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Identifying and suppressing unknown disturbances to dynamical systems is a problem with
applications in many different fields. Here we present a model-free method to identify and suppress an
unknown disturbance to an unknown system based only on previous observations of the system under
the influence of a known forcing function. We find that, under very mild restrictions on the training
function, our method is able to robustly identify and suppress a large class of unknown disturbances.
We illustrate our scheme with the identification of both deterministic and stochastic unknown
disturbances to an analog electric chaotic circuit and with numerical examples where a chaotic
disturbance to various chaotic dynamical systems is identified and suppressed.

Identifying and suppressing an unknown disturbance to a dynamical system
is a problem with many existing and potential applications in engineering'~,
ecology'™"", fluid mechanics'*", and climate change". Traditional control
theory disturbance identification and suppression techniques usually
assume either an existing model for the dynamical system, linearity, or that
the disturbance can be observed (for reviews of existing methods see, for
example, refs. 4,16). In this Article we present a method for real-time dis-
turbance identification and suppression that relies solely on observations of
the dynamical system when forced with a known training forcing function.
Our method is based on the application of machine-learning techniques to
dynamical systems. Such techniques have found many applications,
including the forecast of chaotic spatiotemporal” and networked'
dynamics, estimation of dynamical invariants from data”, control of
chaos™, network structure inference’, and prediction of extreme events™
and crises in non-stationary dynamical systems™**. For a review of other
applications and techniques, see refs. 25-27. In most of these previous
works, a machine learning framework is trained to replicate the nonlinear
dynamics of the system based on a sufficiently long time series of the
dynamics.

In this Article we use machine learning to identify and subsequently
suppress an unknown disturbance. Without knowledge of an underlying
model for the dynamical system, and only based on observations of the
system under a suitable known forcing function, our method allows us to
reliably identify and suppress a large class of disturbances. Recent work™
considers the problem of predicting the response of a system based on
knowledge of the forcing (the disturbance) and the system’s response after
training with known functions. That problem can be thought of as the
“forward” problem, while the problem addressed here can be considered as

the “inverse” problem. While both approaches are complementary, they
apply to very different situations. In addition to this fundamental difference,
the main additional differences between our results and those of ref. 28 are
that we present a method to suppress the unknown forcing, that our method
works for stochastic signals, and that we show that the training functions can
be extremely simple (e.g., piecewise constant functions). We also demon-
strate our method with an experimental analog chaotic circuit in addition to
numerical simulations.

Results
System setup, disturbances, and reservoir computers
Consider an N-dimensional dynamical system

dx
i F(x) + g(?), 0

wherex € R" is the state vector, F € R" represents the intrinsic dynamics
of the system, and g(t) € R represents an unknown (and usually unde-
sired) disturbance. Our goal is to develop a scheme by which the disturbance
can be identified and the system can be brought approximately to satisfy the
undisturbed dynamics dx/dt = F(x). We assume that we can observe the
state vector x, but we don’t need to assume knowledge of the intrinsic
dynamics F or the disturbance function g. Assuming that we can force the
system with a known training forcing functionf(t), as
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and observe x(¢) for a long enough time, our goal is to train a machine
learning system to approximate f(t) given X(¢), and subsequently infer g()
from observations of x(f) obtained from system (1). As we will show below,
we find that we can recover a large class of forcing functions g(t) with very
mild restrictions on the choice of training functions f(f). Once we infer g(t),
we implement a self-consistent control scheme to suppress it from the
dynamics. Our method works when the intrinsic dynamics are chaotic,
periodic, or stationary.

We begin by outlining our method for identifying the unknown dis-
turbance g(f). We will illustrate our technique using reservoir computing, a
type of machine learning framework particularly suited for dynamical
systems problems™. In our implementation, we assume that we run the
system in Eq. (2) during the “training” interval [— T, 0], and collect a time-
series of the observed state vector {X(—T),x(—T + At),...,x(0)}. These
variables are fed to the reservoir, a high-dimensional dynamical system with
internal variables r € RM, where M is the size of the reservoir. Here,
following'”"’, we implement the reservoir as the map

r(t + At) = tanh[Ar(t) + W, x(t) + f, 3)

where the M x M matrix A is a sparse matrix representing the internal
structure of the reservoir network and the M x N matrix Wy, is a fixed input
matrix. Here we choose the bias parameter =1, which for our purposes
nearly optimizes results (see Methods). The reservoir output u is con-
structed from the internal states as u = Wo,r, where the N x M output
matrix W, is chosen so that u approximates as best as possible the known
training forcing function f(#). The optimization can be done by minimizing
the cost function

