is consistent with the prediction of the

magnon-phonon beating. The experimental results pave a way to coherent control of

magnon-phonon systems in solids.
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Phonons refer to vibration waves of a crystal lattice in solids
(Fig. 1a). They are responsible for the elastic and thermal
properties of solids. On the other hand, magnons, or spin

waves, refer to the wavy motion of magnetization in magnets,
responsible for the magnetic and thermal properties (Fig. 1a)1–5.
Phonons and magnons can interact in solids via the magneto-
elastic and magnetostatic couplings6–8 (Fig. 1b).

The dynamics of phonons and magnons in each system is
written in their dispersion curves, curves that show the relation
between the wavenumber and frequency. Figure 1c shows dis-
persion curves of transverse acoustic (TA) phonons and magnons
in a film of typical magnetic insulator, lutetium iron garnet
(LuIG)9,10. In the dispersion curves, the phonon dispersion and
the magnon dispersion curves have an intersection, depicted as A
in Fig. 1c, due to the magnetostatic gap in the magnon dispersion
at k= 0. Around the intersection, a magnon-phonon hybridized
state can be formed11–14. This state, called a magnon polaron, was
experimentally found to exhibit extremely long lifetime, much
longer than pure magnons, attributed to the hybridization with
phonons with long lifetime15,16. In a lutetium iron garnet, the
extended lifetime is confirmed by spin-heat conversion mea-
surement even at room temperature17. As a result, when magnons
are excited and sufficient time has passed, the pure magnons are
attenuated, leaving magnon polarons. In magnon polarons, the-
oretically, the hybridization can cause level splitting, giving rise to
an anti-crossing gap at the intersection in the dispersion curves,
as shown in Fig. 1d. When the two states across the gap are
excited simultaneously in a coherent way, coherent superposition
of these two states, corresponding to beating oscillation between
phonons and magnons, may be created (Fig. 1b).

We report the observation of coherent beating between pho-
nons and magnons in lutetium iron garnet. By using time-
resolved magneto-optical (TRMO) microscopy, we measured

spatio-temporal magnetization dynamics, which couples with
phonons in a thin film of lutetium iron garnet, LuIG. We found
the coherent beating lasts up to tens of nanoseconds, which
experimentally confirms strong coupling between magnons and
phonons in the bare film of LuIG.

Results
Sample and measurement setup. To explore the beating oscil-
lation in solids, we have developed TRMO microscopy. Figure 1e
shows a schematic illustration of the experimental setup used in
the present study. We used a thin film of Lu2Bi1Fe3.4Ga1.6O12

(LuIG) with the thickness of 1.8 μm as a sample, exhibiting large
magneto-optical effects18,19 and small magnetization damping
(See Supplementary Note 1). To excite magnetization dynamics,
we focused a pulsed laser light (pump pulse) with the wavelength
of 800 nm onto the sample, where the wavelength corresponds to
almost half the energy of the bandgap of LuIG (~2.3 eV)18,19. The
duration and the energy of the pulse is 100 fs and 1.0 μJ per pulse,
respectively. The pump pulse excites spin waves, or magnons, via
the photo-induced demagnetization and the photo-induced
expansion effects20–24. We shaped the focus into a vertical line
to selectively excite magnons with the wavevector k perpendicular
to the vertical line (y axis) by using the Huygens-Fresnel
interference25. Next, we shined another weak light pulse (probe
pulse) with the wavelength of 630 nm (100 fs, 50 nJ per pulse) on
the sample from the normal direction. We measured the spatial
distribution of the magneto-optical Faraday rotation of the probe
pulse transmitted through the sample by using a CCD camera
(See Method for details)26. The Faraday rotation at each position
on the sample θF(r, t) reflects the local magnetization precession
amplitude projected along the propagation direction of the probe
pulse. By sweeping the time delay between the pump and probe

