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Quantum states beyond thermodynamic equilibrium represent fascinating and cutting-edge research.
However, the behavior of dynamical quantum phase transitions in complex open quantum systems
remains poorly understood. Here, using state-of-the-art numerical approaches, we show that by
quenching the qubits-oscillator coupling in a dissipative two-qubit Rabimodel, the systemundergoes
dynamical quantum phase transitions. These transitions are characterized by kinks in the Loschmidt
echo rate function at parameter values close to a thermodynamic quantum phase transition and are
associated with distinct entanglement features. The two classes of critical phenomena depend on
qubit interactions and entanglement, revealing different behaviors of the critical exponent of the first
kink of the Loschmidt echo for interacting versus non-interacting qubits. This research enhances our
understanding of non-equilibrium quantum systems and offers potential applications in quantum
sensing and metrology, as it examines how dynamical transitions can enhance the sensitivity of the
Loschmidt echo to the quench parameters.

One of the most challenging open problems in modern physics is the
characterization of the transitions between different quantum phases. In
recent decades, the importance of quantum phase transitions (QPTs) has
grown considerably in various respects1. In general, QPTs are studied by
examining long-term dynamics, asymptotic behavior of observables, or the
non-analytical behavior of thermodynamic observables and correlators,
which canbe either local or non-local. The theoryofQPTsoffers insight into
properties at thermodynamic equilibrium, leading to extensive research on
phase transitions in quantum many-body systems far from equilibrium2,3.
The fundamental concept of manipulating a control parameter to induce
transitions between different phases has also extended to include open
systems4,5.

Both theoretical studies and experimental observations have focused
on a different type of quantum phase transitions that occur on intermediate
time scales, known as dynamical quantum phase transitions (DQPTs)6–9. In
this context, specific quantities exhibit non-analytical behavior over time,
where time itself acts as the primary driving parameter for this transition.
DQPTs have been analyzed in various closed models, showing the emer-
gence of singularities of the Loschmidt echo at the thermodynamic limit7. In
general, it is not guaranteed that an equilibrium QPT gives rise to a related
non-equilibriumDQPT if the quench of somemodel parameters is made at
initial time. More recently, DQPTs have been also found in models with
only a fewdegreesof freedom, such as the closed quantumRabimodelwhen
the oscillator frequency approaches zero10.

At the same time, DQPTs have been also investigated in open systems,
where the role of the Loschmidt echo is played by the fidelity of the sub-
system density matrix operator at finite time with that at initial time11–13.
Also for such open systems DQPTs have been found in models with many
degrees of freedom in the thermodynamic limit11 and with a few degrees of
freedom with respect to different quench parameters14. In both cases the
environment is treated at weak-coupling Lindblad level and does not
actively trigger the phase transition, that is theQPT is already present in the
closed system. For such complex systems, additional and more detailed
investigations, making use of concepts from quantum information
theory15–17 are imperative to discover the activemeaning of entanglement in
both QPTs18 and DQPTs19.

Recently, a study of the universality laws for DQPT has been
proposed20, focusing on computing the critical exponent of the Loschmidt
echo rate function. Fornearest neighbors Ising chains, a linear behaviorwith
a critical exponent of 1 has been observed. It is known that long-range
interactions characterized by a 1/rγ behavior (γ ≤ 2) can lead to a DQPT21,
although the precise value of the critical exponent remains unclear. More
importantly, in long-range interacting Ising models, the various observed
DQPTs are not directly related to the underlying equilibrium phase
transition7. Furthermore, other studies22,23 have demonstrated that intro-
ducing random interactions in an Ising model or tuning the quench para-
meters can lead to a reduction of the critical exponent from its expected
integer value of 1 to small non-integer values.
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We also emphasize that dynamical transitions have garnered sig-
nificant interest due to their sensitivity to parameter changes over time, not
just at infinite times. This sensitivity can be relevant to quantum sensing, as
highlighted by recent studies. It is known that quantum criticality can
enhance quantum sensing capabilities24. This phenomenon has been stu-
died in closed systems like the Jaynes-Cummingsmodel25 and the quantum
Rabimodel26, and recently in someopenquantumsystems27. It has also been
proved experimentally28 in a non-equilibrium Rydberg atomic gas that
many-body critical enhanced metrology can be achieved for sensing
external microwave electric fields. Our study explores a similar criticality-
enhanced sensitivity of the Loschmidt echo in the presence of DQPTs in
many-body systems, which are promising resources for sensing and
metrology applications.

In this article, we analyze a dissipative two-qubit Rabi model, where
two interacting qubits are coupled to an oscillator that interacts with an
Ohmic bath (see Fig. 1a).

Since no analytical solution exists to compute the time-dependent
behavior of the system and its Loschmidt echo, including multiple bath
degrees of freedom, we apply the time-dependent variational principle
(TDVP)with amatrix product state (MPS) ansatz, performing a quench on
the qubit-oscillator coupling constant. We first investigate the system
thermodynamic properties using the worldline quantum Monte Carlo
(WLMC) method to compute mean values and correlation functions at
imaginary times. We also use density-matrix renormalization group
(DMRG) to compute the ground state of the Hamiltonian as an MPS. Our
study characterizes the system QPT through the bimodal magnetization
distribution and qubits entanglement properties. Additionally, we explore
short- and long-range interactions in the classical Ising spin chains obtained
via the path integral formalism.

We show that DQPTs reflect key features of QPTs under non-
equilibrium conditions, with singularities in the rate function emerging
similarly to those in integrable systems6–9, particularly at qubit-oscillator
coupling values near QPTs. We further examine DQPT universality,
identifying two distinct classes for the critical exponent of the Loschmidt
echo rate function, contrasting with equilibrium QPTs. Significant differ-
ences in behavior arise based on whether the qubits interact ferromagne-
tically, highlighting the role of interactions and entanglement.

