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Modeling of dual frequency combs and bistable
solitons in third-harmonic generation
Tobias Hansson 1,2✉, Pedro Parra-Rivas 2 & Stefan Wabnitz 2,3

Phase-matching of the third-harmonic generation process can be used to extend the emission

of radiation from Kerr microresonators into new spectral regions far from the pump wave-

length. Here, we present a theoretical mean-field model for optical frequency combs in a

dissipative and nonlinear χ(3)-based cavity system with parametric coupling between fun-

damental and third-harmonic waves. We investigate temporally dispersive dual-comb gen-

eration of phase-matched combs with broad bandwidth and anomalous dispersion of the

fundamental field, individuating conditions for accessing a multistable regime that simulta-

neously supports two types of coupled bright cavity solitons. These bistable cavity solitons

coexist for the same pump power and frequency detuning, while featuring dissimilar ampli-

tudes of their individual field components. Third-harmonic generation frequency combs grant

telecom pump laser sources a simultaneous and direct access to both the near-infrared and

the visible regions, which may prove advantageous for the development of optical clocks and

sensing applications.
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Optical frequency combs (OFCs) utilize the nonlinear
polarization response of a cavity-enclosed dielectric
medium, in order to convert an externally applied pump

field to multiple new frequencies. Acting as broadband and
coherent optical sources, OFCs are a key technology for enabling
a diverse range of applications such as frequency metrology,
optical communications and spectroscopy1–3. However, conven-
tional Kerr comb synthesizers only emit radiation in a spectral
range that is centered around the pump laser frequency, and
generally require anomalous group-velocity dispersion for the
experimentally accessible formation of phase-locked states4,5.
This makes it challenging to form combs in wavelength ranges
which lack suitable pump laser sources, and in spectral regions
that exhibit an effective waveguide and material-dependent nor-
mal dispersion.

One way of overcoming these limitations is to exploit the third-
harmonic generation (THG) process of the χ(3)-nonlinearity, in
order to couple pump field excitations to parametric waves at
thrice the fundamental frequency (FF), 3ω1. The THG process is
inherent in all transparent nonlinear media that display a strong
Kerr effect, but in practice it is hampered by the requirement of
maintaining a fixed phase relation, which is necessary for efficient
frequency conversion6. While many experimental observations of
THG in microcomb devices have relied on refractive index
matching between the fundamental and higher-order whispering-
gallery modes, it is also feasible to accomplish phase-matching
through birefringence, periodic poling and other quasi-phase-
matching techniques7. Previous experimental work has demon-
strated the direct emission of visible light by THG from an
infrared pump, using either high-Q whispering-gallery-mode or
integrated microresonators8–12. The generation of OFCs by THG,
acting together with Raman-assisted spectral broadening in silica-
based microcavities, was also reported13.

On the other hand, early theoretical studies of spatially dif-
fractive beam propagation in conservative, cavityless systems have
shown the possibility of generating both bright and dark coupled
solitary wave structures in the presence of THG. Those coupled
solitons exhibit properties such as a power threshold and
bistability14,15. Moreover, given that the dynamics of a THG
frequency comb is governed solely by the fundamental field in the
limit of vanishing parametric coupling, one may expect to find a
similar homotopic extension (i.e., obtained by soliton perturba-
tion theory) of the phase-locked bright cavity solitons (CSs) that
are supported by the LLE in the case of anomalous group-velocity
dispersion16–18.

In this work, we consider a centrosymmetric nonlinear Kerr
resonator system that is engineered to phase-match the third-
harmonic process, in order to enable resonant dual-comb gen-
eration around both the FF and the third-harmonic (TH) fre-
quency whenever the dissipative cavity is driven by a continuous-
wave (CW) pump source at the fundamental frequency ω1. We go
beyond previous studies of cavity THG, that have been restricted
to the non-dispersive case with only two interacting
frequencies19,20, by considering the mutual coupling between
sidebands around each carrier wave, and the simultaneous
interaction of all frequency modes. This system shares similarities
with non-phase-matched Kerr microresonators, that can be
modeled by the Lugiato-Lefever equation (LLE)21,22 or driven-
and-damped nonlinear Schrödinger equation23; it is also analo-
gous to OFCs in quadratically nonlinear resonators, which exploit
cascaded processes, found in χ(2)-nonlinear media without
inversion symmetry, in order to enable coupling and dual-comb
generation around both the FF and the second-harmonic
frequency24,25.

In the following sections, we develop a theoretical mean-field
model for a doubly-resonant, cavity-enhanced, dispersive and

nonlinear system, phase-matched for THG. In particular, we
show that, as the TH field grows larger, it may not be simply
considered as an up-converted replica of the fundamental comb,
but it will reciprocally influence the latter through both para-
metric coupling and cross-phase modulation (XPM). Surpris-
ingly, we find that coupled FF and TH combs can support two
different types of CSs with a partially overlapping range of exis-
tence. These dual, two component, solitons share a common
trapping refractive index potential through self-phase modulation
(SPM) and XPM. We note that a similar model of THG-assisted
four-wave mixing was recently published in ref. 26. However,
ref. 26 focuses on the generation of the so-called platicon combs
with normal dispersion for the FF/TH fields. Their model also
includes simplifying assumptions for the nonlinear interaction
that limits its applicability to a perturbative THG regime, and
excludes the possibility of generating bistable cavity solitons.
Here, we conversely have the possibility that mutual XPM cou-
pling can be used to overcome the group-velocity mismatch, in
order to create various types of synchronized dual-frequency
combs with locked repetition rates around both the FF and the
TH frequency. We investigate the intriguing multistability
properties of the homogeneous solution and consider the
importance of modulational instability (MI) in generating various
types of multi-frequency combs. Additionally, we make a detailed
numerical study of the multistable regime, where we demonstrate
the occurrence of bistable cavity solitons that coexist, when both
the FF and the TH frequency lie in the anomalous dispersion
regime.