Fig. 1 Concept of coherent oscillation between phonons and magnons, and time-resolved magneto-optical microscopy. a A schematic illustration of
phonons and magnons, b A schematic illustration of coherent oscillation between phonons and magnons. c The dispersion curves of phonon and magnon in
lutetium iron garnet (LuIG). d A magnified view around A in Fig. 1c. The black curves represent the dispersion relation of hybridized magnon-phonon
polaron, while the red and blue dashed curves represents dispersion relation of pure magnons and transverse acoustic phonons, respectively. e Optical
setup for the time-resolved magneto-optical microscopy with the extended delay time. The excited magnetization dynamics is detected via the polarization
rotation angle of the probe laser pulse induced by the magneto-optical Faraday effect in the sample. The detection is performed by an charge-coupled
device (CCD) camera. f Magneto-optical image observed 3.5 ns after the pump pulse irradiation under the external magnetic field B= 11.5 mT parallel to
the wavevector of the excited magnons. g, Wavenumber spectrum of the obtained magneto-optical images observed 3.5 ns after the excitation (B= 11.5
mT). The inset shows a magnified view.
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pulses, we obtained temporal evolution of the spatial images of
the magnetization dynamics excited by the pump pulse. We
extended the maximum delay time to 35 ns by using optical
fibers, so that the frequency resolution of the obtained images
reaches 28 MHz, which is enough to resolve the magnon-phonon
gap frequency in the sample7,8. All the measurements were per-
formed at room temperature.

Observation of coherent oscillation between phonons and
magnons. Figure 1f shows a spatial image of the polarization-
rotation angle obtained at 3.5 ns after the pump-pulse irradiation.
Vertical wave patterns appear in the vicinity of the focus of the
pump pulse, demonstrating the magnon excitation by the pump
pulse. By observing the sign change of the rotation caused by
reversing the external magnetic field (See Supplementary Note 2),
we confirmed that the polarization rotation is due mainly to the
magneto-optical Faraday effect rather than the distortion-induced
polarization rotation. Here, we define ~FkðtÞ ¼

R
θFðr; tÞeikrdk as

the Fourier transform of the spatial image of the Faraday rotation
angle with respect to the spatial coordinate. Figure 1g shows the
j~FkðtÞj2 at t= 3.5 ns. In the kx > 0 region [k= (kx, ky)], a region
corresponding to waves propagating right in Fig. 1f, we see clear
peaks of j~FkðtÞj2 at kx= 2.93 × 104 rad ⋅ cm−1≡ kTA (kx= 1.38 ×
104 rad ⋅ cm−1≡ kLA) corresponding to the intersection point
between magnons and TA (LA; longitudinal acoustic) phonons
calculated from the parameters of LuIG. This shows that the
magnon polarons are created at the intersections of the dispersion
curves of magnons and phonons after the pump-pulse irradiation.

In Fig. 2a, we show the temporal evolution of the real part of
~FkðtÞ at ∣k∣= kTA and k//B. Importantly, the envelope of the ~FkðtÞ
signal clearly oscillates; the envelope amplitude decreases from
t= 15 ns to t= 20 ns, while it increases from t= 20 ns to t= 25
ns up to almost the same amplitude as at t= 15 ns. This
oscillation is in contrast to the ordinary relaxation dynamics of
magnons, which monotonically decreases, but rather implies
oscillation of magnon density.

In Fig. 2b, we show the frequency power spectrum of ~FkðtÞ,
Fk(ω)= ∫θF(r, t)ei(kr−ωt)dkdt, at ∣k∣= kTA, where k//B. The
frequency spectrum exhibits two peaks, suggesting the level
splitting at the intersection of the magnon and TA phonon
dispersion curves. The splitting width 70 MHz coincides with the
inverse of the period for the observed oscillation envelope shown
in Fig. 2a (14 ns), implying that the splitting is related to the
observed oscillation.

When we measure pure magnons directly with the TRMO
technique, we should see the periodically oscillating signal as a
function of time with the frequency of magnons. Since we
measure magneto-optical Faraday rotation, the signal disappears
when magnons are transformed into phonons. Therefore, the
observed oscillation of the signal envelope shown in Fig. 2a
implies the periodic coherent beating oscillation between magnon
and phonon in the time domain.

