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Connecting double quantum dots via a semiconductor-superconductor hybrid segment offers a
platform for creating a two-site Kitaev chain that hosts Majorana zero modes at a finely tuned sweet
spot. However, the effective couplings mediated by Andreev bound states in the hybrid are generally
weak in the tunneling regime. As a consequence, the excitation gap is limited in size, presenting a
formidable challenge for using this platform to demonstrate non-Abelian statistics and realize
topological quantum computing. Here we systematically study the effects of increasing the dot-hybrid
coupling. In particular, the proximity effect transforms the dot orbitals into Yu-Shiba-Rusinov states,
and as the coupling strength increases, the excitation gap is significantly enhanced and sensitivity to
local perturbation is reduced. We also discuss how the strong-coupling regime shows in
experimentally accessible quantities, such as conductance, and provide a protocol for tuning a
double-dot system into a sweet spot with a large excitation gap.

The Kitaev chain is a toy model of topological superconductivity that
consists of one-dimensional spinless fermions with p-wave pairing
potential'. In the topological phase, the endpoints host a pair of Majorana
zero modes” ™", which obey non-Abelian statistics and are regarded as the
building block of topological quantum computation'*"”. Such a Majorana
qubit is predicted to be more immune to decoherence due to the quantum
information being encoded nonlocally in space and further protected by an
excitation gap above the computational subspace.

In solid-state physics, the Kitaev chain model can be simulated in a
quantum dot array by utilizing the spin-polarized dot orbitals as spinless
fermions, with the effective couplings mediated by superconductivity'.
Remarkably, even a chain consisting of only two quantum dots can exhibit
fine-tuned, but still spatially separated Majorana modes at a sweet spot,
colloquially called poor man’s Majorana modes'"’. Recently, such a two-
site Kitaev chain was experimentally realized in double quantum dots, and
poor man’s Majorana modes were identified via conductance spectro-
scopy at the sweet spot”. In particular, the effective couplings, both
normal and superconducting ones, are mediated by an Andreev bound
state (ABS) in a hybrid segment connecting both quantum dots'’, which
allows for a deterministic fine-tuning of the relative amplitude by chan-
ging the ABS chemical potential via electrostatic gating”*”. This effect was
shown theoretically to be robust to Coulomb interactions in the dots as
well as stronger coupling™.

Despite the experimental progress, state-of-the-art Kitaev chain devi-
ces are still constrained by a relatively small excitation gap (~25 ueV), which

is much smaller than the induced gap of the ABS (~150 peV) and the parent
aluminum gap (~230 peV)™. In order to experimentally demonstrate the
non-Abelian statistics of Majoranas and to obtain high-quality Majorana
qubits™ ™, a significant enhancement in the excitation gap is crucial. This
enhancement will allow for a more tolerant adiabatic limit condition
~h/Egy”" and suppress the detrimental thermal effects ~ e Fon/keT31,

In this work, we use the three-site model****” to systematically study
enhancing the energy gap by increasing the dot-hybrid coupling strength,
achievable in experiments by lowering the tunnel barrier height. As a result
of the proximity effect from the hybrid, the spin-polarized orbitals in the
quantum dots undergo a transformation into Yu-Shiba-Rusinov (YSR)
states™, in an analogy with the conventional YSR states™ . These states
then constitute the new spinless fermion basis for the emulated Kitaev chain.
Thus, the concepts of elastic cotunneling and crossed Andreev reflection in
the weak coupling regime have to be generalized. Most importantly, we
show that poor man’s Majorana zero modes can survive in this strong
coupling regime, featuring a significantly enhanced excitation gap. The
properties of the resulting states are different from those in the weak cou-
pling regime, showing both wavefunction profiles and conductance prop-
erties while maintaining their Majorana character.

