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Injection spectroscopy of momentum state lattices
Sai Naga Manoj Paladugu 1,3, Tao Chen 1,2,3, Fangzhao Alex An1,3, Bo Yan2 & Bryce Gadway 1✉

The energy spectrum of quantum systems contain a wealth of information about their

underlying properties. Spectroscopic techniques, especially those with access to spatially

resolved measurements, can be challenging to implement in real-space systems of cold

atoms in optical lattices. Here we explore a technique for probing energy spectra in synthetic

lattices that is analogous to scanning tunneling microscopy. Using one-dimensional synthetic

lattices of coupled atomic momentum states, we explore this spectroscopic technique and

observe qualitative agreement between the measured and simulated energy spectra for small

two- and three-site lattices as well as a uniform many-site lattice. Finally, through simula-

tions, we show that this technique should allow for the exploration of the topological bands

and the fractal energy spectrum of the Hofstadter model as realized in synthetic lattices.
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Cold atom systems are well suited to Hamiltonian engi-
neering for the exploration of condensed matter physics
phenomena. To help explore these systems, a suite of

techniques have been developed over the past decades to reveal
the energy spectra in cold atom experiments, including injection
spectroscopy based on auxiliary spin components1–3, lattice
amplitude modulation spectroscopy4,5, phasonic modulation
spectroscopy in quasiperiodic lattices6, momentum-resolved band
spectroscopy7,8, and Fourier transform spectroscopy9. On their
own, such probes are primarily global and do not provide a direct
window into the local spatial structure of states that comprise the
spectrum of a system.

Local spectroscopy would be of particular interest for certain
problems related to disordered10 or topological11 systems. For
example, in topological systems, local spectroscopic probing at
the boundary or within the bulk could reveal distinct responses
and serve to indicate the presence of topological boundary modes.
In disordered or quasiperiodic systems, the probing of mobility
edges12–15 could be better facilitated by local probes that distin-
guish between metallic and insulating states in a energy-resolved
manner.

We demonstrate such a local spectroscopic probe that is sui-
table for synthetic lattice of coupled momentum states. Similar
spin-injection spectroscopy techniques have been used to explore
spin–orbit coupling in atomic Fermi gases1–3. Indeed, it is natural
to consider the extension of such techniques to synthetic lattices16

that consist of discrete states17–20, and in particular, discrete
momentum states in ultracold21–23 and room-temperature
gases24–29. By considering part of a synthetic lattice as a
“probe” attached to a “system” of interest, and using the suite of
controls afforded in synthetic lattice experiments, we study the
energy-dependence of probe-system coupling to directly deter-
mine the energy spectrum of dressed states in a synthetic lattice
system. This builds upon previous explorations using coupled
momentum states that used system–reservoir coupling to

engineer effective non-Hermitian loss22,30, as well as related
demonstrations of energy-resolved spectroscopy in topological
synthetic lattices of microwave-coupled Rydberg levels31 and
non-Hermitian momentum state lattices32. Our technique is also
similar to ones that have been proposed theoretically, such as the
use of microscopy to observe the internal state dynamics of atoms
trapped in a cavity33, as well as the probing of quantum many-
body states in optical lattices by energy-resolved atom injection34

and removal35. We demonstrate this technique on the simple test
cases of few-site and many-site tight-binding lattices, finding
qualitative agreement with theoretical predictions as well as
observing the influence of atomic interactions. Using numerical
simulations, we demonstrate the applicability of this technique for
studies of topological band structures, including the celebrated
Hofstadter butterfly spectrum and its associated topological
boundary states.