To confirm that the observed envelope oscillation is magnon-
phonon beating oscillation, we examine field-angular depen-
dence; if the observed oscillation is the beating, it should
disappear for LA phonons since the magnon-phonon coupling
coefficient takes minimum for LA phonons when k//B. The
effective magnetic field b= (by, bz) acting on local magnetization
due to the magnon-phonon coupling can be written as27,

by
bz

� �
¼ 2b2ϵxz cos θk

b1ϵxx sin 2θk

� �
; ð1Þ

where b1 and b2 are the magneto-elastic coupling constants, and
θk is the relative angle between the wavevector of magnons and
the saturation magnetization. ϵxx and ϵxz are the elastic strain

tensor components induced by phonons. ϵxx (ϵxz) becomes
nonzero for LA (TA) phonons. When θk= 0(k//B), LA phonons
induce minimal effective fields, while TA phonons induce
maximum effective fields. On the other hand, both LA and TA
phonons induce minimal effective fields when θk= 90∘(k⊥B).
Therefore, the coherent oscillation should disappear when
kx= kLA(k//B), kx= kLA(k⊥B), and kx= kTA(k⊥B). We show
the temporal evolution of the real part of the experimentally
obtained ~FkðtÞ at kx= kLA(k//B) in Fig. 2d. When k//B, the
envelope amplitude of the ~FkðtÞ does not oscillate but
monotonically decreases. The frequency spectrum of the ~FkðtÞ
exhibits a single peak at kx= kLA(k//B), as shown in Fig. 2e,
consistent with the θk dependence of the effective field
representing the magnon-phonon coupling [Fig. 2f]. Figure 2g
and h show the temporal evolution of ~Fk at kx= kLA(k⊥B) and
kx= kTA(k⊥B), respectively. The envelope of ~FkðtÞ does not
oscillate in both cases, consistent with the prediction that the
effective field is minimized under these conditions. We also
performed measurement at θk= 45°, where the magneto-elastic
coupling is maximized for LA phonon, however, we could not see
clear oscillation due to large damping of magnons (See
Supplementary Note 3).

To demonstrate how coherent beating oscillation is observed in
real space, we show the temporal change in the wave pattern
excited by the pump pulse in Fig. 2i. At t= 15 ns, we see clear
wave pattern with the characteristic wavelength of
λTA = 2π/kTA= 2.1 μm, while at t= 20 ns, the period of the
strong wave pattern changes to λLA= 2π/kLA= 4.6 μm. This is
because the magnon amplitude ~FkðtÞ at k= kTA decreases owing
to coherent beating oscillation, while the ~FkðtÞ at k= kLA remains
finite. After another 10 ns, the wave pattern of kTA mode recovers
its intensity, which are all consistent with the result shown in
Fig. 2a and d.

Excitation spectra of magnons and coherent oscillation fre-
quency. We now discuss the results in terms of the relation
between magnon excitation spectra and coherent oscillation fre-
quency. By using the effective field b, we calculate the coherent
oscillation frequency as follows (See Method),

Δf ¼ 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmðk;BÞ � ωpðkÞ
h i2

þ σ2k

r
; ð2Þ

where σk ¼ b2k
ffiffiffiffiffiffiffiffiffi
2γ

ρMsωt

q
is the magnon-phonon gap frequency,

γ= 2π × 2.8 × 1010Hz ⋅ T−1 is the gyromagnetic ratio,
ρ= 7.39 × 103 kg ⋅m−3 is the density of the sample, Ms= 1.48
× 104 A ⋅ m−1 is the saturation magnetization, and k= ∣k∣ is the
wavenumber. ωm(k; B) and ωp(k) are the angular frequency of
magnons and phonons, respectively. ωt is the angular frequency
at the intersection between magnon and phonon dispersion
curves. In Fig. 3a, we show a magnified view of ∣Fk(ω)∣2 near the
intersection. The spectrum intensity is in good agreement with
the theoretical calculation exhibiting anticrossing gap around the
intersection of the dispersion curves. Figure 3b shows the oscil-
lation frequency as a function of the wavenumber obtained from
the time-domain analysis of the ~FkðtÞ. The obtained oscillation
frequency exhibits a V-shaped curve which takes a minimum at
the intersection point. The bottom frequency of the V-shaped
curve remains finite within the error bar. The result demonstrates
again the formation of the anti-crossing gap caused by the
magnon-phonon coupling, which has yet to be observed in
magnetic garnet films28–30. When the external magnetic field is
increased to 13.0 mT, the spectrum peak shifts towards higher
wavenumbers (Fig. 3c). The magnetic field dependence confirms
that the observed gap is not due to the phonons, which do not
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respond to external magnetic fields. The experimental result is
well reproduced by Eq. (2), as shown in Fig. 3b and d, showing
that the observed envelope oscillation of ~FkðtÞ is attributed to the
coherent oscillation between phonons and magnons.