Methods

Model and Hamiltonian

A two-site Kitaev chain device consists of two separated quantum dots
connected by a hybrid segment [see Fig. la]. The system Hamiltonian
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where Hp, is the Hamiltonian of the quantum dots, np,,, = c;;a +Cpac 18 the
electron occupancy number on dot 4, &, is the orbital energy, Ep, is the
strength of the induced Zeeman energy, and Up, is the Coulomb repulsion
strength. Hg describes the hybrid segment hosting a pair of ABSs in the low-
energy approximation. ¢, is the normal-state energy, and A, is the induced
pairing gap. While we assume no induced Zeeman energy in the ABS due to
a strong renormalization effect at the hybrid interface’”, the main
conclusions remain valid for finite Zeeman energy as well. Hy is the tunnel
coupling between dot and ABS, including both spin-conserving ~ ¢ and
spin-flipping ~ t,, processes. In realistic devices, the amplitude of ¢ is a
variable that can be controlled by tunnel barrier gates, while the ratio of t,,/t
is generally fixed and is determined by the strength of spin-orbit interaction.
In the rest of this work, we will choose A to be the natural unit. Unless stated
otherwise, we set Ezp, = 1.5 Ao, Up, =5 Ap, and t,,/t, = 0.3 according to the
recent experimental measurements on similar devices'**"**. In addition, we
numerically calculate the differential conductance using the rate-equation
method”, where the lead tunneling rate is I'; = 0.025A,, and temperature is
ksT = 0.02 Ay,

Results

Quantum dot-Andreev bound state pair

To assess the strength and to understand the effects of dot-hybrid coupling,
we first focus on the conductance spectroscopy of a single quantum dot-ABS
pair. Hence, for the discussions here, we temporarily remove the right dot in
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Fig. 1 | Device schematic. a Schematic of a two-site Kitaev chain device. Two
separated quantum dots (green) are connected by a hybrid segment (orange) in the
middle, with the strength of the dot-hybrid coupling being controlled by the tunnel
gates (blue). b Schematic of the dot orbitals and Andreev bound states introduced in
the model Hamiltonian. The blue dashed lines and ¢ denote the dot-hybrid tun-
neling, and the gray dotted line represents the superconducting Fermi energy.

SC-SM QD

the model Hamiltonian in Eq. (1). Figure 2 shows the zero-bias conductance
spectroscopy in the (ep, €4) plane for t/Aq = 0.25, 1 and 2, respectively. Here
Gy =dl;/dV; at Vi =0. As shown in Fig. 2a, in the weak coupling regime,
the conductance resonances are two straight lines extending along &g,
corresponding to the spin-up and down orbitals in the quantum dot. In
contrast, with a strong dot-hybrid coupling, the resonance lines become S-
shaped curves [see Fig. 2b], and the conductance magnitudes are increased
by order of magnitude. For even stronger coupling, Fig. 2¢, proximity from
the ABS is so strong that the states are very different from spin-up and spin-
down, as signified by the differently connected arcs in the conductance.

This qualitative behavior was already described in existing literature™.
Here, we recover the same behavior in a simpler model and also consider the
magnitude of the conductance. In particular, we can use second-order
perturbation theory to qualitatively understand the physical mechanisms
underlying these conductance features.

First, the dot-hybrid coupling renormalizes the dot orbital energy by
dep via cotunneling processes. Up to the leading order of t and t,,,, this energy
renormalization is

bep = +2) o1, @

EA

where u” =1 — v = 1/2 + ¢4/2E, are the BCS coherence factors and E, =

\/€4 + Al is the ABS excitation energy. Interestingly, due to destructive

interference, the dot energy shifts positively (negatively) for g4 > 0 (¢4 < 0),
vanishes at &4 =0, and decays as &' for large ¢4, well explaining the S-
shaped conductance resonances shown in Fig. 2b. Hence, the S-shaped
feature is a clear sign of the proximity effect due to the ABS in the hybrid
semiconductor-superconductor segment (rather than directly to the parent
metallic superconductor), and the increase in bending is a direct signal of
increasing coupling.