Results
Dissipative quantum Rabi model with two interacting qubits
We consider two interacting qubits connected through a harmonic oscil-
lator to an Ohmic bath16 (see Fig. 1a). In a related study29, we explored the
effects of changing the spectral density of the bath from Ohmic to sub-
Ohmic and super-Ohmic. We set ℏ = kB = 1 and the Hamiltonian that
describes the system is given by: H =HS+HB+HS−B. Here, the system
(qubits and oscillator) energy HS is defined as:

HS ¼ �Δ

2
σ1x þ σ2x
� �þ J

4
σ1zσ

2
z þ ω0a

yaþ gðaþ ayÞ σ1z þ σ2z
� �

; ð1Þ

whereΔ is the frequency of the two qubits, J is the strength of the interaction
between them, and σ ji (with i = x, y, z and j = 1, 2) are the Paulimatrices. The
oscillator frequency is ω0, and a (a†) are the annihilation (creation) opera-
tors. The parameter g represents the coupling strength between the qubits
and the oscillator. We emphasize that there should be a self-interaction,
dipole-dipole term between the qubits which ensures an exact cancellation
at zero frequency with the cavity-mediated interaction, as expected from
gauge invariance30. This term is proportional to S2z ¼ ðσ1z þ σ2z Þ=4. By
expanding this square, we obtain two terms proportional to the identity
operator on the two-qubit system, and the last term takes the form g2

2ω0
σ1zσ

2
z .

This can be interpreted as an additional interaction between the two qubits
due to the presence of the cavity. In this context, our J in Equation (1)
represents an effective interaction that also accounts for this additional term.

The bathHamiltonian and its interaction with the system are given by:

HB þ HS�B ¼
XN
i¼1

p2i
2Mi

þ ki
2
ðx0 � xiÞ2

� �
: ð2Þ

The bath is represented as a collection of N oscillators with frequencies

ωi ¼
ffiffiffiffi
ki
Mi

q
, and coordinates and momenta are denoted by xi and pi,

respectively. Additionally, x0 denotes the position operator of the resonator

withmassm: x0 ¼
ffiffiffiffiffiffiffiffi
1

2mω0

q
ðaþ ayÞ. This interactionwith the bath describes

dissipation as proposed by Caldeira-Leggett31,32. The key challenge for
implementing our model is to reach our regime of very strong coupling.
There are experimental platforms where this parameter regime can be
obtained33. One relevant possibility is a flux qubit ultrastrongly coupled to a
dissipative resonator34–37. This system is useful for describing the regime
beyond strong coupling. Adissipative resonator can be conceptualized as an
oscillator coupled to a bath, imparting a finite decay time and other effects if
the coupling is strong. Hence, in our model, we connect the oscillator to an
Ohmic bath. In5, we proposed realizing this model by adding a series of
resistors to a flux qubit interacting with its resonator in Figures 6 and 7 of
Supplemental Material.

The coupling to the bath induces renormalization effects on several
parameters: the oscillator frequency �ω0, as well as the interaction strengths ḡ
and �gi (further detailed in Methods Sec. Time-dependent variational
principle numerical simulations). This results in the following bath spectral

density JðωÞ ¼ PN
i¼1

kiωi
4m�ω0

δðω� ωiÞ ¼ α
2ωf

ω
ωc

� �
where α controls the

system-bath coupling. Here f ω
ωc

� �
is a function that depends on the cutoff

frequency for the bathmodes,ωc, which governs the behavior of the spectral

density at high frequencies. This function is taken as f ω
ωc

� �
¼ Θ ωc

ω � 1
� �

,

whereΘ(x) is the Heaviside step function. The cutoff frequency is typically
chosen to be the largest energy scale in the system. In the following we set:
ω0 =Δ, J =− 10Δ (ferromagnetic interaction) and J = 0 (antiferromagnetic
interaction), α = 0.1, ωc = 30Δ.

It is worth noticing that the system can be mapped to an equivalent
model of two interactingqubits in contact, throughσz, with a structuredbath

Fig. 1 | Two-qubit dissipative Rabi model and
closed system energy diagram.Model described by
the Hamiltonians in Eqs. (1) and (2) (a): two qubits
with energy gap Δ interacting through J and con-
nected to an oscillator through g. The cavity housing
the qubits is in contact with an Ohmic bath through
α. Energy spectrum (in units of Δ) of the system
consisting of the two interacting qubits (b), as a
function of the ratio J/Δ in the ferromagnetic region
(negative values of J

Δ on x-axis).

-12 -10 -8 -6 -4 -2 0

-3

-2

-1

1

2

3

2
-1

1

https://doi.org/10.1038/s42005-024-01855-8 Article

Communications Physics |           (2024) 7:364 2

www.nature.com/commsphys


whose spectral density shows a peak at the oscillator frequency5,38 (see
Equation (5)). The spectrum of the two-qubit Hamiltonian,
Hqub = HS(g = 0), is shown in Fig. 1b.

QPT evidences at thermodynamic equilibrium
We first investigate the equilibrium properties of the system, using two
different approaches. The first method is the WLMC approach, which is
based on path integrals5,29,39 (see Methods Sec. Worldline Monte Carlo
method). Here, the structured bath degrees of freedom are eliminated,
resulting in an effective Euclidean action5,32,40,41, with the kernel expressed in
terms of the structured spectral density J(ω). This structure is characteristic
of a spin-bosonmodel but is now extended to involve two qubits interacting
with the bath, as outlined in34,38 (see Methods Sec. Time-dependent varia-
tional principle numerical simulations). This transformation leads to a
classical system of spin variables distributed along two chains, each of them
with length β = 1/T. The spins experience long-range ferromagnetic inter-
actions both within each chain and between the two chains. The functional
integral is computed using a Poissonian measure and adopts a hybrid
algorithm40,42, based on an alternation of Wolff’s43 and Metropolis moves.
We find that, asω0 remains constant and β tends toward infinity, the kernel
displays a power asymptotic behavior,K(τ)≃ 1/τ2. This power-law behavior
with an exponent of 2 determines the onset of a Beretzinski-Kosterlitz-
Thouless (BKT) QPT. In the Supplementary Note 1 we perform a BKT
scaling for aparameter regime that allows for feasiblenumerical analysis and
confirm that the nature of the transitions is indeed BKT (see Supplementary
Fig. 1) for the other parameter regimes analyzed in the paper, as they belong
to the same universality class. In this respect, another interesting experi-
mental challenge could be the possibility of observing the interplay between
short-range and long-range interactions in relation to DQPTs.