Results and discussion
Theory. We begin by considering the following Hamiltonian that
describes the injection site, the discrete lattice under study, and
their coupling:

Ĥ ¼ Ĥinj þ Ĥlatt ð1Þ

Ĥinj ¼ tinj 0j i 1h j þ tinj 1j i 0h j þ Einj 0j i 0h j ð2Þ

Ĥlatt ¼ ∑
N�1

j¼1
tj jþ 1
�� �

j
� ��þ h:c:

� �
þ ∑

N

j¼1
Ej j
�� � j

� ��: ð3Þ

Here, 0j i represents the probe site, 1j i represents the injection
site (which is part of the lattice, Ĥlatt), tinj is the injection
tunneling between the probe site and the lattice, Einj is the energy
detuning of the probe site with respect to the lattice, N is the
number of lattice sites, and the tj are the (in general link-specific)
tunneling terms within the lattice itself (depicted in Fig. 1a). We
restrict tinj to be real-valued, while the tj can be complex. Let the ϵi

Fig. 1 Energy-resolved injection spectroscopy in synthetic momentum state lattices. a To probe a lattice system having characteristic tunneling energy
tsys, population is weakly injected in from a nearby probe site through a probe-system coupling term tinj. b In synthetic lattices of atomic momentum states,
the system, probe, and all relevant coupling terms can be engineered through the spectral addressing of unique Bragg resonances. Here, two counter-
propagating beams interfere to drive Bragg transitions between adjacent states with momenta 2nℏk and 2(n+ 1)ℏk, where k= 2π/λ and λ is the
wavelength of the driving laser fields (1064 nm in experiment). c Illustration of the simplest two-site lattice system with inter-site hopping term
t= h × 1598(10) Hz, along with a control of the energy bias Einj of the probe site relative to zero energy [tinj= h × 40(10) Hz]. In practice, this bias tuning is
accomplished simply through a change in the frequency of the applied injection tone, i.e., the spectral component labeled finj in (b). In the weak-coupling
limit (tinj≪ tsys), the rate of population loss from the probe into the system provides a measure of the local density of system states at the injection site.
d For injection into the two-site system at zero bias, we show the dynamics of the measured atomic population in the probe site, along with an exponential
fit used to extract a characteristic loss time. e Measured loss time plotted vs. the injection site energy bias. The black data point at Einj/t= 0 relates to the
loss time extracted from (d). The two peaks of enhanced loss rates, centered around Einj= ± t, correspond to the symmetric and anti-symmetric
eigenstates of the double well system. The error bars in e relate to the standard error of the fit-determined 1/e loss times.
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be the eigenvalues and ψi

�� �
be the eigenvectors for the lattice

Hamiltonian, Eq. (3). In general, we can write

ψi

�� � ¼ ∑
N

n¼1
cðiÞn nj i: ð4Þ

If tinj≪ tj, then we can treat the injection Hamiltonian as a
perturbation. In this limit, we can use Fermi’s golden rule in order
to characterize the loss rate from the probe site into the lattice:

Γ ¼ 2π
_

∑
N

i¼1
j ψi

� ��Ĥinj 0j ij2δ�Ei � Einj

� ð5Þ

¼ 2π
_
t2inj ∑

N

i¼1
jcðiÞ1 j2δðEi � EinjÞ: ð6Þ

In a real experiment, the delta function will become regularized
due to the finite amount of evolution time, resulting in a Fourier-
limited energy resolution. Still, for sufficiently long evolution
times and sufficiently small values of tinj, a measurement of the
loss rate as a function of Einj will permit an energy-resolved
measurement of the local density of states. Roughly speaking, the
loss rate from the probe site will be enhanced if Einj is set close to
the energy of a lattice eigenstates and will vanish if there are no
lattice eigenstates in the vicinity of Einj.

One useful feature of injection spectroscopy is its sensitivity to
the details of the eigenstate weight at the site of injection (i.e., its
local nature). At the resonance condition (Einj= Ei) for some
eigenstate ψi

�� �
, the rate of loss from the probe site will be

proportional to the overlap, or Franck–Condon factor, ∣〈1∣ψi〉∣2.
The more weight the eigenstate has with the site of injection, the
larger the loss rate. This sensitivity to the local density of states
should prove useful when, for example, probing the distinction
between the bulk and edge spectra of a topological system17,18,36.
In disordered or pseudo-disordered systems, this feature can also
be useful for detecting metal–insulator transitions and for
identifying mobility edges14,37.

