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Revealing inverted chirality of hidden domain wall
states in multiband systems without topological
transition
Seung-Gyo Jeong 1,4, Sang-Hoon Han2,4, Tae-Hwan Kim 1✉ & Sangmo Cheon 2,3✉

Chirality, a fundamental concept from biological molecules to advanced materials, is pre-

valent in nature. Yet, its intricate behavior in specific topological systems remains poorly

understood. Here, we investigate the emergence of hidden chiral domain wall states using a

double-chain Su-Schrieffer-Heeger model with interchain coupling specifically designed to

break chiral symmetry. Our phase diagram reveals single-gap and double-gap phases based

on electronic structure, where transitions occur without topological phase changes. In the

single-gap phase, we reproduce chiral domain wall states, akin to chiral solitons in the

double-chain model, where chirality is encoded in the spectrum and topological charge

pumping. In the double-gap phase, we identify hidden chiral domain wall states exhibiting

opposite chirality to the domain wall states in the single-gap phase, where the opposite

chirality is confirmed through spectrum inversion and charge pumping as the corresponding

domain wall slowly moves. By engineering gap structures, we demonstrate control over

hidden chiral domain states. Our findings open avenues to investigate novel topological

systems with broken chiral symmetry and potential applications in diverse systems.
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Chirality and topology are concepts of great importance that
lead to novel physical properties and potential applications
in various fields. Examples include topological surface

states in topological insulators1,2, Majorana fermions in topolo-
gical superconductors3,4, chiral stacking orders in charge density
waves5–7, and topological lasers in photonic systems8,9. As pro-
totypical systems, the Su–Schrieffer–Heeger (SSH)10 and Rice-
Mele11 models exhibit exotic topological properties such as highly
robust Jackiw-Rebbi domain wall zero-energy states12, charge
fractionalization13, and spin-charge separation14. As a coupled
SSH model, the double-chain (DC) model with broken chiral
symmetry shows chiral solitons having topological chiral degrees
of freedom and Z4 topological algebraic operation15, where the
chirality manifests as a spectrum of the chiral soliton and topo-
logical charge pumping observed during the adiabatic process as
the chiral soliton slowly moves.

Such SSH and Rice-Mele models have been experimentally rea-
lized in various physical systems—polyacetylene10,16, cold atomic
systems17,18, artificial electronic lattices19,20, photonic systems21,22,
and acoustic systems23,24. Their quantized Berry phases25 are
consistent with the bulk-boundary correspondence26,27. While
many coupled SSH chain systems with nontrivial topology have
been extensively studied28–31, most possess chiral symmetry, pre-
cluding the emergence of chirality as chirality necessitates symmetry
breaking. In contrast, the DC model with broken chiral symmetry
has been demonstrated in limited physical systems such as self-
assembled indium nanowires and artificial atomic chains, exhibiting
distinct chiral domain wall states20,32,33. Despite being in the same
topological class with preserved time-reversal and broken chiral
symmetries15,34–36, a comprehensive understanding of such multi-
band systems remains elusive. Therefore, this work endeavors to
present a unified framework elucidating the chirality, topology, and
bulk-boundary correspondence underlying the emergence of chiral
domain wall states in the coupled SSH chain systems with broken
chiral symmetry.

Utilizing a representative DC model with interchain coupling,
where chiral symmetry is broken, we unveil the emergence of
hidden chiral domain wall states possessing inverted chirality
even without necessitating any topological phase transition. Our
investigation yields a phase diagram revealing single- and double-
gap phases depending on the dimerization of each SSH chain and
the strength of the interchain coupling. Within the single-gap
phase, the chiral domain wall states manifest as two localized
states akin to chiral solitons observed in the DC model32. In the
double-gap phase, we observe the emergence of hidden chiral
domain wall states characterized by opposite chirality compared
to the preexisting domain wall states in the single-gap phase.

We physically verify this opposite chirality through the spec-
trum inversion of the domain wall state and counter-directional
charge pumping observed during the adiabatic process as the
domain wall state slowly moves. Using the extended two-
dimensional effective Hamiltonian corresponding to the adia-
batic process and the Berry curvature distribution, we topologi-
cally confirm the chirality of hidden chiral domain wall states.
Furthermore, by engineering the gap structure via tuning of the
interchain coupling, we successfully control the emergence of the
hidden chiral domain state. Our results not only provide insights
into the fundamental physics of multiband SSH systems with
broken chiral symmetry but also have important implications for
the design of novel devices based on chiral domain wall states.