From Fig. 2a, b, we also observe that conductance is largest when the
ABS is near resonance, i.e., —Ag < g4 < Ay, which can also be understood
from perturbation theory The ABS will induce a pairing term on the
quantum dot, i.e., Amdcm cD | + h.c. via local Andreev reflection with

Boa= (P4 2) 2 ot 1),
A

(€)

The induced gap size is prominent within —Ag < g4 < A and decays as
£,” outside. As a result, the local Andreev conductance is significantly
enhanced when ABS is near resonance and vanishes when off-resonance.
Thus, based on the shape of the resonance lines as well as on the
enhancement of the Andreev conductance, one can estimate the strength of
the dot-hybrid coupling in an actual device. In addition, although not the
main focus of the current work, it is likely that the continuum states of the
parent superconductor also induce local proximity effect on the quantum

2

Fig. 2 | Local conductance spectroscopy for a dot- Grr [62 / h] Gt L[ 2 / h] Gr. L[ 2 / h}
Andreev bound state pair. The local zero-bias 0.0 0.1 0.0 0.5 0.0 0.5
conductance on the quantum dot-Andreev bound | — R —— S — ]
state pairs Gy, with different values for the tunneling 3
strength. t/Aq = 0.25, 1, 2 in panels (a-c), (a)
respectively.
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dot. Such contribution would be a constant that is independent of the ABS
chemical potential, ie, Ay = Apg + ALY, More importantly, especially in
the strong coupling regime, the induced superconducting effect would
transform the dot orbitals into YSR states™"". These states then establish
the new spinless fermion basis for the emulated Kitaev chain.

Coupled YSR states

We now turn to the case of two quantum dots coupled via an ABS and
develop an effective theory for two coupled YSR states. By assuming that the
ABS in the hybrid remains gapped, we can integrate it and obtain the
effective coupling

h2pd

coupling —

t to
Z (tanCDLaCDRr[ + AHWCDLUCDRW) + h'C" (4)
on=14

where t,, and A, are the elastic cotunneling (ECT) and crossed Andreev
reflection (CAR) amplitudes between electron or hole excitations in the two
dots. These couplings are tunable by changing the energy of the middle dot,
e4". Note that the problem of coupling two quantum dots via ECT and
CAR, and in the presence of local Andreev reflection giving rise to a
proximity effect in the dots has been studied extensively before”~*", pre-
dominantly at zero magnetic field. In contrast, we focus on the case of a
significant Zeeman splitting in the outer quantum dots, such that the ground
state of both dots occupied by a single electron is a triplet state. We also
emphasize that the treatment in Eq. (4) is valid when the dot-ABS coupling
is weak (f < Ap) or intermediate in strength (¢ < A), while the quantum dot
orbitals can be strongly proximitized by the ABS or the continuum states in
the parent superconductor.

For unproximitized quantum dots, Eq. (4) plus Hp in Eq. (1) indeed
resembles the Hamiltonian of a two-site Kitaev chain'. However, since YSR
states are a superposition of electron and hole components, the effective
couplings of ECT and CAR have to be generalized. In particular, for a single
proximitized quantum dot with finite Zeeman splitting, the ground states in
the even- and odd-parity subspaces are a spin singlet and a spin-down state,
respectively,

1S) = ul00) — v|11), | ]) =01) (6]

where 1> =1 —v*=1/2 + &/2E, are the BCS coherence factors, with &=

e+ U2 and Ey = /& + A2, and |nyn,) is a state in the occupancy

representation. Consequently, we define YSR state as | | ) = f;SR|S>, with
an excitation energy 8¢ = E|, — Es. When coupling two YSR states via the
ABS, the effective Hamiltonian becomes

Heff = Z asafgfa—'—raf;fR—’—refIf;—'—th (6)

a=LR

where f, denotes the YSR state in dot-a, with J¢, being the excitation energy.
This also takes the form of a Kitaev Hamiltonian, but now in the basis of YSR
states. Crucially, I',/, represents the generalized effective couplings between
YSR states. The odd-parity coupling is

