
communications physics Article

https://doi.org/10.1038/s42005-024-01715-5

Enhancing the excitation gap of a
quantum-dot-based Kitaev chain

Check for updates

Chun-Xiao Liu , A. Mert Bozkurt, Francesco Zatelli , Sebastiaan L. D. ten Haaf, Tom Dvir &
Michael Wimmer

Connecting double quantum dots via a semiconductor-superconductor hybrid segment offers a
platform for creating a two-site Kitaev chain that hosts Majorana zero modes at a finely tuned sweet
spot. However, the effective couplings mediated by Andreev bound states in the hybrid are generally
weak in the tunneling regime. As a consequence, the excitation gap is limited in size, presenting a
formidable challenge for using this platform to demonstrate non-Abelian statistics and realize
topological quantumcomputing. Herewe systematically study the effects of increasing the dot-hybrid
coupling. In particular, the proximity effect transforms the dot orbitals into Yu-Shiba-Rusinov states,
and as the coupling strength increases, the excitation gap is significantly enhanced and sensitivity to
local perturbation is reduced. We also discuss how the strong-coupling regime shows in
experimentally accessible quantities, such as conductance, and provide a protocol for tuning a
double-dot system into a sweet spot with a large excitation gap.

The Kitaev chain is a toy model of topological superconductivity that
consists of one-dimensional spinless fermions with p-wave pairing
potential1. In the topological phase, the endpoints host a pair of Majorana
zero modes2–13, which obey non-Abelian statistics and are regarded as the
building block of topological quantum computation14,15. Such a Majorana
qubit is predicted to be more immune to decoherence due to the quantum
information being encoded nonlocally in space and further protected by an
excitation gap above the computational subspace.

In solid-state physics, the Kitaev chain model can be simulated in a
quantum dot array by utilizing the spin-polarized dot orbitals as spinless
fermions, with the effective couplings mediated by superconductivity16.
Remarkably, even a chain consisting of only twoquantumdots can exhibit
fine-tuned, but still spatially separated Majorana modes at a sweet spot,
colloquially called poor man’s Majorana modes17. Recently, such a two-
site Kitaev chainwas experimentally realized in double quantumdots, and
poor man’s Majorana modes were identified via conductance spectro-
scopy at the sweet spot18. In particular, the effective couplings, both
normal and superconducting ones, are mediated by an Andreev bound
state (ABS) in a hybrid segment connecting both quantum dots19, which
allows for a deterministic fine-tuning of the relative amplitude by chan-
ging theABS chemical potential via electrostatic gating20–22. This effectwas
shown theoretically to be robust to Coulomb interactions in the dots as
well as stronger coupling23.

Despite the experimental progress, state-of-the-art Kitaev chain devi-
ces are still constrained by a relatively small excitation gap (~25 μeV), which

ismuch smaller than the induced gap of theABS (~150 μeV) and the parent
aluminum gap (~230 μeV)18. In order to experimentally demonstrate the
non-Abelian statistics of Majoranas and to obtain high-quality Majorana
qubits24–26, a significant enhancement in the excitation gap is crucial. This
enhancement will allow for a more tolerant adiabatic limit condition
∼ _=E�1

gap
27–30 and suppress the detrimental thermal effects ∼ e�Egap=kBT 31.

In this work, we use the three-site model19,23,32 to systematically study
enhancing the energy gap by increasing the dot-hybrid coupling strength,
achievable in experiments by lowering the tunnel barrier height. As a result
of the proximity effect from the hybrid, the spin-polarized orbitals in the
quantum dots undergo a transformation into Yu–Shiba–Rusinov (YSR)
states33,34, in an analogy with the conventional YSR states35–37. These states
thenconstitute thenewspinless fermionbasis for the emulatedKitaev chain.
Thus, the concepts of elastic cotunneling and crossed Andreev reflection in
the weak coupling regime have to be generalized. Most importantly, we
show that poor man’s Majorana zero modes can survive in this strong
coupling regime, featuring a significantly enhanced excitation gap. The
properties of the resulting states are different from those in the weak cou-
pling regime, showing both wavefunction profiles and conductance prop-
erties while maintaining their Majorana character.

