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Anomalous coherence length in
superconductors with quantummetric
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The coherence length ξ is the fundamental length scale of superconductorswhich governs the sizes of
Cooper pairs, vortices, Andreev bound states, and more. In BCS theory, the coherence length is
ξBCS = ℏvF/Δ, where vF is the Fermi velocity and Δ is the pairing gap. It is clear that increasing Δ will
shorten ξBCS. In this work, we show that the quantum metric, which is the real part of the quantum
geometric tensor, gives rise to an anomalous contribution to the coherence length. Specifically,
ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2BCS þ ‘2qm

q
for a superconductor where ℓqm is the quantummetric contribution. In the flat-band

limit, ξ does not vanish but is bound below by ℓqm. We demonstrate that under the uniform pairing
condition, ℓqm is controlled by the quantummetric ofminimal trace in the flat-band limit. Physically, the
Cooper pair size of a superconductor cannot be squeezed down to a size smaller than ℓqm which is a
fundamental length scale determined by the quantum geometry of the wave functions. Lastly, we
compute the quantum metric contributions for the family of superconducting moiré graphene
materials, demonstrating the significant role played by quantum metric effects in these narrow-band
superconductors.

Bardeen–Cooper–Schriffer (BCS) theory1 of superconductivity stands as
one of the most successful and influential theories in modern physics. It
offers a mean-field, yet non-perturbative and microscopic framework for
understanding superconductivity. It has been very successful in
describing a large number of superconductors2–4. Deviations from the
BCS theory are not unusual, which are often attributed to strong inter-
action effects5,6. Recently, the observations of superconductivity in twis-
ted bilayer graphene7–11 and related graphene family12–14 hinted that a new
theory is needed to describe superconductors with nearly flat bands. It
was observed in a recent experiment11 that some important physical
quantities deviate greatly from BCS predictions and the microscopic
origins behind them are not yet clear.

For example, the BCS superconducting coherence length ξBCS is
expressed as ℏvF/Δ, where vF is the Fermi velocity and Δ is the pairing gap.
When the moiré band of twisted bilayer graphene is nearly flat with
vF ≈ 103m/s andΔ ≈ 0.2meV, ξBCS is estimated to be around 3 nmwhich is
more than one order of magnitude shorter than the values measured using
upper critical fieldmeasurements11. Furthermore, the lowFermi velocity (or
equivalently, large effective mass) should lead to a low superfluid stiffness.
This results in an expected Berezinskii–Kosterlitz–Thouless transition
temperature much lower than the transition temperature measured at
optimal doping11. It had been pointed out by previous works that the
quantummetric15,16 of the flat bands, which is the real part of the quantum
geometric tensor, is essential in sustaining a supercurrent17,18. Apart fromthe
investigations of superfluid weight19–34, the quantum geometry affects other

physical quantities such as the intrinsic nonlinear transport35–37 and
electron–phonon coupling38.

In recentwork, by deriving theGinzburg–Landau theory for an exactly
flat band (with zero bandwidth)39, we pointedout that ξ is determined by the
quantum metric of the Bloch wave function which is independent of the
interaction strength. This contradicts the intuition that stronger attractive
interactions between electrons generally result in a smaller Cooper pair size
and shorter coherence length, as described by the BCS theory.

Explicitly, considering the Bloch states of a band represented by ∣uðkÞ�,
the quantum geometric tensorG40,41 is

Gab ¼ h∂auðkÞj∂buðkÞi � h∂auðkÞjuðkÞihuðkÞj∂buðkÞi: ð1Þ

Here, a and b represent themomentumdirections. The quantumgeometric
tensor can be decomposed into real and imaginary parts asG ¼ G� iF=2,
where the real partG is the quantummetric and the imaginary partF is the
Berry curvature. Berry curvature arises from the phase difference between
adjacent Bloch states and characterizes the band topology of materials42–47.
The study of the physical consequences of the Berry curvature has been one
of the central topics in modern physics. On the other hand, the effect of
quantum metric, which measures the distance between two quantum
states48, is much less studied. It was pointed out that the quantum
metric provides the size (or the so-called quadratic spread) ℓqm of the
optimally localized Wannier state of a band49, where ‘qm ¼

ffiffiffiffiffiffiffiffiffiffi
detG4

p
.