Discussion
We numerically calculated the temporal evolution of the magnon
amplitude ~akðtÞ by calculating the Fourier transform of the
spectral magnon amplitude ak(ω)31. We considered only the
coupled dynamics between TA phonons and magnons, relevant
to the observed oscillation. By considering the magnon-phonon

interaction to the lowest order, Gilbert damping, and phonon
relaxation, ak(ω) can be written as follows (See Methods),

akðωÞ ¼ �
iσkf kg

ex
p =2

iðωm � ωÞ þ κm
� ��

iðωp � ωÞ þ κp
�þ σ2k=4

; ð3Þ

where κm and κp are the relaxation constants of magnons and
phonons, respectively. fk is the external driving force for phonons,
and gexp is the coupling between phonons and fk (See Method). ωm

and ωp are the angular frequency of magnon and phonon at a
wavenumber k, respectively. In Fig. 4a and b, we compared the
experimentally obtained temporal evolution of j~FkðtÞj2 as a

Fig. 2 Observation of magnon-phonon coherent oscillation. a Temporal evolution of the real part of ~FkðtÞ at kx= kTA under the magnetic field B= 11.5 mT
parallel to k, where kTA refers to the wavenumber of the intersection point between dispersion relations of transverse acoustic (TA) phonons and magnons.
Red inverted triangles indicates t= 15 ns, 20 ns, and 25 ns after the pump pulse irradiation. b A frequency power spectrum of ~FkðtÞ at kx= kTA. The blue
filled circles represents experimentally obtained spectrum intensity, while the gray curve represents fitting curve. Inverted red triangle highlights peaks.
Errors of the data are evaluated as a standard deviation, which is smaller than the data plot. c Theoretically calculated dispersion curves of magnon
polarons around kx= kTA and ky= 0, where we use the crystalline anisotropy energy Kc= 73.0 [J ⋅m−3], uniaxial anisotropy energy Ku=−767.5 [J ⋅m−3],
saturation magnetization Ms= 14.8 [kA ⋅m−1], velocity of LA phonons vLA= 6.51 [km ⋅ s−1], velocity of TA phonons vTA= 3.06 [km ⋅ s−1] and magnon-
phonon coupling constant b2= 1.8 × 105 [J ⋅m−3]. The black solid curves represent the dispersion curves of magnon polarons, while the blue and red
dashed curves represent pure TA phonons and magnons, respectively. d Temporal evolution of the real part of ~FkðtÞ at kx= kLA under the magnetic field
B= 11.5 mT parallel to k, where kLA refers to the wavenumber of the intersection point between dispersion relations of longitudinal acoustic (LA) phonons
and magnons. e A frequency power spectrum of ~FkðtÞ at kx= kLA. The black filled circles represents experimentally obtained spectrum intensity, while the
gray curve represents fitting curve. Errors of the data are evaluated as a standard deviation, which is smaller than the data plot. f Theoretically calculated
dispersion curves of magnon polarons around kx= kLA. The gray line and red curve represent the dispersion curves of LA phonons and magnons,
respectively. g Temporal evolution of the real part of ~FkðtÞ at kx= kTA under the magnetic field B= 11.5 mT perpendicular to k. h Temporal evolution of real
part of ~FkðtÞ at kx= kLA under the magnetic field B= 11.5 mT perpendicular to k. i, Magneto-optical images taken at different delay times.
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function of the wavenumber with the calculated magnon ampli-
tude j~akðtÞj2. The j~FkðtÞj2 and j~akðtÞj2 exhibit similar
wavenumber-dependent oscillation. We estimated the magnon-
phonon gap frequency σk and the relaxation constants κm and κp
by fitting the experimentally obtained magnon amplitude, as
shown in Fig. 4c. Table 1 shows the estimated magnon-phonon
coupling strength and the relaxation constants of magnons and
phonons at three different wavenumbers. The magnon-phonon