T, = (S 4 [Hegupingl 4 S,
—tya ViV + By ugtp + Ay ViU —

@)

A upvg,

where | | S),|S | ) are the tensor states with total parity odd, and u,, v, are
the BCS factors defined in Eq. (5). Note that T, is a linear combination of
equal-spin ECT and opposite-spin CAR, which are all spin-conserving
processes. On the other hand, the even-parity coupling is

T, = (SSIH gl 11,
= —A v Vp + A upg + by Vg — £ U Vg,
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Fig. 3 | The charge stability diagram and the coupling processes. a Schematic
description of the charge stability diagram. I', (red arrows) and T', (blue arrows)
couples even and odd states, respectively. b Charge stability diagram with f,, = 0 and
€4 = — L.5A,. In this case, only spin-conserving processes are allowed, resulting in a
ring-like pattern in the charge stability diagram. Charge stability diagrams for dif-
ferent values of ¢4. In particular, for orbital energies ey, = epg = 0, in ¢ I', dominates
with e, = &} — 0.2A, in d it shows the sweet spot ¢, = ¢}, and in e I'. dominates
g4 = €4 + 0.2A. Here €= — 0.269A is the sweet spot value. In panels b-e, we use
t = Ay. Panels b-e share the same colorbar.

which couples states with total spin zero and one. In particular, a finite I,
requires a physical mechanism to break spin conservation, e.g., spin-orbit
interaction.

Figure 3a shows a schematic of the charge stability diagram as a
function of the quantum dot energies. Blue and red squares indicate whether
the ground state of two uncoupled dots is odd or even, respectively. Note
that the singlet ground state in the dots does depend on the dot energies
through the values of u, and v,. For example, in the upper-right corner
ur/Rr > vr» corresponding to each dot predominantly empty, whereas the
lower-left corner features u;/r<vpr, corresponding to each dot pre-
dominantly doubly occupied. The arrows represent the interactions /e,
and the relative strength of these couplings will determine the ground state
close to the four corners in the charge stability diagram where each dot
exhibits a degeneracy without interactions. Additionally, we point out the
role of CAR and ECT interchange for different corners of the charge stability
diagram.

In the absence of spin-orbit interaction, I'.=0, and in general
I, # 0. Hence, at the four corners, the energy of the odd ground state is
lowered compared to the even ones. This can also be observed in a
simulation of the full three-dot Hamiltonian in Eq. (1), as shown in
Fig. 3b, where we find a disconnected even island in the center of the
charge stability diagram. Note that such behavior is only possible for a
finite Zeeman splitting and, as such, qualitatively different from the
charge stability diagrams®.

For a system with finite spin-orbit coupling, in general, also I'. # 0, and
the respective values will depend on details of the system (such as the energy
&4 of the middle dot that can be used to tune ECT and CAR). In particular, it
is now, in general, possible to change the relative strength of I/, This shows
asa change in connectivity in the charge stability diagram, with a guaranteed
sweet spot I'. =T, in between. We show this behavior in Fig. 3c-e on the
example of the upper-right corner as we vary ¢,, transitioning from a regime
dominated by T, in Fig. 3¢ to one dominated by I', in Fig. 3e. WhenT, =T, a
cross emerges in the phase diagram as a signature of the sweet spot, as shown
in Fig. 3d.

In the limit of large Coulomb interaction U on the outer dots, either
urr = 1 or vy g = 1 and I, will be dominated by a single ECT or CAR term,
as evident from Egs. (7) and (8).