Results and discussion
Double-chain model. First, we introduce the DC model con-
sisting of two SSH chains with interchain coupling (Fig. 1a). The
interchain coupling acts as a tuning parameter that controls the

electronic structure of this model while it was treated as a small
perturbation in the previous works15,32. Combining two SSH
Hamiltonians, we get the Hamiltonian of the DC model:

HDC ¼Hð1Þ
SSH þ Hð2Þ

SSH þHcoupling;

HðiÞ
SSH ¼ ∑

n
tðiÞnþ1;n c

ðiÞy
nþ1c

ðiÞ
n þ h:c:;

Hcoupling ¼ αðcð1Þyn cð2Þn þ cð1Þyn cð2Þnþ1 þ h:c:Þ;
ð1Þ

where the spin term is abbreviated. The superscript (i= 1, 2)
represents the upper and lower chains. cðiÞyn ðcðiÞn Þ denotes a creation
(annihilation) operator for the nth site of the ith chain. tðiÞnþ1;n ¼
t þ ð�1Þnþ1ΔðiÞ indicates the horizontal nearest-neighbor hop-
ping integral for the ith chain, where t ( > 0) and Δ(i) represent the
hopping amplitude in the absence of dimerization and the
energy-valued dimerization displacement of the i-th chain,
respectively. α denotes the interchain coupling strength between
the lower and upper SSH chains. Since the A and B dimerized
states are two degenerate groundstates for each SSH chain, the
DC model naturally leads to four degenerate groundstates32,
which are denoted as AA, AB, BA, and BB states (Fig. 1a). For
instance, the AA groundstate is characterized by
Δ(1)= Δ(2)= δ > 0, while the BB groundstate exhibits
Δ(1)= Δ(2)=− δ < 0. The DC model is classified into the AI class
due to the broken chiral symmetry15,32, while the SSH model
belongs to the BDI class due to the preserved time-reversal and
chiral symmetries. Such chiral symmetry breaking in the DC
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Fig. 1 Double-chain model having single and double gaps. a Double-chain
(DC) model and its geometric configurations for the four dimerized states,
which are denoted as AA, AB, BA, and BB states. Gray circles represent
atoms with a single p-orbital(t > 0). In our model, a0 represents the size of
the unit cell. Like the Su–Schrieffer–Heeger (SSH) model, the nearest
electron hopping amplitude in the horizontal direction appears alternately
with t+ δ and t− δ due to the Peierls distortion. α indicates the interchain
hopping amplitude between lower and upper SSH chains. b Phase map with
respect to δ and α. The red line denotes a phase boundary between single-
and double-gap phases. The double-gap phase region is divided by the
black dashed line. Above (below) the black dashed line, the upper gap is a
direct (indirect) gap. Representative band structures of the DC models for
c the single-gap phase, d the double-gap phase with the indirect upper gap,
and e the double-gap phase with the direct upper gap, where E/t indicates
the dimensionless energy and Eg is the energy gap. The parameter sets
(α/t, δ/t) are given by (0.2, 0.5), (0.5, 0.5), and (0.8, 0.5) for c, d, and
e, respectively. Data in b–e are obtained from the AA groundstate. Due to
the degeneracy, the band structures and phase diagram are identical for the
four types of configurations.
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model provides the realization of the chirality of the nontrivial
domain wall states15,32.

Figure 1b–e shows the calculated phase map as a function of
α/t and δ/t and three representative electronic band structures.
Depending on the number of gaps, two large distinct
regions emerge: single- and double-gap phases (Fig. 1b). Figure 1c
shows a single gap between the second and third bands from the
bottom, while Fig. 1d, e has an additional gap between the third
and fourth bands. Furthermore, the region of the double-gap
phase is subdivided into two subregions depending on whether
the additional gap is direct or indirect: the upper gap between the
red solid and black dashed curves is indirect (Fig. 1d), while the
upper gap becomes direct above the black dashed curve (Fig. 1e).