T/At
> 1l f(=nA) — u(=nA)|* + A Tr (W, W, 4)

out
n=0

via a ridge regression procedure, where the constant A > 0 prevents over-
fitting. With this procedure, the reservoir is trained to identify the forcing
function f(f) given the observed values of X(t). The reservoir can then be
presented with a time series of the observed variables taken from (1), i.e., it
can be evolved as

r(t + At) = tanh[Ar(t) + W, x(t) + 1], (5)

The reservoir output u(f) = W,,r will be, if the method is successful, a good
approximation to the unknown disturbance, u = g. As we will see, the
reservoir robustly identifies disturbances it has not observed previously.
Fig. 1 illustrates our procedure in the training phase (top row) and recovery
phase (bottom row).

SO (known) Uirain(t) = f1)
l MU
x(t)
Fx) — Wout
AN r(t+At) = tanh(Ar(t) + Winx(t) + 1) N AAA
g(t) (unknown) u(t) = g(t)

Fig. 1 | Schematic illustration of our method. In the training phase (top row), a
nonlinear system is forced with a training function f(t). Observations of the forced
system are used to train a reservoir to approximate the training function, tain(£).
The reservoir subsequently identifies unknown disturbance function g(t) with an
approximate disturbance function u(f) (bottom row).

In our numerical examples, the reservoir matrix A is a random matrix
of size M=1000 where each entry is uniformly distributed in [ —0.5, 0.5] with
probability 6/M and 0 otherwise, and rescaled so that its spectral radius is
1.2. The input matrix Wj, is a random matrix where each entry is uniformly
distributed in [ —0.01, 0.01]. The ridge regression regularization constant is
A =10"°. We train the reservoir for T =150 time units and use Euler’s
method to solve the differential equations with a time step At = 0.002.

Simulated examples: deterministic and stochastic disturbances
We first demonstrate our method with numerical simulations. For the
numerical simulations, we consider a system where the intrinsic dynamics
are given by the Lorenz system™, i.e., system (1) is

dx
7; = U(yL —xp)+ gx(t), (6)
d
DL =x(p—2) —y+g,0), @
d.
=~ Bt g0, ®)

with p=28, 0=10, and 3=8/3. For the unknown disturbance we consider two
examples: (i) a deterministic forcing [g,,g,, 21" = [xx/10, 55/ 10,0]",
where xz(f) and yg(#) are the x and y coordinates of an auxiliary Rossler
system” (assumed to be unknown),

dxg _

% e ©)
dy
d_tR = Xp + ayg, (10)
dz
TtR: b+ zg(xg — ©), (11)

with =02, b=0.2, and ¢=5.7, and (ii) a stochastic forcing [x, y, O]T
where both xg and ys satisfy the Langevin equations

s Xs
s 12
R ) (12)
dys Vs
o 5 1,0, (13)
where 7, and 7, are both white noise terms satisfying

(n(tn(t')y = 2DS(t — '), with D= 1.25.

We present our results in Fig. 2 demonstrating the performance of the
reservoir in recovering the unknown disturbance for different choices of
training forcing function [f,(1)f (¥), 0]”. (For simplicity of visualization we
assume it is known that the forcing in the z coordinate is zero). Along the top
row, ie., panels (a)-(c), we plot the trajectory of the unknown disturbance
functions to be reconstructed as black curves, the reconstructed disturbances
as red curves, and the training forcing functions as blue curves and circles.
(Fig. 2c only shows the last 1/8 portion of the time-series.) From left to right we
have trained the reservoirs with forcing functions consisting of a sine/cosine
pair [f (1), f y(t)]T = [cos(t/20), sin(t/20)]", a slightly offset pair of cosine
functions [f (1), fy(t)]T = [cos(t/20), cos((t — 1)/ 20)]T, and piecewise
constant functions [, (¢), f y(t)]T = [sign(cos(t/20)), sign(sin(t/ 201"
Time series for the unknown and recovered disturbances, g,(f) and u(?), are
compared in the bottom row, (d)-(f), plotted in solid black and dashed red,
respectively.