Methods
Model and Hamiltonian
A two-site Kitaev chain device consists of two separated quantum dots
connected by a hybrid segment [see Fig. 1a]. The system Hamiltonian
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is19,23,32

H ¼HD þ HS þ HT ;

HD ¼
X

a¼L;R

ðεDa þ EZDaÞnDa" þ ðεDa � EZDaÞnDa#

þ UDanDa"nDa#;

HS ¼ εAðnA" þ nA#Þ þ Δ0ðcA"cA# þ cyA#c
y
A"Þ;

HT ¼
X

σ¼";#
tLc

y
AσcDLσ þ σtLsoc

y
AσcDLσ

�

þtRc
y
DRσcAσ þ σtRsoc

y
DRσcAσ

�
þ h:c:;

ð1Þ

where HD is the Hamiltonian of the quantum dots, nDaσ ¼ cyDaσcDaσ is the
electron occupancy number on dot a, εDa is the orbital energy, EZDa is the
strength of the induced Zeeman energy, andUDa is the Coulomb repulsion
strength.HS describes the hybrid segment hosting a pair of ABSs in the low-
energy approximation. εA is the normal-state energy, and Δ0 is the induced
pairing gap.While we assumeno induced Zeeman energy in theABS due to
a strong renormalization effect at the hybrid interface38,39, the main
conclusions remain valid for finite Zeeman energy as well.HT is the tunnel
coupling between dot and ABS, including both spin-conserving ~ t and
spin-flipping ~ tso processes. In realistic devices, the amplitude of t is a
variable that can be controlled by tunnel barrier gates, while the ratio of tso/t
is generallyfixed and is determined by the strength of spin-orbit interaction.
In the rest of thiswork,wewill chooseΔ0 to be thenatural unit.Unless stated
otherwise,we setEZDa = 1.5Δ0,UDa= 5Δ0, and taso/ta = 0.3 according to the
recent experimental measurements on similar devices18,20–22. In addition, we
numerically calculate the differential conductance using the rate-equation
method23, where the lead tunneling rate is Γa = 0.025Δ0, and temperature is
kBT = 0.02Δ0.

Results
Quantum dot-Andreev bound state pair
To assess the strength and to understand the effects of dot-hybrid coupling,
wefirst focuson the conductance spectroscopyof a single quantumdot-ABS
pair.Hence, for the discussions here, we temporarily remove the right dot in

themodelHamiltonian inEq. (1). Figure 2 shows the zero-bias conductance
spectroscopy in the (εD, εA) plane for t/Δ0 = 0.25, 1 and 2, respectively. Here
GLL = dIL/dVL at VL = 0. As shown in Fig. 2a, in the weak coupling regime,
the conductance resonances are two straight lines extending along εA,
corresponding to the spin-up and down orbitals in the quantum dot. In
contrast, with a strong dot-hybrid coupling, the resonance lines become S-
shaped curves [see Fig. 2b], and the conductance magnitudes are increased
by order of magnitude. For even stronger coupling, Fig. 2c, proximity from
the ABS is so strong that the states are very different from spin-up and spin-
down, as signified by the differently connected arcs in the conductance.

This qualitative behavior was already described in existing literature34.
Here,we recover the samebehavior in a simplermodel and also consider the
magnitude of the conductance. In particular, we can use second-order
perturbation theory to qualitatively understand the physical mechanisms
underlying these conductance features.

First, the dot-hybrid coupling renormalizes the dot orbital energy by
δεD via cotunnelingprocesses.Up to the leadingorderof t and tso, this energy
renormalization is

δεD ¼ t2 þ t2so
� � u2 � v2

EA
þ O t4; t4so

� �
; ð2Þ

where u2 = 1− v2 = 1/2+ εA/2EA are the BCS coherence factors and EA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2A þ Δ2

0

q
is the ABS excitation energy. Interestingly, due to destructive

interference, the dot energy shifts positively (negatively) for εA > 0 (εA < 0),
vanishes at εA = 0, and decays as ε�1

A for large εA, well explaining the S-
shaped conductance resonances shown in Fig. 2b. Hence, the S-shaped
feature is a clear sign of the proximity effect due to the ABS in the hybrid
semiconductor–superconductor segment (rather than directly to the parent
metallic superconductor), and the increase in bending is a direct signal of
increasing coupling.

