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Non-inertial quantum clock frames lead to non-
Hermitian dynamics
Ismael L. Paiva 1✉, Amit Te’eni1, Bar Y. Peled1, Eliahu Cohen 1 & Yakir Aharonov2,3,4

The operational approach to time is a cornerstone of relativistic theories, as evidenced by the

notion of proper time. In standard quantum mechanics, however, time is an external para-

meter. Recently, many attempts have been made to extend the notion of proper time to

quantum mechanics within a relational framework. Here, we use similar ideas combined with

the relativistic mass-energy equivalence to study an accelerating massive quantum particle

with an internal clock system. We show that the ensuing evolution from the perspective of

the particle’s internal clock is non-Hermitian. This result does not rely on specific imple-

mentations of the clock. As a particular consequence, we prove that the effective Hamiltonian

of two gravitationally interacting particles is non-Hermitian from the perspective of the clock

of either particle.
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T ime is an intriguing physical concept that can be connected
to most—if not all—fundamental issues in physics. A good
example of that concerns how a refined understanding of

time is associated with the revolution brought by the introduction
of relativistic theories. In fact, Lorentz transformations, which
were independently introduced by Voigt1 and Lorentz2 and
named as such by Poincaré3, were already known for some time
before Einstein’s introduction of special relativity4. However, they
had never been taken to their full mechanical consequences prior
to Einstein’s work. He did so by considering that clocks—and
rods for that matter—are physical objects and, hence, subject to
physical laws.

In quantum mechanics, the issue of time was discussed since
the early days of the theory, and understandably so: while mea-
surements are an essential element of it, it seems that the theory
does not readily allow the description of measurements of time
since it contains time as a parameter. One could, then, wonder
about the possibility of constructing a time operator. However,
arguably, much progress in this regard stagnated due to Pauli’s
well-known objection to such an operator5, which is based on the
argument that the Hamiltonian, canonically conjugate to a Her-
mitian time operator, would have to be unbounded from below.
Although discussions about time continued to exist in the lit-
erature, to the best of our knowledge, a time operator appeared
again in a discussion by Aharonov and Bohm that involved the
idea of Heisenberg’s cut in a special measurement scheme6. Later,
Garrison and Wong introduced a Hermitian time operator that
measures time within a finite interval and overcomes Pauli’s
objection7. However, it can be argued that such a clock is non-
physical since it requires the probability of finding the system at
the boundaries of the domain of the clock to vanish8. More
generally, realistic physical clocks that overcome Pauli’s objection
can be introduced with the extension of the notion of observables
from Hermitian operators to positive operator-valued measures
(POVMs)9–11.

Remarkably, the canonical quantization of general relativity
leads to a constraint known as Wheeler-DeWitt equation, which
implies that the wave function of the universe does not evolve in
time12. For systems satisfying such a constraint, Page and
Wootters introduced a formalism in which a non-interacting
subsystem works as a reference for time (i.e., a clock) for the
remaining parts13. With this scheme, which can be studied in the
general context of quantum reference frames14–18, they showed
that the usual unitary evolution given by the Schrödinger equa-
tion can be recovered. Their formalism has attracted much
attention, especially during the last few years19–37. In particular, if
an arbitrary interaction term between the clock and the
remaining parts is considered, a generalized Schrödinger equation
is obtained23.

Nevertheless, the resulting evolution was found to be unitary in
a vast quantity of scenarios investigated in the literature, even
when gravitationally interacting clocks were considered22,23,28.
Generally, such clocks present a particular type of time dilation
and can also undergo decoherence, losing their ability to behave
as good clocks22. However, it is still argued that in circumstances
for which they still work as clocks, the evolution of the rest of the
systems from their perspective is unitary28.

That said, non-unitary evolution does manifest itself in energy
measurements of clock systems35. More precisely, the dynamics
of the rest of the system from the perspective of a clock under-
going a von Neumann measurement of energy is non-unitary
even when the final “collapse” (or update) of the state of the
system is not taken into account. Specifically, the dynamics from
the perspective of the clock being measured was found to
be governed by a non-Hermitian Hamiltonian. It was even

speculated that such clocks are non-inertial frames of reference.
However, one may question whether the clock retains its ability to
measure time when its energy is being measured, putting in check
the fundamental nature and the significance of the non-unitary
dynamics in this case.

