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Previous studies in quantum information have recognized that specific types of noise can encode
information in certain applications. However, the role of noise in quantum hypothesis testing,
traditionally assumed to undermine performance, has not been thoroughly explored. Our study
provides sufficient conditions for general noisy dynamics to surpass noiseless (unitary) dynamics
within certain time interval. We then design and experimentally implement a noise-assisted quantum
hypothesis testing protocol on ultralow-field nuclear magnetic resonance systems, which
demonstrates that the success probability under certain noisy dynamics can indeed surpass the
ceiling set by unitary evolution. Moreover, we show that in cases where noise initially hampers
performance, strategic application of coherent controls on the system can transform those previously
detrimental noises into advantageous ones. Our results, both theoretical and experimental,
demonstrates the potential to leveraging noise in quantum hypothesis testing, which pushes the
boundaries of quantum hypothesis testing and general quantum information processing.

Hypothesis testing is an essential statistical technology in scientific research,
enabling one to distinguish various models based on observed data'. In
quantum science, quantum hypothesis testing (QHT) is a commonly
employed tool to ascertain the model of a given quantum system, which has
profound connections with topics ranging from quantum state and
dynamics  discrimination’”’,  parameter  estimation*’, quantum
communication'*", the detection of weak forces and magnetic fields* ™",
quantum machine learning'’, to quantum illumination'®.

In noiseless scenarios, it is possible to achieve perfect hypothesis testing
within a sufficient amount of time using optimal strategies'”'"*. However, the
presence of inherent quantum noise significantly hampers this capability.
To mitigate the impact of noise, various strategies, such as quantum error
correction'’' and optimal control”, have been proposed. Although recent
studies show that some specific types of noise can be harnessed in certain
quantum information applications™, it is widely accepted that the perfor-
mance of noisy hypothesis testing is fundamentally limited by its noiseless
limit. The potential to leverage noise in QHT is still unexplored, particularly
beyond specific scenarios.

In this article, we demonstrate that the interaction between coherent
evolution and noise can push the boundaries of QHT beyond unitary

dynamics. We explore the full potential of noise in QHT by establishing
sufficient conditions for characterizing whether noisy dynamics can surpass
the success probabilities achievable under noiseless dynamics. Moreover,
even when noise is initially independent and detrimental, we show that
combining coherent controls with such noise can convert it into a beneficial
factor, thus elevating the overall success rate in hypothesis testing. We apply
our theory to discriminate quantum dynamics in spin systems under two
prevalent noise models: dephasing and amplitude-damping. Our results
uncover that, within specific evolution times, noisy dynamics can surpass
unitary dynamics in success probability. Our findings signify a substantial
advancement in the field of QHT and its related applications, including
quantum dynamics discrimination and quantum metrology™”’.

Results

We investigate the scenario of QHT, where our objective is to distinguish
between two hypotheses (ho and h;) governed by Hamiltonians Hy and Hj,
respectively. These hypotheses are associated with prior probabilities qo and
¢q:- In a fixed initial state and evolution time, the process simplifies to the
discrimination of final quantum states, as depicted in Fig 1a. Subsequently, a
quantum measurement is performed on the final state, and based on the
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Fig. 1| Exemplary illustration of quantum hypothesis testing. a Binary hypothesis
testing process for dynamics discrimination. The binary hypotheses are Hy and H;
with respective prior probabilities g, and g;. A known initial state evolves under
hypothesis Hamiltonian H, (or H,) to the final state p, (or p;). Quantum mea-
surement M is performed to decide one of the hypotheses. The coherent control
strategy and noise engineering technology are considered as resources to enhance
the effectiveness of decision-making. b, ¢ Depict scenarios in which the two to-be-
distinguished dynamics are influenced by Hamiltonian-independent noise and
Hamiltonian-dependent noise, respectively. While Hamiltonian-independent noise
can decrease the trace distance of the final states, i.e., DI°*¢ <D™ , thereby reducing
the success probability, Hamiltonian-dependent noise has the inherent potential of
increasing the trace distance, such that D2°¢ >D" | and thus enhancing the success
probability.

measurement result, a hypothesis is selected. The success probability of this
process can be expressed as gop(holpo) + g1p(h1lp1), where p(hlp;) repre-
sents the success probability of correctly selecting the hypothesis 4, given the
state p;. According to Holevo-Helstrom theorem’, the success probability,
given p, and py, is upper-bounded by

1+ D, (p,,
psLICC - trz(po pl (1)

where Dy, (py, p1) =l 9po — 1911l € [0, 1]. Here ||-||,, is the trace norm
that equals the sum of singular values. Without loss of generality, we will
assume g, = q; = 1. To effectively discriminate dynamics, one can opti-
mize the initial state, control strategies, and measurements to increase
Dy, (py, ;) thereby improving QHT performance.