The second method we employ is the DMRG (see Methods Sec.
Density-matrix renormalization group algorithm), an adaptive algorithm
for computing eigenstates of many-body Hamiltonians. It is particularly
effective for calculating low-energy properties of one-dimensional and two-
dimensional quantum systems. DMRG uses the MPS representation to
determine the ground state of low-dimensional quantum systems. In par-
ticular, we use the ITensor library44 for a system with a bath of N = 300
harmonic oscillators.

Squared magnetization, interaction energy, and entanglement
In Fig. 2a, we present the squared magnetization of the qubits, defined as
M2 ¼ 1

4β

R β
0 dτhðσ1z þ σ2z ÞðτÞðσ1z þ σ2zÞð0Þi, where τ labels the positions of

the spins on the two equivalent chains (corresponding to the two spins
labeled by the superscripts 1 and 2), after eliminating the bath degrees of
freedom in favour of an effective classical system of spins as discussed in
ref. 34 (see Methods Sec. Worldline Monte Carlo method). We plot this
magnetization as a function of g/Δ for three different inverse temperatures,
βΔ = {100, 500, 1000}. The data obtained using WLMC method exhibit a
crossover for M2 from 0 to 1 increasing g/Δ that becomes sharper and
sharper lowering the temperature. This behavior suggests the occurrence of
theBKTQPT,which is estimated to set in at a critical value of gc ≈ 0.5Δ from
βΔ = 103 data. Additionally, we calculate the mean value of the interaction
Hamiltonian between the two qubits, denoted as hHJi ¼ Jhσ1zσ2zi=4, as a
function of g/Δ for the same three temperature values (see Fig. 2b). We
emphasize that both the WLMC and DMRG methods yield consistent
results. Note that the interaction becomes more negative with increasing
values of g since the bath induces an effective ferromagnetic coupling
between the spins.

To analyze the entanglement properties of the system in the pre-
sence of the QPT, we determine the qubits’ density operator ρq and
compute the qubits’ entropy, denoted as Sq ¼ �Tr fρq ln ρqg, and the

concurrence, given by Cq ¼ maxð0; λ1 � λ2 � λ3 � λ4Þ. Here, λi repre-

sents the eigenvalues of the Hermitian matrix
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρq

p eρq ffiffiffiffiffi
ρq

pq
, andeρq ¼ ðσ1y � σ2yÞρ�qðσ1y � σ2yÞ, with * indicating complex conjugation. In

Fig. 2c, d, we present the entropy and entanglement as functions of g/Δ,
computed using the DMRG algorithm. The entropy increases for values
of g near the critical point, approaching a value of approximately lnð2Þ
just at the critical values determined by the WLMC approach. We also
notice the similarity between Fig. 2a, c. In contrast, as shown in Fig. 2d,
the concurrence decreases as a function of g, approaching zero. More-
over, through a linear fit of the concurrence within the critical region
(Cq = ag/Δ+ b in Fig. 2d), it becomes evident that the line intersects the
g-axis at approximately g ≈ 0.5Δ, a value close to the estimated critical
point. This behavior can be explained by the qubits approaching a two-
degenerate state at the BKT QPT, where they are either both in the “up”

Fig. 2 | Order parameter crossover and entangle-
ment signatures of QPT at thermodynamic equi-
librium. Qubits' squared magnetization M2 (a),
interaction energy between the qubits 〈HJ〉/Δ (b),
vonNeumann entropy Sq (c) and concurrenceCq (d)
as functions of g/Δ for J =− 10Δ, computed through
WLMC and DMRG. For the WLMC method the
calculations are made for βΔ∈ [100, 1000]. In panel
(c), the dashed line represents the maximum von
Neumann entropy for a single qubit. In panel (d),
the dotted line indicates a linear fit of the con-
currence performed near the transition, which
intersects the g-axis at approximately the
critical value.
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or “down” state. This clearly results from a lack of entanglement between
the two qubits and an enhancement of entanglement of each of them
with the bath39.

Now we conduct the same analysis at thermodynamic equilibrium for
the case of zero interaction J between the two qubits. Here, we demonstrate
the agreement in thermodynamic quantities computed through both
DMRGandWLMCmethods. Figure 3a presents the squaredmagnetization
of the qubits (M2), plotted as a function of g/Δ for two different inverse
temperatures, βΔ = 100 and βΔ = 1000. With the WLMC method, we
observe a crossover for the squared magnetization from 0 to 1 around a
critical value of gc ≈ 0.6Δ. This jump becomes more pronounced as the
temperature decreases. Furthermore, we calculate the mean value of the
qubits Hamiltonian, denoted as hHΔi ¼ �Δhσ1x þ σ2xi=2, as a function of
g/Δ for the same two temperature values (see Fig. 3b). Both theWLMC and
DMRGmethods yield consistent results. The qubits Hamiltonian does not
exhibit a jump but becomes less negative as the bath reduces the effective
qubits gap with increasing values of g.

Figure 3c, d present the entropy and entanglement as functions of g/Δ.
The entropy increases for values of g near the critical point, asymptotically
approaching a value of approximately lnð2Þ. Conversely, the concurrence is
almost zero everywhere, except for a small peak near the transition. Again
this behavior is consistent with the qubits approaching a two-degenerate
statenear the transition.Thedifference fromthe caseofnon-zero J is that the
concurrence does not change much because the qubits prefer to entangle
with the bath to facilitate the transition and entropy can be slightly greater
than lnð2Þ.