coupling constant b2 ¼ σk
k

ffiffiffiffiffiffiffiffiffi
ρMsωt
2γ

q
is estimated to be

(1.8 ± 0.1) × 105 J ⋅m−3 for all the wavenumbers, which agrees
with a previous magneto-striction study32. At
k= 2.98 × 104 rad ⋅ cm−1, σk is as large as 53.0 rad ⋅MHz, while
the relaxation constants of magnons and phonons are κm= 2.10
rad ⋅MHz and κp= 0.49 rad ⋅MHz, corresponding to the values
of lifetime τm= 2.99 μs and τp= 12.8 μs, respectively. For all
wavenumbers, σk is greater than κm and κp. The result shows that
the gap frequency σk is greater than the spectrum linewidth of
both phonons and magnons in the vicinity of the anti-crossing,
satisfying the condition of phonon-magnon strong coupling. We
calculated the cooperativity C ¼ σ2k=κmκp of the magnon-phonon
coupling to evaluate the strength of the coupling in LuIG, which
gives C= 2720 ± 2700 for k= 2.98 × 104 rad ⋅ cm−1, C= 125 ± 81
for k= 3.15 × 104 rad ⋅ cm−1, and C= 127 ± 53 for
k= 3.30 × 104 rad ⋅ cm−1. The cooperativity value is much greater
than previously reported magnon-phonon coupling in
nanomagnet30. The large cooperativity is attributed to the small
intrinsic magnetic damping and high-quality factor of phonon in
garnet crystals33. Although the error of the cooperativity is still
large owing to the limitation of pump-probe delay time, the result
implies intrinsic magnon-phonon coupling in a plane film of
LuIG can be comparable with strong coupling appears in
magnon-photon coupling in a cavity31,34. The magnon-phonon
coupling in the film can be further enhanced by fabricating
phononic or magnonic crystals out of the plane film3, which may
aid in the control of magnons in magnonic circuits and devices.
In addition, our demonstration of the magnon-phonon coherent
oscillation provides a means of studying the dynamics of coherent
superposition of coupled systems, which may pave a way to
coherent control of magnetic and elastic properties in various
magnetic materials.

Method
Time-resolved magneto-optical microscopy. The time-resolved magneto-optical
imaging method is realized by combining the time-resolved optical spectroscopy
and conventional magneto-optical imaging method, which enables the observation
of magnetization dynamics in samples with the spatial resolution of 750 nm and
temporal resolution of 1 ps. We used a 100 fs-duration Ti; Sapphire pulse laser
system with the central wavelength of 800 nm and 1 kHz repetition frequency
(Coherent Inc. Astrella). Pump pulses were prepared by separating a part of the
emitted laser. To prepare probe pulses, the central wavelength of a part of the
emitted laser was converted to 630 nm by an optical parametric amplifier. The
power of the pump and probe pulses was 1.0 μJ and 50 nJ per pulse, respectively,
which was controlled by the variable ND filter. The pump and probe pulses were
linearly polarized along the y-axis (Fig. 1e) by using Glan-Taylor prisms. The pump
pulse was shaped into a 2.3-μm wide and ~100-μm long vertical line by using a
metallic slit. An objective lens collected the transmitted probe pulse with a mag-
nification of 20 and was then introduced to an imaging setup. The imaging setup is
composed of a half-waveplate mounted on a rotation stage, an analyzer, and a
charge-coupled device (CCD) camera with another objective lens of which the
magnification is two. The polarization of the probe pulses was measured using the
rotation analyzer method. The detailed optical configuration and analysis are
shown in the Supplementary Note 2. We switch on and off the pump beam with a
mechanical shutter to measure the magneto-optical images with and without the
spin-wave excitation by the pump beam, and take the difference between the
images. By sweeping the time delay between the pump and probe pulses, we
obtained the propagation dynamics of magnons in the sample. We used an optical

Fig. 3 Wavenumber and field dependence of magnon-phonon coherent
oscillation. a Frequency spectrum Fk(ω) observed at B= 11.5 mT around
the intersection of the magnon and transverse acoustic (TA) phonon
dispersion curves. b Comparison between experimentally obtained gap
between the upper branch and lower branch of the spectrum at B= 11.5 mT
and the theoretical calculation of the gap frequency. Error bars represent
standard deviation. c Frequency spectrum Fk(ω) observed at B= 13.0 mT
around the intersection of the magnon and TA-phonon dispersion curves.
d Comparison between experimentally obtained gap between the upper
branch and lower branch of the frequency spectrum at B= 13.0 mT and the
theoretical calculation of the gap frequency.