Results and discussion
Model. We consider OFC generation in a dispersive χ(3)-based
resonator system with coupling between fundamental and third-
harmonic fields, as schematically illustrated in Fig. 1. The system
is assumed to be resonant around both the driving frequency of
the fundamental field (FF) ω1 as well as the frequency of the
third-harmonic (TH) field ω2= 3ω1. For simplicity, we assume an
isotropic nonlinear polarization response �PNL ¼ ϵ0χ

ð3Þ�E3 and a
linearly polarized electric field propagating along the z axis, viz.

�E ¼ ê
1
2

F1ðx; yÞAðz; tÞeiðk1z�ω1tÞ�
þ F2ðx; yÞBðz; tÞeiðk2z�ω2tÞ�þ c:c:

ð1Þ

where A and B are the amplitudes of the slowly varying envelope
for the fundamental and third-harmonic components of the
electric field with transverse mode profiles given by F1,2, respec-
tively, ϵ0 is the vacuum permittivity, χ(3) is the third-order non-
linear susceptibility, ê is a unit vector in the polarization direction
and c.c. denotes complex conjugate. The OFC generation

Fig. 1 Schematic of the THG resonator system. The χ(3)-based nonlinear
microresonator is phase-matched for third-harmonic generation (THG).
The resonator is driven by a continuous-wave pump field at the
fundamental frequency ω1 and generates simultaneous frequency combs
around both ω1 and ω2= 3ω1.
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dynamics is modeled by means of a scalar Ikeda map27 for the
evolution of the temporal field during each roundtrip, together
with appropriate boundary conditions for the injection of the
external pump and the coupling of the fields from one roundtrip
to the next. Starting from Maxwell’s equations and applying the
slowly varying envelope approximation (see, e.g., refs. 6,28), the
envelopes of the co-propagating electric field of the fundamental
Am and the third-harmonic Bm at the mth roundtrip are found to
obey the following coupled nonlinear equations:

∂Am

∂z
¼ � αc1

2
þ iD1 i

∂

∂t

� �� �
Am þ i

ω1n2ðω1Þ
c

´ Q13Bm A�
m

� �2
e�iΔkz þ Q11jAmj2 þ 2Q12jBmj2

� �
Am

h i
;

ð2Þ
∂Bm

∂z
¼ � αc2

2
þ iD2 i

∂

∂t

� �� �
Bm þ i

ω2n2ðω2Þ
c

´
Q23

3
A3
me

iΔkz þ 2Q21jAmj2 þ Q22jBmj2
� �

Bm

� �
;

ð3Þ

where z is the longitudinal coordinate and t is time. The dis-
persive properties of the medium that are associated with the
non-equidistant resonance spacing are described by the Taylor
series expansions D1;2ði∂=∂tÞ ¼ ∑1

n¼1ðkðnÞ1;2=n!Þði∂=∂tÞn of the

propagation constants k1,2(ω) with kðnÞ1;2 ¼ dnk1;2=dω
njω1;ω2

. Here,
k01;2 are inverse group velocities, k001;2 are group-velocity dispersion
coefficients and Δk= 3k1− k2 is a wave-vector mismatch.
Moreover, we have that Qij are transverse modal overlap integrals,
αc1,2 are the FF/TH absorption losses, c is the speed of light in
vacuum, and n2(ω)= 3χ(3)(ω)/8n(ω) is the nonlinear coefficient,
with n(ω) the linear refractive index. In the case of natural phase-
matching, we have Δk= 0 which requires matching of the FF/TH
refractive indices n(ω1)= n(ω2). The transverse overlap integrals
that are needed to account for the variation in spatial mode
profiles between families of different mode orders are given by

Q11 ¼
R jF1j4dS

ðR jF1j2dSÞ2
; Q12 ¼

R jF1j2jF2j2dS
ðR jF1j2dSÞð

R jF2j2dSÞ
;

Q13 ¼
R ðF�

1Þ3F2dS

ðR jF1j2dSÞ3=2ð
R jF2j2dSÞ1=2

;

Q21 ¼
R jF1j2jF2j2dS

ðR jF1j2dSÞð
R jF2j2dSÞ

; Q22 ¼
R jF2j4dS

ðR jF2j2dSÞ2
;

Q23 ¼
R
F3
1F

�
2dS

ðR jF1j2dSÞ3=2ð
R jF2j2dSÞ1=2

;

ð4Þ

where Q21=Q12, Q�
23 ¼ Q13 and dS= dxdy. These definitions

reduce to the familiar Kerr coefficient γ= ω1n2(ω1)/cAeff with
Aeff ¼ Q�1

11 in the absence of any TH field.
The fields at the beginning of the (m+ 1)th roundtrip are

assumed to be related to the fields at the end of the mth roundtrip
through the boundary conditions

Amþ1ð0; tÞ ¼
ffiffiffiffiffi
θ1

p
Ain þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� θ1

p
e�iδ1AmðL; tÞ; ð5Þ

Bmþ1ð0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� θ2

p
e�iδ2BmðL; tÞ; ð6Þ

that model a generic optical coupling, such as the evanescent field
overlap from a nearby waveguide or tapered fiber, that partially
transmits the external pump field Ain while reflecting the
intracavity fields from the previous roundtrip. Here, L is the
length of the cavity, while θ1,2 are the power transmission
coefficients and δ1,2 are the phase detunings of the FF/TH fields
from the nearest cavity resonance. We note that the

complementary case of a down-converting, 3ω1→ ω1, optical
parametric oscillator can be modeled by simply moving the pump
term to Eq. (6) for the TH field.