In this article, we show that non-Hermitian Hamiltonians are
likely an unavoidable element in fully operational treatments of
time in the Page and Wootters framework. More explicitly, we
prove that the resulting evolution from the perspective of the
proper time (i.e., internal clock) of an accelerating massive par-
ticle is generated by a non-Hermitian Hamiltonian and, generally,
non-unitary. We also analyze gravitationally interacting clocks
from this new perspective, explaining how to reconcile our results
with previous ones, even though they may seem to be at odds.
Important in our approach is a post-Newtonian correction to the
mass: the mass-energy equivalence. Such a correction has pre-
viously led to other worth-noting results22,23,29,38–40.

Results
Time evolution given by quantum clocks. Let A denote a phy-
sical clock system. If HA is the system’s Hamiltonian, time states
are built as

tA þ t0A
�� � � e�iHAt

0
A=_ tA

�� �
: ð1Þ

From these states, a time operator TA can be constructed. If
different time states are orthogonal to each other, i.e., htAjt0Ai ¼
δðtA � t0AÞ for every tA and t0A, TA is Hermitian and, moreover, it
is canonically conjugate to HA. However, the resulting time states
are not always orthogonal to each other10,11,41,42. These represent
more realistic clocks, with the lack of orthogonality reflecting the
absence of infinite resolution of the clock. In this work, clocks are
not assumed to be ideal.

Observe that, regardless of whether the time states are
orthogonal to each other or not, Eq. (1) implies that

∂

∂tA
tA
�� � ¼ � i

_
HA tA

�� �
: ð2Þ

This means that, being the generator of translations in time states,
HA acts on these states as a time derivative.

Besides clock A, let the other relevant systems be represented
by the index M. Also, assume that the joint system satisfies the
Wheeler-DeWitt equation

H Ψj ii ¼ 0; ð3Þ
where H is the Hamiltonian of the joint system. Here, the double-
ket notation is used to identify the entire system, which does not
evolve with respect to an external time. It is noteworthy that H is
defined as an operator acting upon Hkin � HA �HM . However,
in case of operators with continuous spectra containing zero, like
in the case of H, the states Ψj ii satisfying the constraint, called
physical states, are not normalized in the inner product on this
space23,43,44. Thus, a new space Hphys is constructed for the
solutions of Eq. (3) with the inner product23,43,44

hhΨjΦiiphys � h Ψh jð tA
�� �

tA
� ��� IMÞ Φj ii: ð4Þ

If HM denotes the Hamiltonian of the system of interest and
Hint, an arbitrary interaction between A and M, we have

H ¼ HA þHM þHint: ð5Þ
Moreover, define ψðtAÞ

�� � � htA Ψj ii. As a result, Ψj ii can be
written as

Ψj ii ¼
Z

dtA tA
�� �� ψðtAÞ

�� �
: ð6Þ
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Also, Eq. (3) implies that tA
� ��H Ψ

��� �
vanishes, which, in turn,

can be written as23

i_
∂

∂tA
ψðtAÞ
�� � ¼ HM ψðtAÞ

�� �þ
Z

dt0A KðtA; t0AÞ ψðt0AÞ
�� �

; ð7Þ

giving rise to a generalized Schrödinger equation. Here,
KðtA; t0AÞ � htAjHintjt0Ai. Observe that the use of Eq. (3) in the
derivation of the above expression assures that we are restricted to
the subset of physical states.

In many instances, it is desirable to let Ψj ii be composed of
various subsystems and, in particular, multiple clocks. In cases
with multiple clocks, the dynamics can be studied from the
perspective of any of them28,42,43.