Fig. 4 Parameter fitting of coherent oscillation. a Experimentally obtained
temporal evolution of j~FkðtÞj2 at B= 11.5 mT. b Calculated temporal
evolution of magnon amplitude j~akðtÞj2. c Temporal evolution of j~FkðtÞj2 at
different wavenumbers. Gray curves represents fitting curves according to
Eq. (3). Errors of the data are evaluated as a standard deviation, which is
smaller than the data plot.

Table 1 Coupling constant σk, relaxation constant of
magnons κm and phonons κp at different wavenumbers k in
the Lu2Bi1Fe3.4Ga1.6O12 film.

k (104rad ⋅ cm−1) σk (rad ⋅MHz) κm (rad ⋅MHz) κp (rad ⋅MHz)

2.98 53.0 ± 0.01 2.10 ± 1.2 0.49 ± 0.4
3.15 54.4 ± 0.01 9.47 ± 2.5 2.51 ± 1.5
3.30 55.9 ± 0.01 3.21 ± 0.9 7.66 ± 2.4

Errors presents standard deviation.
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fiber to extend the temporal delay between the pump and probe pulses up to 35.4
ns, of which the Fourier frequency resolution (28 MHz) corresponds to the typical
energy scale of the magneto-elastic coupling32. We used Lu2Bi1Fe3.4Ga1.6O12(LuIG)
grown on a [001] plane of a gadolinium gallium garnet substrate by liquid phase
epitaxy as a sample. LuIG is a substituted magnetic garnet with the same crystal-
lographic structure as Y3Fe5O12(YIG), which is known to exhibit small Gilbert
damping. The detailed material characterization is described in Supplementary
Note 1. LuIG exhibits a large magneto-optical effect (1.5 deg/μm at 630 nm) and
small magnetization owing to the Ga substitution17, leading to the small ferro-
magnetic resonance (FMR) frequency. Owing to the small FMR frequency, the
wavenumber of the dispersion intersection between magnons and phonons is small
enough to be observed with the present TRMO microscopy. An external magnetic
field was applied using a quadrupole electromagnet during the measurement. We
analyzed the region in the magneto-optical image which is 10-μm away from the
pump focus so as not to include the signal at the pump focus where strong non-
linear effect of phonon such as structural distortion may arise. Owing to the
distance between pump focus and the analyzed region, the obtained time-resolved
signal has a finite time delay depending on the group velocity of the magnon
polaron.

Calculation of dispersion relation of magnon polaron. In this note, we calculate
the dispersion relation of magnon polaron by considering the total Hamiltonian,
which involves the spin Hamiltonian, lattice Hamiltonian, and magneto-elastic
coupling Hamiltonian as follows8,

Hm ¼ �
Z

d3r H0Mz þ
D

2γ_Ms

∂Mi

∂xj

∂Mi

∂xj

 !
ð4Þ

He ¼
Z

d3r
ρ

2
∂ui
∂t

∂ui
∂t

þ α

2
∂ui
∂xi

∂uj
∂xj

þ β

2
∂ui
∂xi

∂uj
∂xj

 !
ð5Þ

Hme ¼
Z

dr3
b2
2M2

s

MiMj
∂ui
∂xj

þ ∂uj
∂xi

 !
; ð6Þ

where, the repetitive use of indices i, j indicates summation with i ≠ j, and H0 is the
external magnetic field, D= 2JSa2/γℏ is the exchange stiffness, γ is the gyromag-
netic ratio, ℏ is the Dirac constant, S is total spin, J is the exchange constant, a is the
lattice constant, ρ is the density of the material, α= c12+ c44 and β= c44 are the
elastic constant, b2 is the shear magneto-elastic constant, Mi is the i -th component
of magnetization, ui is the i -th component of displacement, Ms is the saturation
magnetization, ωpμ(k)= vμk is the dispersion relation of phonon with mode index
μ, vL ¼

ffiffiffiffiffiffiffiffi
α=ρ

p
; vT ¼

ffiffiffiffiffiffiffiffiffiffi
β=2ρ

p
is the velocity of phonon, where L and T represent TA

phonon and LA phonon, respectively. ωm(k) is the dispersion relation of magnons,
derived as follows by using the long-wavelength limit of B. A. Kalinikos’s method9.
In the long-wavelength limit, the dispersion relation of magnons is written as
follows,