Magnetization distribution and correlations
SinceM2 displays a crossover from 0 to 1 (Fig. 2a), one naturally wonders if
this is related to the onset of a BKT QPT. This question can be better
addressed studying the distribution of the normalized magnetization,
denoted as P(M/2). In Fig. 4, we plot themagnetization distribution for two
different values of g/Δ, smaller and larger of the estimated one for BKT
transition. When g = 0.21Δ < gc (Fig. 4a), the distribution exhibits a single
peak centered at M = 0. On the other hand, for g = 0.66Δ > gc (Fig. 4c), it
acquires a bimodal character, with two peaks centered at M/2 = ±1, again
with the same vanishing mean value. We emphasize that, above gc, the
distribution develops two peaks that are expected to become two delta

functions, centered at ±
ffiffiffiffiffiffiffi
M2

p
, in the thermodynamic limit. It’s also worth

noting that the formation of a bimodal distribution is clearly related to the
crossover observed in M2. This behavior, reminiscent of classical thermo-
dynamics, signals the emergence of a QPT. In addition, we can examine the
correlationsCðτÞ ¼ hðσ1z þ σ2z ÞðτÞðσ1z þ σ2zÞð0Þi as another indicator of the
occurrence of theQPT. Figure 4 shows the distinct behavior before and after
the onset of the transition. Specifically, the normalized correlation function,
defined as C =C(τ/(β/2))/C(0), tends toward 0 as τ approaches β/2 before
the critical point (Fig. 4b) and converges to a finite value, i.e.,M2, after the
transition (Fig. 4d), indicating the long-range nature of the correlations
between the spins above gc.

Dynamics of energy and entanglement
We investigate the out-of-equilibrium properties of the system, focusing on
the behavior of energy and entanglement over time. To accomplish this, we
employ the TDVP algorithm45–47 (see Methods Sec. Time-dependent var-
iational principle numerical simulations), implemented using the ITensor
library44, to evolve the wavefunction of the entire system represented as an
MPS. The adoption of this technique proves advantageous for our system
strongly coupled to the environment, enabling us to achieve long simulation
times. Consequently, we can compare these behaviors with those computed
using theDMRGat thermodynamic equilibrium. Specifically,we choose the
ground state of the Hamiltonian HS(g = 0) (state ∣0i in Fig. 1) as the initial
state for simulations and calculate the qubits’ von Neumann entropy Sq(t),
the concurrence Cq(t), and the mean values of the various contributions to
the total energy of the system, including 〈HS(t)〉, 〈HB(t)〉, and 〈HS−B(t)〉 for
different values of g, crossing the critical point. Figure 5a, b demonstrate that
both entropy and concurrence are approaching thermodynamic values.
Moreover, the greater g, the less time the system needs to reach the equili-
brium values.

We stress that from a dynamical point of view, this model also
exhibits a delocalized-localized transition. In the Rabi model, this loca-
lization physically manifests as a reduction to a sort of two-level system
for the two qubits that can only be found in one of the two ferromagnetic
states ∣ "	∣ "	 or ∣ #	∣ #	.While approaching the transition, there can be
oscillation only between these two states, and after the transition, the
qubits can only be in one of the two states. As we demonstrated in the

Fig. 3 | Order parameter crossover and entangle-
ment signatures of QPT at thermodynamic equi-
librium. Qubits' squared magnetization M2 (a),
qubits' energy 〈HΔ〉/Δ (b), von Neumann entropy Sq
(c) and concurrence Cq (d) as functions of g/Δ for
J = 0, computed through WLMC and DMRG. For
the WLMC method the calculations are made for
βΔ∈ [100, 1000]. In panel (c), the dashed line
represents the maximum von Neumann entropy for
a single qubit.
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Supplemental Material of ref. 5, one can adiabatically apply a magnetic
field on the qubits or an electric field on the oscillator and examine the
response function of the qubits or the oscillator, respectively. Observing
the system after the critical coupling, where the equilibrium transition
occurs, reveals that the system no longer relaxes and becomes localized.
This is described in Supplementary Note 2 and illustrated by the oscil-
lator relaxation function Σx in Supplementary Fig. 2, which remains
constant at 1 (indicating no relaxation) after the transition. This also
suggests that one can look at the oscillator, which is sensitive to the
change of the quench parameter g, and it monitors the behavior of the
qubits in the localization transition. Therefore, the oscillator could be

useful for measuring qubits and has potential applications in quantum
sensing.

The results discussed above can be understood by examining the
mapped model. The effective kernel for asymptotic imaginary times (low-
frequency regime) is linear in the frequency, as in the case of theOhmic bath
of a single spin-boson model. This low-frequency behavior implies an
asymptotic 1/τ2 behavior that is the fingerprint of a delocalized-localized
transition, observable by increasing the effective coupling. In the Rabi
model, this effective coupling depends not only on the bath coupling already
present in the spin-bosonmodel but also on the coupling g and the oscillator
frequency ω0.

Fig. 5 | Energy and entanglement dynamical
behavior.Qubits' entropy Sq (a) and concurrenceCq

(b), system energy 〈HS(t)〉/Δ (c) and bath energy
〈HB(t)〉/Δ (d) as functions of dimensionless time tΔ
for different values of the coupling g∈ [0.35, 0.55]Δ
and J =− 10Δ, crossing the critical point, calculated
through TDVP and DMRG. The insets in panels (a)
and (b) provide a zoomed-in view of the long-time
behaviors. The dotted lines represent the DMRG
equilibrium values corresponding to the TDVP
dynamical values, shown as solid lines with markers
specified in the legend. In panel (a), the horizontal
black line indicates the maximum value of von
Neumann entropy for a single qubit. In panel (d),
the vertical black line marks the critical time at
which the DQPT occurs.