In the SSH model, a one-dimensional one-band metallic chain at
half filling undergoes Peierls dimerization, which results in a two-
band topological insulator1,37,38. Similarly, the DC model becomes a
four-band insulator after the dimerization15,32, which leads to
a gap opening between the second and third bands near the Fermi
level. On the other hand, the gap-opening mechanism between the
third and fourth bands is different due to the strong interchain
coupling. As the interchain coupling increases, the energy eigenvalue
at kx= 0 of the third band decreases while the energy eigenvalue at
kx= π/a0 (a0 is the unit cell size) of the fourth band increases
(Fig. 1c–e). Such behavior eventually generates another gap between
the third and fourth bands when the interchain coupling is larger
than the phase boundary (red line in Fig. 1b). Analytically, the phase
boundary between single- and double-gap phases is given by

α1 ¼ 2t þ δ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t2 þ 4tδ þ 3δ2

p
. Moreover, the system undergoes

an indirect-direct gap transition with increasing interchain coupling.
The indirect-direct gap transition boundary (dashed line in Fig. 1b)

reads as α2 ¼ 2t � δ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t2 � 4tδ þ 3δ2

p
. Additionally, the inver-

sion symmetry protects the gap-closing between the first and second
bands at the Brillouin zone boundary regardless of interchain
coupling, the details of which are provided in Supplementary Note 1.

Geometric configurations and quantum spectra of chiral
domain walls. We now discuss geometric configurations and
quantum energy spectra for all possible domain wall states con-
necting different groundstates. When two of the four ground-
states are connected, we find only three distinct types of
geometric configurations for nontrivial domain wall states (inset
of Fig. 2a) due to the equivalence between the same geometric
configuration of domain walls15,32. To distinguish such nontrivial
geometries, we introduce the chirality and denote the AA-BA and
AA-AB type configurations as right-chiral (RC) and left-chiral
(LC) domain walls, respectively, and the AA-BB type configura-
tion as an achiral (AC) domain wall, following the notation of
previous works15,32. For such three geometric configurations of
nontrivial domain walls, we obtain the energy spectra and local
density of states (LDOS) using tight-binding methods for
both single- and double-gap phases (Fig. 2).

Even though the same geometric domain wall configurations
are employed for single- and double-gap phases, the electronic
features of the localized domain wall states are quite different
from each other. In the single-gap phase, only two in-gap states
(denoted as ‘2’ and ‘3’ in Fig. 2a, c) exist as localized domain wall
states for all three types of domain walls. Two in-gap states for the
AA-BA (AA-AB) geometric configuration are located below
(above) the midgap, while two in-gap states for the AA-BB
geometric configuration are located symmetrically with respect to
the midgap. The nontrivial positioning of the localized electronic
states of the domain wall results from chiral symmetry
breaking32,39. This chiral symmetry breaking confers chirality
upon the domain wall states, with chirality being defined by the
spectrum and topological charge pumping. These findings shed

light on the interplay between chiral symmetry breaking and
localized domain wall states, further enriching our understanding
of electronic behavior in such systems.

For the double-gap phase (Fig. 2b, d), an additional, otherwise
hidden, in-gap state (denoted as ‘4’) emerges in the upper gap,
alongside the two in-gap states in the lower gap (denoted as ‘2’
and ‘3’). The two in-gap states of each domain wall in the lower
gap appear similar to those in the single-gap phase. Surprisingly,
the in-gap state in the upper gap is located oppositely to those in
the lower gap for both right- and left-chiral domain walls. To
clearly indicate such spectrum inversion of domain wall states
between upper and lower gaps with respect to each midgap, we
adopt the term ‘chirality inversion’. The chiral inversion also
occurs in the achiral AA-BB domain wall even though the in-gap
states for the lower and upper gaps seem not to be inverted due to
the symmetrical positioning of in-gap states with respect to each
midgap. Note that the topological meaning of the chirality
inversion is the counter-directional charge pumping observed
during the adiabatic process as the domain wall state slowly
moves, which will be discussed in the next subsection.

The chirality inversion of the in-gap states of domain walls
between the upper and lower gaps becomes more evident when
we plot the energy spectra as a function of interchain coupling.
Figure 3 shows the evolution of the spectra for domain wall states
with increasing interchain coupling, transitioning from the
single- to the double-gap phases. Regardless of the interchain
coupling, two nontrivial domain wall states always exist in the
lower gap. On the other hand, additional domain wall states
emerge as the upper gap opens. Even though these additional
domain wall states remain hidden in the region of α < α1, they
eventually become visible as the upper gap opens in the region of
α1 < α < α2. In the region of α ≥ α2 where the upper gap is direct,
the emerging domain wall states maintain their relative energy
positions within the gap. Therefore, the chirality (or the spectrum
feature) of each domain wall state is preserved throughout the
evolution.