In the absence of noise, the evolution is given by p = —i[H, p]. In this

. I e )+
case the optimal initial state for discrimination is |y,) = W

, a
superposition of the eigenstates of H; — H, corresponding to the largest and
smallest eigenvalues'"*. With this optimal strategy, the success probability
increases at a rate of %, and perfect discrimination can be achieved over
sufficient time'”'®. However, when the noises are taken into consideration, the
problem becomes much more complicated and the optimal strategies are
generally unknown. For Markovian noises, the dynamics can be described by

= ~ilH, o1+ S et — S (1L o)) @
k

where L are the Lindblad operators that describe the noisy effects and
{x, y} = xy + yx denotes an anticommutator. In the standard framework, it is
generally assumed that the Lindblad operators, {L;}, are independent of the
Hamiltonian Hj] #202326 Under these assumptions, common wisdom holds
that noise always hampers the discrimination as it homogeneously affects
both hypotheses, reducing the success rate without aiding differentiation”.

The assumption that noises are independent of the system’s Hamil-
tonian does not always hold true in quantum systems. For instance, consider
the decay process from a higher energy state |e) to a lower one |g). In this
case, the corresponding Lindblad operator is proportional to |g){e],
reflecting an inherent dependence on the energy levels governed by the
Hamiltonian. Therefore, the decay process is intrinsically correlated with the
Hamiltonian. Similarly, dephasing noise, another common type of noise,
often relies on the energy eigenstates because it generally affects the off-
diagonal elements of the density matrix in the energy eigenstate basis. Thus
when H, and H; do not commute, [Hy, H;] # 0, the noise operators can
differ due to their reliance on distinct eigenstates. Even if Hy and H; initially
commute and share the same eigenstates, introducing a control Hamilto-
nian, H,, can alter this situation. By ensuring that [H, + H, H; + H/] #0,
the eigenstates of the combined Hamiltonians will become different. It’s
important to note that this control mechanism is applied solely to the
system, without affecting the environmental conditions, thereby illustrating
how the interplay between the system’s Hamiltonian and noise processes
can be manipulated and potentially break the independence assumption.

In general, the noisy dynamics can be described as

p = —ilH, pl + Z[ijpL}k -
k

Jk Ly, p}l,j=0,1, (3)

where {L;} are the Lindblad operators under the Hamiltonian Hj, which can
be correlated with H; and different for j = 0, 1. In such a scenario, the noise
may increase the success probability of QHT as illustrated in Fig. 1. The
success probabilities for discrimination under unitary and noisy dynamics

. it 1+D uni . 1+Dnoise .
are given by puec” = and p%i% = =, respectively. To theore-

tically demonstrate the spec1ﬁc conditions under which noise can positively
influence QHT, we introduce a general criterion based on comparing the
increasing rates of success probability. In particular, we show that with the

P max ) A min
== >

same probe state, | ) the increasing rate of the success
p Yo 8

probability under the noisy dynamics, p"°*, can be higher than that of the

unitary dynamics, p*""“”, for a period of time when either of the conditions

holds (see Supplementary Note 1 for derivation),

|xl + Wll >Amax - Aminv

4
(W) —x)* + 47 + 422 >4z,(A 0 — ) “)

min)7

here xl = < max|N — N |A >’ yl = R6<A |N1 _Nollmin>’ Zl =
Im<lmax Nl - N0|/\mm> and </\mm NOl/\min>’ Nj =