Communications Physics| (2024)7:235
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More generally, however, in the limit of vanishing Zeeman splitting in
the middle dot, CAR and ECT coupling are constrained by
ty =t thy = — by Ayp = Ay, Ay = — Ay, due to time-reversal symmetry,
such that T/, can be further simplified as

T, = tyy cos(By + ) + Ay sin(By + Bp),
I, = ATT COS(ﬁL + ﬁR) + 1ty Sin(ﬁL + ﬁR):

where 0<8,<m/2 is a parameter to characterize the BCS factors by
u, = cosf,,v, = sinf3,. For two dots with a similar level of proximity
effect, the diagonal corners in Fig. 3 will have ;= 8+ 6/2, fr = — 6/2,
with § < 1 characterizing a weak asymmetry. As a result, the odd- and even-
parity couplings reduce to

©)

[, =ty cos(2B) + A, sin(2B),

[, = Ay, cos(2B) + ty sin(2f). (10)

This indicates that as the proximity effect increases, the initially purely
equal-spin ECT/CAR coupling ratio I',/T, gains a finite opposite-spin CAR/
ECT component. In contrast, around the off-diagonal corners, we have
Br=B+ 612,7/2 — Pr=f — 0/2, yielding

[,= Ay cos(8) — tyy s?n((?), an)

T, =ty cos(8) — Ay, sin(f).

Interestingly, despite the proximity effect, I/, is equal to the only ECT

or CAR just as in the unproximitized regime. Only an asymmetry in the

proximity effect leads to a mixing of CAR and ECT-type couplings. For a

detailed investigation of how I', and I', behave in different corners of the

charge stability diagram, we refer to Supplementary Note 1: T, and T, for
different corners of the charge stability diagram.

Poor man’s Majorana

We now focus on the properties of the poor man’s Majoranas that appear at
the sweet spot in the full dot-hybrid-dot system. Without loss of generality,
we assume that the left and right dots have the same set of physical para-
meters, e.g., €pr=¢Epr=¢Ep Ezr=Ezr=15MA0, U =Ur=5Ap, t,=tg=t
and 7, =tgs, =0.3t. To simplify, we introduce a shift in dot energy
ep — €p — Ezp to set the zero energy of the spin-down orbital at ¢p=0.
Figure 4a shows the phase diagram in the (¢4, £p) plane for weakly coupled
quantum dots (#/Ag = 0.25), with 6E = ngd — E;S’e“ being the energy dif-
ference of the ground states in the opposite fermion parity subspace. The
white-colored curves (0E = 0) represent the ground state degeneracy, with
the tip of the curves (marked by a black cross sign) indicating the sweet
spot”. At this sweet spot, the effective normal and superconducting cou-
plings of the two dots become equal in strength. The wavefunction profiles
plotted in Fig. 4b further demonstrate that the Majorana zero modes are well
localized at the two dots, respectively, with only a negligible amount of
overlap in the middle ABS. Here, the Majorana wavefunction densities are
defined for site and spin

Pluzf = |(0|(Caa + CZQ’)|6>|27
p2aa = |(0|(Cuu - C;La)|e)|27

where a=L,M,R,0=1, |, and |e), |o) denote the even- and odd-parity
ground state.

Comparatively, the lower panels in Fig. 4 show the results obtained in
the strong dot-ABS coupling regime with #/Aq = 1. Around the sweet spot
marked by the black cross sign, the ground state degeneracy line now
becomes much broader and straighter compared to the weak coupling
regime, indicating a significantly enhanced energy gap and robustness
against dot chemical potential fluctuations. In Fig. 4d, the plotted Majorana
wavefunctions show strong leakage into the middle ABS and small leakage
to the opposite normal dot with opposite spin. We emphasize that the
wavefunction overlap in the ABS, which is a virtual state, is not detrimental,

(12)
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Fig. 4 | Features of weak vs. strong coupling regimes. a Phase diagram and

b Majorana wavefunction profiles in the weak dot-ABS coupling regime (t/

Ao =0.25). In panels c and d, we show the same physical quantities calculated in the
strong coupling regime (t/A, = 1). The black crosses in panels a and ¢ represent the
sweet spot parameters for weak and strong coupling regimes, respectively. In panels
b and d, the bars in blue and orange denote two Majoranas profiles defined in

Eq. (12).

and that the reduced density on the normal dots will only reduce the visi-
bility of the Majorana from the external detecting system.