Remarkably, our results show that the reservoir can identify a chaotic
or stochastic forcing function to the Lorenz system even when it was trained
with a periodic function [Fig. 2(a)], or a piecewise constant function with
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Fig. 2 | Identifying unknown disturbances. a-c Unknown and reconstructed

disturbance functions [g,(t), g,()] (black curve) and [u(t), u,(f)] (red curve) along
with the training forcing functions [£(t), £,(#)] (thick blue curves and symbols). For
each case the reservoir was trained with (a) [f, (1), fy(t)] = [cos(0.05¢), sin(0.05¢)],

®) [f,().f, (O] = [c0s(0.05¢), cos(0.05¢ — 0.05)], and (¢) [f, (1), f, ()] =
[sign(cos(0.05t)), sign (sin(0.05t))] and disturbed with (a, b) Rossler dynamics and
(c) Langevin dynamics. d, e Time series for the unknown (solid black) and
recovered (dashed red) disturbance functions in the y component, g,(f) and u,(t).

only four different values [Fig. 2c]. Figure 2b illustrates the limitations on the
forcing functions used to train the reservoir. In this example, the forcing
functions satisfy f, = f,. Given this limited training, the reservoir has trouble
extrapolating to functions away from the manifold f,=f,, and the recon-
struction of the disturbance suffers.

Next we present some additional results demonstrate generalizability
of our mechanism. First, we consider an inverted version of our first
example, namely we consider system dynamics defined by the Rossler
system [i.e.,, Egs. (9-11)] that are disturbed by time series arising from the
Lorenz system [ie., Egs. (6-8)]. Specifically, we set [g(t), gy(t)]T =
[x.(£)/20,y,()/ ZO]T and use sinusoidal forcing, as before, for training,
namely [f (t), fy(t)]T = [cos(t/20), sin(t/ 20)]T. Results for this inverted
example are plotted in Figs. 3a and ¢, and show good agreement between the
unknown and recovered disturbances. Second, to illustrate the efficacy of the
methodology in a higher-dimensional system, we consider the Lorenz 96
model’”’ whose variables x; for i = 1, ..., N evolve according to

(14)

dx;
P (%41 — %)% —x; + F.

Here we choose the dimension N=8 and set F=8 to realize high-dimensional
chaos. We train the system with known forcing in the first two variables as in
the prior example, [fxl(t)7 f xz(t)]T = [cos(t/20), sin(¢/ 20)]", then use an
unknown disturbance of [g, (?), gxz(t)]T = [cos(t/2), sin(11¢/20)]". Due
to the high dimensionality we use a reservoir of twice the size as in other
examples, namely, M = 2000. Results for this example are plotted in Fig. 3b
and d and show good agreement between the unknown and recovered
disturbances.

Experimental examples: a chaotic circuit

In addition to the numerical simulations presented above, we also
demonstrate that our method can recover unknown disturbances in an
experimental setting. An analog electric circuit which reproduces the
dynamics of the Lorenz equations was built following ref. 32 (see Methods)
and arbitrary waveform generators were used to introduce various types of
additive forcing terms in both the x and y variables as in Egs. (6-7). The
circuit variables x, y, and z were sampled at a rate of 10 kHz for 20 s when
forced with various choices of fand g. In Fig. 4a and b we present the results
obtained from training the reservoir using the dynamics of the circuit under
piecewise constant and sinusoidal forcing, respectively, and recovering the
more complicated unknown disturbance. To alleviate noise effects, the
recovered disturbance is a moving average of the reservoir prediction with a
window of 20 ms. Time series for the unknown disturbance and the noise-
filtered recovered disturbance are shown in Fig. 2¢, d. Despite some noise,
the reservoir robustly recovers the disturbances.

An important question is what training forcing function f should one
use in order to recover an a priori unknown disturbance g. In our numerical
experiments, we have found that the reservoir computer is able to identify
disturbances with range in a region approximately 5 times larger than the

convex hull of the set {f( —nAt)}:i%t, with the same center. This condition is
very mild and can be met with a variety of simple forcing functions, for
example a piecewise constant function with only three values. Intuitively, if
the range of the training forcing function f does not contain enough
information for the reservoir computer to extrapolate and infer the dis-
turbance, the process will fail. In this Article we have not attempted a
rigorous or more general analysis of the conditions that training forcing

functions should satisfy, and leave this for future research. In addition to the
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Fig. 3 | Identifying unknown disturbances: Rossler
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example above where the unknown disturbance is chaotic, we have also
successfully identified temporally localized, constant, periodic, and slowly
varying, non-oscillatory forcing functions g(t).