The Ikeda map constitutes a complete model for the temporal
and spectral dynamics of a THG cavity-based OFC generation
system for general resonance and phase-matching conditions. But
analytical and numerical investigations can be simplified in the
doubly-resonant case (θ1,2 ≈ 1) by averaging the above map over
the roundtrip length into a mean-field model, similar to the LLE.
In the following, we truncate the dispersion to the second order;
assume the phase-matching to be almost perfect, so that the
coherence length is longer than the cavity length; and shift to a
retarded reference frame moving with the group velocity of the
driving field ðk01Þ�1. Following a derivation, whose details are
presented in Methods, we obtain our main system of normalized
mean-field evolution equations for the FF and TH fields A and B
as

∂A
∂t

¼ �ð1þ iΔ1Þ � iη1
∂2

∂τ2

� �
A

þ i κ�BðA�Þ2 þ ðjAj2 þ 2σjBj2ÞA	 
þ f ;

ð7Þ

∂B
∂t

¼ �ðαþ iΔ2Þ � d
∂

∂τ
� iη2

∂2

∂τ2

� �
B

þ i3ρ
κ

3
A3 þ ð2σjAj2 þ μjBj2ÞB

h i
;

ð8Þ

where t and τ are normalized slow- and fast-time variables,
respectively. α= α2/α1 is the ratio of the roundtrip losses, Δj= δj/
α1 is the normalized detuning, d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L=ðjk001 jα1Þ

p
Δk0 is the walk-

off parameter that depends on the group-velocity mismatch
Δk0 ¼ k02 � k01, ηj ¼ k00j =jk001 j is the ratio of the group-velocity

dispersion coefficients and f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ1ω1n2ðω1ÞLQ11=ðcα31Þ

p
Ain is the

normalized input pump field. In the case of natural phase-
matching, one finds that the detuning parameters are related by
Δ2= 3Δ1. This condition is derived in the Methods section and is
assumed to hold in the following. The nonlinear interaction is
governed by the four dimensionless parameters

ρ ¼ n2ðω2Þ
n2ðω1Þ

; μ ¼ Q22

Q11
; σ ¼ Q21

Q11
;

κ ¼ Q23

Q11
eiΔkL=2sincðΔkL=2Þ;

ð9Þ

that can be assumed to be close to unity, unless the phase-matching
is significantly multimodal. It is interesting to note that Eqs. (7)–(8)
are formally similar to models describing phase-matched doubly-
resonant second-harmonic generation (SHG) in quadratic non-
linear media with a simultaneous Kerr nonlinearity25,29. The two
systems differ mainly in the magnitude of the terms and in the
exponents of the FF that appear in the parametric coupling terms:
these read as BA* and A2 in the case of second-harmonic
generation. In the absence of parametric coupling, Eqs. (7)–(8) also
share similarities with a model of polarization mode interaction
between co-propagating fields, see ref. 30.

Homogeneous solutions. The response of the system for pump
powers below the threshold for parametric comb generation is
characterized by CW emission at both FF and TH frequencies.
We find a set of stationary mixed-mode homogeneous solutions
by setting the derivatives in Eqs. (7)–(8) to zero. Eliminating
terms that are linear in B one finds that

ð1þ arÞ þ iðΔ1 � aiÞ
	 


A ¼ f ; ð10Þ

αþ iðΔ2 � bÞ	 

B ¼ iρκA3; ð11Þ
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where we have defined the power-dependent functions

ar ¼
α

ρ

jBj2
jAj2 ; ai ¼

ar
α

Δ2 � b
� �þ jAj2 þ 2σjBj2� �

;

b ¼ 3ρ 2σjAj2 þ μjBj2� �
:

ð12Þ

Equations (10)–(11) are written in a resonance form, where a
maximum occurs for a detuning that makes the imaginary part
zero. The stationary fields are related through the power
conservation law f Aþ A�ð Þ ¼ 2jAj2 þ 2ðα=ρÞjBj2, and the two
FF/TH intracavity powers ∣A∣2 and ∣B∣2 are seen to satisfy a closed
set of real nonlinear equations, viz.

ð1þ arÞ2 þ ðΔ1 � aiÞ2
	 
jAj2 ¼ f 2; ð13Þ

α2 þ ðΔ2 � bÞ2	 
jBj2 ¼ ρ2jκj2jAj6; ð14Þ
where as before Δ2= 3Δ1 in the case of natural phase-matching.
A detailed bistability analysis is complicated, owing to the high
order of the coupled Eqs. (13)–(14). However, the equations can
be solved numerically, in order to determine their number of
solutions, as shown in Fig. 2. Here, we observe the potential for
multistability, with an odd number of simultaneous solutions (1,
3, 5, or 7) in different ranges. We find no separate bistability of
the TH: only a single TH solution corresponds to each value of
the FF. In fact, because of pump depletion, as well as SPM/XPM,

the solution for the TH field is not simply proportional to A3 at
high powers, but it can be expressed as an explicit function of the
FF through the relation

B ¼ � κA
2σ

f � c1Aþ ic2jAj2A
f � c3A

� þ ic4jAj2A� ;

c1 ¼ 1þ iΔ1; c3 ¼ 1� iΔ1 þ
2σ
3ρμ

ðαþ iΔ2Þ;

c2 ¼
4σ2

3μ
þ 1; c4 ¼

jκj2
2σ

þ 4σ2

μ
� 1:

ð15Þ

In Fig. 3, we show an example that illustrates the TH
modification of the homogeneous solution as a function of the
FF detuning Δ1 for f= 3. This corresponds to a pump power of
about 140 mW when considering typical experimental values for
a critically coupled Si3N4 microresonator with radius 100 μm,
cavity finesse F ¼ 1000 and nonlinear coefficient
γ= 1W−1 m−1, respectively. As can be seen, the FF exhibits a
Kerr-tilted resonance shape, similar to that of the LLE model, but
with a secondary peak associated with the resonance of the TH at
higher values of the detuning. In particular, for a detuning around
Δ1= 6 we observe a multistable range with five different
solutions, with three separate branches that are found to be
stable to homogeneous perturbations (solid curves in Fig. 3).