Here, G, defined in Eq. (11), is the weighted average of the quantummetric
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of the Bloch stateswithin a band. Themathematical definition of ℓqm, which
we call the quantum metric length, measures the minimal spread of the
Wannier functions, is schematically illustrated in Fig. 1. However, the
impact of the quantum metric length ℓqm on physical quantities was not
clear. Until very recently, the Ginzburg–Landau theory39 shown that at zero
temperature, ξ = ℓqm for an exactly flat band, which is independent of the
interaction strength.

In realisticmaterials such as twistedbilayer graphene and relatedmoiré
flat-band superconductors, the bands are nearly flat, but the dispersion is
still finite. One fundamental question arises: What is the interplay between
thequantummetric effect and thefinitedispersionof the band? In thiswork,
we demonstrate that

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2BCS þ ‘2qm

q
: ð2Þ

In other words, there is an anomalous quantum metric contribution to the
superconducting coherence length (recall that ξBCS = ℏvF/Δ). In the flat-
band limit with vanishing vF, the quantum metric effect can be significant
and even dominant. We show that this is indeed the case for several moiré
superconductors with nearly flat bands11–14. Our result gives a possible
explanation for why the observed superconducting coherence length in the
recent experiment11 ismuch larger than expected. It is worth noting that the
coherence length is lattice-geometry independentwhile the quantummetric
is lattice-geometry dependent31,50. To resolve the discrepancy, we apply the
uniform pairing condition when evaluating the pair correlators and then
demonstrate that ℓqm is related to thequantummetric of theminimal trace31.
We delineate the physical picture that, in the presence of the quantum
metric, increasing the attractive interaction strength between electrons can
only reduce the BCS part of the coherence length and squeeze the Cooper
pair size down to the quantum metric length ℓqm, but not further, as
demonstrated in Fig. 2.

Additionally, for a topological flat band with nontrivial (spin) Chern
number, ξ ≥ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCj=4π

p
, where a is the lattice constant. At the end of this

work, we show that the quantum metric length ℓqm is important for the
superconducting moiré graphene family. As the new length scale ℓqm

defined by the quantum metric is a fundamental property of the band
structure and its importance should bemanifested beyond superconducting
phenomena, we expect that ℓqm also plays a crucial role in other interaction-
driven ordered states (such as the magnetic or density-wave states33,51) in
flat-band systems.

Results
Quantum metric and coherence length
We investigate the interplay between quantummetric and band dispersion
in superconductors where superconductivity appears within an isolated
narrowband.Tobeginwith,wedescribe our formalism fromamulti-orbital
Hamiltonian with two components: the non-interacting part H0 and the

attractive interacting part Hint, which read

H0 ¼
X
ij;αβ;σ

hσij;αβa
y
iασajβσ ; ð3Þ

Hint ¼ �
X
i;α

Uayiα"a
y
iα#aiα#aiα"; ð4Þ

where hσij;αβ is the hopping integral and U denotes the on-site attractive
interaction strength. aiασ annihilates a fermionwith spin σ in the orbital α at
the site i (we may call aiασ orbital fermions). Considering an isolated band
near the Fermi energy separated fromother bands with a large band gap, we
can have an effective one-band description. For s-wave superconducting
phase, it is common to introduce orbital-dependent order parameters
Δα = −U〈aiα↓aiα↑〉. The mean-field ground state has been extensively
investigated, particularlywith regard to the superfluidweight determinedby
the quantum metric17. It is possible to project the orbital fermion aiασ onto
the fermion cσ of the isolated band, which is referred as the band fermion. In
particular, we employ the following projection scheme

aiασ !
1ffiffiffiffi
N

p
X
k

eik�ðriþδαÞu�ασðkÞcσðkÞ; ð5Þ

where we explicitly keep the orbital positions {δα} within a unit cell. The
Bloch state uασ(k) of the isolated band with energy ϵσ(k) satisfies the time-
reversal symmetry uαðkÞ � uα"ðkÞ ¼ u�α#ð�kÞ. The projection in Eq. (5)
yields an effective one-band mean-field Hamiltonian Hmf,

Hmf ¼
X
k

ϵσ ðkÞcyσ ðkÞcσðkÞ þ ½Δcy"ðkÞcy#ð�kÞ þ h:c:� ð6Þ

with Δ = 1/N∑αkΔα∣uα(k)∣2. The projected mean-field Hamiltonian Hmf is
independent of the choice of orbital positions {δα}. To facilitate the
theoretical analysis, we can adopt the uniform pairing condition and the
minimal quantummetric31. The former assumes that the pairing potentials
are the same fordifferent orbitals, and the latter is specific toorbital positions
corresponding to theminimal trace of quantummetric. Thenwe can define
the Cooper pair operator Δ̂ðqÞ ¼ 1