To gain a better understanding of the effect of strong coupling, we now
investigate the continuous evolution of the sweet spot and the properties of
Majoranas as a function of £. To that end, we define the following quantities:
excitation gap (Eg,y,), Majorana localization (p), and polarization (y)* as below

EgaP

P =P =Pius t Py
x = (P — P2/ (Prp + Par)-

min(SE},, 6E}),

oe’

(13)

Here, Eg,, represents the excitation gap above the poor man’s
Majorana zero modes, where 0E., and 8E!, denote the energy differences
between the ground state in one parity sector and the first excited state in the
opposite one. The Majorana localization p and Majorana polarization ,
both of which are defined on the outer quantum dot, characterize the
localization and overlap of the Majorana wavefunction on the normal dot,
respectively.

Figure 5a shows the evolution of the positions of the sweet spots in the
(€4, €p) plane. As the coupling strength ¢ increases, the effect of dot energy
renormalization predicted by Eq. (2) becomes more pronounced, making ey,
deviate from the value of ep = 0 in the weak coupling regime. At the same
time, the sweet-spot values of ¢, shift towards a more positive value, indi-
cating an induced Zeeman energy in ABS'’, which comes from the inverse
proximity effect from the quantum dot. One crucial aspect of the strong
coupling regime is that, with increasing ¢, the excitation gap is enhanced
significantly in a nearly quadratic manner [see Fig. 5b]. The excitation gap
reaches as high as Eg,, ~ 0.7A, for a dot-hybrid coupling /A, = 1.1. More-
over, we observe that the degree of protection against detuning of both
quantum dots away from the sweet spot increases with the growing f, as
evidenced by the diminishing curvature of the quadratic splitting of ground
state degeneracy in Fig. 5¢c. On the other hand, the Majorana localization p is
largely reduced due to increased wavefunction leakage into the middle ABS
when the tunnel barrier is lowered. Yet, although the middle dot hybridizes
strongly with the Majoranas in the outer dots, the Majorana polarization y
decreases much slower. Hence, even for strong coupling, the overlap of
Majoranas on the outer dots remains small, which will be beneficial for
future qubit experiments.

We observe these changes manifesting in the local conductance profile
calculated at the sweet spot [see Fig. 5d]. Specifically, as t increases, the
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height of the Majorana-induced zero-bias conductance peaks decreases due
to the reduction in Majorana density at the outer dot, which in turn reduces
its effective coupling strength with the normal lead. In addition, the voltage
bias values where the side peaks appear, indicating the magnitude of the
excitation gap, increases with ¢, and a single side peak begins to split into two
at larger f values, consistent with our findings in Fig. 5b.

Signatures of strong coupling in nonlocal transport

Nonlocal transport is a useful tool for probing hybrid systems, as the
nonlocal conductances Gy and Gg; can measure the BCS charge of states™’
in non-interacting systems. For example, in a recent experiment, nonlocal
conductance was used to confirm the chargeless Majorana character of the
zero-energy state'’.
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Fig. 5 | The evolution of the relevant quantities of poor man’s Majorana as a
function of the coupling strength t. a The evolution of the position of the sweet spot
in the phase diagram as a function of ¢. In b, we depict the evolution of the excitation
gap at the sweet spot and the Majorana density p and polarization y on the left
quantum dot. ¢ depicts the ground state degeneracy splitting when both quantum
dots chemical potentials are detuned away from the sweet spot. As f increases, the
amount of splitting diminishes. d Waterfall plots of local conductance profile at the
sweet spot for each t. Even though the main peak height decreases as t increases, the
side peaks that signify the excitation gap appear at a larger bias and, further-
more, split.