Modulational instability analysis. The stability of the homo-
geneous solutions against periodic perturbations is important for
determining the onset of comb generation and the accessibility of
different solution branches. A positive MI gain causes the spon-
taneous growth of signal and idler sidebands that seed a cascade
of phase-dependent four-wave mixing processes, eventually
leading to broadband comb formation through the interplay of
nonlinearity and dispersion. We analyze the MI gain by linear-
izing Eqs. (7)–(8) around the homogeneous solution. Using the
ansatz A= A0+ a1eiΩτ+ a2e−iΩτ and B= B0+ b1eiΩτ+ b2e−iΩτ,

we have the linear system d�w=dt ¼ M�w with �w ¼
a1; a

�
2 ; b1; b

�
2

	 
T
and the 4 × 4 coefficient matrix

M ¼

�1þ iq1 p1 p2 p3
p�1 �1� iq1 p�3 p�2
p4 p5 ��αþ iq2 p6
p�5 p�4 p�6 ��α� iq2

2
6664

3
7775; ð16Þ

where q1= η1Ω2− Δ1+ 2(∣A0∣2+ σ∣B0∣2), q2= η2Ω2− Δ2+
6ρ(σ∣A0∣2+ μ∣B0∣2) and �α ¼ αþ idΩ, and the off-diagonal

Fig. 2 Number of simultaneous homogeneous solutions. The plot shows
colored parameter regions with 1, 3, 5, or 7 simultaneous homogeneous
solutions that coexist for the same normalized detuning Δ1 and pump
power f.

Fig. 3 Multistable resonance response. The plots show the intracavity power of the homogeneous solution as a function of detuning Δ1 when the cavity is
driven by an external pump with normalized power f= 3. a, b show the intracavity power of the fundamental ∣A∣2 and third-harmonic fields ∣B∣2,
respectively, where the blue solid and the red dashed lines denote branches that are stable/unstable to homogeneous perturbations. The dotted vertical
line at Δ1= 6 indicates the location of the bistable cavity solitons considered below.
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coupling elements are given by p1 ¼ iðA2
0 þ 2κ�A�

0B0Þ,
p2 ¼ ið2σA0B

�
0 þ κ�ðA�

0Þ2Þ, p3= i2σA0B0, p4 ¼ �3ρp�2 , p5= 3ρp3
and p6 ¼ i3ρμB2

0. The characteristic equation for the eigenvalues
λ is somewhat unwieldy, but it can be written in a factorized form
that allows for an explicit solution in certain limiting cases, see
Methods. It is clear that the MI is independent of the absolute
phase through the invariance A0 ! A0e

iθ0 and B0 ! B0e
i3θ0 .

However, the MI does depend on the relative phase of the fields,
because of their coherent coupling.

The presence of TH coupling together with SPM/XPM also
causes the appearance of new complex modulational instabilities,
that have no counterpart in the LLE model, c.f. ref. 26. To
illustrate this, we calculated the MI growth rates for the two
homogeneously stable branches with the highest power in the
multistable solution of Fig. 3. Figure 4 shows the dependence of
the maximum MI growth rate, maxfRe½λðΩÞ�g, that is attainable
for a finite perturbation frequency Ω, versus the normalized
group-velocity dispersion η2 and group-velocity mismatch d of
the TH. It is seen that both branches generally are unstable to
periodic perturbations when the FF dispersion is anomalous,
except for the middle branch that has a small stability window for
normal dispersion around η2= 0.2 and d= 0. We therefore fulfill
the conditions for spontaneous sideband amplification that are a
prerequisite for comb formation, possibly leading to separate
phase-locked patterns and solitons that are associated with each
branch. We note that the upper branch is dominated by the FF
and only has a weak dependence on the TH, while the FF/TH
fields are comparable on the middle branch (Fig. 3). This is
reflected in the stability properties and the sensitivity to the sign
of the TH dispersion in the latter case. Interestingly, there is also a
small isolated region that is stable to homogeneous perturbations
after the first fold around Δ1 ≈ 4 in Fig. 3. Here, we find that the
homogeneous solution can be either modulationally stable or
unstable, depending on the TH dispersion η2.

Bistable solitons. Next, let us investigate the fascinating possi-
bility of finding bistable cavity soliton solutions in the multistable
regime. Soliton bistability refers to the possibility of generating
two (or more) localized structures with different temporal and
spectral profiles, that coexist for the same values of pump power
and cavity detuning. Such bistable (super) cavity solitons have
previously been predicted in the framework of an Ikeda map for a
Kerr medium without parametric coupling31, and have subse-
quently been experimentally confirmed to exist in fiber-ring
resonators32. There it was established that bistable solitons form
in regions of multistability, owing to the overlapping tilt of
adjacent resonances at high pump powers. The coexistence of
bistable vector solitons with different polarization states has also
been found to occur in birefringent fiber-ring resonators33,34. In
general, we expect to find CSs in the vicinity of a detuning range

where the homogeneous solution is bistable. Bright CSs are
typically found in media with anomalous dispersion, and sit on a
finite background that constitutes the lowest branch of the
homogeneous solution. This background should be stable, while
the upper branch may be modulationally unstable in favor of
switching the stability to a periodic orbit corresponding to a
stationary Turing pattern. A CS can then form by the locking of
fronts that connect the homogeneous background and a cycle of
the patterned state35,36.