N

P
iαe

�iq�ðriþδαÞaiα#aiα" which is
formulated after projection as

Δ̂ðqÞ ! 1
N

X
k

Λðk þ q; kÞc#ð�kÞc"ðk þ qÞ: ð7Þ

Here the form factor Λðk þ q; kÞ ¼ P
αu

�
αðk þ qÞuαðkÞ appears as the

overlap between two Bloch states. Then we can evaluate the pairing corre-
lator CðrÞ ¼ P

qe
�iq�rhΔ̂ðqÞΔ̂yðqÞi to deduce the coherence length. The

pairing correlator CðrÞ is expected to decay exponentially as a function of ∣r∣
at zero temperature for an isotropic system. In other words, CðrÞ � e�jrj=ξ

and the decay length ξ is the superconducting coherence length52. As shown
in Supplementary Note 2, CðrÞ � P

qe
�iq�rMðqÞ, where

MðqÞ ¼ T
N

X
nk

jΛðk þ q; kÞj2G0ðiωn; k þ qÞG0ð�iωn;�kÞ: ð8Þ

Here, G0(iωn, k) is the normal Gor’kov’s Green function of the band fer-
mions cσ and ωn = (2n + 1)πT is the Matsubara frequency, as defined in

“Methods” section. Then we can extract the coherence length by ξ2 ¼
� 1

2Mð0Þ
d2MðqÞ
dq2 ∣

q¼0
with q = ∣q∣ at zero temperature. It is essential to

emphasize that the validity of the expression in Eq. (8) hinges on the uni-
form pairing condition, specifically in relation to the Bloch states of the
minimal quantummetric31.Without these conditions, the coherence length
calculated using Eq. (8) will be overestimated, and additional details can be
found in Supplementary Note 2. To see how the quantummetric affects the

Fig. 1 | The schematic illustration of the quantummetric length ℓqm. In flat-band
superconductors with quantum metric, the size (or the quadratic spread) of the
optimally localized Wannier functions is ℓqm. ℓqm is also the minimal coherence
length (or the minimal size of the Cooper pairs) of the superconductor.
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coherence length ξ, the form factor Λ entersMðqÞ such that

jΛðk þ q; kÞj2 ¼ 1�
X
ab

GabðkÞqaqb þOðq2Þ : ð9Þ

ThematrixGab is the quantummetric of Bloch states, namely the real part of
quantum geometric tensor G in Eq. (1),

GabðkÞ ¼ Re GabðkÞ
� �

: ð10Þ

By theoretically evaluating the pairing correlator, we can obtain the

coherence length in Eq. (2) as ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2BCS þ ‘2qm

q
. In fact, the structure of the

coherence length in Eq. (2) is general and works regardless of the uniform
pairing condition and the minimal quantum metric. The anomalous

coherence length is ‘qm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detGab

4

q
, where Gab is the weighted average of

the quantum metric of the band, which is defined by

Gab ¼
P

kGabðkÞ=εðkÞP
k1=εðkÞ

; ð11Þ

where ε(k) is the dispersion of the Bogoliubov quasiparticle. In the limit of a
flat dispersion ε(k), the quantummetric length ℓqm is reduced to the length
scale of the minimal quantum metric. The above discussions on the
coherence length inEq. (2) canbe easily generalized to ananisotropic system
with a non-circular Fermi surface where the quantum metric length
becomes spatially dependent due to finite off-diagonal elements in the
quantum metric.

To understand the physical consequence of the anomalous coherence
length,wenote that for a conventional superconductor, ξ = ξBCS decreases as
the interaction strength (or equivalently Δ) increases, as schematically
shown in Fig. 2a. However, in the presence of the quantum metric, ξ
decreases asΔ increases, but approaches the quantummetric length ℓqm (see
Fig. 2b). In the flat-band limit, the coherence length (at zero temperature) is
independent of the interaction strength and given by ℓqm. In the presence of
finite quantummetric, interactions cannot squeeze theCooperpairs to a size
smaller than ℓqm.