Zk[ijll//O><1//0|ij : Lt ]k Ly, |1//0><1//0|}] for j =0, 1. These conditions are
determined by the Lindblad operators and the maximal and minimal
eigenvectors of H; — Hy, which can be directly verified. Specifically,
Hamiltonian-independent noises, where the noisy part (the summation
terms involving Ly in Eq. (3) is the same for j =0, 1, indicate that the noises
affect each Hamiltonian identically). This encompasses scenarios where
Lindblad operators are independent of the Hamiltonian. In these cases, none
of the conditions specified in Eq. (4) are satisfied, demonstrating that such

P ) Fhin )
7

optimal under the unitary dynamics, the noisy dynamics that satisfy either
of the conditions can thus achieve a higher success probability than the
maximal success probability of the unitary dynamics within certain time

= D) i)
) ="

types of noises hamper the discrimination. Since |y,) = is

period. We note that for noisy dynamics, |y, might not be

optimal, further optimization of the initial probe state for the noisy
dynamics might yield even better results.

In our experiment, we examine a spin interacting with magnetic fields
in different directions, subject to dephasing and amplitude damping noises.
The dephasing noise, which can arise from the fluctuation of the magnetic
field, is described by the Lindblad operator L;; = /% T where «; is the

J
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dephasing rate, O = ;-0 with 7}- represents the direction of the

j
J
magnetic fields. The amplitude damping noise can be described by the
Lindblad operator L;, = ,/szo% and L;; = % (1—p) 0% , where
j J
0, =1g;}¢]l is the lowering operator, oty = le;) (g;] is the raising
1 1,
- >

operator, | g;) and le;) are the ground and the excited state of H =1 0.

The dynamics can thus be written as
- i|—yBo— /2,p| + K| 0— a_>—)
{Mn/P}l(nfm P

+ %P (J_rf-paiﬁ -1 {0% o ,p}) (5)

p € [0, 1] represents the ground state population of the steady state, and in

our experiment, p = 0.5. Here, the noises are correlated with the Hamilto-

nian. For example, when the magnetic field is in the xz-plane with ﬁ; =

(cos 8;,0,sin6;) and 6; € [0, m), the ground and excited state of H; are
cos 0

3 . cos 9j _ 1 th

18 = Jrzmg \ 1 —sing; )> 19 = mrmg \ ~(1 +sing) ) e

Lindblad operators, VEO— 5 JEplg) el and /(1 —p lej) (g1, also
J

depend on ﬁ;, which makes them correlated with the Hamiltonian. Con-
sequently, when 6, # 6;, the Lindblad operators differ for j =0, 1. In nuclear
magnetic resonance (NMR), these noisy effects are typically characterized
by the longitudinal (transverse) relaxation time, T;(T), here T, = Klz and

T, = ﬁ. We emphasize that when 6, = 6, or T} = T, the noisy part of

the master equation, encompassing all terms with x; and «; coefficients in
Eq. (5) that influence the state p through dephasing and amplitude damping
processes, is identical for j = 0, 1. Consequently, the noises become identical
under these conditions. In Supplementary Note 3, we show that for the
discrimination of two misaligned magnetic fields (6,# 6,), as long as
T, # T, the second condition in Eq. (4) is satisfied, and the success prob-
ability under noisy dynamics can exceed the limit of the unitary dynamics.
We also consider a general initial probe state, a|A,,, ) + b|A,;, )» providing
sufficient conditions for surpassing the unitary limit. Of practical interest,
we also specify the condition for an experimentally convenient initial
state |0).

Enhanced QHT via noise

We perform the experimental demonstration on nuclear spins using
ultralow-field NMR, focusing on a two-level system represented by an
uncoupled proton in “C-formic acid (HCOOH, where the hydroxyl
proton undergoes fast chemical exchange decoupling it effectively from
other spin in the molecule). Proton spins were polarized by a 1.3-T Halbach
magnet and then transferred to a shielded zone where they experienced
magnetic fields Hy or Hj, as depicted in Fig. 2a. A guiding field was used
during shuttling and discontinued upon arrival at the target region. The
proton’s NMR signal under Hy/H,; and noise was detected with high sen-
sitivity (~13 fT Hz " along z in Fig. 2b) by a Rb magnetometer, optically
pumped and probed by laser beams. Experimental details are provided in
the Supplementary Notes 6 and 7.