We now discuss how the visibility of the first excited state in the non-
local conductance Gy is a qualitative indicator of the strong coupling
regime. In Fig. 6, we show the nonlocal conductances in both weak coupling
(t=0.25Ap) and strong coupling (¢t=A,) regimes, as a function of the
applied voltage bias Vi, and chemical potential detuning away from the
sweet spot Jepg. In the weak coupling regime, shown in Fig. 6a, b, the
conductance signal strength for Gy is significantly lower than its coun-
terpart Gg;. This behavior is in line with the results for a spinless Kitaev
chain model". There, the chargeless nature of the excited state leads to a
vanishing Gy signal. In contrast, as we increase the dot-hybrid coupling,
this effective picture breaks down, and the nonlocal conductances G, and
Gpry, become comparable in strength, as demonstrated in Fig. 6¢, d. Fur-
thermore, Gy, for the first excited state changes sign as a function of
detuning depy in the right dot, whereas Gy r does not. The calculations of a
complete conductance matrix, including both local and nonlocal con-
ductances, can be found in Supplementary Note 2: Conductance matrix for
weak and strong coupling regimes.

In Fig. 6e, we track the evolution of maximum nonlocal conductance
signal strength with varying t. We observe that the maximum conductance
for Grr increases much faster with increasing t compared to Gg;. We can
attribute the increase in G to the increase in the BCS charge of the excited
state in the left quantum dot with increasing ¢, as shown in Fig. 6f°".

Discussion

In this work, we have studied a dot-hybrid-dot system in the strong dot-
hybrid coupling regime (¢ ~ Ao) for implementing a two-site Kitaev chain.
Due to the proximity effect from the ABS, the dot orbitals undergo a
transformation into YSR states, which constitute the new spinless fermion
basis for the effective Kitaev chain, and we have studied their coupling as
mediated by the middle dot. Importantly, poor man’s Majorana zero modes
persist in this strong coupling regime and now possess a significantly
enhanced excitation gap. On the other hand, there is an upper bound for the
dot-hybrid coupling strength. As shown in Fig. 2c, an excessively strong
coupling ¢ ~ 2Ep, leads to the hybridization of dot orbitals with opposing
spins, gapping out the zero-energy YSR states. That is, a sufficiently strong
Zeeman field (Ezp > t) is always a prerequisite for obtaining an effectively
spinless Kitaev chain model in a spinful physical system™*’.

Additionally, our theoretical work provides a practical recipe for
implementing a two-site Kitaev chain with an enhanced excitation gap.
Specifically, one can reach the desirable dot-hybrid coupling regime by
observing the conductance spectroscopy of a single quantum dot-ABS while
shifting the other dot off-resonance, e.g., Fig. 2b. Performing this procedure
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Fig. 6 | Conductance features in weak and strong coupling regimes. Nonlocal

conductances in a, b the weak coupling (f = 0.25A,) and ¢, d strong coupling regimes
(t = Ap): In both scenarios, we detune the right quantum dot chemical potential from
the sweet spot by depr. In the strong coupling regime, we observe an increased gap,
while the maximum conductance signal for G strengthens, whereas Ggy, remains
relatively stable. Panel e illustrates how the maximum conductance signal strength

evolves with varying t, indicated by the color of the circles. As we increase the
quantum dot-hybrid coupling t, G, r (circles) shows significant enhancement, while
Gpy, (crosses) remains mostly constant. This increase in Gyp is attributed to the
increased BCS charge of the excited state in the left quantum dot, shown in panel (f),
with increasing ¢, leading to an increased conductance signal magnitude.
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for both left and right pairs, the sweet spot can be further fine-tuned by
changing the chemical potential of the ABS to find a crossing in the charge
stability diagram [see Fig. 3c-e] and a robust zero-bias peak in the con-
ductance spectroscopy [see Fig. 5d]. Indeed, a parallel experimental work™
has achieved an energy gap of approximately ~75 ueV using the afore-
mentioned procedure, verifying the theoretical predictions proposed in this
work. We thus expect that our work provides useful guidelines and insights
for realizing Kitaev chains in the strong coupling regime, serving as the
central platform for future research on Majorana quasiparticles and non-
Abelian statistics.

Data availability
The data that support the findings of this study have been deposited in
Zenodo™.
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