From Fig. 2a, b, we also observe that conductance is largest when the
ABS is near resonance, i.e., −Δ0 < εA <Δ0, which can also be understood
from perturbation theory. The ABS will induce a pairing term on the
quantum dot, i.e., Δindc

y
D"c

y
D# þ h:c: via local Andreev reflection with

Δind ¼ t2 þ t2so
� � 2uv

EA
þ O t4; t4so

� �
: ð3Þ

The induced gap size is prominent within−Δ0 < εA <Δ0 and decays as
ε�2
A outside. As a result, the local Andreev conductance is significantly
enhanced when ABS is near resonance and vanishes when off-resonance.
Thus, based on the shape of the resonance lines as well as on the
enhancement of the Andreev conductance, one can estimate the strength of
the dot-hybrid coupling in an actual device. In addition, although not the
main focus of the current work, it is likely that the continuum states of the
parent superconductor also induce local proximity effect on the quantum

Fig. 1 | Device schematic. a Schematic of a two-site Kitaev chain device. Two
separated quantum dots (green) are connected by a hybrid segment (orange) in the
middle, with the strength of the dot-hybrid coupling being controlled by the tunnel
gates (blue). b Schematic of the dot orbitals and Andreev bound states introduced in
the model Hamiltonian. The blue dashed lines and t denote the dot-hybrid tun-
neling, and the gray dotted line represents the superconducting Fermi energy.

Fig. 2 | Local conductance spectroscopy for a dot-
Andreev bound state pair. The local zero-bias
conductance on the quantum dot-Andreev bound
state pairsGLLwith different values for the tunneling
strength. t/Δ0 = 0.25, 1, 2 in panels (a–c),
respectively.
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dot. Such contribution would be a constant that is independent of the ABS
chemical potential, i.e.,Δind ! Δind þ Δqp

ind.More importantly, especially in
the strong coupling regime, the induced superconducting effect would
transform the dot orbitals into YSR states34,40–46. These states then establish
the new spinless fermion basis for the emulated Kitaev chain.

Coupled YSR states
We now turn to the case of two quantum dots coupled via an ABS and
develop an effective theory for two coupledYSR states. By assuming that the
ABS in the hybrid remains gapped, we can integrate it and obtain the
effective coupling

Heff
coupling ¼

X

σ;η¼";#
tσηc

y
DLσcDRη þ Δσηc

y
DLσc

y
DRη

� �
þ h:c:; ð4Þ

where tση and Δση are the elastic cotunneling (ECT) and crossed Andreev
reflection (CAR) amplitudes between electron or hole excitations in the two
dots. These couplings are tunable by changing the energy of themiddle dot,
εA

19. Note that the problem of coupling two quantum dots via ECT and
CAR, and in the presence of local Andreev reflection giving rise to a
proximity effect in the dots has been studied extensively before47–50, pre-
dominantly at zero magnetic field. In contrast, we focus on the case of a
significantZeemansplitting in the outer quantumdots, such that the ground
state of both dots occupied by a single electron is a triplet state. We also
emphasize that the treatment in Eq. (4) is valid when the dot-ABS coupling
is weak (t≪Δ0) or intermediate in strength (t≲Δ0), while the quantumdot
orbitals can be strongly proximitized by the ABS or the continuum states in
the parent superconductor.

For unproximitized quantum dots, Eq. (4) plus HD in Eq. (1) indeed
resembles the Hamiltonian of a two-site Kitaev chain1. However, since YSR
states are a superposition of electron and hole components, the effective
couplings of ECT andCAR have to be generalized. In particular, for a single
proximitized quantumdot with finite Zeeman splitting, the ground states in
the even- and odd-parity subspaces are a spin singlet and a spin-down state,
respectively,

∣Si ¼ u∣00i � v∣11i; ∣ #� ¼ ∣01i ð5Þ

where u2 = 1− v2 = 1/2+ ξ/2E0 are the BCS coherence factors, with ξ =

ε+U/2 and E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

ind

q
, and ∣n"n#i is a state in the occupancy

representation. Consequently, we define YSR state as ∣ #� ¼ f yYSR∣Si, with
an excitation energy δε = E↓− ES. When coupling two YSR states via the
ABS, the effective Hamiltonian becomes