Two- and three-site lattices. The simplest system we perform
spectroscopy on is a two-site lattice with tunneling strength
t= h × 1598(10) Hz and injection tunneling strength tinj= h ×
40(10) Hz. The eigenenergies for this lattice are simply E= ± t,
and the eigenstates are equal symmetric and anti-symmetric
superpositions of atoms at the left and right site. When we per-
form spectroscopy on the two-site lattice, we see that away from
Einj/t= ± 1 the experimental loss time is approximately 40 ms.
We observe two features of decreased loss times in Fig. 2), relating
to dips in the data near the expected resonances at Einj/t= ± 1.

This observation can also be understood as Autler–Townes
splitting of the bare probe-injection site transition due to hybri-
dization of the states p= 2ℏk and 4ℏk by the applied Bragg field.

The next simplest system is the three-site lattice with uniform
tunneling strength t= h × 2040(3) Hz and injection tunneling
strength tinj= h × 50(3) Hz. The energies for this type of lattice
are E ¼ 0; ±

ffiffiffi
2

p
t. When we perform spectroscopy on the three-

site lattice, we see a similar trend as before, shown in Fig. 2b.
When Einj is nearly resonant with an eigenenergy of the lattice,
the loss time decreases. When Einj is away from the eigenenergies
of the lattice, the loss time is roughly constant. One feature of the
three-site loss spectrum is that the loss time dips appear to be
shifted downward in energy relative to their naive expectation
values. Indeed, as seen also in the numerically simulated curve,
one should expect a slight downward shift in energy due to the ac
Stark shifts of the momentum states, i.e., due to the fact that the
strong tunneling links in the lattice induce momentum-
dependent light shifts that shift the lattice site energies relative
to the probe site.

For these two simplest cases, we note that the predicted loss
curves generated from the GPE simulations match the locations
of the dips in the spectrum but do not perfectly match the scale of
the experimentally measured loss time. For the two-site case, the
loss time away from the eigenergies is measured to be
approximately 40 ms, while the simulation predicts the loss time
should be closer to 90 ms. It is again interesting to note that, as
seen more clearly in the simulated spectrum, there is a slight
downward shift in energy due to the large system tunneling,
which results in momentum-dependent ac Stark shift to the
synthetic lattice site energies.

For the three-site lattice, the loss time away from the
eigenergies is measured to be approximately 15 ms, while the
simulation predicts it should be roughly 80 ms. While the GPE
simulation does account for the fact that the cloud separates
spatially, thus limiting the coherence of the time evolution, it does
not account for additional loss mechanisms. Two possible
mechanisms could include momentum-changing s-wave colli-
sions between momentum orders, which scatter atoms into
modes outside of those considered, as well as scattering between
thermal and condensed atoms. Furthermore, there are oscillations
in the simulated spectra which are not captured in the
experimental data, which is likely due to the fact that there are
additional loss mechanisms and inhomogeneous density shifts
that wash them out.

We note that the simulations also account for the effects of
mode-preserving atomic interactions (effectively local attractive
nonlinearities)38, which effectively serve to shift the energy of the

Fig. 2 Experimental and theoretical loss times for three different lattices. The simulated curves are in black and the experimental data are in red. a The
loss times for spectroscopy of a two-site lattice as a function of Einj (in units of the lattice hopping energy t). This panel of data is the same as in Fig. 1a, with
t= h × 1598(10) Hz and tinj= h × 40(10) Hz. Note that the vertical axes for the simulation and the experimental data are on different scales. b The loss
times for injection into a three-site lattice with uniform system hopping t= h × 2040(3) Hz and tinj= h × 50(3) Hz. We again note the different vertical
axes for the simulation and experimental data. c The loss time as measured by injection spectroscopy of a uniform 26-site lattice. Here, we operate with a
uniform system hopping t= h × 492(10) Hz and with tinj= h × 50(10) Hz, and the simulations and data have common vertical axes. The error bars in a and
b reflect the standard error of the fit 1/e loss time. The error bars in (c) relate to the standard error of the measured probe population, propagated to an
error in the 1/e time constant.
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lattice system up relative to the populated probe site. In the two-
site case, this upwards shift (relative to the probe) due to
interactions and the downwards shift due to the ac Stark effect are
nearly perfectly compensated. However, in the three-site case,
where we operate with a larger tunneling amplitude, the
downwards shift due to the ac Stark effect dominates.