We make a numerical search for CSs by performing a series of
detuning sweeps over the resonance shown in Fig. 3, for different
values and signs of the TH dispersion parameter. We assume
d= 0, since walk-off leads to a separation of the pulse
components, and is generally detrimental to soliton formation.
The corresponding results are shown in Fig. 5a: here we plot the
total comb power as a function of the FF cavity detuning Δ1 and
the TH group-velocity dispersion η2. We observe a dynamical
sequence of evolving comb states with stable and chaotic MI
regions followed by a series of steps that are characteristic of
multisoliton states18. The length of the steps is found to vary with
the sign and magnitude of the dispersion parameter, and is seen
to be significantly longer in the case of anomalous dispersion
(η2 < 0). The termination point of the steps shows that only the
upper branch of the homogeneous solution permits the formation
of solitons for normal dispersion with η2 > 0, while a sharp
secondary step is observed at a detuning Δ1 ≈ 8.5 for negative TH
dispersion with η2 <− 1. This secondary step extends to a
detuning Δ1 ≈ 12.5, which lies beyond the endpoint of the middle
branch in Fig. 3.

In Fig. 5b, we show an example of the temporal evolution of
the FF intracavity power for the case η2=− 2, when both the FF
and TH fields experience anomalous group-velocity dispersion.
Here, we can identify a broad multisoliton region that is split
between the detuning ranges Δ1 ≈ 5.0− 8.5 and Δ1 ≈ 8.5− 12.5;
and where in the first part, we find traces of coexisting localized
structures with two different amplitudes, i.e., bistable solitons.
Isolated solitons corresponding to a detuning Δ1= 6 are shown in
Fig. 6. The two localized solitons may be associated with
composite transitions between the homogeneous background
and parts of a periodic patterned state that originate on the
modulationally unstable upper or middle branch, respectively. It
is seen that the relative amplitudes of the FF/TH soliton
components correspond to roughly twice the power of the
homogeneous solutions. We observe that the power of the cavity
soliton pair in Fig. 6a is dominated by the FF, with the TH being
almost an order of magnitude smaller. Whereas the soliton pair in
Fig. 6b has a much larger TH contribution: the total comb power
is more equally split between the FF and TH components. It is
notable that the background solution for the TH is very small in
both cases, and has a spectral line magnitude that is comparable
to that of the sidebands.

Fig. 4 Instability diagrams for the homogeneous solution.Maximum modulational instability (MI) growth rates for the multistable homogeneous solution
in Fig. 3 as a function of third-harmonic dispersion η2 and perturbation frequency Ω (a, b), and walk-off d (c, d). a–d show MI growth rates for the low
frequency stable upper and middle branches, respectively, while the lowest branch is unconditionally stable (not shown). Case of detuning Δ1= 6 and
anomalous dispersion for the fundamental field, η1=− 1.
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To characterize the bifurcation structure undergone by the
bistable solitons, we apply a path-continuation method based on
a Newton-Raphson solver37. The results of these computations
are depicted in Fig. 7. Figure 7a shows the modification of the FF
energy of the CW, CS1 and CS2, captured through the L2-norm

jjAjj2 ¼ R tR=2
�tR=2

jAðτÞj2dτ, as a function of the detuning Δ1 for
f= 3. The solid dark blue and dotted red curves correspond to the
modulationally stable and unstable CW solution, respectively. In
Fig. 7b, we show the same result after removing the homogeneous
background field, which allows to better illustrate the organiza-
tion of the solution branches. To do so we plot ∣∣∂τA∣∣2 against Δ1.
The bifurcation diagram associated with CS2 (in light blue)
originates from the saddle-node bifurcation of the CW solution
SNh. In contrast, the one corresponding to CS1 (in orange) forms
an isola (i.e., a loop). Both curves exhibit a number of folding
branches, with sets of both stable (fully drawn) and unstable
(dashed) solutions. Some examples of temporal intensity profiles
found along these curves are shown in the bottom row of Fig. 7,
and correspond to the locations marked in Fig. 7b. The stable
soliton branches have turning points at the detuning values that
correspond to the endpoints of the soliton steps, and the CS1
branch undergoes a Hopf-instability at the point HopfCS1. The
detuning range where CS1 and CS2 coexist (i.e., the soliton
bistability region) is shown using a shadowed box.

We further characterize the bistable solitons in Fig. 8, by
plotting the variation of the root-mean-square (RMS) width of
the temporal duration (dashed) and the peak power (fully
drawn), of the soliton components for the fundamental and TH

fields along the stable part of each branch. While we can
observe a large difference in the peak power of the CS1 soliton
components in Fig. 8a, we see that their RMS time widths
remain nearly the same. The higher TH power of the
CS2 soliton in Fig. 8b makes it preferable as an operating
state, in order to achieve optimal conversion efficiency for the
TH comb. We observe similar trends of increasing peak power
and simultaneously decreasing RMS duration, showing that the
total power increases and the solitons become more energetic as
the FF detuning grows larger. The soliton pair in Fig. 8a clearly
has a smaller existence range, with the leftmost endpoint
corresponding to the HopfCS1 bifurcation, where the stable
soliton transitions into a periodic breather state.