Before proceeding further, we briefly discuss the states
labeled ‘1’ appearing in Figs. 2 and 3. These states are also
potential hidden domain wall states between the first and second
bands. The LDOS maps in Fig. 2c, d clearly show the localized
feature except for the AA-BA configuration in Fig. 2c. In the AA-
BA configuration, the domain wall state’s spectrum lies too close
to the top of the second band for given parameters, making it
hard to distinguish this hidden domain wall state from the bulk
state. Moreover, the inversion symmetry protects the gap-closing
between the first and second bands at the Brillouin zone
boundary, as discussed in the previous subsection (see also
Fig. 1). Therefore, the hidden domain wall states labeled ‘1’
cannot manifest as in-gap states. Consequently, we will focus on
the other states from now on. However, it is worth noting that the
hidden domain wall states labeled ‘1’ can indeed emerge as in-gap
states by introducing a symmetry-breaking mechanism that
opens up the gap, as demonstrated in Supplementary Fig. 1.

Bulk-boundary correspondence. We now investigate the corre-
spondence between the electronic states and the topological
properties of the domain walls using Berry phase and Berry
curvature via bulk-boundary correspondence1,2. In the context of
one-dimensional systems, the electronic spectra of a domain wall
state are related to the Berry phase difference between two
groundstates that the domain wall interpolates11,40.

Table 1 shows the calculated Berry phases for the four
groundstates up to the second and third bands from the lowest
one. The well-separated electronic bands depicted in Fig. 1c–e
enable a band-by-band definition of the Berry phase,
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thereby facilitating a more precise analysis of the system’s
electronic and topological properties. All Berry phases are
quantized as integer multiples of π/2, due to the Z4 symmetry
of the system15,32 (the mathematical details are provided in

Supplementary Notes 2 and 3). The Berry phases up to the second
band decrease as 0, −π, −2π, and −3π for AA, BA, BB, and AB
groundstates. On the other hand, the Berry phases to the third
band increase as 0, π/2, π, and 3π/2 for AA, BA, BB, and AB
groundstates. In contrast to the SSH model, some Berry phases
exceed 2π. It is noteworthy that the Berry phase is defined within
a range of modulo 4π instead of the conventional 2π reflecting the
evolution of the Wannier center and the Z4 symmetry of the
system15,32. Such adjustment also accommodates the charge
pumping phenomena occurring during the relevant adiabatic
process, as discussed below.

To clarify such Berry phases, as shown in Fig. 4, we plot the
continuous change in the Berry phase (or the evolution of the
Wannier charge center15,41) up to the second and third bands for
three types of cyclic adiabatic processes. These three types of
cyclic adiabatic processes are generated when the corresponding
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the interchain coupling. Energy spectra for a AA-BA, b AA-AB, and c AA-
BB domain walls. Solid and dotted lines represent the in-gap domain wall
states and hidden domain wall states, respectively. Two domain wall states
exist in the lower gap regardless of α/t. When the upper gap opens, a
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dashed lines (α1 < α < α2) while direct gaps exist when α ≥ α2. Here,
δ/t= 0.3. As the hidden domain wall state approaches either conduction
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Table 1 Berry phases up to the 2nd and 3rd bands for
groundstates.

AA BA BB AB

Up to the 3rd
Band

0 π/2 π 3π/2

Up to the 2nd
Band

0 −π −2π −3π

The Berry phase is defined within a range of modulo 4π instead of the conventional 2π in
accordance with the Z4 property and the charge pumping phenomena occurring during the
relevant adiabatic process, as discussed in the subsection Bulk-boundary correspondence.
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types of chiral domain walls move from right to left along the
one-dimensional chain. Because there are three types of chiral
domain walls, we can identify three distinct cyclic adiabatic
processes as follows: (1) RC adiabatic process: AA→ BA→
BB→AB→AA, (2) LC adiabatic process: AA→AB→ BB→
BA→AA, and (3) AC adiabatic process: AA→ BB→AA.
Above all, we will discuss the Berry phase under RC and LC

adiabatic processes. During the RC adiabatic process (Fig. 4a), the
total Berry phase up to the second band evolves from 0 to 2π
while the one up to the third band changes from 0 to −4π.
Conversely, the LC adiabatic process shows the opposite behavior
in terms of the Berry phase (Fig. 4b). As a result, two intriguing
observations emerge. First, within a given type of adiabatic
process, the trends in the Berry phases up to the second and third
bands are diametrically opposite. Second, when the chemical
potential is held constant, thereby keeping the band occupation
constant, the variations in the Berry phases between the RC and
LC adiabatic processes are also in opposition. Such findings
provide compelling topological evidence for the inversion of
chirality between the upper and lower gaps, as well as between RC
and LC chiral domain wall states. From a physical perspective,
this opposite variation in the Berry phase is tantamount to the
counter-directional charge pumping observed during the adia-
batic process, which will be elaborated upon in the subsequent
paragraph.