Uniform lattice. The last system we probe experimentally is a
uniform chain with tunneling strength t= h × 492(10) Hz with
the injection link strength tinj= h × 50(10) Hz. Such a lattice has
eigenenergies ranging from −2t to 2t. For this spectrum, instead
of measuring the loss rate by taking measurements at a range of
evolution times, we rather directly measured the amount of
population remaining in the p= 0 order after an evolution time
of 20 ms. We then extract the loss time by solving Pð20msÞ ¼
Pð0Þe�ð20msÞ=τ0 for τ0, assuming a fixed initial population of
P(0)= 6 × 104 atoms. We see that there is a broad dip in the loss
time for a range of Einj values near zero energy, with a positive
shift that is qualitatively captured by the simulated curve shown
in Fig. 2c. This positive shift is due to the fact that the population
in the p= 0 order is larger than the population in any of the other
lattice sites, which induces a mean field shift in the site energy of
the p= 0 order down by U ≈ 1.5t. This has the relative effect of
shifting the entire unoccupied spectrum up in energy by U. Note
that the interaction shift effect is less pronounced in the two- and
three-site lattices because those experiments were undertaken
with a larger value of the system tunneling t. In the uniform
lattice, the effect of the light shift is also much smaller than in our
previous two- and three-site lattice cases because the tunneling
strength is roughly a third what we used in the two-site lattice and
a fourth of what we used in the three-site lattice. The simulated
curve is not as broad as the experimental data, however. This may

likely be due to the fact that the BEC in the experiment has an
inhomogeneous density, which gives rise to density-dependent
mean-field interaction shifts and broadening of the response
lineshape.

Limitations and further improvements. From the three experi-
ments discussed above, we posit that there are two main technical
limitations that can be addressed to improve the resolution of the
technique: limits on the timescale of allowable coherent evolution
and broadening of the spectral response that results from the
inhomogeneous atomic density and the density-dependent
(Hartree-like) spectral shifts to the Bragg transitions. In con-
trast, the method proposed in35 is limited by averaging of the
atomic current from the system to probe over a finite time
interval, in addition to the finite bandwidth of the probe lattice. In
our scheme, the probe has no such structure, and in principle, the
spectral resolution should be limited by the bandwidth or
strength of the injection link.

Considering just single-particle effects, a kind of “Welcher-
Weg” decoherence results from the loss of spatial overlap between
the probe and the momentum states (and dress states) of the
system under interrogation. This technical issue can be mitigated
by working with more spatially extended atomic samples, such as
in a large box trap or by using low harmonic trapping
frequencies.

For the present experiments, the major limitation appears to
result from the inhomogeneous density-dependent spectral shifts.
One could utilize flat-bottom or box traps39,40 to achieve a more
uniform atomic density. This would still enable the exploration of
how interactions modify the spectral response. Alternatively, if
one is seeking the best possible energy resolution to identify some
subtle features, such as the fractal energy structure of the