Fig. 4 | Bimodal magnetization distribution and
correlations signal the QPT at thermodynamic
equilibrium. Qubits' magnetization distribution
P(M/2) ((a) and (c)) and normalized correlation
function C = C(τ/(βΔ/2))/C(0) ((b) and (d)). We
consider two scenarios: one with g = 0.21Δ before
the transition ((a) and (b)) and another with
g = 0.66Δ after the transition ((c) and (d)). These
calculations are performed using the WLMC
method at inverse temperatures of βΔ ∈ [100, 1000].
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Regarding energy contributions, as depicted in Fig. 5c, the mean value
of the system’s energy 〈HS(t)〉 approaches its thermodynamic equilibrium
value after approximately tΔ = 30, while the mean value of the bath energy
〈HB(t)〉 (see Fig. 5d) never reaches theDMRGvalues.We also computed the
mean value of the interaction energy 〈HS−B(t)〉, although it is not shown
here, which reaches thermodynamic equilibrium on the same time scale as
the system. The total energy is conserved, the bath remains at zero tem-
perature, but accumulating bosons, i.e., absorbing the energy difference
relative to the ground-state energy calculated through DMRG. This phe-
nomenon can also be understood in terms of quasiparticles. When the
coupling g is small, the system reaches the equilibrium of its Hamiltonian
HS. However, as g increases, one can envision another Hamiltonian invol-
vingnon-interactingquasiparticles dressedby thebathbosons, resulting in a
small residual interaction energy. Consequently, quasiparticles reach the
thermodynamic equilibrium in the presence of additive free bosons that are
not able to modify the bath temperature. After analyzing asymptotic times,
in the following we will focus our attention on smaller time scales.

We again study the out-of-equilibrium properties in the case of J = 0,
comparing long-times dynamics with thermodynamic equilibrium. Speci-
fically, we calculate the qubits’ entropy Sq(t), and the concurrence Cq(t) for
different values of g, approaching the critical point. In Fig. 6a, b, we can see
that both entropy and entanglement approach their thermodynamic values
at earlier times than in the J ≠ 0 case. To quantitatively understand
the approach to equilibrium for these quantities, we alsofitted the curves for
the two values of J. This confirmed that the decay of the entropy and the
saturation of the concurrence have already reached the long times necessary
to observe equilibrium observables for J = 0. In contrast, for J ≠ 0, we need a
time on the order of tΔ ≈ 103, which is too difficult to achieve numerically.
Moreover, the greater the value of g, themore time the systemneeds to reach
equilibrium values. This very long-time equilibration can be explained
physically by noting that when J = 0, the system is directly connected to the

bath, making it easier to reach thermodynamic equilibrium. In contrast, in
the case of J =−10Δ, the very strong qubit-qubit interaction complicates the
interplay between the internal dynamics and the equilibration process,
leading to thermodynamic equilibrium being reached over much
longer times.

We do not show the time behavior of the energy contributions, but we
have analyzed them, finding results similar to the interacting case. That is,
the system’s energy and the interaction with the bath approach equilibrium
values, while the bath’s energy remains different, accounting for the overall
difference in energy due to the initial excited state.

Dynamical quantum phase transitions: Loschmidt echo
It has been demonstrated in refs. 7,8 that a closed quantum many-body
system can undergo aDQPTwithout any external control parameters, such
as temperature orpressure.The typical non-analyticities of phase transitions
manifest over time in the matrix element of the system unitary evolution
operator on the initial state, i.e., the Loschmidt echo LðtÞ (see Fig. 7a). To
observe suchaphase transition, theprocedure involvespreparing the system
in awell determined initial state inducing a quench in a parameter onwhich
the Hamiltonian depends. Subsequently, the system evolves with the full
Hamiltonian after the quench, and the Loschmidt echo is computed over
time48. It can be expressed as LðtÞ ¼ e�NλðtÞ taking into account the expo-
nential dependence on the system’s degrees of freedom, denoted by N.
Therefore, the rate function λ(t) (see Fig. 7b) is the key property to monitor
over time in order to observe non-analyticities. Formally, there exists an
equivalence between the rate function and the free energy derived from a
complex partition function, demonstrating the presence of singular points.
Here, we aim to compute the same quantities in the closed system, which
includes the bath. We underline that we operate with the entire system
energy fixed in an excited state7, whereas the QPT is studied using WLMC
andDMRG,which examine the entire system’s ground state. Consequently,

Fig. 6 | Entanglement dynamical behavior.Qubits'
entropy Sq (a) and concurrenceCq (b) as functions of
dimensionless time tΔ for different values of the
coupling g ∈ [0.40, 0.55]Δ and J = 0, near the critical
point, computed through TDVP and DMRG. The
dotted lines represent theDMRGequilibrium values
corresponding to the TDVP dynamical values,
shown as solid lines with markers specified in the
legend. In panel (a), the horizontal black line indi-
cates the maximum value of von Neumann entropy
for a single qubit.

Fig. 7 | Non-analytical behavior of Loschmidt
echo’s rate function signals DQPTs. Loschmidt
echo LðtÞ (a) and rate function λ(t) (b) as functions
of dimensionless time tΔ for different values of the
coupling g ∈ [0.35, 0.55]Δ and J =− 10Δ, crossing
the critical point, computed through TDVP. The
insets provide a zoomed-in view near the transition,
allowing identifying the critical time t*Δ ≈ 3.8.
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the dynamical behavior we observe is due to energy fluctuations above the
ground state; therefore, we cannot expect the two transitions to occur at
exactly the same parameter values.

Figure 7 illustrates the echo and the rate functionover time for different
values of g around the transition. Additionally, the inset clearly demon-
strates how the scalar product between the evolved state and the initial one
becomes zero (see inset of Fig. 7a) and the kink becomes narrower and
higher as the critical point is approached at time t*Δ ≈ 3.8 (see inset of
Fig. 7b). In Fig. 5dwe can see that thefirstmaximumat short times occurs at
around the critical time indicated by the black vertical line, as another
marker of the transition in thedynamics. Beyond the critical region, thepeak
occurs at earlier times, and multiple peaks emerge over time in the rate
function.This behavior occurs because the systemcan transition to theother
phase more rapidly with higher couplings to the bath. The scalar product
which vanishes indicates that the bath, including a lot of excited bosons,
significantly differs from the initial vacuum state, leading to the orthogon-
ality catastrophe, a characteristic feature of a phase transition. We empha-
size that, through the quench, we are probing the first excited states and
fluctuations are responsible for the observation of the DQPTs, reminiscent
of theQPToccurring at thermodynamic equilibrium at zero temperature in
the ground state of the entireHamiltonian. In the SupplementaryNote 3,we
demonstrate that the two-qubit subsystemdoesnot transitionby computing
the fidelity between the evolved state and the initial one. This fidelity
coincideswith the open systems generalization described in11, given that our
initial state is pure. As shown in Supplementary Fig. 3, it does not vanish
over time and hence its logarithm does not exhibit non-analyticities. This
confirms the idea that the phenomenon we are observing is a dissipation
driven DQPT.