The experimental hypothesis testing process consists of three main
stages (Fig. 2¢): preparing the probe state, evolving it under the magnetic
fields to be distinguished, and measuring the trace distance. The proton
spins begin in a high-temperature approximated initial state, p, ; = % +e%
where 1 is the identity matrix and €= 107 represents polarization. For
simplicity, we set e=1 as it only scales the signal amplitude. Subsequently, the
initial state evolves under either B, 7 , or B, 7 ,, with field directions given

by w ;= (cos Qj, 0, sin Gj). The evolved density matrix, pj(t), can be written
- =
w, where ﬁj(t) denotes the time-dependent proton-spin
magnetization vector. The evolved proton spins’ NMR signal is detected
using a “Rb atomic magnetometer. Quantum state tomography™ is

employed to measure the three components of M, thus obtaining full
information about final states py(t) and p;(t). The success probability for
discriminating these states is calculated using Eq. (1).

To investigate the impact of noises on the success probability, we con-
ducted experiments with varying relaxation times that are simulated through
the gradient field. The experimental results are presented in Fig. 3, where the
red diamond, blue square, and green triangle represent T, values of 5.4 5, 1.0's,
and 0.6 s, respectively, while T} remains constant at 5.5s. When T, =54
s = Ty, the success probability of discriminating between the two magnetic
fields falls below the limit of unitary dynamics (as described in the Supple-
mentary Note 3). This occurs because the decay rates of the nuclear-spin
magnetization vectors in all directions become equal when T} is approximately
equal to T>. In this case, the noises become independent of the magnetic fields.
On the other hand, when T is not close to T, indicating that the noises are
dependent on the direction of the magnetic fields, the success probability
exceeds the limit of unitary dynamics. This is shown as the green and blue
regimes in Fig. 3. As the encoding time increases, the improvement in the
success probability initially rises, reaches a maximum, and then decreases.

Fig. 2 | Experimental setup for quantum hypoth-
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Fig. 3 | Experimental demonstration of enhanced quantum hypothesis testing.
The success probability for discriminating two magnetic fields with different
directions versus the encoding time . The magnetic field strength are
By, = B; =1.86 nT, with 6, =75 and 6, = 30". The black dashed line denotes the
maximum success probability that can be achieved under the unitary dynamics. The
brown dashed line represents T, = 2T;. The solid lines are theoretical simulations,
while triangles, squares, and diamonds are experimental data under different noisy
strengths. The error bars are obtained from eight repeated experiments. In the
subfigure, the maximal enhancement # is plotted as a function of log,,(T,/T,).

Note that excessively prolonged encoding times are not beneficial as the spin-
decoherence effect starts to destroy the quantum states. Therefore, selecting an
appropriate encoding time based on the noise environment is crucial to
improving the accuracy of discriminating between the two Hamiltonians.

To  quantify the enhancement effect, ~we  define
7 =max{p . — Pscca)> Where pgiccr and pguc, are the success prob-
abilities with and without noise. The inset in Fig. 3 plots theoretical # against
T)/T,. As T,/T, increases, i grows, indicating a higher improvement in
success probability due to noise. At the extreme limit of T}/T, — oo, strong
dephasing causes convergence to steady states defined by the dephasing
dynamics. In the strong dephasing limit, the discrimination success prob-
ability is p .. = 1+ 11 sin(6, — 6, )|, with a theoretical  of up to =17.7%,
solely determined by the magnetic field angle difference. It is noteworthy
that the inset in Fig. 3 illustrates, for finite values of T;/T,, maximum
enhancement # increases as T, decreases.

Control-assisted QHT

In scenarios where noises are initially independent of the Hamiltonian thus
detrimental, it is still possible to achieve a higher success probability by
leveraging the cooperation between proper coherent controls and noises.
Consider a scenario where two magnetic fields are aligned along the same
direction (the z-axis) but with different magnitudes. Without coherent
controls, the Lindblad operators of the dephasing and amplitude damping
noises are given by L, = ,/xj0,, L, = L;r = /%0~ = /%,|0)(1], which
are independent of the Hamiltonian. Consequently, noises can only
adversely affect the success probability. However, by introducing a well-
designed coherent control, we can transform the noisy operators making
them correlated with the Hamiltonian. To illustrate this, we incorporate a
control field, B, along the x-direction. The total Hamiltonian then becomes