Fig. 3 Injection spectroscopy of an Aubry–André–Harper–Hofstadter (AAHH) lattice. a A qualitative depiction of the AAHH lattice under injection
spectroscopy. At the left end, a probe site has an adjustable site energy Einj and is coupled into the lattice with a tunneling rate tinj. In the AAHH lattice, the
sites are uniformly coupled with nearest-neighbor tunneling rates t, but site-dependent energies εi are quasiperiodically shifted as Δ cosð2πbiþ ϕÞ. Here, Δ
is the modulation depth, b is the incommensurability parameter, and ϕ is the phason value. b The calculated energy spectrum for the open AAHH chain for
ϕ= 0 and Δ/t= 9/5, with t= 1, taken for different values of the incommensurability parameter b. c Two numerical simulations of the injection loss
spectrum, relating to the fractional population remaining at the probe site as a function of the injection site energy, for incommensurability parameters
b= 49/99 and b= 25/99 (both for Δ/t= 9/5 and tinj/t= 1/20). These spectra are ϕ-averaged over 100 uniformly spaced values of ϕ∈ [−π, π]. The
probe population is calculated after 150 system tunneling times. d A composite plot of ϕ-averaged injection spectra as in (c), but for a larger range of
incommensurability parameter values b∈ [0, 1].
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Hofstadter butterfly, one could instead simply take advantage of a
suitable Feshbach resonance in an atom such as 39K and tune the
s-wave scattering length41–43 to near zero. This approach would
additionally mitigate other effects like inelastic scattering to
momentum modes outside of the “momentum lattice” state space.

Aubry–André–Harper–Hofstadter model. The
Harper–Hofstadter (HH) model is used to describe the motion of
an electron in a lattice that is placed in a uniform external magnetic
field. In cold atoms, the two-dimensional HH model been realized
for cold atoms using techniques of laser-assisted hopping in real-
space lattices44,45. The two- and three-dimensional versions of the
HH model can also be effectively reduced to the problem of a one-
dimensional periodically modulated lattice model, where the per-
iodicity of the modulation is set by the ratio Φ/Φ0, with Φ the
amount of magnetic flux through a plaquette and Φ0= h/e is the
quantum of flux46,47. This dimensionally-reduced model, the
Aubry–André–Harper–Hofstadter (AAHH) model, has played an
important role in explorations of localization phenomena with cold
atoms13,14,48,49 and for studies of topological edge states50–53.

One longstanding goal of studies of the HH model is to directly
measure its fractal energy spectrum, namely the famous
“Hofstadter butterfly.” While there are proposals to observe the
butterfly spectrum in driven optical lattices6, there has not yet
been a method proposed to observe it in a synthetic lattice. Here,
we show that the injection spectroscopy technique may prove
useful for the measurement of the HH butterfly spectrum, and for
the measurement of the corresponding topological edge states.

To be concrete, the model we consider is given by the AAHH
tight-binding Hamiltonian:

Ĥ ¼ � ∑
N�1

i¼1
tð ij i iþ 1h j þ h:c:Þ þ ∑

N

i¼1
Δ cosð2πbiþ ϕÞ ij i ih j: ð7Þ

Here, t is the tunneling strength between nearest neighbors, Δ
is the strength of the potential energy modulation, 1/b is the
periodicity of the site-energy modulation, and ϕ is the phason
degree of freedom, relating to a phase shift to the sinusoidal
potential modulation. Note that for rational values of b the site
potential modulation is periodic, but for irrational b the site
potential energy shifts will never repeat. This model is shown
schematically in Fig. 3a, along with its fractal energy eigenstate
spectrum as a function of the incommensurability parameter b,
shown in Fig. 3b.

In our theoretical study, we first consider the AAHH model
with Δ/t= 9/5 for various b. The number of sites is N= 101. We
begin by having all the population start in the site p ¼ 0_k

�� �
, and

we let the system evolve for 150 tunneling times. At the end of
each simulation, we record the population that is left in the
p ¼ 0_k
�� �

site. We repeat this calculation for many different
energy offset values of the probe site to get the spectrum for one
value of b. Two such loss spectra, for values of b= 24/99(~1/4)
and b= 49/99(~1/2), are shown in Fig. 3c. These spectra reveal
four and two primary loss features, respectively, relating to the
existence of a corresponding number of bulk mini-bands for these
values of the incommensurability parameter b. We can repeat this
simulation for a large range of b values, keeping Δ/t constant, and
we find the emergence of the famous Hofstadter butterfly
spectrum shown in Fig. 3d. These simulations of tunneling-
based loss spectra match qualitatively with the full numerically
calculated spectrum shown in Fig. 3b. Note that some eigenvalues
are not represented well in our simulated spectrum, likely due to
the fact that they correspond to eigenvectors that have very little
(or no) weight at the site of injection ( 1j i). We note that these
simulations assume a large timescale of relevant tunneling times,
however these structures may still be resolved for shorter probing
times, especially in the somewhat trivial strong Δ limit (if
averaging over the phason degree of freedom).