We again present the Loschmidt echo and the corresponding rate
function over time for the non-interacting qubits case. Figure 8 shows the
echo and the rate function for different values of g near the transition. As in
the previous case, the inset in Fig. 8a clearly shows how the scalar product
between the evolved state and the initial state drops to zero as the kink

becomes narrower and higher, especially near the critical point at t*Δ ≈ 4.7
(see the inset of Fig. 8b). Beyond the critical value gc ≈ 0.6Δ, the peak appears
at earlier times, andmultiple peaks emerge over time in the rate function.As
with the interacting case, energy fluctuations might account for the obser-
vation of the DQPT in the excited states, resembling the QPT seen at
thermodynamic equilibrium at zero temperature in the ground state of the
entire Hamiltonian.

To further classify theDQPTs,we study the critical exponent of the rate
function of the Loschmidt echo, focusing on the J =−10Δ case and the J = 0
case. The corresponding results are presented in Fig. 9a, b, respectively. We
fit the left branch of the data, preceding the peaks, using the function
λðtÞ ¼ aL∣dL � t∣bL þ cL with four free parameters. Subsequently, we fix dL
and cL, the coordinates of the peak, for the right branch fitting, which
employs the functionλðtÞ ¼ aRðt � dLÞbR þ cL with two freeparameters. In
the fit performed for the J = 0 case, we exclude the central points next to
the peak.

Our analysis reveals that in the case of J =−10Δ, the critical exponentb
is approximately 1 for both branches. However, in the J = 0 case, the critical
exponent b exhibits significantly different behavior, being on the order of
0.03 for both branches. These distinct behaviors point out the significant
impact of interactions and entanglement.

As detailed in the Methods Sec. Worldline Monte Carlo method, our
model can be mapped by eliminating structured bath degrees of freedom.
The resulting effective Euclidean action is characterized by a spin-boson
model extended to involve two qubits interacting with the bath, yielding a
classical system of spin variables distributed along chains of length β with
long-range ferromagnetic interactions. The additional interaction between
the two qubits, governed by J, induces short-range interactions between the
spin chains. From this perspective, we interpret our resulting critical
exponents in analogy with other studies focusing on Ising spin chains and
the occurrenceofDQPTs. In particular, the case of J =−10Δ canbe seenas a
system where the short-range interaction between the two chains and the
initial qubits’ entanglement are dominant for short times, inducing a quasi-

Fig. 8 | Non-analytical behavior of Loschmidt
echo’s rate function signals DQPTs. Loschmidt
echo LðtÞ (a) and rate function λ(t) (b) as functions
of dimensionless time tΔ for different values of the
coupling g ∈ [0.40, 0.55]Δ and J = 0, near the critical
point, computed through TDVP. The insets provide
a zoomed-in view near the transition allowing to
identify the critical time t*Δ ≈ 4.7.

Fig. 9 | Critical exponent of non-analicities of
Loschmidt echo’s rate function to classify DQPTs.
Loschmidt echo rate function λ(t) as functions of
dimensionless time tΔ for the two cases
J =− 10Δ, g = 0.48Δ (a) and J = 0, g = 0.58Δ (b). The
red points represent data computed through TDVP.
For each case, we provide fitting functions for both
the left branch (blue solid line) and the right branch
(green dashed line). The legend indicates the para-
meter values obtained from the fit.
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linear critical exponent similar to those observed in short-range Ising
chains20. In the J = 0 case, only long-range ferromagnetic interactions are
present, with no entanglement between qubits. Interactions between the
chains are induced by the coupling to the bath, reducing the critical expo-
nent. Asmentioned in the introduction, it has been shown21 that long-range
interactions can give rise to DQPTs. However, the exact value of the critical
exponent in our case with γ = 2 (BKT), given γ defined by the 1/rγ behavior
for long-range interactions, remains unclear. Additionally23, demonstrates
that one canobtain anon-linear singularity by changing someparameters in
the quench, and22 effectively reduces the critical exponent by considering a
random Ising chain.

Discussion
We emphasize that, unlike the model in ref. 49, which considers a more
general interaction between the qubits but omits interaction with the bath,
our model explicitly incorporates dissipation. Additionally, the absence of
transverse coupling to the oscillator in ref. 49 allows for the decoupling of
two degenerate solutions. Since our focus is on dynamical transitions
induced by the environment, we treat the bath and the two-qubit-oscillator
system on equal footing across all coupling regimes, overcoming the lim-
itations of the perturbative Lindblad approach50.

We note that the same signatures of the BKT QPT at thermodynamic
equilibrium, as identified in ref. 5, are observed in the two-qubit system.We
then focus on the bimodal magnetization distribution and entanglement
properties. Moreover, we investigate the effects of short- and long-range
interactions, which are crucial in ourmodel, leading to distinct DQPTs that
are not achievable in the model discussed in ref. 5.

While we employ some of the same numerical techniques as in pre-
viouswork, this study focuses on dynamical transitions and behavior, rather
than just the relaxation processes tied to equilibrium transitions, which was
the primary dynamical analysis in our earlier study. Finally, we emphasize
that although the relationship betweenQPTs andDQPTs remains generally
unclear, our study observes both types of transitions within a specific
parameter range.

Conclusions
We have shown that an interacting two-qubit model strongly coupled to a
T = 0 bath exhibits dynamical phase transitions not present in the closed
configuration (nocouplingwith thebath).Wealsoprovide evidence that the
DQPTs are related to a BKT equilibrium QPT. Our analysis not only
encompasses the investigation of singularities in the rate function but also
highlights clear signatures of the DQPT through entanglement properties,
such as the qubits’ von Neumann entropy and concurrence. Additionally,
we observe the impact of interaction by examining the critical exponent of
the singularities in the Loschmidt echo rate function for both the interacting
(J =− 10Δ) and non-interacting (J = 0) cases. We find two classes of
emergent dynamical critical phenomena demonstrating a shift from
exponent 1 in the former case to 0.03 in the latter, attributed to the different
role of entanglement dynamics.