Accelerating clock frames. Now, we connect the acceleration of
clocks to the observance of non-Hermitian dynamics. First, a
discussion of how acceleration affects the Hamiltonian of a free
particle is needed. In fact, classically, this influence should be
taken into account with the addition of a potential V. Restricting
our study to potentials given by a function of the position x and
recalling from Newtonian physics that ma=−dV/dx, where m is
the mass of the system and a is its acceleration, we conclude that

VðxÞ ¼ �m
Z x

x0

aðx0Þdx0: ð8Þ

In the above, it was assumed for simplicity that a can be para-
metrized by x and V(x0)= 0. Defining f ðxÞ � � R x

x0
aðx0Þdx0, the

Hamiltonian of the system becomes H+mf(x).
In the quantum case, we can, then, consider a system composed by

a massive particleM and an internal clock A. Initially, we assume that
they do not interact. If HM is the free Hamiltonian of M, HA is the
Hamiltonian of the clock, and XM is the position operator associated
with the center-of-mass of M, we can write the Hamiltonian of the
system as H=HA+HM+mf(XM).

Now, a post-Newtonian correction can be added to H by
applying the mass-energy equivalence45. For this, the mass of the
system is treated as an operator and its value is updated with the
Hamiltonian of the internal degrees of freedom22,23,29,38–40. In
our case, it implies that the mass of the systems becomes m+HA/
c2. Then, redefining f to absorb the constant 1/c2, we can write

H ¼ HA þ HM þ HA f ðXMÞ: ð9Þ
For simplicity, we have neglected, as we also do in the rest of the
article, the term with the mass m and have considered only HA/c2.
This is done to remove extra terms that would still be associated
with a unitary dynamics. The mass m can be added back without
affecting the analysis presented here. Moreover, observe that the
potential (associated with f ) couples to internal degrees of
freedom of the system38.

Defining ψðtAÞ
�� � � htA Ψj ii and using Eqs. (2) and (3), we

obtain the Schrödinger equation

i_
∂

∂tA
ψðtAÞ
�� � ¼ HA

eff ψðtAÞ
�� �

; ð10Þ

where

HA
eff � ½I þ f ðXMÞ��1HM ð11Þ

is the effective Hamiltonian of system M with respect to clock A.
Generally speaking, HA

eff is non-Hermitian since ½I þ f ðXMÞ��1

does not always commute with HM. A detailed derivation of the
above expression can be seen in the Supplementary Note 1.

It is worth noting that, if a non-interacting clock B external to
M is included in the analysis, the only change to the total
Hamiltonian of the joint system is the addition of the
Hamiltonian of this clock since it does not get coupled to M.
As a consequence, it follows by direct computation that the
effective Hamiltonian from the perspective of clock B is
Hermitian. More precisely, it is HB

eff ¼ H, where H is the
Hamiltonian in Eq. (9). Moreover, with this remark, we can also
verify that our result is in harmony with a quantum field
treatment of accelerated clocks in a fixed background spacetime
that showed that the time rate of these clocks is affected by their
acceleration (and not only by their instant velocity)46. In fact, in
our treatment, the time rate of clock A from the perspective of
clock B can be calculated as

d
dtB

TA ¼ i
_
½HB

eff ;TA� ¼
i
_
½I þ f ðXMÞ�½HA;TA�; ð12Þ

which depends on f and, hence, on the acceleration of clock A.
To illustrate and evidence the significance of the results just

presented, we discuss the case of two rocket ships R and S, each
with their own internal clock, as shown in Fig. 1. Initially, we
assume that there is no interaction between the rockets nor
between each rocket’s external degree of freedom with its clock.
Thus, if the two rockets are inertial, as represented in Fig. 1a, the
evolution from the perspective of either clock is unitary.

Now, suppose rocket R starts accelerating while rocket S
remains inertial, as illustrated in Fig. 1b. Then, according to the
result just presented, the effective dynamics from the perspective
of rocket R’s clock is, generally, non-unitary. While this is the
case, in the derivation of the Hamiltonian in Eq. (11) only the
external degrees of freedom of the accelerating clock were taken
into consideration. However, it can be readily seen that, if other
systems that do not interact with system M and clock A are
included in the analysis, their dynamics will be unitary from A’s
perspective. In fact, their individual Hamiltonians will be added
to HA

eff with a multiplication by the factor ½I þ f ðXMÞ��1, which
commutes with them. Thus, in the example in Fig. 1b, the
dynamics of rocket S from the perspective of R’s clock is governed