In Fig. 4, we show how one may probe the topological edge states
associated with the AAHH spectrum. We fix b to 1/3 and Δ/t to 9/5
and we vary the value of ϕ, which is related to the ky wave vector of
the higher-dimensional HH model. We perform two sets of
simulations corresponding to injection at opposite sides of the
open-boundary AAHH lattice. In one set of simulations, we start in
the p ¼ 0

�� �
state and construct the lattice with sites p ¼ 2n_k

�� �
,

where n ≥ 1. We call this the “left injection” configuration. For a
fixed ϕ, we repeat this simulation for many different Einj values in
order to produce a loss spectrum. In the alternate set of simulations,
we begin in the p ¼ 0

�� �
state and we construct the lattice with sites

p ¼ 2n_k
�� �

, where n ≤− 1; we call this the “right injection”
configuration. The left and right injection spectra are shown in
Fig. 4a and Fig. 4b, respectively. In both spectra, there are three
bands, as well as two modes that disperse between the bulk bands.
The combination (average) of the two spectra reveals the entire
spectrum, including bulk and boundary states, as is shown in
Fig. 4c. We can also take the difference between the left and right
injection spectra; this subtraction (shown in Fig. 4d) effectively
removes the bulk bands, revealing the topological edge modes as
well as the edge they live on.

Scanning mode spectroscopy. Here, we describe an extension of
the one-dimensional techniques in order to probe the bulk as well

Fig. 4 Boundary-dependent injection into the Aubry–André–Harper–Hofstadter (AAHH) lattice. Energy- and phason-resolved injection spectroscopy of
a 101-site AAHH lattice lattice for Δ/t= 9/5, an incommensurability ratio b= 1/3, and tinj/t= 1/20. a For probing from the left boundary, fractional
population remaining at the probe site (indicated by the color scale at right) as a function of the probe site energy Einj and the phason value ϕ after a total of
150 system tunneling times. Three bulk energy bands are observed, as well as prominent dispersing inter-band modes. b Same measure as in (a), but for
the case of probing from the right boundary. c The average of the injection spectroscopy signal for the left- and right-sided injection. d The difference
between the left- and right-sided injection signals, revealing on the presence of the topological boundary states on the right (in red) and left (in blue)
system boundaries.
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as edge states. As we stated in previous sections, it is possible to
miss certain eigenenergies if the corresponding eigenvector has
no weight in the site to which the probe site is connected to. In
particular, it is possible to miss states which have their wave
function mostly or entirely in the bulk of the one-dimensional
lattice. In order to counteract this, it would be useful to have a
scheme where we can attach the probe site to any site in the
lattice.

In order to probe any site in the lattice, in more direct analogy
to scanning probe techniques54, we can extend the considered
one-dimensional momentum- state lattice to a quasi two-
dimensional geometry. In practice, this could be enabled by
adding an additional laser beam that propagates in the direction
perpendicular to the original two counter-propagating beams, as
is shown in Fig. 5a-i. Interference between the frequency
component f1 on the up-traveling beam and the frequency
component finj on the right-traveling beam can drive Bragg
transitions from the 0_k; 0_kj i state to the _k; _kj i state. We can
then construct the frequency tones, fsys on the left-traveling beam
such that their interference with the frequency tone f0 on the
right-traveling beam resonantly drives transitions between the
momentum states _k; ð2nþ 1Þ_k