We emphasize that the observed bistability of dissipative CSs is
due to the existence of two separate soliton attractors, and is
different from the previously reported bistability mechanism of
conservative spatial solitons in cavityless THG, that requires the
presence of a phase mismatch15. Similar bistability of vectorial
dissipative solitons has recently been shown to occur for the
physically distinct situation of nonlinear polarization mode
coupling33,34. Bistability of conservative solitons carrying the
same power can also occur due to the appearance of two
propagation constants when the nonlinear polarization has a
certain functional dependence on the intensity, see ref. 38.

Admittedly, it may be challenging to find suitable nonlinear
cavities where the simultaneous assumptions of zero walk-off
and anomalous group-velocity dispersion for both FF and TH
fields that were used to find the bistable CSs hold. Nevertheless,
it has been previously demonstrated that both criteria can be

Fig. 6 Bistable soliton profiles. Plot of bistable cavity solitons CS1 (a) and CS2 (b) existing for the same values of pump power f= 3, detuning Δ1= 6,
group-velocity dispersion η1=− 1, η2=− 2 and walk-off d= 0. The top row shows temporal power profiles and the bottom row the corresponding
frequency spectra. Blue and red colors denotes fundamental field (FF) and third-harmonic (TH) components, respectively.

Fig. 5 Numerical simulation of detuning sweeps. a Variation of comb power for different values of third-harmonic group-velocity dispersion η2. The
dispersion of the fundamental field (FF) is assumed to be anomalous, η1=− 1. b Temporal evolution of the FF power for the case of η2=− 2. Characteristic
signatures of a multisoliton regime with two different types of bistable cavity solitons indicated by CS1 and CS2 are seen for a detuning Δ1 > 5.
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satisfied under realistic experimental conditions. The temporal
walk-off can, e.g., be made to vanish by considering different
mode families, or sets of suitably chosen FF/TH frequencies on
opposite sides of the zero-dispersion wavelength39; whereas
anomalous TH dispersion may be obtained through dispersion
engineering, or by exploiting avoided mode-crossings40,41. It is
also likely that there may exist a similar bistability of dark
dissipative solitons in the same parameter regime when the FF
and TH fields both experience normal dispersion. In ref. 26, it
was shown that there exists a family of all-normal dispersion
platicon solutions, and these can be further explored by using
the more general model of this work. However, the investigation

of this case is beyond the scope of this manuscript and will be
the subject of future studies.

Finally, we note that coupled dual solitary wave structures can
also be found in the more common situation of normal TH
group-velocity dispersion, η2 > 0. Here the coupling is mainly
perturbative, and we observe only short soliton steps that
correspond to the upper branch of the homogeneous solution,
see Fig. 5a. These solitons have a weak TH with a broad profile, as
shown in Fig. 9a. They are similar to previously reported
quadratic cavity solitons39, and may persist also in the presence of
a large walk-off. The mixed-dispersion condition is clearly
nonideal, but it can be compensated by adjusting the TH

Fig. 8 Characterization of soliton width and peak power. Individual variation of root-mean-square (RMS) width (dashed lines, left axis) and peak power
(fully drawn lines, right axis) for the cavity soliton components on the CS1 branch (a) and CS2 branch (b). Solid blue and green dashed lines with square
markers correspond to the fundamental while solid red and purple dashed lines with circular markers correspond to the third-harmonic. Only the stable
part of the detuning interval Δ1 is shown.

(a) (b)
HopfCS1

CS1

CS2

Fig. 7 Bifurcation structure of bistable soliton solutions. a Bifurcation diagram showing the modification of the fundamental field norm ∣∣A∣∣2 against
detuning Δ1 for the pump power f= 3. b shows the same bifurcation curves as (a) but plotting ∣∣∂τA∣∣2 vs. Δ1. Orange and blue curves are associated with
the cavity solitons CS1 and CS2 of Fig. 6, respectively. In both panels, solid (dashed) lines correspond to stable (unstable) states. The bistability region
between CS1 and CS2 is marked using a shadowed box. The different symbols correspond to the temporal profiles shown below.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01176-2 ARTICLE

COMMUNICATIONS PHYSICS | (2023)6:59 | https://doi.org/10.1038/s42005-023-01176-2 | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


detuning Δ2: specifically, supposing that Δ2 is not required to
satisfy the condition of natural phase-matching (Δ2= 3Δ1), but
instead can be individually adjusted in order to change its sign.
This can be accomplished by operating the cavity with a slight
phase mismatch, or by using a thin dispersive element to change
the delay of the roundtrip phase. The latter approach has recently
been experimentally demonstrated for controlling second-
harmonic generation in a bulk cavity resonator using a thin
silica window42. It is then possible to find coupled bright soliton
pairs analogous to Fig. 6a also for normal TH dispersion, see for
example, the case of Fig. 9b.

Conclusions
In conclusion, we have presented a theoretical model for optical
Kerr frequency combs in a doubly-resonant and dispersive cavity
system that is phase-matched for third-harmonic generation. We
have reported conditions for achieving simultaneous dual-comb
generation, and investigated a multistable regime that supports
two types of bistable cavity solitons when the group-velocity
dispersion of the cavity at both the fundamental and third-
harmonic frequencies is anomalous. The parametric coupling
between fundamental and third-harmonic waves allows the for-
mation of simultaneous combs around multiple wavelengths, and
is expected to be important for future applications of frequency
combs in the visible and ultraviolet spectral range.