From the viewpoint of topology, the chirality of the in-gap state
of a domain wall is determined by the direction of topological
charge pumping under the adiabatic evolution from one
groundstate to the other groundstate when the two groundstates
are interpolated by the domain wall11,15,32,34,42. If the direction of
topological charge pumping is negative (positive), the electronic
states will be located below (above) the midgap. Because the local
information of such topological charge pumping is encoded in the
Berry curvature during the adiabatic process, we can also identify
the chirality of the in-gap state of a domain wall using Berry
curvature distribution. Notice that the direction of charge
pumping (or the moving direction of the Wannier charge center)
and the sign of Berry curvature are inversely related. See more
details in Supplementary Note 2.

First, let us consider the in-gap states in the lower gap. For a
RC (LC) domain wall connecting AA to BA (AA to AB)
groundstates, the sign of Berry curvature distribution up to the
second band from the lowest one, as shown in the first (second)
panel of Fig. 5b, is positive (negative), and hence, the in-gap states
in the lower gap are located below (above) the midgap, as shown
in Fig. 3a, b. Thus, the corresponding charge pumping under the
RC and LC adiabatic processes are also opposite, as shown in
Supplementary Fig. 2.

Next, let us consider the in-gap states in the upper gap. In this
case, the directions of topological pumping are reversed
compared to those in the lower gap case (Supplementary Fig. 2),
which is consistent with the chirality inversion of chiral domain
walls between upper and lower gaps. Thus, for a RC (LC) domain
wall connecting AA to BA (AA to AB), the sign of the Berry

curvature distribution up to the third band in the first (second)
panels of Fig. 5a is negative (positive), and hence the in-gap states
in the upper gap are located above (below) the midgap as shown
in Fig. 3a, b.

Finally, for the in-gap states of AC domain walls in both upper
and lower gaps, no charge pumping occurs because of the zero
total Berry curvature during the adiabatic process (AA→ BB→
AA) as shown in the third panels of Fig. 5a, b, which is consistent
with the change of the Berry phase in Fig. 4c. This gives the
symmetrically located electronic states, as indicated by the purple
lines in Fig. 3c.

Note that the same (opposite) Berry curvature distribution is
repeated during the chiral (achiral) adiabatic process due to the
system’s Z4 symmetry15,32 as shown in Fig. 5, which leads to the
quantized Berry phases of the groundstates. Furthermore, we find
that the quantized Berry phases for the four groundstates in
Table 1 are independent of both interchain coupling and
dimerization strength. This strongly implies that both the hidden
chiral domain wall state and the in-gap chiral domain wall state
possess consistent topological properties, irrespective of the
interchain coupling and dimerization. Typically, a topological
phase transition occurs when the energy gap between two bands
closes and reopens, accompanied by a change in topological
invariants. Surprisingly, our study does not observe such a
topological transition even after the upper gap opens, as the
topological invariants remain unchanged. Note that the structure
of Dirac points remains stable regardless of the interchain
coupling in the absence of dimerization, as shown in Fig. 6. This
observation highlights the robustness of the topological properties
in the double-chain model, independent of the interchain
coupling.

Conclusion
In summary, we have studied the emergence of the hidden
topological domain wall states via gap engineering without
requiring any topological phase transition using a representative
double-chain SSH model, specifically designed to break the chiral
symmetry. By adjusting the dimerization and interchain coupling,
we constructed the phase diagram composed of single- and
double-gap phases. For a small interchain coupling, we found the
chiral domain wall states with two localized in-gap states in the
single gap. However, for a larger interchain coupling, hidden
domain wall states emerge, featuring only a single localized state
in an additional gap. Intriguingly, the chirality of these emergent
domain wall states in the second gap was found to be opposite
compared to that of the original domain wall states in the first
gap. We validated this chirality inversion through spectrum
inversion of the domain wall state and the observation of opposite
charge pumping during the adiabatic process. The topological
confirmation of the chirality of hidden chiral domain wall states
was further supported through the analysis of the Berry curvature
distribution.