ωmðkÞ ¼

ωHβ þ ωMλexk

2
� �

ωHα þ ωMλexk
2 þ ωM 1þ gk sin2θk � 1

	 
þ ωMgk 1� gk
	 


sin2θk
ωHα þ ωMλexk

2

� �� �s
;

ð7Þ
where, λex ¼ 2Aex=μ0M

2
s m2
� �

is the exchange constant, ωM= γμ0Ms, gk ¼ 1�
1� expð�kdÞ� �

=ðkdÞ with the sample thickness d. ωHα= γμ0Hα and ωHβ= γμ0Hβ

is the Larmor precession frequency defined by anisotropic effective field Hα,Hβ.
We ignore the term originating from compressive strain because it is zero when the
relative angle between θk is either 0 or 90∘. In this case, the total effective
Hamiltonian is written as follows8,

Heff ¼ ∑
kμ

_ωmðkÞâyk âk þ _ωpμðkÞb̂
y
kμb̂kμ þ

i
2
_σkμ âyk b̂kμ � b̂

y
kμâk

� �� �
; ð8Þ

where âkðâykÞ is the annihilation (creation) operator of a magnon with a wave-

number k, and bkμðbykμÞ is the annihilation (creation) operator of a phonon with a
wavenumber k and mode index μ= T, L. σkμ is the coupling constant between
magnon and phonon which is written as follows,

σkμ ¼ b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ

ρωpμðkÞMs

s
: ð9Þ

By diagonalizing the Hamiltonian, we obtain the following condition for the fre-
quency of the magnon polaron ω8,

ðω2 � ω2
pÞðω� ωmÞ �

1
2
ωpσ

2
kμ ¼ 0: ð10Þ

We used λex= 4.2 × 10−13 [m2], vL= 6.51[km ⋅ s−1], vT= 3.06 [km ⋅ s−1],
b2= 1.8 × 105 [J ⋅m−3], ρ= 7.39 × 103 [kg ⋅m−3].

Derivation of coherent oscillation frequency. In this note, we derive the coherent
oscillation frequency from the total effective Hamiltonian defined in the last note.

We consider the parallel magnetic field configuration where wavevector k and M
are parallel. In this configuration, only the TA phonon couples with the magnons,
thus we set mode index μ= T Here, we start from the effective total Hamiltonian as
follows,

Heff ¼ ∑
k

_ωmðkÞâyk âk þ _ωpμðkÞb̂
y
kTb̂kT þ i

2
_σkT âyk b̂kT � b̂

y
kTâk

� �� �
: ð11Þ

The effective Hamiltonian can be diagonalized using Bogoliubov transformation
defined as follows,

ĉk ¼ ukâk � ivkb̂kT; ð12Þ

d̂k ¼ ukb̂kT � ivkâk; ð13Þ
where,

uk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωs þ ωδ

2ωs

s
; vk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωs � ωδ

2ωs

r
; u2k þ v2k ¼ 1 ð14Þ

and

ωδ ¼ ðωpT � ωmÞ=2; ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
δ þ σ2kT=4

q
: ð15Þ

The Bogoliubov transformation leads to the diagonalized Hamiltonian as follows,

H ¼ ∑
k

_ωcðkÞ̂cyk ĉk þ _ωdðkÞd̂
y
k d̂k

h i
; ð16Þ

where ωc(k)= (ωpT+ ωm)/2+ ωs, ωc(k)= (ωpT+ ωm)/2− ωs. Here, we define the
coherent state of the hybridized wave as follows,

ĉk γk


 � ¼ γk γk



 �
; ð17Þ

d̂k δk


 � ¼ δk δk



 �
; ð18Þ

where γk= ukαk− ivkβkT (δk= ukβkT− ivkαk) is the amplitude of upper (lower)
branch of the magnon polaron, αk (βkT) is the amplitude of magnon (phonon),
which are the eigenvalues of the coherent state γk