Heff ¼
X

a¼L;R

δεaf
y
af a þ Γof

y
Lf R þ Γef

y
Lf

y
R þ h:c:; ð6Þ

where fa denotes the YSR state in dot-a, with δεa being the excitation energy.
This also takes the formof aKitaevHamiltonian, but now in thebasis ofYSR
states. Crucially, Γo/e represents the generalized effective couplings between
YSR states. The odd-parity coupling is

Γo ¼ hS # ∣Heff
coupling∣ # Si;

¼ �t""vLvR þ t##uLuR þ Δ"#vLuR � Δ#"uLvR;
ð7Þ

where ∣ # Si; ∣S #i are the tensor states with total parity odd, and ua, va are
the BCS factors defined in Eq. (5). Note that Γo is a linear combination of
equal-spin ECT and opposite-spin CAR, which are all spin-conserving
processes. On the other hand, the even-parity coupling is

Γe ¼ SSh ∣Heff
coupling∣ ##

�
;

¼ �Δ""vLvR þ Δ##uLuR þ t"#vLuR � t#"uLvR;
ð8Þ

which couples states with total spin zero and one. In particular, a finite Γe
requires a physical mechanism to break spin conservation, e.g., spin-orbit
interaction.

Figure 3a shows a schematic of the charge stability diagram as a
functionof thequantumdot energies. Blue and red squares indicatewhether
the ground state of two uncoupled dots is odd or even, respectively. Note
that the singlet ground state in the dots does depend on the dot energies
through the values of ua and va. For example, in the upper-right corner
uL/R > vL/R, corresponding to each dot predominantly empty, whereas the
lower-left corner features uL/R < vL/R, corresponding to each dot pre-
dominantly doubly occupied. The arrows represent the interactions Γo/e,
and the relative strength of these couplings will determine the ground state
close to the four corners in the charge stability diagram where each dot
exhibits a degeneracy without interactions. Additionally, we point out the
role ofCARandECT interchange for different corners of the charge stability
diagram.

In the absence of spin–orbit interaction, Γe = 0, and in general
Γo ≠ 0. Hence, at the four corners, the energy of the odd ground state is
lowered compared to the even ones. This can also be observed in a
simulation of the full three-dot Hamiltonian in Eq. (1), as shown in
Fig. 3b, where we find a disconnected even island in the center of the
charge stability diagram. Note that such behavior is only possible for a
finite Zeeman splitting and, as such, qualitatively different from the
charge stability diagrams49.

For a systemwith finite spin–orbit coupling, in general, also Γe ≠ 0, and
the respective values will depend on details of the system (such as the energy
εA of themiddle dot that can be used to tune ECT andCAR). In particular, it
is now, in general, possible to change the relative strength of Γe/o. This shows
as a change in connectivity in the charge stability diagram,with a guaranteed
sweet spot Γe = Γo in between. We show this behavior in Fig. 3c–e on the
example of the upper-right corner aswe vary εa, transitioning froma regime
dominated by Γo in Fig. 3c to one dominatedbyΓe in Fig. 3e.When Γe = Γo, a
cross emerges in thephasediagramas a signature of the sweet spot, as shown
in Fig. 3d.

In the limit of large Coulomb interaction U on the outer dots, either
uL/R ≈ 1 or vL/R ≈ 1 and Γe/o will be dominated by a single ECTorCAR term,
as evident from Eqs. (7) and (8).

Fig. 3 | The charge stability diagram and the coupling processes. a Schematic
description of the charge stability diagram. Γe (red arrows) and Γo (blue arrows)
couples even and odd states, respectively. bCharge stability diagramwith tso = 0 and
εA =− 1.5Δ0. In this case, only spin-conserving processes are allowed, resulting in a
ring-like pattern in the charge stability diagram. Charge stability diagrams for dif-
ferent values of εA. In particular, for orbital energies εDL ≈ εDR ≈ 0, in c Γo dominates
with εA ¼ ε�A � 0:2Δ0, in d it shows the sweet spot εA ¼ ε�A, and in e Γe dominates
εA ¼ ε�A þ 0:2Δ0. Here ε�A≈� 0:269Δ0 is the sweet spot value. In panels b–e, we use
t = Δ0. Panels b–e share the same colorbar.
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More generally, however, in the limit of vanishing Zeeman splitting in
the middle dot, CAR and ECT coupling are constrained by
t↑↑ = t↓↓, t↑↓ =− t↓↑,Δ↑↑ =Δ↓↓,Δ↑↓ =−Δ↓↑, due to time-reversal symmetry,
such that Γo/e can be further simplified as