Methods
Derivation of the mean-field model. To derive the mean-field model, we start by
expanding the intracavity fields in a power series as Am ¼ Að0Þ

m þ ϵAð1Þ
m and Bm ¼

Bð0Þ
m þ ϵBð1Þ

m where ϵ is a small parameter, c.f. ref. 43. The fields remain unchanged
to the lowest order, and the solution of Eqs. (2)–(3) is Að0Þ

m ðLÞ ¼ Að0Þ
m ð0Þ and

Bð0Þ
m ðLÞ ¼ Bð0Þ

m ð0Þ. Inserting these solutions on the right-hand side of the first-order
equations and assuming that all terms are small, we can immediately carry out
integration to find that

Að1Þ
m ðLÞ ¼Að1Þ

m ð0Þ þ � αc1L
2

� i
k001L
2

∂2

∂τ2

� �
Að0Þ
m

þ i
ω1n2ðω1ÞL

c
Q13κ̂

�Bð0Þ
m ðAð0Þ

m
�Þ2 þ Q11jAð0Þ

m j2 þ 2Q12jBð0Þ
m j2� �

Að0Þ
m

h i
;

ð17Þ

Bð1Þ
m ðLÞ ¼Bð1Þ

m ð0Þ þ � αc2L
2

� Δk0L
∂

∂τ
� i

k002L
2

∂2

∂τ2

� �
Bð0Þ
m

þ i
ω2n2ðω2ÞL

c
Q23

κ̂

3
ðAð0Þ

m Þ3 þ 2Q21jAð0Þ
m j2 þ Q22jBð0Þ

m j2� �
Bð0Þ
m

� �
;

ð18Þ

where Δk0 ¼ k02 � k01 is the group-velocity mismatch and κ̂ ¼ eiΔkL=2sincðΔkL=2Þ.
The boundary condition Eq. (5)–(6) similarly become Að0Þ

mþ1ð0Þ ¼ Að0Þ
m ðLÞ and

Bð0Þ
mþ1ð0Þ ¼ Bð0Þ

m ðLÞ to the lowest order, while the first-order relations are given by

Að1Þ
mþ1ð0Þ ¼

ffiffiffiffiffi
θ1

p
Ain �

θ1
2
þ iδ1

� �
Að0Þ
m þ Að1Þ

m ðLÞ; ð19Þ

Bð1Þ
mþ1ð0Þ ¼ � θ2

2
þ iδ2

� �
Bð0Þ
m þ Bð1Þ

m ðLÞ: ð20Þ

By combining the above expressions, and introducing a slow-time variable t
we obtain a continuation of the map by setting Am+1(0)− Am(0)→ tR∂A/∂t and
Bm+1(0)− Bm(0)→ tR∂B/∂t where tR is the roundtrip time. This leads to the
following coupled system of mean-field evolution equations for the fundamental
and third-harmonic fields

tR
∂A
∂t

¼ �ðα1 þ iδ1Þ � i
k001L
2

∂2

∂τ2

� �
A

þ i
ω1n2ðω1ÞL

c
Q13κ̂

�BðA�Þ2 þ ðQ11jAj2 þ 2Q12jBj2ÞA
	 
þ ffiffiffiffiffi

θ1
p

Ain;

ð21Þ

tR
∂B
∂t

¼ �ðα2 þ iδ2Þ � Δk0L
∂

∂τ
� i

k002L
2

∂2

∂τ2

� �
B

þ i
ω2n2ðω2ÞL

c
Q23

κ̂

3
A3 þ ð2Q21jAj2 þ Q22jBj2ÞB

� �
;

ð22Þ

where αj= (αcjL+ θj)/2 is the total roundtrip loss. We note that, the dis-
continuous boundary conditions are incorporated into the above equations by
the mean-field averaging procedure that distributes their effect along the cir-
cumference of the resonator. This implies, e.g., that we only consider the pos-
sibility of pumping a single resonance of the fundamental field. The evolution
equations include terms for the pump field, the two detuning parameters, and
the coupling losses that have their origin in Eqs. (5)–(6). They depend on two
separate timescales for the fast and slow (evolution) time variation of the field
within a temporal window with a duration of one roundtrip and are, besides the
form of the nonlinearity, analogous to models which have previously been
obtained for doubly-resonant SHG frequency combs in χ(2) resonators, see ref. 44

for a derivation using an alternative approach.
The above equations are normalized with respect to the nonlinear coefficient,

the timescales for the losses and the dispersion of the FF by rescaling
A !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1n2ðω1ÞLQ11=ðcα1Þ

p
A, B !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1n2ðω1ÞLQ11=ðcα1Þ

p
B, t→ (α1/tR)t and

τ !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α1=ðjk001 jLÞ

p
τ. This choice of normalization results in the mean-field Eqs.

(7)–(8) of the main text. We note that the standard normalization for the LLE is
obtained in the case that B= 0, which permits easy comparisons with previous
Kerr comb results.

Natural phase-matching condition. The phase shifts acquired by the fundamental
and TH fields during one roundtrip are given by ϕ1= k1L= 2πm1− δ1 and
ϕ2= k2L= 2πm2− δ2 where k1,2 are the propagation constants and L is the length
of the cavity. The phase shifts are equal to a 2π multiple of the mode number m1,2

together with a detuning δ1,2 that measures the mismatch of the phase from the
closest cavity resonance.

In the case of natural phase-matching of the THG process, we require that the
wave-vector condition Δk= 3k1− k2= 0 holds. Using the above relations, this
implies that m2= 3m1 and δ2= 3δ1, where the latter condition takes the form
Δ2= 3Δ1 when using the normalization Δj= δj/α1, c.f. ref. 44.