Suppression of disturbances

Next we consider the problem of suppressing the undesired disturbance
function g(f) with the aim of recovering the approximate undisturbed
dynamics dx/dt = F(x). For this we assume that the procedure described
above has been successful, and that u(f) = W, r approximates the forcing to
the system. We motivate our subsequent method by first considering a
scheme where Eq. (1) is modified to

dx
o =B+ g(0) — au()

(15)
where « is the control gain, and u is obtained by feeding x to the trained
reservoir. We refer to this scheme as the simple control scheme. Since the
reservoir was trained to identify the forcing, in principle we have a self-
consistent relationship

ux g—ou, (16)
with solution
g(®)
)~ —. 17
u(®) 1+« (17)

The effective forcing g(t) — au(f) in Eq. (15) reduces to g()/(1 + «). In
principle, then, choosing a > 1 suppresses the forcing. However, this
control scheme becomes unstable for moderate values of «. To understand
this, we assume momentarily that g is constant, and study the stability of the

control scheme. On a given time step, the reservoir tries to approximate the
forcing in Eq. (15), which is based on the previous reservoir output.
Therefore, Eq. (16) needs to be treated as a dynamical system. A first
approximation is

u(t + At) ~ g — au(?), (18)
which assumes that the reservoir approximates its own output at the pre-
vious time. In reality, the right-hand side of Eq. (18) might depend on
previous history. Therefore, we regard Eq. (18) as a rough approximation to
guide us in constructing a useful control scheme. Under Eq. (18), the fixed
point (17), and therefore the control scheme, becomes unstable for & > 1. In
our example, we find numerically that the scheme becomes unstable at
a = 2.5, presumably due to the fact that Eq. (18) is only an approximation.
Additional tests using non-constant g show the same behavior.

In order to create a more robust control scheme, we modify (15) to

dx

5= F(x) + g(t) — av(t), (19)
dv 1
I =;(u—v), (20)

where 7is a control parameter. We refer to this scheme as the delayed control
scheme, since v represents an exponentially weighted average of the pre-
vious values of u. Now we repeat our previous approximation to this
scheme. If, for example, the dynamics are solved using Euler’s method, Eq.
(18) now becomes

u(t + At) ~ g — av(t), (21)
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Fig. 4 | Experimental results. a, b Unknown and
reconstructed disturbance functions [g,(£), g,(#)] (black
curve) and [u(t), u,()] (red curve) along with the
training forcing functions [£.(2), £,(#)] (thick blue curves
and symbols). For each case the reservoir was trained
with (a) a 5 hz square wave out of phase by 71/2 and (b)
[fx(t),fy(t)] = [(cos(107t)), (sin(107t))] and dis-
turbed with combinations of sinusoidal functions.

¢, d Time series for the unknown (solid black) and
recovered (dashed red) disturbance functions in the y
component, g,(t) and u,().
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Fig. 5 | Suppressing unknown disturbances. a-c For control gains a =0, 10, and
100, the disturbed attractor obtained from delayed control (black curves) compared
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v(t 4+ At) & v(t) + % [u(t) — v(2)]. (22)
Again assuming constant g, a linear stability analysis shows that when 7/
At >1 the fixed point u = v = g/(1 + «) is linearly stable as long as «a < 7/At.
While we don’t expect this estimate to be exact, we expect that the range of
values of « for which the control scheme is stable will be greatly expanded
when 7/At is large. Interestingly, in contrast to typical control problems, the
presence of delays increases the stability of the control scheme. In summary,
the delayed control algorithm for suppressing a disturbance g(#) is as fol-
lows: (i) Force the system with a known training forcing function f, and train
a reservoir computer so that its output u approximates f based on

observations of the state variables X. (ii) Add a term — av to the disturbed
system, where v satisfies Eq. (20) with large 7.