Γo ¼ t"" cosðβL þ βRÞ þ Δ"# sinðβL þ βRÞ;
Γe ¼ Δ"" cosðβL þ βRÞ þ t"# sinðβL þ βRÞ;

ð9Þ

where 0 ≤ βa ≤ π/2 is a parameter to characterize the BCS factors by
ua ¼ cos βa; va ¼ sin βa. For two dots with a similar level of proximity
effect, the diagonal corners in Fig. 3 will have βL = β+ δ/2, βR = β− δ/2,
with δ≪ 1 characterizing aweak asymmetry.As a result, the odd- and even-
parity couplings reduce to

Γo ≈ t"" cosð2βÞ þ Δ"# sinð2βÞ;
Γe ≈Δ"" cosð2βÞ þ t"# sinð2βÞ:

ð10Þ

This indicates that as the proximity effect increases, the initially purely
equal-spin ECT/CAR coupling ratio Γo/Γe gains a finite opposite-spin CAR/
ECT component. In contrast, around the off-diagonal corners, we have
βL = β+ δ/2, π/2− βR = β− δ/2, yielding

Γo ≈Δ"# cosðδÞ � t"" sinðδÞ;
Γe ≈ t"# cosðδÞ � Δ"" sinðδÞ:

ð11Þ

Interestingly, despite the proximity effect, Γo/e is equal to the only ECT
or CAR just as in the unproximitized regime. Only an asymmetry in the
proximity effect leads to a mixing of CAR and ECT-type couplings. For a
detailed investigation of how Γe and Γo behave in different corners of the
charge stability diagram, we refer to Supplementary Note 1: Γe and Γo for
different corners of the charge stability diagram.

Poor man’s Majorana
Wenow focus on the properties of the poorman’sMajoranas that appear at
the sweet spot in the full dot-hybrid-dot system.Without loss of generality,
we assume that the left and right dots have the same set of physical para-
meters, e.g., εDL = εDR = εD, EZL = EZR = 1.5Δ0,UL =UR = 5Δ0, tL = tR = t
and tLso = tRso = 0.3t. To simplify, we introduce a shift in dot energy
εD→ εD− EZD to set the zero energy of the spin-down orbital at εD = 0.
Figure 4a shows the phase diagram in the (εA, εD) plane for weakly coupled
quantum dots (t/Δ0 = 0.25), with δE ¼ Eodd

gs � Eeven
gs being the energy dif-

ference of the ground states in the opposite fermion parity subspace. The
white-colored curves (δE = 0) represent the ground state degeneracy, with
the tip of the curves (marked by a black cross sign) indicating the sweet
spot23. At this sweet spot, the effective normal and superconducting cou-
plings of the two dots become equal in strength. The wavefunction profiles
plotted inFig. 4b furtherdemonstrate that theMajorana zeromodes arewell
localized at the two dots, respectively, with only a negligible amount of
overlap in the middle ABS. Here, the Majorana wavefunction densities are
defined for site and spin

ρ1aσ ¼ jhojðcaσ þ cyaσ Þjeij2;
ρ2aσ ¼ jhojðcaσ � cyaσ Þjeij2;

ð12Þ

where a = L,M, R, σ = ↑, ↓, and ∣ei; ∣oi denote the even- and odd-parity
ground state.

Comparatively, the lower panels in Fig. 4 show the results obtained in
the strong dot-ABS coupling regime with t/Δ0 = 1. Around the sweet spot
marked by the black cross sign, the ground state degeneracy line now
becomes much broader and straighter compared to the weak coupling
regime, indicating a significantly enhanced energy gap and robustness
against dot chemical potential fluctuations. In Fig. 4d, the plottedMajorana
wavefunctions show strong leakage into the middle ABS and small leakage
to the opposite normal dot with opposite spin. We emphasize that the
wavefunction overlap in the ABS, which is a virtual state, is not detrimental,

and that the reduced density on the normal dots will only reduce the visi-
bility of the Majorana from the external detecting system.