Fig. 1 Representation of non-interacting travelling rocket ships. Ships R and S have each their own internal quantum time. If both rockets are at rest or
moving with constant speed (aR= aS= 0), as shown in a, the time evolution of systems described by either of them is unitary. However, if rocket R starts
accelerating (aR≠ 0), as displayed in b, then the time evolution of systems from its clock’s perspective is, generally speaking, non-unitary, while the
evolution from the perspective of rocket S’s clock remains unitary. Finally, none of the clocks gives a unitary evolution if both rockets are accelerating, as
illustrated in c.
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by a Hermitian Hamiltonian. This is in accordance with a recent
analysis that used Fermi-Walker coordinates to study the
dynamics according to accelerated clocks of systems that do not
interact with them47. There, it was found that their effective
evolution is unitary. To conclude the analysis of the scenario in
Fig. 1b, it is noteworthy that the evolution of the systems under
consideration from the perspective of rocket S’s clock is unitary.

Finally, if both rockets are accelerating, as in Fig. 1c, the
evolution given by either clock is, generally, non-unitary.
However, as it will be shown next with an example of
gravitationally interacting systems, if a given system interacts
with an accelerating one, the effective dynamics from the
perspective of the former’s clock is, generally, non-Hermitian,
even if that system is approximated as inertial.

Gravitationally interacting clocks. We now focus on accelera-
tions due to gravitational interactions between massive systems,
each with their own internal clock. This will allow us to recon-
sider previous results on gravitationally interacting clocks. In
these studies, it was shown that gravitational interactions lead to a
subtle form of time dilation, although the unitarity of the evo-
lution persists22,23,28,39,40.

In those analyses, it was used that the Newtonian gravitational
potential is written as V(r)=−GmAmB/r together with the post-
Newtonian mass-energy equivalence correction, as we have done
to obtain our main result. Then, the gravitational interaction
between two clocks A and B was added to the Hamiltonian as a
term proportional to the product of their free Hamiltonians, i.e.,
λHAHB, where λ=−G/c4r.

It can be noticed that in these previous works the distance
between the clocks was assumed to remain constant. This justifies
the fact that, despite the gravitational effects, both clocks were
found to yield unitary evolution. In fact, both are inertial frames.
Here, however, we allow the relative position of the clocks to
change as a result of the gravitational interaction.

More precisely, we assume that clocks A and B are internal
degrees of freedom of massive particles M and N, respectively.
Then, the gravitational potential can be written as V(xN− xM)=
−GmMmN/∣xN− xM∣. For simplicity, if S is much more massive
than R, we can assume that xN− xM ≈ xN− x0, where x0 is the
initial position of system M. Letting the latter vanish, we have
V(xN)=−GmMmN/∣xN∣.

Now, using the mass-energy equivalence, we write V(XN)=
−GHAHB∣XN∣−1/2c4. For simplicity and to make sure that any
change to the ticking of either clock is due to the gravitational
interaction between the systems, we assume no other interaction
between them. This means that the total Hamiltonian of the
composed system is

H ¼ ½I þ f ðXN ;HBÞ�HA þ HB þ HM þ HN ; ð13Þ
where f(XN,HB)=−GHB∣XN∣−1/2c4. As a result, the dynamics
from the perspective of clock A is given by an expression similar
to Eq. (10) with

HA
eff ¼ ½I þ f ðXN ;HBÞ��1ðHB þ HM þ HNÞ; ð14Þ

which is non-Hermitian since f(XN,HB) does not commute with
HN. This is so in spite of system S being assumed to be
approximately inertial. This might seem surprising in view of the
example with the rocket ships. However, a crucial aspect in that
example is that the rockets had no interaction between them
whatsoever. Here, system S interacts with the non-inertial system
R. Moreover, the effective Hamiltonian from the perspective of
clock B is also non-Hermitian, as expected. More precisely,

HB
eff ¼ ½I þ f ðXN ;HAÞ��1ðHA þHM þHN Þ: ð15Þ

Details of the derivation of Eqs. (14) and (15) can be found in the
Supplementary Note 1. Also, the results just discussed are
illustrated in Fig. 2 with S≡ A+M and R≡ B+N.