�� �
and _k; ð2nþ 3Þ_k

�� �
, where n

is an integer, in order to construct a one-dimensional lattice of
initially unoccupied states, as depicted in Fig. 5a-ii. In order to
prevent unwanted interference effects, the frequency difference
between f0 and f1 are set to be many orders of magnitude above,
say, the recoil energy ER= ℏ2k2/2M, while the frequency
difference between (f0, fsys) and (f1, finj) are, respectively, on the
order of the recoil energy. As one simple example, we consider
probing a uniform one dimensional lattice with some tunneling
strength tsys, by injecting into the center site as shown in
Fig. 5a-ii. When the energy of the probe is scanned, it reveals

three loss features, as seen in the simulated spectrum shown of
Fig. 5a-iii. In this case, two eigenstates of the system under
consideration (the five-site uniform lattice) are not revealed by
the loss measurement due to symmetry—they have exactly zero
weight at the site of injection.

In this “scanning mode” injection spectroscopy, the frequency
spectrum of the left-traveling beam can be altered to that depicted
in Fig. 5b-i, such that the injection site ( _k; _kj i) actually resides
at the left end of the five-site lattice, as shown in Fig. 5b-ii. The
corresponding loss spectrum in Fig. 5b-iii for this configuration
reveals five loss features, corresponding to the full set of
eigenstates of this system, including the two modes at energies
of ±t that were missed by the center-site injection.

This simple example shows how tunneling spectroscopy in
synthetic lattices may be further extended to a “scanning mode”
to allow for greater utility in characterizing different model
systems. Beyond this, injection spectroscopy in synthetic lattice
systems can even be extended to include simultaneous injection at
multiple sites of a system (with control of the relative amplitude
and phase of injection at different locations). This very unique
capability can, for example, be used to perform (approximations
to) wavevector-resolved spectroscopy as well as band-specific
spectroscopy in multi-band systems with multi-site unit cells, and
has been theoretically investigated for a two-dimensional Lieb
lattice of synthetically-coupled momentum states55.

Conclusion
Synthetic lattices in cold atom systems offer a powerful window
into the physics of many condensed matter phenomenon such as
localization, topological insulators, and the quantum Hall effect.
In this work, we have shown how it is possible to probe the
spectrum of one-dimensional synthetic lattices made by laser-

Fig. 5 “Scanning mode” spectroscopy of momentum state lattices. a-i Here, we show the layout for generating a quasi two-dimensional lattice. There are
two counter-propagating laser beams that generate the lattice, and one beam orthogonal to both counter-propagating beams. The orthogonal beam
provides the link between the injection site and the lattice. a-ii The three beams in (a-i) couple different momentum sites as shown here. The transition
frequencies in the counter-propagating beam are chosen such that the probe site is connected to a site in the middle of the lattice. a-iii A simulated loss
spectrum for the situation depicted in (a-ii), where initially all of the population is in the injection site. Here, tinj/tsys= 1/20 and we plot the remaining
fraction of the population in the probe after 150 tunneling times. b-i Here we depict the frequencies necessary to make a lattice where the probe site is
attached to the left edge of a uniform five-site lattice. b-ii The lattice beams interfere to make the effective five-site tight binding lattice with uniform
tunneling, plus a probe site attached to the left edge of the lattice. b-iii Simulated spectrum for the situation depicted in (b-ii). Again, all of the population
initially starts in the probe site, and fixing tinj/tsys= 1/20 we plot the remaining probe fraction after 150 tunneling times. Notice that there are two
additional dips that were not present if we only probed into the center of the lattice.
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coupled momentum states. Experimentally, for the examples of
two-site, three-site, and many-site uniform lattices, we have
shown that it is possible to reproduce the eigenenergy locations
through observed loss resonances from an injected probe site. By
comparing to numerical (GPE model) simulations, we found that
the experimental data exhibited qualitative agreement with the
expected locations of resonant loss features in these systems,
including mean-field shifts due to atomic interactions. Addi-
tionally, through numerical simulations, we have shown theore-
tically that this injection spectroscopy technique could allow for
energy spectrum studies of the AAHH model, opening the way to
the measurement of fractal energy spectra and topological
boundary states in synthetic lattices.