This kind of chirality emergence is plentiful in nature and has
many applications such as chirality-dependent light-matter
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Fig. 4 Evolution of Berry phase under cyclic adiabatic processes. Evolution of Berry phase for a right-chiral, b left-chiral, and c achiral domain walls under
the corresponding cyclic adiabatic processes. These processes are generated as the corresponding chiral domain walls move from right to left along the
one-dimensional chain. Black (green) color denotes the total Berry phase up to the third (second) bands from the lowest band. Here, (α/t, δ/t)= (0.7, 0.7).
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devices43, chiral quantum optics44, and chiral magnetic domain
memory devices45,46. Therefore, we expect our theoretical
approach can be applied to diverse topological systems such as In/
Si(111)32,47, Cl vacancies on Cl/Cu(100)20,33, and photonic lat-
tices as well as topological laser systems8,9. For instance, our
model system can be used as a multi-digit topological information
carrier39 by engineering the gap structure and Fermi level. We
also foresee the possibility of a new type of multi-frequency
topological laser, where the topological single-mode lasing fre-
quency can be selectively controlled.

Methods
The band structures and phase diagrams in Figs. 1 and 6 were
studied using the Bloch Hamiltonian of the DC model, which is
given by

HðΔð1Þ;Δð2Þ; kxÞ ¼

0 tð1Þþ eikx
a0
2 þ tð1Þ� e�ikx

a0
2 αe�ikx

a0
4 αeikx

a0
4

tð1Þþ e�ikx
a0
2 þ tð1Þ� eikx

a0
2 0 αeikx

a0
4 αe�ikx

a0
4

αeikx
a0
4 αe�ikx

a0
4 0 tð2Þþ eikx

a0
2 þ tð2Þ� e�ikx

a0
2

αe�ikx
a0
4 αeikx

a0
4 tð2Þþ e�ikx

a0
2 þ tð2Þ� eikx

a0
2 0

0
BBBB@

1
CCCCA
;

where tðiÞ± ¼ t ±ΔðiÞ with energy-valued dimerization Δ(i) for the
i-th chain.

To obtain the spectra and LDOS for the RC, LC, and AC chiral
domain walls states in Figs. 2 and 3, we used the tight-binding
method for the finite system having 4n+ 3, 4n+ 1, and 4n+ 2
atoms with n= 200, respectively. Such boundary conditions ensure
the absence of localized edge states at both ends. The dimerization
patterns for the domain wall states were simulated using the
position-dependent dimerizations and hyperbolic tangent func-
tions: ΔðiÞðxÞ ¼ ± δ tanhðx=ξÞ, with ξ being the characteristic width
of the domain wall, where ξ= 1.5a0 in Figs. 2 and 3.

For the Berry phase and Berry curvature in Figs. 4 and 5, we took
into account a cyclic adiabatic process of a 1D Hamiltonian, denoted
as H(kx, τ), where τ is time for the adiabatic evolution. By extending
the 1D lattice system into a 2D lattice system, we replace the time
evolution with momentum ky in an extra dimension. Then, we
constructed the 2D Hamiltonian H2D(kx, ky) such that H2D(kx, ky=
0)=H(kx, τ= 0) and H2D(kx, ky= 2π)=H(kx, τ= T), where T
represents the period of the corresponding cyclic adiabatic process.
Using this 2D Hamiltonian, we have calculated the Berry phase and
Berry curvature. Further comprehensive information can be found in
Supplementary Notes 2–4.

Data availability
The data used in this paper are available from T.-H.K. or S.C. on reasonable request.
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Fig. 5 Berry curvature distributions. Berry curvature distributions up to a third and b second bands under a cyclic adiabatic evolution using extended 2D
Hamiltonians, normalized by the maximum absolute magnitude. The color bar indicates the intensity of the normalized Berry curvature. The cyclic adiabatic
process is represented in terms of momentum ky through the dimensional extension15,32, enabling the calculation of Berry curvature within the two-
dimensional Brillouin zone using extended 2D Hamiltonians. The black arrows indicate singular points. Here, (α/t, δ/t)= (0.7, 0.7).
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Fig. 6 Band structures without horizontal dimerization. a The same phase
diagram in Fig. 1b. b, c Band structures for open circles in a: b for the orange
circle and c for the blue circle. In the absence of dimerization, the formation
of the four Dirac points is the same for single- and double-gap phases as
shown in b and c. The parameters (α/t, δ/t) are (0.2, 0.0) for b and (0.8,
0.0) for c.
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