Simulated examples: suppressing deterministic disturbances

In order to demonstrate the suppression method discussed above, we return
to our example of a Lorenz system forced by a Rossler system, except that the
forcing applied to Eqs. (6-8), are greatly amplified, namely,
818 g, 1" = [24x,24y,,0]". (In order to illustrate the power of our
method, the disturbance terms are chosen to be much larger than in the
previous example.) After training the reservoir with the sinusoidal forcing
[F(0),£,(6), (O] = [cos(0.051),5in(0.05¢),0]", we run the control
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scheme in Eqs. (19-20). In Fig. 5a—c, we plot for control gains & = 0, 10, and
100 the disturbed Lorenz system in black curves as well as the undisturbed
Lorenz system in red curves for comparison. Note that for =0 (i.e., no
control) the disturbed system attractor bears little resemblance to the
undisturbed system attractor, but as « is increased the control method
begins to effectively mitigate the disturbances, with little effective difference
for a = 100. In order to quantify the effectiveness of the control method, we
measure the distance between the disturbed and controlled attractor and the
undisturbed attractor as follows. We solve Eqs. (6-8) with g, = g,= g, =0 for
T = 150 time units using Euler’s method with a timestep At = 0.002 after
discarding a sizable transient and create a reference time series
{x0(0), Xo(A#), X9(2A1), ..., Xo(T/At)} representing an approximation of the
undisturbed attractor. Next, for a given value of , again after discarding a
transient, we compute a time series for the disturbed and controlled system,
{x(0), x(A1), x(2A¢), ..., x(T/At)}. Then we compute the average distance
between the points on the controlled trajectory and the reference time series

as

T/At

> mjin | x(iAt) — x,(iAL) | . (23)
i=0

d(oc) = m

In Fig. 5d we plot the distance d(a) versus « for both the simple control
scheme (15) (blue circles) and for the delayed control scheme (19)—(20) (red
crosses) for the deterministic disturbance. The simple control scheme
reduces the error until it becomes unstable at approximately « ~ 2.5. In
contrast, the delayed control scheme reduces the error to very small levels for
large values of «, before it also becomes unstable at approximately o ~ 2500.
(For both methods, the values of a for which no data are shown resulted in
numerical instability.) In practice, a suitable value of a could be chosen
either by comparing the controlled attractor to the undisturbed one, if it is
available, or by choosing « large enough that the controlled attractor doesn’t
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change appreciably when increasing « further, as it is often done with the
time-step of numerical ODE solvers.

We also present some additional results that demonstrate the gen-
eralizability of the suppression mechanism in the face of different types of
disturbances. In particular, while we keep the undisturbed system defined by
the Lorenz system, we consider first quasi-periodic disturbances that are
composed from mismatched sinusoids, namely [g,.g,, ) =
[200 cos(2t/5) sin(27t/5), 50 cos(t/2) + 50 sin(7t), 0]", and, second, sto-
chastic disturbances [g, , 8y gZ]T = [x5(t), ys(1), 0]" as defined in Egs. (12)
and (13) but with a stronger stochastic component, specifically D = 75. We
plot the results from these two cases under delayed control in Fig. 6 on the
top and bottom, respectively. First, in panels (a) and (e) we plot the time
series of the disturbances applied to the Lorenz system, depicting the dis-
turbances to the x and y components in solid blue and dashed red,
respectively. Next, in panels (b) and (f) we plot the disturbed attractor
without control (ie., using « = 0) in black and also plotting the undisturbed
attractor in red for comparison. Then in panels (c) and (g) we plot the
disturbed and undisturbed attractors for « = 10, then in panels (d) and (h)
for a = 100. As we increase the control gain « we see the disturbed attractor
begins to resemble more so the undisturbed attractor.

Lastly we consider control of disturbances to other systems, specifically
the Rossler system and the Lorenz 96 system with N=8 and F=8. In
both cases we train the systems with sinusoidal forcing,
[F(6),f (O] = [cos(0.05¢), 5in(0.051)]". Next, we disturb the x and y
components of the Rssler system with the x and y components of the Lorenz
system, [g,, gy]T = [2%1 /5,29, /5]T and we disturb the first two compo-
nents of the Lorenz 96 system with sinusoids with offset frequencies,
8., (t)7gxz(t)]T = [50 cos(t/2), 50 sin(llt/ZO)]T. In Figs. 7 and 8 we plot
the results for the Rossler system and the Lorenz 96 system, respectively,

plotting in panel (a) the disturbances applied to each, then in panels
(b)-(d) the disturbed (black) and undisturbed (red) attractors as the
control gain is increased: for the Rossler system we use « = 0, 10, and 100
and for the Lorenz 96 system we use a =0, 4, and 20. (Note that for the
Lorenz 96 system we were able to suppress disturbances quite well with
even smaller control gains, thus the smaller values of a used.) In both
cases we see that as the control gain is increased the disturbed dynamics
get closer to the undisturbed dynamics.