Topologically trivial flat-band model
To support the analytical results mentioned above, we employ the mean-
field theory on a microscopic model, which features exactly flat bands
without dispersion33,53. The normal state Hamiltonian hs(k) for electrons

with spin index s reads

hsðkÞ ¼ �t½λx sinðαkÞ þ sλy cosðαkÞ�: ð12Þ

Here, αk ¼ χ½cosðkxaÞ þ cosðkyaÞ� and λi are the Pauli matrices in orbital
basis. s = ±1 denotes the spins ↑ and ↓. The hs(k) has a pair of perfectly flat
bands at energies ϵk = ±t which are depicted in Fig. 3a (solid lines) and the
corresponding wave functions are ∣u ±

� ¼ 1=
ffiffiffi
2

p ð± 1; iseisαk ÞT for the
upper band (+) and the lower band (−). Theflat band is topologically trivial
with the Berry curvature vanishing over the whole Brillouin zone. We can
tune the quantum metric by altering the parameter χ in αk. It is straight-
forward to obtain the quantum metric for + band with components
GabðkÞ ¼ χ2a2 sinðkaÞ sinðkbÞ=4, which is the minimal quantum metric
since the orbitals are located at high-symmetry positions. The averaged
quantum metric defined by Eq. (11) is given by Gab ¼ δabχ

2=8 which is
related to the quantummetric length ‘qm ¼ ffiffiffi

2
p

χ=4. In Fig. 3b, we plot the
distribution of Tr½GðkÞ� that respects the C4 symmetry and that Tr½GðkÞ�
reaches its maximum atM/2. Since we are interested in a superconducting
phase, we do not include other possible ground state ansatz. In the Nambu
basis Ψk ¼ ðaA;k"; aB;k"; ayA;�k#; a

y
B;�k#ÞT with an attractive interaction as

Eq. (4), we have the mean-field Hamiltonian Hmf

Hmf ¼
X
k

Ψy
k

h"ðkÞ � μ Δ̂

Δ̂
y �h�#ð�kÞ þ μ

" #
Ψk: ð13Þ

Here, Δ̂ ¼ diag½ΔA;ΔB� is the mean-field pairing order parameters. The
Fermi energyμ is chosen such that the + band is half-filled. The solutions of
the order parameters yieldΔA =ΔB =U/4, which satisfy the uniformpairing
condition.

Due to the absence of band dispersion, the coherence length ξ ¼ffiffiffi
2

p
χ=4 depends solely on the quantummetric. This is illustrated in Fig. 3d,

where the numerical results [Eq. (8)] of pair correlation functions alignwith
ℓqm. To incorporate the finite band dispersion, one can introduce an addi-
tional nearest-hopping term δh ¼ �2t2½cosðkxaÞ þ cosðkyaÞ�λ0 to hs(k),
whereλ0 is the2 × 2 identitymatrix.This termgives rise to abanddispersion
as well as the conventional contribution ξBCS to the total coherence length ξ.
In Fig. 3c, the total coherence length gradually decreases for t2 = 0.01t, 0.02t
when the attractive interaction strength U increases. In particular, ξ
approaches ℓqm in the flat-band limit due to the suppression of ξBCS, as
expected from Eq. (2).

Topological bound of the coherence length
In the previous subsection, we have demonstrated how the quantummetric
gives a lower bound for the superconducting coherence length. We now
consider a system which possesses topological flat bands. As pointed out
previously49,54, the quantummetric has a lower boundwhich is proportional
to the Chern number. Therefore, we expect that there is a finite quantum
metric length which serves as the lower bound of the superconducting
coherence length for a superconductorwith nontrivial spinChernnumbers.

Specifically, the quantum geometric tensor is a positive semidefinite
matrix, and in two spatial dimensions, we have the inequalityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGðkÞp

≥ jF xyðkÞj=2, which implies that a topological band must
necessarily possess a finite quantum metric. According to Eq. (2), this
indicates that there is a lower bound on the coherence length ξ which is
determined by the topology of the band such that

ξ ≥ ‘qm ≥ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCj=4π

p
; ð14Þ

whereCdenotes the (spin)Chernnumber of a bandwith a lattice constanta.
For demonstration, we consider a two-orbital square lattice with short- and
long-range hoppings (Fig. 4a) with a finite spin Chern number55–57. Under
the basis akσ ¼ ðaAkσ ; aBkσÞT , the non-interacting Hamiltonian is
H0 ¼