H; = —y(Bjo,/2 + B.0,/2), ©)

where y is the gyromagnetic ratio of the proton. Note that without the control
field, the ground and excited states of H; are |0) and |1), which are inde-
pendent of B;, while with the control field, the ground and excited states of

H; change to |gj) =— sin%|1) + cos%|0) and le;) = cos%ll) + sin%lO),

0.75

—a control, T,=0.6s
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Fig. 4 | Experimental demonstration of control-assisted quantum hypothesis
testing. The experiment for the discrimination of two magnetic fields along z-
direction with By = 0.2 nT, By = 2.79 nT, a coherent control along x-direction with
B.=0.75nT is added. The black dashed line represents the simulated result under
the unitary dynamics. The brown dashed line denotes T, = 2T. The gray dashed line
represents the simulated result without B, under the noisy dynamics with T, =1.0's.
The solid line is the theoretical simulation with B, under the noisy dynamics, and the
experimental data are represented with triangles, squares and diamonds for different
noisy strengths. The error bars are obtained from eight repeated experiments. The
longitudinal relaxation time T = 7.4 s. The inset displays the dependence of the
maximum enhancement on the control field B,.

here 6; = arctan %}f. In this case the amplitude damping noise, L;, =
T _ . . .
Ly = /chf_nf, and the dephasing noise, L;; = /KIJ—”>] with 07j =
7

Bjo,+B.o,
O
The success probabilities with the interplay between coherent control
and noise are plotted in Fig. 4, where the two magnetic fields along the
z-direction are taken as By =0.20 nT, B; =2.79 nT, and the control field is
taken as B.=0.75nT. The initial state is along x-axis. Without B, both
amplitude damping and dephasing noises degrade the success probability
(gray dashed line). However, when applying the control field B, the success
rate can notably improve (blue and green lines), surpassing the unitary
dynamics’ maximum value within specific time intervals. It is important to
note that the control field does not universally convert noise into a beneficial
resource. For example, when T; = T, (as indicated by the red line), the
unitary limit cannot be exceeded even with a control field. The inset of Fig. 4
presents the maximal enhancement # achieved with varying control fields.
As the magnitude of the control field increases, the enhancement initially
improves but eventually starts to decline. This suggests the existence of an
optimal control field that yields the highest possible enhancement. This
exemplary case of QHT demonstrates that synergy of the control field and
noise can lead to a boost in success probability. In the supplementary Note 5,
we further demonstrate that the interaction between coherent evolution and
noise can positively impact the quantum Chernoff bound, which serves as a
measure of the asymptotic minimum error probability in distinguishing
between two hypotheses, Hy and H;, when an ensemble of state copies,
po(H®", and p,(£)®", is at the disposal.

, are now correlated with H;

Discussion

The enhanced QHT scheme could be used in the field of fundamental
physics research, particularly for hypothesis testing tasks that require
completion within a short time frame, owing to short-lived interactions.
One specific area where this approach is valuable is in the detection of
hypothetical particles beyond the Standard Model”, such as topological
defect dark matter” and bursts of exotic low-mass fields generated by cat-
aclysmic astrophysical events’. These exotic particle-crossing events are
predicted to be transient, with durations notably shorter than the T, of the
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spin. Moreover, the enhanced scheme can be effectively employed in other
quantum systems including NV-center’” and superconducting systems”.

In conclusion, our study pioneers the use of noise to enhance QHT in
spin systems. We show that exploiting the dependence of noise on the
Hamiltonian can boost success probability. When noise is detrimental, we
demonstrate that cooperation with coherent controls can turn it into a
beneficial resource. Further enhancements may be unlocked by exploring
advanced strategies such as optimal quantum control™ and quantum error
correction”’. Optimal control algorithms can optimize pulse designs for
improved discrimination, while error correction can selectively suppress
independent noises to increase T;/T, ratios. Our work deepens under-
standing of noise’s role in quantum systems and its potential to improve
performance in quantum information processing tasks.

Methods

Sample preparation

We select an uncoupled proton of liquid formic acid as the two-level system.
Approximately 200 uL of formic acid sample undergoes five freeze-pump-
thaw cycles to eliminate any dissolved oxygen. Subsequently, the sample is
vacuum-sealed in a standard 5-mm NMR tube using flame-sealing.