Our findings challenge the conventional belief that the environment
invariably exerts a detrimental influence on the DQPT of the system.
Instead, we reveal that the environment can induce dynamical phase
transitions. These results pave the way for experimental investigations.
Indeed, recent advancements in quantum technologies, such as super-
conducting qubits and circuit QED setups, make feasible the experimental
realization of our proposed model and the observation of dynamical
quantum phase transitions induced by the environment, opening up pos-
sibilities in quantum devices. Moreover, our study shows a criticality-
enhanced sensitivity of the Loschmidt echo, which can be utilized in
quantum sensing applications.

Methods
Equilibrium properties are explored using two distinct methods. Firstly, the
WLMC approach, based on path integrals, eliminates the structured bath

degrees of freedom, yielding an effective Euclidean action. The second
approach,DMRG,utilizes anadaptive algorithmandMPSrepresentation to
determine ground state properties. For out-of-equilibrium properties, the
TDVP algorithm is employed to evolve the wavefunction of the entire
system, represented as an MPS.

Time-dependent variational principle numerical simulations
We employ time-dependent MPS simulations, implemented with ITensor
Library44, to investigate the system’s dynamics, specifically focusing on
energy and entanglement behaviors. We analyze the Loschmidt echo and
the corresponding rate function. The long-range interactions between the
oscillator, connected to the two qubits, and the bath modes are described
using the star geometry. In this configuration, the qubits of frequency Δ are
placed on the first two sites, the oscillator of frequency ω0 =Δ and Hilbert
space dimension Nosc on the third one, and the collection of N bosonic
modes of the bath with frequenciesωi on the remaining sites. The couplings
between the oscillator and each bosonic mode are defined to describe the
bath in terms of an Ohmic spectral density.

ThebathHamiltonian fromEq. (2) in themain text canbe expressed as
follows:

HB ¼
XN
i¼1

ωia
y
i ai þ

x20
2
Miω

2
i

� �
� ðaþ ayÞ

XN
i¼1

∣λi∣ðai þ ayi Þ: ð3Þ

The coupling constants to the bath are ∣λi∣ ¼
ffiffiffiffiffiffiffiffi
kiωi
4mω0

q
.We neglect the energy

shift
PN

i¼1 ωi=2, which does not affect the dynamics. Therefore, the
Hamiltonian of the system plus the environment can be rewritten by

defining a renormalized oscillator frequency �ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ

PN
i¼1 Miω

2
i =m

q
.

This frequency ensures that the total energy is bounded frombelow, and the
quadratic form is positive definite. In superconducting circuits, this is nat-
ural and leads to the quadratic correction of bosonic modes, ensuring that
the resonance of the cavity does not change its value irrespective of the

dissipation strength. We also define renormalized coupling strengths �g ¼

g
ffiffiffiffi
ω0
�ω0

q
between the qubits and the oscillator, and ∣�gi∣ ¼

ffiffiffiffiffiffiffiffi
kiωi
4m�ω0

q
between the

oscillator and each bath bosonic mode. The total Hamiltonian in our MPS
simulations is then given by:

H ¼� Δ

2
σ1x þ σ2x
� �þ J

4
σ1zσ

2
z þ �g σ1z þ σ2z

� �ðbþ byÞ

þ �ω0b
ybþ

XN
i¼1

ωia
y
i ai � ðbþ byÞ

XN
i¼1

∣�gi∣ðai þ ayi Þ
h i

;
ð4Þ

where b, (b†) is the annihilation (creation) operator for the renormalized

oscillator with frequency �ω0 and coordinates �x0 ¼
ffiffiffiffiffiffiffiffi
1

2m�ω0

q
ðbþ byÞ and

�p0 ¼ i
ffiffiffiffiffiffiffi
m�ω0
2

q
ðby � bÞ. The bath is represented by anOhmic spectral density:

JðωÞ ¼ PN
i¼1 ∣�gi∣

2δðω� ωiÞ ¼ α
2ωΘðωc � ωÞ, where ωc is the cutoff fre-

quency andΘ(x) is the Heaviside function. The dimensionless parameter α
measures the strength of the oscillator-bath coupling.

We note that this model can be mapped5,38,50 in such a way that, by
including the oscillator as a further bosonicmode of the bath, the qubits are
coupled to the N+ 1 bath modes. We can define the couplings βl between
each qubit and each bosonic mode of frequency ω̂l and hence describe the
bath in terms of an effective spectral density:

Jeff ðωÞ ¼
XNþ1

l¼1

βl


 

2δðω� ω̂lÞ �!N!1

2g2ω2
0αω

ðω2 � ω2
0 � hðωÞÞ2 þ ðπαω0ωÞ2

;

ð5Þ
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where hðωÞ ¼ αω0ω log ωcþω
ωc�ω

h i
. The spectral density is Ohmic at low fre-

quencies: Jeff ðωÞ � 2g2α
ω2
0
ω. Therefore, each qubit is coupled to the same

oscillator bath through an effective constant proportional to g2α=ω2
0. This

low-frequency behavior of the mapped model suggests the presence of the
QPT. We study the system’s dynamics for different values of the qubits-
oscillator coupling g in the range [0.0, 0.9]Δ,fixingα = 0.1 andωc = 30Δ.We
select the ground state of the Hamiltonian HS(g = 0) as the initial state for
simulating the system’s dynamics.We apply the TDVP45–47, where the time-
dependent Schrödinger equation is projected onto the tangent space of the
MPS manifold with a fixed bond dimension at the current time.