P
k;σa

y
kσHkakσ , where Hk = ∑ihi(k)λi. Here h0ðkÞ ¼ ð ffiffiffi

2
p � 1Þ

cosð2kxaÞ cosð2kyaÞ=2, hxðkÞ ¼ � ffiffiffi
2

p ½cosðkxaÞ þ cosðkyaÞ�=2, hyðkÞ ¼

a b

Fig. 2 | Bound of the coherence length by quantum metric. a For a conventional
superconductorwith a dispersive band (as illustrated by the insert) without quantum
metric, the coherence length ξ = ℏvF/Δ decreases as Δ (Δ is the superconducting
pairing gap) increases and ξ is not bounded from below. b In the presence of
quantum metric, the superconducting coherence length ξ has a lower bound of ℓqm.
For a superconductor with a narrow band (as illustrated in the insert), the con-
ventional contribution can be suppressed as Δ increases.
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ffiffiffi
2

p ½cosðkxaÞ � cosðkyaÞ�=2, and hzðkÞ ¼ � ffiffiffi
2

p
sinðkxaÞ sinðkyaÞ. The λi

are the Pauli matrices on the orbital basis. Importantly, the lowest band is
nearly flat with a spin Chern number C = 2 (see Fig. 4b). The bandwidth is
~1% of the total band gap.

In Fig. 4c, we depict the distribution of Tr½GðkÞ�, which exhibits C4

symmetry and has a large quantum metric at X/2 and points connected
by symmetry. To demonstrate the effect of the nontrivial Chern number,
in the mean-field calculations, we assume the flat band is half-filled for
simplicity. The uniform pairing condition is also satisfied as ΔA = ΔB = Δ.
Furthermore, we have calculated the Cooper pair correlation functions
and extracted the coherence length from Eq. (8), which exhibits a
decreasing trend as the band pairing potential Δ increases, as shown in
Fig. 4d. Especially, in the limit of large Δ, the coherence length ξ con-

verges to ~
ffiffiffiffiffiffiffiffiffiffi
detG4

p
which is larger than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCj=4π

p
a as predicted by Eq.

(14). This result clearly demonstrates how the superconducting coher-
ence length is related to the quantum geometry (both the quantum
metric and the topology) of the relevant band.

Application to Moiré materials
The graphene-based moiré systems provide versatile platforms to explore
the exotic phenomena related to the flat bands58–67. In the superconducting
graphene-based moiré family14, the quantum metric effect is indeed very
crucial. Particularly, the quantum metric plays a significant role in deter-
mining the coherence length in magic-angle twisted bilayer graphene
(MATBG) with twisted angle θ ≈ 1.08°. To provide a qualitative estimation

of the impact of the quantummetric, we employ the Bistritzer–MacDonald
model to elucidate the significance of the quantummetric in the context of
graphene-based moiré materials68. We also assume the presence of an s-
wave superconductingphase.As shown inFig. 5, the quantummetric length
ℓqm = 1.2LM ≈ 13 nm. Here, LM ≈ a0/θ represents themoiré lattice constant.
By employing the self-consistent mean-field study (in Supplementary
Note 4), we calculate the total coherence length using Eq. (8) to take into
account the band dispersion. Using the interaction strength U = 0.6meV,
which givesTc ≈ 1.7 K,we obtain a conventional contribution of ~3 nmand
ℓqm ~ 13 nm at θ = 1.08°. Therefore, the total superconducting coherence
length given by Eq. (2), is indeed dominated by the quantum metric
contribution.

A large family of moiré systems exhibit superconductivity, such as
magic-angle twisted trilayer graphene (MATTG)13 and twisted double-
bilayer graphene (TDBG)12. Similar toMATBG, the quantummetric effects
cannot be neglected, as shown in Fig. 5. For MATTG, ℓqm = 1.2LM, and for
TDBG, ℓqm = 0.5LM. The calculations of ℓqm in Fig. 5 aremade by averaging
the quantummetric over the moiré Brillouin zone without considering the
quasiparticle energy in Eq. (11). Notably, the flat band in TDBG carries a
non-zero valley Chern number C = 2, leading to a topology-bound coher-
ence length, as discussed previously. We focus on the quantum metric
within a single band, while the generalization to multiple nearly degenerate
flat bands consists of replacing the one-band quantummetric with the non-
abelian quantum metric69,70. The quantum metric length calculated for the
moiré systems is a qualitative estimation because of the limitations of the
continuum model and the simple s-wave pairing assumption. It will be an
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open question of the role that quantum metric plays in unconventional
superconductivity for moiré systems.