To gain a better understanding of the effect of strong coupling, we now
investigate the continuous evolution of the sweet spot and the properties of
Majoranas as a function of t. To that end, we define the following quantities:
excitation gap (Egap),Majorana localization (ρ), andpolarization (χ)23 as below

Egap ¼ minðδE1
oe; δE

1
eoÞ;

ρ ¼ ρ1L ¼ ρ1L" þ ρ1L#;

χ ¼ ðρ1L � ρ2LÞ=ðρ1L þ ρ2LÞ:
ð13Þ

Here, Egap represents the excitation gap above the poor man’s
Majorana zero modes, where δE1

oe and δE1
eo denote the energy differences

between the ground state in one parity sector and thefirst excited state in the
opposite one. The Majorana localization ρ and Majorana polarization χ,
both of which are defined on the outer quantum dot, characterize the
localization and overlap of the Majorana wavefunction on the normal dot,
respectively.

Figure 5a shows the evolution of the positions of the sweet spots in the
(εA, εD) plane. As the coupling strength t increases, the effect of dot energy
renormalizationpredicted byEq. (2) becomesmore pronounced,making εD
deviate from the value of εD = 0 in the weak coupling regime. At the same
time, the sweet-spot values of εA shift towards a more positive value, indi-
cating an induced Zeeman energy in ABS19, which comes from the inverse
proximity effect from the quantum dot. One crucial aspect of the strong
coupling regime is that, with increasing t, the excitation gap is enhanced
significantly in a nearly quadratic manner [see Fig. 5b]. The excitation gap
reaches as high as Egap ~ 0.7Δ0 for a dot-hybrid coupling t/Δ0 = 1.1. More-
over, we observe that the degree of protection against detuning of both
quantum dots away from the sweet spot increases with the growing t, as
evidenced by the diminishing curvature of the quadratic splitting of ground
state degeneracy in Fig. 5c. On the other hand, theMajorana localization ρ is
largely reduced due to increased wavefunction leakage into the middle ABS
when the tunnel barrier is lowered. Yet, although the middle dot hybridizes
strongly with the Majoranas in the outer dots, the Majorana polarization χ
decreases much slower. Hence, even for strong coupling, the overlap of
Majoranas on the outer dots remains small, which will be beneficial for
future qubit experiments.

We observe these changesmanifesting in the local conductance profile
calculated at the sweet spot [see Fig. 5d]. Specifically, as t increases, the

Fig. 4 | Features of weak vs. strong coupling regimes. a Phase diagram and
bMajorana wavefunction profiles in the weak dot-ABS coupling regime (t/
Δ0 = 0.25). In panels c and d, we show the same physical quantities calculated in the
strong coupling regime (t/Δ0 = 1). The black crosses in panels a and c represent the
sweet spot parameters for weak and strong coupling regimes, respectively. In panels
b and d, the bars in blue and orange denote two Majoranas profiles defined in
Eq. (12).
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height of theMajorana-induced zero-bias conductance peaks decreases due
to the reduction inMajorana density at the outer dot, which in turn reduces
its effective coupling strength with the normal lead. In addition, the voltage
bias values where the side peaks appear, indicating the magnitude of the
excitation gap, increaseswith t, and a single side peak begins to split into two
at larger t values, consistent with our findings in Fig. 5b.

Signatures of strong coupling in nonlocal transport
Nonlocal transport is a useful tool for probing hybrid systems, as the
nonlocal conductancesGLR andGRL canmeasure the BCS charge of states51

in non-interacting systems. For example, in a recent experiment, nonlocal
conductance was used to confirm the chargeless Majorana character of the
zero-energy state18.

We now discuss how the visibility of the first excited state in the non-
local conductance GLR is a qualitative indicator of the strong coupling
regime. In Fig. 6, we show the nonlocal conductances in bothweak coupling
(t = 0.25Δ0) and strong coupling (t =Δ0) regimes, as a function of the
applied voltage bias Vbias and chemical potential detuning away from the
sweet spot δεDR. In the weak coupling regime, shown in Fig. 6a, b, the
conductance signal strength for GLR is significantly lower than its coun-
terpart GRL. This behavior is in line with the results for a spinless Kitaev
chain model18. There, the chargeless nature of the excited state leads to a
vanishing GLR signal. In contrast, as we increase the dot-hybrid coupling,
this effective picture breaks down, and the nonlocal conductances GLR and
GRL become comparable in strength, as demonstrated in Fig. 6c, d. Fur-
thermore, GRL for the first excited state changes sign as a function of
detuning δεDR in the right dot, whereas GLR does not. The calculations of a
complete conductance matrix, including both local and nonlocal con-
ductances, can be found in Supplementary Note 2: Conductancematrix for
weak and strong coupling regimes.