Experimental apparatus

We perform the noise-enhanced scheme with an ultralow-field NMR setup
incorporating an Rb-atomic magnetometer, as shown in Fig. 2. The sample
undergoes initial polarization within the permanent Halbach magnet, which
generates a magnetic field of ~1.3 T. Subsequently, the NMR tube is pneu-
matically shuttled to a location just above the Rb vapor cell. During the
shuttling process, the solenoid wrapped around the shutting tube creates a
guiding field (=107 T) aligned with the transfer direction and is abruptly
switched off once the sample reaches the target position. A set of field coils is
utilized to provide a to-be-discriminated magnetic field (B, or B;). The
gradient coils, a set of anti-Helmholtz coils, are employed to apply additional
dephasing noise. The oscillating NMR signal is detected using an atomic
magnetometer, which consists of a rubidium-87 (*'Rb) vapor cell with 700
torr of N, buffer gas'’. Rb atoms are optically pumped using a circularly
polarized laser in the x direction, tuned to the center of the D1 line. The NMR
signal is measured via optical Faraday rotation of a linearly polarized probe
laser propagating along the y direction, detuned from the D2 transition by
100 GHz. The vapor cell is housed in a five-layer mu-metal magnetic shield.
The magnetometer is primarily sensitive to z-direction fields with a noise
floor of 13 fT Hz ™' For quantum state tomography, three-orthogonal, low-
inductance Helmholtz coils apply DC magnetic pulses, converting the
undetectable magnetization into the observable z direction.

Noisy dynamics

The dynamics of a two-level system subjected to an external magnetic field B
in the XZ-plane, in the presence of dephasing and amplitude damping, can
be described by the master equation™:

p= - 1{—YB;U—> /274 +5 (07 po—» —p)
J J
— + _ l + —
TP (“—nﬁ.” % T2 {aﬁj“—n)/” }) @

Here 0_n> =7 _a), where @ = ((rx, oy, az> are the Pauli matrices, and
magnetic fields are along the directions 7 = (cos 6,0, sin 0).0t, =le)(gl
[
is the raising operator and 60—, = |g)(e| is the lowering operator where |g)
n

and |e) are the ground and the excited state of the Hamiltonian respectively,
p € [0, 1] represents the ground state population rate of the steady state. If

the magnetic field is along the z-axis, |g> =0) and |e) = |1). When the
magnetic field is along a general direction where sin 61, the ground
cos 6
j

and excited state are given by |g;) = ﬁﬁ (1 _sin 9_), le;) =
i j

S S— cos e.j . The raising and lowering operators are then
/2+Zsm9] —(1 —+ sin 6]) J P
given by
+ | ) | cos 6 < cos 0 1_Sin6>
o = le = )
=z (g 2¢/1—sin%0 —(1+sinf) —cosf )
e
- g 2v1=sin*0 \ 1 — sin 0 —cosf '

For two-level systems, it is common to describe the dynamics using the
Bloch equations, which can be obtained by writing p(#) with the Bloch vector
M(t) as

— M, —iM,
L1+ M7 [ e
p(t) = R N T VA )
2 2

here M,, M,, M are the x, y, z components of ﬁ(t) respectively. By sub-
stituting Egs. (8) and (9) into Eq. (7), we then obtain the Bloch equation as

M,
M}V
M,

— 131, + 41, + (i, — 4i)) cos 26) yBsin 6 —1(, — 4x,) sin 20
= —yBsin 6 — 3k, + 41c;) yBcos 0
—1(x, — 4x,) sin 26 —yBcos®  —1(k, + 4x,cos?6 + k,sin’6)

M, (2p = 1)x, cos 6
My + 0 .
M, (2p = 1)x,sin 8

(10)
If the magnetic field is along the x-axis, i.e., 07 = 0,, then
1 1
o =t =4( )
11
=g =t "
o = el == ,
7 g 2\1 -1
in this case the Bloch equation becomes
M, —K, 0 0 M,
My = 0 —ix+4x) yB M,
y 0 —yB —L(x, + 4k M
Mz Y 2( 2 1) z (12)
(20— 1),
+ 0
0
Thus we have
1 2
Y7k T kg A (13)

This provides the correspondence between the relaxation parameters T , in
the Bloch equation and the dissipation rate «; , in the Lindblad equation.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request.
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