Conclusion
In thiswork,wehighlight that an intrinsic length scale, ℓqm, derived from the
quantum metric, gives rise to an anomalous contribution of the coherence
length in superconductors. Particularly in the case of flat bands, ℓqm plays a
dominant role in determining the length scale of physical quantities, such as
the superconducting coherence length. This length scale is likely also related
to the size of vortices, Andreev bound states etc.We propose that our theory
may also be applicable toquantumorderedphase inflat-band systems, since
ℓqm is derived fromthequantumgeometryof thebandand is independentof
the interaction-driven order parameter. Furthermore, it would also be
interesting to explore potential extensions of ℓqm to the physical properties
of other ordered states (such as ferromagnetic and antiferromagnetic states)
with flat bands and quantum metric.

Methods
Mean-field theory and Gor’kov Green function. For a mean-field study, we
can decouple the interaction term Hint in Eq. (4) with pairing order para-
meters Δα ¼ �Uhâiα#âiα"i to yield a mean-field Hamiltonian Hmf

Hmf ¼
X
k

Ψy
kðĥ� τz þ ReΔ̂� τx þ ImΔ̂� τyÞΨk ð15Þ

where the Ψk is the spinor with components ðΨkÞα" ¼ aα"ðkÞ and
ðΨkÞα# ¼ ayα#ð�kÞ. Here aασ is a Fermion operator on the orbital basis and
τx,y,z are the Pauli matrices. The ĥ is the matrix with elements ðĥÞαβ ¼
hαβðkÞ � μδαβ and the pairing matrix Δ̂ has elements ðΔ̂Þαβ ¼ Δαδαβ.
Within the mean-field Hamiltonian, we can define the Green function

Ĝαα0;σσ 0 ðiωn; kÞ ¼ hðψkÞασðiωnÞðψy
kÞα0σ 0 ðiωnÞi with

Ĝðiωn; kÞ ¼
1

iωn � ðĥ� τz þ ReΔ̂� τx þ ImΔ̂� τyÞ
: ð16Þ

where ωn = (2n+ 1)πkBT is the Matsubara frequency. Then one may
evaluate the pairing correlation functionCðr; r0Þwith theGreen function for
amulticomponent fermionaασ. For an s-wave superconductor,we expect an
exponential decay behavior in Cðr; r0Þ as a function of jr � r0j.

On the other hand, we apply a mean-field theory to the effective
two-band model after the projection. For a superconducting phase,
we can introduce an s-wave pairing order parameter Δ ¼
� U

N

P
khc#ð�kÞc"ðkÞi; and set Δ to be real via fixing the gauge. Here

cσ is a Fermion operator on the flat band. Then we can have a mean
field Hamiltonian

Hmf ¼
X
k

ψy
kf½ϵðkÞ � μ�τz þ Δτxgψk; ð17Þ

where ψk ¼ ½ c"ðkÞ; cy#ð�kÞ �T is the Nambu spinor. One can directly
extract the Green’s function G for the band fermions as

Gðiωn; kÞ ¼
�iωnτ0 � ½ϵðkÞ � μ�τz � Δτx

ω2
n þ ½ϵðkÞ � μ�2 þ Δ2 ; ð18Þ

In evaluating physical quantities such as the pairing correlation function,
one should first project the observables onto an isolated band, and then
apply Wick’s theorem via Gor’kov’s Green function. The projection helps
uncover the role of quantum metric in physical quantities such as the
coherence length.
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Fig. 5 | A list of the moiré band structures, quantum metric, and geometric
contributions of the coherence length ℓqm for magic-angle twisted bilayer gra-
phene (MATBG), magic angle twisted trilayer graphene (MATTG) and twisted
double bilayer graphene (TDBG). For both MATBG and MATTG, the quantum
metric is plotted for the highest valence band, and it exhibits divergence near the K

points. In TDBG, an electric field potential of V = 40 meV is applied, leading to flat
bands near charge neutrality with Chern number C = ±2. The quantum metric is
plotted for the lowest conduction band. In evaluating ℓqm, we ignore the band
dispersion.
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Data availability
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