In Fig. 6e, we track the evolution of maximum nonlocal conductance
signal strength with varying t. We observe that the maximum conductance
for GLR increases much faster with increasing t compared to GRL. We can
attribute the increase inGLR to the increase in the BCS charge of the excited
state in the left quantum dot with increasing t, as shown in Fig. 6f 51.

Discussion
In this work, we have studied a dot-hybrid-dot system in the strong dot-
hybrid coupling regime (t ~Δ0) for implementing a two-site Kitaev chain.
Due to the proximity effect from the ABS, the dot orbitals undergo a
transformation into YSR states, which constitute the new spinless fermion
basis for the effective Kitaev chain, and we have studied their coupling as
mediated by themiddle dot. Importantly, poorman’sMajorana zeromodes
persist in this strong coupling regime and now possess a significantly
enhanced excitation gap.On the other hand, there is an upper bound for the
dot-hybrid coupling strength. As shown in Fig. 2c, an excessively strong
coupling t ~ 2EZD leads to the hybridization of dot orbitals with opposing
spins, gapping out the zero-energy YSR states. That is, a sufficiently strong
Zeeman field (EZD≫ t) is always a prerequisite for obtaining an effectively
spinless Kitaev chain model in a spinful physical system52,53.

Additionally, our theoretical work provides a practical recipe for
implementing a two-site Kitaev chain with an enhanced excitation gap.
Specifically, one can reach the desirable dot-hybrid coupling regime by
observing the conductance spectroscopy of a single quantumdot-ABSwhile
shifting the other dot off-resonance, e.g., Fig. 2b. Performing this procedure

Fig. 6 | Conductance features in weak and strong coupling regimes. Nonlocal
conductances in a, b the weak coupling (t = 0.25Δ0) and c,d strong coupling regimes
(t = Δ0): In both scenarios, we detune the right quantumdot chemical potential from
the sweet spot by δεDR. In the strong coupling regime, we observe an increased gap,
while the maximum conductance signal for GLR strengthens, whereas GRL remains
relatively stable. Panel e illustrates how the maximum conductance signal strength

evolves with varying t, indicated by the color of the circles. As we increase the
quantum dot-hybrid coupling t,GLR (circles) shows significant enhancement, while
GRL (crosses) remains mostly constant. This increase in GLR is attributed to the
increased BCS charge of the excited state in the left quantumdot, shown in panel (f),
with increasing t, leading to an increased conductance signal magnitude.

Fig. 5 | The evolution of the relevant quantities of poor man’s Majorana as a
function of the coupling strength t. aThe evolution of the position of the sweet spot
in the phase diagram as a function of t. In b, we depict the evolution of the excitation
gap at the sweet spot and the Majorana density ρ and polarization χ on the left
quantum dot. c depicts the ground state degeneracy splitting when both quantum
dots chemical potentials are detuned away from the sweet spot. As t increases, the
amount of splitting diminishes. dWaterfall plots of local conductance profile at the
sweet spot for each t. Even though the main peak height decreases as t increases, the
side peaks that signify the excitation gap appear at a larger bias and, further-
more, split.
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for both left and right pairs, the sweet spot can be further fine-tuned by
changing the chemical potential of the ABS to find a crossing in the charge
stability diagram [see Fig. 3c–e] and a robust zero-bias peak in the con-
ductance spectroscopy [see Fig. 5d]. Indeed, a parallel experimental work54

has achieved an energy gap of approximately ~75 μeV using the afore-
mentioned procedure, verifying the theoretical predictions proposed in this
work.We thus expect that our work provides useful guidelines and insights
for realizing Kitaev chains in the strong coupling regime, serving as the
central platform for future research on Majorana quasiparticles and non-
Abelian statistics.

Data availability
The data that support the findings of this study have been deposited in
Zenodo55.

Code availability
The code used to generate the figures is available on Zenodo55.
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