It is worth highlighting that gravitationally interacting systems
were also considered in a recently introduced spacetime quantum
reference frame48. There, the weak-field limit was assumed in
order to avoid the problem of ordering of operators. In this limit,
the dynamics was found to be unitary. This is also consistent with
our results since the non-Hermitian character of the dynamics is
accentuated at higher energies. However, since the Hermiticity of
the dynamics appears only as an approximation, predictions
using this type of approximation might likely deviate from the
ones using the non-Hermitian Hamiltonians found here in
experiments that are not relatively short.

It is also noteworthy that an analysis of the dynamics of
quantum systems in the presence of singularities with different
clocks has revealed the manifestation of non-Hermitian dynamics
and, more specifically, non-unitary evolution49. In fact, it was
found that, in this scenario, unitarity depends on the choice of the
clock—even if every clock under consideration is a counterpart of
good clocks at the classical level. Moreover, it was concluded that
the general covariance of general relativity turns out to be
incompatible with quantum unitary dynamics.

Parametrization by time states. A limitation of the approach
used in “Accelerating clock frames” is the requirement that the
acceleration is parametrized by the position of the center-of-mass
of the system. In the case of a single spacial dimension, this
implies that the motion is unidirectional. On the one hand, this
approach is useful to establish connections with fundamental
interactions, like we have done with gravitational interactions,
since these interactions are typically given as a function of the
position. On the other hand, it is possible to avoid these limita-
tions by parametrizing the acceleration with time states.

Using this approach, with the correction due to the accelera-
tion, the Hamiltonian of the system becomes

H ¼ HA þHM þm
Z

dtAgðtAÞ tA
�� �

tA
� ��: ð16Þ

If we use the mass-energy equivalence in a similar manner to the
above, we are faced with an ordering issue since HA does not
commute with

R
dtAgðtAÞjtAihtAj in general.

If a non-symmetric order is chosen, then, the resulting
dynamics should generally be non-unitary from the perspective
of external clocks that do not interact with clock A. Because of
this, we choose the Weyl ordering and obtain the Hamiltonian in
Eq. (5) with

Hint ¼
1
2

Z
dtAgðtAÞ HA tA

�� �
tA
� ��þ tA

�� �
tA
� ��HA

� �
: ð17Þ

As already discussed, this gives rise to the dynamics in Eq. (7). To
see that this dynamics is generally non-unitary, we show in the
Supplementary Note 2 that, in the case of an ideal clock, it
reduces to Eq. (10) with

HA
eff ¼ ½1� gðtAÞ��1 HM � i_

2
g 0ðtAÞI

� �
ð18Þ

and, moreover, if HM ¼ P2
M=2m and

jψð0Þi ¼ ð2Δ2=πÞ1=4 R dpM e�Δ2p2M jpMi, we have

hψðtAÞjψðtAÞi ¼ e�
R tA

0
dt0A½1�gðt0AÞ��1g 0ðtAÞ; ð19Þ

which, generally, is not constant in time.
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Discussion
We have studied how accelerations of massive particles lead to the
emergence of non-Hermitian dynamics and even non-unitarity
from the perspective of quantum clocks internal to them. These
results come as a consequence of the coupling between external
and internal degrees of freedom of a system, which include a
clock system (associated with the system’s proper time). This is a
general feature arising from the Page and Wootters formalism,
not relying on specific implementations of the clocks or even on
them being ideal. It contrasts, for instance, with the already dis-
cussed result in ref. 49 and also with an analysis of quantum
clocks in superpositions of different states of motion in relativistic
scenarios50. In the latter, it was found that even the average
behavior of the clock can be affected by its preparation. Never-
theless, our result reveals a generic feature that should be present
regardless of any specific characteristic of the clock at hand, as
seen in our derivations.

By the equivalence principle, accelerating massive particles are
equivalent to systems under gravitational forces. To evidence this,
we have conducted an explicit analysis of gravitationally interacting
systems. This allowed us to explain why non-Hermitian dynamics
was not observed in previous theoretical treatments of the
problem22,23,28,39,40. Moreover, the relation between our results
and gravitational effects is particularly emblematic: since every

system interacts through gravity, our results suggest that there is no
clock frame in the Page and Wootters framework for which the
effective dynamics is exactly Hermitian. In other words, since,
ultimately, any system can be addressed as being inertial only up to
a certain order, the results presented here suggest that unitarity can
only be recovered as an approximation in an eventual quantum
theory incorporating gravitation. Hence, the time evolution of a
system should be, in general, non-unitary in those theories.