 �
; δk


 �

; αk


 �

; βkT


 �

. By using
time-resolved magneto-optical microscopy, we can measure the amplitude of the
magnon, which is proportional to the magnon number. The magnon number at an
arbitrary time t is calculated by using the coherent state of magnon polaron, as
follows,

hnmi ¼ γk; δk
� 

âykðtÞâkðtÞ γk; δk

 � ð19Þ

¼ δk; γk
� 

 ukd̂

y
kð0Þeiωd t þ ivkĉ

y
kð0Þeiωc t

� �
u�k d̂kð0Þe�iωd t � iv�k ĉkð0Þe�iωc t
� �

γk; δk


 �

¼ jukj2jγkj2 þ jvkj2jδj2 þ 2ukvkjγ�kδkj sinð2ωst þ ϕÞ;
ð20Þ

where, tan ϕ ¼ Imðδk�γkÞ=Reðδk�γkÞ. For an initial state, we suppose αk= 0, βkT ≠ 0
as we excite phonon predominantly by the pump pulse. Then γk=− ivkβkT, δk=
ukβkT and ϕ= π/2 holds, leading to the temporal evolution of magnon number as
follows,

nm
� � ¼ σ2k

2ω2
s
jβkT j2 1� cosð2ωstÞ

� �
: ð21Þ

Since the frequency difference between upper and lower branch of magnon polaron is
expressed by Δf=ωc−ωd= 2ωs, this derivation leads to the expression in Eq. (2). We
plotted the Δf in Fig. 3b and d in the main part of our paper.

Numerical calculation of coherent oscillation. In this note, we derive the
coherent oscillation amplitude as a function of wavenumber k and time t. We
consider non-Hermitian Hamiltonian including loss of magnons and phonons, and
external field under parallel configuration as follows,

H ¼ ∑
k

_ωmâ
y
k âk þ _ωpTb̂kTb̂kT þ i_

2
σkT âyk b̂kT � b̂

y
kTâk

� ��

� i_κmâ
y
k âk � i_κpTb̂

y
kTb̂kT þ _κex FkðωÞyb̂kT þ FkðωÞb̂

y
kT

� �i
;

ð22Þ

where κm(κpT) is the damping constant of magnon (TA phonon), κex is the cou-
pling constant between phonon and external excitation force Fk(ω). The equation
of motion of the operators leads to the following form.

�iωâk ¼ �iωmâk � κmâk þ
σkT
2

b̂kT ð23Þ

�iωb̂kT ¼ �iωpTb̂kT � κpb̂kT � iκexFk �
σkT
2

âk: ð24Þ
The excitation spectrum of magnons can be calculated from the equation of motion
as follows,

âkðωÞ
� � ¼ �

iσkFkg
ex
p =2

iðωm � ωÞ þ κm
� �

iðωp � ωÞ þ κp

h i
þ σ2kT=4

: ð25Þ

Here, we suppose the spectrum intensity of the external force is determined by the
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pump focus shape in real space25. Therefore the external force is expressed as
follows,

FkðωÞ ¼
Z

dtdr I0f ðtÞGðrÞeiðkr�ωtÞ ð26Þ

GðrÞ ¼ e
� x2

2σ2x
� y2

2σ2y ð27Þ

where σx(σy) is the length of the focus along x(y)− axis, r= (x, y). The spatial
distribution of the excitation intensity is plotted in Fig. 5(a). f(t) is the temporal
excitation function defined as follows,

f ðtÞ ¼ tan h
t � ts
σt

� tan h
t � te
σt

þ 1; ð28Þ

where ts (te) is the start (end) time of the square-wave type excitation in time, σt is the
parameter to describe smoothness of the square wave. The temporal evolution of the
f(t) is plotted in Fig. 5(b). In calculating coherent oscillation, we need only the com-
ponent where k= kex, which is Fk(ω) since we consider parallel configuration. The
calculated spectrum intensity is shown in Fig. 5(c). The intensity of the spectrum
shows a peak at the crossing between dispersion relations of magnons and TA pho-
nons as seen in the experimentally obtained excitation spectra in Fig. 3a and c.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code that supports the findings of this study are available from the corresponding
author upon request. All the analysis was performed by codes developed by Matlab 2017b
software and Matlab signal processing toolbox.
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Fig. 5 Numerical calculation of magnon excitation intensity. a Heat map
of G(r). σx and σy are set to realize plane-wave excitation of magnon
polaron (σx= 40 nm, σy= 40 nm). b Time evolution of excitation intensity
f(t). c Heat map of spectrum intensity calculated according to Eq. (25)
(ts= 1.5 ns, te= 1.6 ns, σt= 0.3 ns). The spectrum intensity takes peak at
the dispersion crossing between transverse acoustic (TA) phonon and
magnon, reproducing the experimental results.
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