Discussion

In summary, we have presented and demonstrated both numerically and
experimentally a method that allows an unknown disturbance to an
unknown dynamical system to be identified and suppressed in real-time,
based only on previous observations of the system forced with a known
forcing function. Our method is applicable, for example, to the problem of
identifying node and line disturbances in networked dynamical systems
such as power grids’, and more broadly to the various fields where dis-
turbances need to be suppressed in real-time®. While our method does not
require knowledge of the underlying dynamics of the system, it requires one
to be able to force it with the addition of a known training forcing function,
and subsequently with the term — av. The consideration of nonlinear
disturbances is left for another manuscript’“. In addition, we assumed that
all the variables of the system can be observed. In principle, one could use
our method by training the reservoir using an observed function H(x) of the
state vector, but we have not explored this generalization. Another impor-
tant research direction is to determine the class of appropriate training
forcing functions, given a dynamical system and the anticipated char-
acteristics of the disturbance.

Methods

Choice of the bias parameter,

To explore the choice that the bias parameter f3 [see Eq. (3)] has on the ability
of the reservoir computer to recover unknown disturbances, we return to
our first example of a Lorenz system with sinusoidal known forcing used as
training and then disturbed by Réssler dynamics. All other system and
reservoir computer parameters are the same, training is set to
[fx(t),fy(t),fz(t)]T = [cos(t/20), sin(t/20), O]T, but we consider varying
both the bias parameter  and the magnitude of the Rossler forcing, namely,
we introduce a magnitude parameter u that scales the unknown disturbance
as [gx,gy,gZ]T = [uxg, uyg, 0]". (Note that in the main text we first used
¢ = 1/10.) To examine the effect of the bias parameter we then train the
reservoir with different 3, then with that chosen value of 3 try to extract the
unknown disturbance at different levels of 1. We evaluate the success of the
reservoir in extracting the disturbances by calculating the sum of the mean
squared error (MSE) in both the x and y components over the time window,
namely, MSE = ([, [g,(t) — u (OFdt + [ [g,(t) — u,()]dt)/T. In
Fig. 9 we plot the the combined MSE as a function of the bias parameter j3 for
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Fig. 10 | Experimental setup. a Circuit for Lorenz attractor. Integrators are based on the TL082 operational amplifier while the multipliers are based on the AD633 chip.

Circuit recreated from ref. 32. b Output of the circuit, where units are in volts.

a number of choices of the magnitude parameter, specifically = 0.1 (blue
circles), 0.2 (red crosses), 0.5 (green triangles), and 1 (purple squares).
Results demonstrate that a bias parameter is optimal near § =1, which
informs the choice made in this paper.

Experimental implementation

We constructed an analog electric circuit to replicate the Lorenz equations
through three integrators and two multipliers, following the implementa-
tion described in refs. 32,34 and shown schematically in Fig. 10a. In this
implementation, the variables x, y, and z are the voltages shown in the
diagram in Fig. 10a and correspond to the respective variables in the Lorenz
system scaled down by a factor of 10 (the equations the system models are
modified accordingly for this scaling).

The values used for the resistors are chosen to produce the appropriate
coefficients in the Lorenz equations of o=10, f=28/3, and p=28. The
integrating capacitors of 47 nF were chosen to provide oscillations on the
order of 30 Hz. Resistors had a component tolerance of 1%, while the
capacitors have a 5% tolerance. The multiplication was done with an AD633
analog multiplier, which has an error of 2% of full scale, while the integrating
circuit was based on an TLO082 operational amplifier. The output of this
circuit is shown in Fig. 10b. The characteristic butterfly shape is readily
apparent, with each output swinging around 4 volts peak to peak (Vpp).
This analog circuit represents the “undisturbed system” described in the
main text. While it is constructed to obey approximately the (scaled) Lorenz
equations, the component tolerances make it, for practical purposes, an
unknown system from which we can measure the state variables x, y, and z.
Electronic noise and uncertainty from the analog multipliers adds an
additional complication not present in our numerical simulations.

The external forcing is introduced into the circuit through the two
points marked A and B in Fig. 10a. A function generator produces two
signals at magnitudes that were approximately 4 Vpp to closely match the
magnitude of the variables of the unforced circuit. These forcing signals were
each passed through a unity gain buffer and a 1 MOhm resistor before being
added to the signal at the input of the x and y integrators at A and B,
respectively. The value of 1 MOhm allows the forcing signal to be of a
comparable amplitude to the x, y, and z signals, and adds this function
unscaled into the first two integrators.

Data availability
The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Code availability
The code used during the current study is available from the corresponding
author on reasonable request.
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