In this study, we employ the two-site TDVP (2TDVP as described in
ref. 47), using a second-order integrator with a left-right-left sweeping
approachandahalf-time stepofdt/2. Thismethodexhibits a time-step error
of O(dt3), with accuracy controlled by the MPS bond dimension and the
threshold to terminate the Krylov series. We halt the Krylov vectors
recurrence when the total contribution of two consecutive vectors to the
matrix exponential dropped below 10−12. While more advanced methods,
such as basis extension optimization51,52, exist, we opt for convergence in the
number of Fock states in the cavity (Nosc = 16) and bath modes (N = 300)
with Hilbert space dimension (Nbos = 3). This approach allow us to find the
optimal compromise between the smallest bond dimension and longest
simulation times, by converging also over the time interval that we set to
dtΔ = 0.01.

Our truncation error remain below 10−13 by requiring a maximum
bond dimension of Dmax = 50. Simultaneously, this optimal maximum
bonddimension enable us to achieve afinal time for our simulations as large
as tfinalΔ = 50.

Density-matrix renormalization group algorithm
We conduct an analysis of the equilibrium properties, namely energy and
entanglement, for the entire system by computing its ground state through
the DMRG algorithm. The results obtained using DMRG are compared
with those acquired through theWLMCmethod.Themodelparameters are
the same used for the TDVP simulations over time.

The DMRG algorithm53–55 is an adaptive approach for optimizing an
MPS, approximating the dominant eigenvector of a largematrixH, typically
assumed to be Hermitian. This algorithm optimizes two neighboring MPS

tensors iteratively, combining them into a single tensor for optimization.
Techniques suchasLanczosorDavidson are employed for the optimization,
followed by factorization using Singular Value Decomposition or density
matrix decomposition. This process allows us to restore the MPS form and
adapt the bond dimension during factorization, preserving the network’s
structure.

In our implementation of DMRG through the ITensor Library’s
dedicated function44, we set several accuracy parameters. These include the
maximum and minimum bond dimensions of any bond in the MPS, the
truncation error cutoff during SVD or density matrix diagonalizations, the
maximum number of Davidson iterations in the core DMRG step, and the
magnitude of the noise term added to the densitymatrix to aid convergence.
Convergence is achieved by ensuring that the final ground state energy
returned after the DMRG calculation is within our specified numerical
precision.

Worldline Monte Carlo method
WLMC is a path integral technique based on a Monte Carlo algorithm.
Using the path integral formulation, it is possible to remove exactly all the
phonon degrees of freedom of the thermal bath, obtaining the density
matrix dependent only on the effective Euclidean action32,40

S ¼ 1
2

X
i;j

Z β

0
dτ

Z β

0
dτ0σ iðτÞKeff ðτ � τ0Þσ jðτ0Þ; ð6Þ

where the effective kernel is

Keff ðτÞ ¼
1
π

Z 1

0
dω Jeff ðωÞ

coshðωðβ=2� τÞÞ
sinhðωβτÞ ; ð7Þ

with spectral density

Jeff ðωÞ ¼
2g2ω2

0αω

ðω2 � ω2
0 � hðωÞÞ2 þ ðπαω0ωÞ2

Θðω� ωcÞ; ð8Þ

in which hðωÞ ¼ αω0ω log ωcþω
ωc�ω

h i
. We emphasize that this has the same

form as derived in Eq. (5). Consequently, our simulations are conducted on
themapped system consisting of two qubits interacting with each other and
with an effective bath. This scenario resembles that of a quantum Rabi
model but is extended to involve two qubits. The problem is therefore
equivalent, in the general multi-spin case, to a 2D system in which one
dimension is discrete (that of the sites) and one is continuous of length β.
The effective interaction due to Keff consists of a long-range ferromagnetic
interactionbetween the τ and τ0 points of theworldlines. Between the sites at
first neighbours along the discrete dimension (in the case of the studied
model) the interaction is antiferromagnetic. The time cluster40,42 algorithm
used is based on an alternation ofWolff 43 andMetropolismoves: in the first
step, as schematised in Fig. 10, we start with a worldline σz(τ) and add a
number of potential spin flips extracted from a Poissonian distributionwith
mean βΔ/2

PðnÞ ¼ μn

n!
e�μ; ð9Þ

where n = 0, 1, 2,… and μ = βΔ/2. Then two of the new segments (having a
real spin-flip point and a potential point as extremes) are randomly selected,
with extremes u1, u2 and u3, u4. The connection of the two segments occurs
with probability

PaddðsIl ; sIImÞ ¼ 1� exp min 0;�2
Z u2

u1

dτ
Z u4

u3

dτ0sIl Kβðτ � τ0ÞsIIm
" #( )

:

ð10Þ

Fig. 10 | Worldline Monte Carlo updating scheme. The dashed lines are the
σ(τ) = − 1 states, and the solid ones are the σ(τ) = 1 states. The segments are called
“super-spins''. (a) Spin path configuration realization; (b) insert randomly, along the
spin-paths, nnew potential spin flips (red dots); (c) connect a random l super-spin to
anothermwith probability PaddðsIl ; sIImÞ (the red curved lines represent the long range
ferromagnetic connection between the selected red solid segments); (d) connect a
random l super-spin to another m with probability Padd(sl, sm) (the orange zigzag
lines represent the short-range antiferromagnetic connection between the selected
orange segments, solid for σ2 and dashed for σ1).
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This step is iterated connecting the second segment to another randomly
selectedone. The process is iterated until nomore segments are added to the
cluster. The cluster is subsequently flipped with probability 1/2 and the
potential spin flips introduced at the beginning that do not represent real
flips are removed. The same procedure is carried out for the anti-
ferromagnetic interaction at first neighbours by connecting segments along
worldlines of opposite sign, of extremes u01; u

0
2 and u

0
3; u

0
4, with probability

Paddðsl; smÞ ¼ 1� exp min½0; 4βJslsm�
� �

: ð11Þ

The rest of the algorithm is similar to the previous case. Finally, aMetropolis
step is performed inwhich a segment is randomly selected and flipped, thus
removing the extreme points that define the spin flips. We emphasise that
this approach is exact from a numerical point of view, and it is equivalent to
the sum of all the Feynman diagrams.

Data availability
All relevant data presented in the plots are available from the authors upon
request to the corresponding author.
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