Methods
In our experiment, we typically start with nearly pure
Bose–Einstein condensates (BEC) of roughly 5 × 10487Rb atoms
confined in a crossed-dipole trap formed from lasers of wave-
lengths 1064 nm and 1070 nm. These trapping beams create a
harmonic trap with trap frequencies ωx,y,z ≈ 2π × {130, 10, 130}
Hz. After forming the BEC, we suddenly turn on a retro-reflected
path of the 1064 nm beam that contains a tailored frequency
spectrum of discrete components. The resulting interference of
the two counter-propagating beams having wavelength
λ= 1064 nm serves to couple discrete atomic momentum orders
pn= 2nℏk (with k= 2π/λ) via two-photon Bragg transitions. As
summarized in Fig. 1b, the Bragg transitions serve to form a
synthetic lattice of momentum states56,57, as well as introduce an
injection link between a probe site and the lattices under study.

More explicitly, the initially populated p= 0 momentum order
serves as the “probe site,” and resides next to the lattice to be
probed. We couple the probe site to an injection site of the lattice
via a weak Bragg link, having an energy scale tinj, as shown in
Fig. 1c. The probe site has a controllable energy bias relative to
the lattice system, Einj, which is introduced via a detuning of the
probe-system Bragg transition, 0j i $ 1j i. The lattice system
under study is composed by coupling (via Bragg transitions) the
momentum orders p= 2nℏk, where n ≥ 1 and is truncated at a
final value depending on the size of the lattice under study. In the
described experiments, the lattices we consider involve no var-
iations of their potential landscape, and are thus formed by
resonantly coupling all of the relevant momentum orders. In the
AAHH model46,47,58 considered in simulations, detunings of the
Bragg transitions are used to introduce quasiperiodic variations in
the site energies.

In our experiments, all atoms initially start in the p= 0 order.
The p= 0 order corresponds to the probe site in all of our lattice
realizations. For one experimental run, we fix Einj and let the
atoms evolve under the influence of our engineered Hamiltonian
for a variable duration τ. We then extract the population of the
p= 0 state versus the evolution time τ, and fit this to an expo-
nential, Nð0Þe�τ=τ0 , where N(0) is the initial atom number in the
p= 0 order, which is the probe site. An examplar trace is shown
in Fig. 1d. We repeat the experiment for many different Einj, and
in the end we plot τ0, the loss time, as a function of Einj, shown in
Fig. 1e. When Einj is close in energy to an eigenstate of the lattice,
there will be a decrease in τ0. This reflects the strong enhance-
ment of the transition rate from the probe site when Einj is in the
vicinity of a lattice eigenenergy, due to the technique’s sensitivity
to the system density of states.

The ideal tight binding Hamiltonian (Eq. (3)) does not account
for off-resonant Bragg transitions and the inhomogeneous (in real-
space) many-body interactions in the momentum state lattice.
These introduce on-site energy shifts22,38,59 and consequently
affect our experimental observations. To fully account for the

aforementioned effects, we perform 3D mean-field
Gross–Pitaevskii equation (GPE) simulations taking into account
the experimentally measured atom number, trap frequencies, and
hopping amplitudes (Bragg field strengths). The details on how to
resolve the momentum space dynamics with the time evolution of
spatial GPE are described in Ref. 60. The loss time constant τ0 is
calculated from the dynamics of the number of atoms remaining in
the original condensate momentum order (p= 0), normalized to
the initial atom number. While the integration of the GPE under a
time-dependent Bragg field can help to address the effects from
mean-field interactions and the external dipole trap, the deco-
herence caused by long-time thermal fluctuations (e.g., inelastic
collisions between different momentum states and momentum
broadening due to finite temperature) and quantum depletion
beyond the mean-field approximation are beyond the scope of our
mean-field simulations.

Data availability
All relevant data are available from the corresponding author upon reasonable request.

Code availability
All relevant codes are available from the corresponding author upon reasonable request.
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