Fig. 9 Soliton profiles for mixed-dispersion conditions. a Intracavity profiles (top) and spectra (bottom) of an isolated cavity soliton for pump power f= 3,
detuning Δ1= 6, walk-off d= 0, anomalous fundamental field (FF) dispersion η1=− 1 and normal third-harmonic (TH) dispersion η2= 0.5. b Isolated
cavity soliton for the same normal dispersion case but with negative TH detuning Δ2=− 3Δ1. Blue and red colors denotes FF and TH components,
respectively.
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Eigenvalues of the characteristic equation. The characteristic eigenvalues of Eq.
(16) can be written in a factorized form as

ðλþ 1Þ2 þ f 1
	 
 ðλþ �αÞ2 þ f 2

	 
 ¼ 3ρp; ð23Þ
where we have defined

f 1 ¼ q21 � jp1j2 þ 3ρ ðjp2j2 � jp3j2Þ; ð24Þ

f 2 ¼ q22 � jp6j2 þ 3ρ ðjp2j2 � jp3j2Þ; ð25Þ
and

p ¼ jp2j2 � jp3j2
� �

q21 þ q22 þ ð1� �αÞ2 � ðjp1j2 þ jp6j2Þ
� �

� ðp1p�2 þ iq1p3Þ ðp�2p�6 þ iq2p
�
3Þ � ðp1p�3 þ iq1p2Þ ðp�3p6 � iq2p

�
2Þ þ c:c:

	 

:

ð26Þ
It can be shown that in the absence of coupling between the FF/TH fields the

eigenvalues reduce to those of the LLE, i.e., (λ+1)2+ f1= 0. In the special case of
equal losses and zero group-velocity mismatch (�α ¼ 1) the characteristic equation
becomes biquadratic and has the explicit solution

λ ¼ �1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1
2

f 1 þ f 2
� �

±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ρpþ 1

4
f 1 � f 2
� �2rs

: ð27Þ

We note that in the absence of walk-off this solution becomes unstable for
either of the three conditions f1+ αf2+ (1+ α)[α+ (1+α)2] < 0, α(f1− f2)+ [3ρ
p+ 2α(f1+ f2)](1+α)2+ α(1+α)4 < 0 or (1+ f1)(α2+ f2)− 3ρp < 0, c.f. ref. 39.

Numerical methods. The mean-field Eqs. (7)–(8) have been numerically solved
using a split-step Fourier method. The two equations are solved simultaneously by
integrating them in a series of short alternating linear and nonlinear propagation
steps with different basis. The dispersive linear step is performed in the frequency
domain with N= 2048 modes and the forward and inverse transforms are
implemented using Fast-Fourier Transforms (FFTs). The nonlinear step is mean-
while performed in the time-domain using a 4th-order Runge–Kutta algorithm.

The soliton bifurcation diagrams shown in Fig. 7 have been obtained through a
path-continuation algorithm, by computing the stationary solutions of Eqs. (7)–(8)
(by setting ∂tA= ∂tB= 0) and varying the detuning Δ1. To do so, we have recast the
stationary version of the equations into the eight-dimensional dynamical system

d�u
dτ

¼ Fð�uÞ; ð28Þ

with u1ðτÞ ¼ UðτÞ ¼ Re½A�, u2ðτÞ ¼ VðτÞ ¼ Im½A�, u3ðτÞ ¼ WðτÞ ¼ Re½B�,
u4ðτÞ ¼ ZðτÞ ¼ Im½B�, u5ðτÞ ¼ U 0ðτÞ, u6ðτÞ ¼ V 0ðτÞ, u7ðτÞ ¼ W 0ðτÞ, u8ðτÞ ¼ Z0ðτÞ,

Fm ¼ umþ4; m ¼ 1; ¼ ; 4

F5 ¼ η�1
1 �u2 � Δ1u1 þN 2ðu1; u2; u3; u4Þ
	 


;

F6 ¼ η�1
1 u1 � Δ1u2 �N 1ðu1; u2; u3; u4Þ � f
	 


;

F7 ¼ η�1
2 �αu4 � Δ2u3 þN 4ðu1; u2; u3; u4Þ
	 


;

F8 ¼ η�1
2 αu3 � Δ2u4 �N 3ðu1; u2; u3; u4Þ
	 


;

and

N 1ðU;V ;W;ZÞ ¼ κ 2UVW þ ZðV2 � U2Þ	 

� V U2 þ V2 þ 2σðW2 þ Z2Þ	 


;

N 2ðU;V ;W;ZÞ ¼ κ 2UVZ þWðU2 � V2Þ	 

þ U U2 þ V2 þ 2σðW2 þ Z2Þ	 


;

N 3ðU ;V;W;ZÞ ¼ � ρκð3U2V � V3Þ
� 3ρZ 2σðU2 þ V2Þ þ μðW2 þ Z2Þ	 


;

N 4ðU ;V ;W;ZÞ ¼ ρκðU3 � 3V2UÞ
þ 3ρW 2σðU2 þ V2Þ þ μðW2 þ Z2Þ	 


:

This allows us to compute soliton states as a boundary value problem, imposing
Neumann boundary conditions at 0 and tR/2, and utilizing the open distribution
software package AUTO-07p45. Note that, defined in this way, our system is not
translationally invariant, and extra phase conditions are therefore not needed to
perform the continuation. The linear stability of these states is ascertained through
computation of the eigenvalues of the Jacobian matrix associated with the system
(28).

Simulation parameters. The full set of parameters for the mean-field Eqs. (7)–(8)
that was used to perform the numerical simulations of the bistable solitons in Fig. 6
are: α= 1, Δ1= 6, Δ2= 3Δ1, d= 0, η1=− 1, η2=− 2, ρ= 1, μ= 1, σ= 1, κ= 1
and f= 3. All other results were obtained using the same parameter values, unless
otherwise specified in the figure captions.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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