The results presented here can be assimilated in two different
ways. In one way, it is possible to conclude that a non-unitary
evolution will indeed be a fundamental characteristic of relati-
vistic quantum theories with an operational approach to time—
and, in particular, to a yet-to-be-constructed consistent theory of
quantum gravity. In this case, it is necessary to develop an
understanding of the physical meaning of such evolution. For
instance, by the construction of the state jψðtAÞi according to
Page and Wootters’ recipe in their framework, the state jψðtAÞi in
Eq. (10) is a vector (i.e., a pure state) for every tA. The difference
between unitary and non-unitary dynamics in this context is,
then, that the norm of the vector changes in time within the
latter. Knowing that, how can the usual operational meaning of
quantum mechanics be recovered? More, since the Schrödinger
and the Heisenberg pictures are unitarily equivalent, how can the
Heisenberg picture be recovered in this case?

Fig. 2 Representation of gravitational interaction between two massive systems. Systems R and S have each their own internal quantum time. As shown
in a, if the relative spatial distance between the systems is kept constant, the time evolution from the perspective of either of their clocks is unitary, even
though the gravitational interaction causes a type of time dilation in the clocks. However, as illustrated in b, if the relative spatial distance between the
systems changes due to the gravitational attraction, the description of their time evolution given by either of their clocks is generally non-unitary. This is the
case even if one of the systems is assumed to be much more massive than the other and, therefore, can be approximated as inertial.
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To recover the probabilistic notion, one can, in principle, divide
the results obtained with standard calculations by the instanta-
neous norm of the state vector. In fact, the use of normalized
vectors in standard quantum mechanics is a convenience in view
of the probabilistic operational meaning of the state vector com-
bined with the fact that the norm does not change during a
unitary dynamics. Nevertheless, in general, we can, for instance,
calculate the expected value of an operator O for a system in the
(possibly non-normalized) state jψi as 〈O〉= 〈ψ∣O∣ψ〉/〈ψ∣ψ〉.

However, this does not allow the “reconstruction” of the Hei-
senberg picture. A possible solution to the issues raised here that
includes the latter may lie within a method to treat non-
Hermitian Hamiltonians introduced by Dirac51 and further stu-
died by Pauli52 and others53–55. The method consists of intro-
ducing a new metric to the Hilbert space of the system, which
modifies its inner product. This new metric should be such that
the new norm of the vector is kept constant throughout its evo-
lution. This, however, comes at a price: the choice of a new metric
is not unique and, most disturbingly, it is not guaranteed a priori
that there always exist a positive-definite metric. This means that
the theory may have states with negative norms, known as “ghost
states” since they do not have an operational meaning. For
instance, in the case of PT -symmetric systems, the metric
induced by the PT -symmetry is indefinite. However, if the
PT -symmetry is unbroken, these systems have a third symmetry
that can be used to construct a positive-definite metric56.

Then, one may question what are the physical consequences of
the change of inner product. While there is much to be investi-
gated in this regard, some hints may be found in the literature of
(non-Hermitian) PT -symmetric quantum mechanics56–61. For
instance, it is known that PT -symmetric systems can evolve
faster than Hermitian ones62,63. Therefore, quantum bounds that
rely on inner products may, in general, be modified.

The other way to look at the results presented in this article
consists of seeing them as a limitation of the Page and Wootters
framework. Since there will be no perspective from which the
evolution is Hermitian in a scenario where every system interacts
through gravity, the issue of non-Hermitian dynamics does not
appear to be necessarily related to the manner the change of
perspective is implemented. Instead, it seems that a reevaluation
of the foundations of the framework will be required when
modifying/extending it to restore Hermiticity.

In either case, the present work reveals challenges for devising
operational approaches to time in relativistic quantum theories.
These challenges, in turn, bring new research directions that may
lead to a better understanding of time and relativistic structures in
quantum mechanics.
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