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Anomalous coherence length in
superconductors with quantum metric

M| Check for updates

Jin-Xin Hu, Shuai A. Chen® < & K. T. Law ®

The coherence length is the fundamental length scale of superconductors which governs the sizes of
Cooper pairs, vortices, Andreev bound states, and more. In BCS theory, the coherence length is
&pcs = Ave/A, where ve is the Fermi velocity and A is the pairing gap. It is clear that increasing A will
shorten égcs. In this work, we show that the quantum metric, which is the real part of the quantum
geometric tensor, gives rise to an anomalous contribution to the coherence length. Specifically,

£=

\/Eacs + ng for a superconductor where €., is the quantum metric contribution. In the flat-band

limit, ¢ does not vanish but is bound below by £,,,. We demonstrate that under the uniform pairing
condition, £qm is controlled by the quantum metric of minimal trace in the flat-band limit. Physically, the
Cooper pair size of a superconductor cannot be squeezed down to a size smaller than £, which is a
fundamental length scale determined by the quantum geometry of the wave functions. Lastly, we
compute the quantum metric contributions for the family of superconducting moiré graphene
materials, demonstrating the significant role played by quantum metric effects in these narrow-band

superconductors.

Bardeen—Cooper-Schriffer (BCS) theory' of superconductivity stands as
one of the most successful and influential theories in modern physics. It
offers a mean-field, yet non-perturbative and microscopic framework for
understanding superconductivity. It has been very successful in
describing a large number of superconductors”™. Deviations from the
BCS theory are not unusual, which are often attributed to strong inter-
action effects™. Recently, the observations of superconductivity in twis-
ted bilayer graphene’™"" and related graphene family'*""* hinted that a new
theory is needed to describe superconductors with nearly flat bands. It
was observed in a recent experiment'' that some important physical
quantities deviate greatly from BCS predictions and the microscopic
origins behind them are not yet clear.

For example, the BCS superconducting coherence length &pcs is
expressed as /vg/A, where vr is the Fermi velocity and A is the pairing gap.
When the moiré band of twisted bilayer graphene is nearly flat with
vp=10’m/s and A = 0.2 meV, &g is estimated to be around 3 nm which is
more than one order of magnitude shorter than the values measured using
upper critical field measurements''. Furthermore, the low Fermi velocity (or
equivalently, large effective mass) should lead to a low superfluid stiffness.
This results in an expected Berezinskii-Kosterlitz—Thouless transition
temperature much lower than the transition temperature measured at
optimal doping'’. It had been pointed out by previous works that the
quantum metric'>'® of the flat bands, which is the real part of the quantum
geometric tensor, is essential in sustaining a supercurrent'”*. Apart from the
investigations of superfluid weight'*™*, the quantum geometry affects other
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physical quantities such as the intrinsic nonlinear transport
electron-phonon coupling™.

In recent work, by deriving the Ginzburg-Landau theory for an exactly
flat band (with zero bandwidth)™, we pointed out that £ is determined by the
quantum metric of the Bloch wave function which is independent of the
interaction strength. This contradicts the intuition that stronger attractive
interactions between electrons generally result in a smaller Cooper pair size
and shorter coherence length, as described by the BCS theory.

Explicitly, considering the Bloch states of a band represented by |u(k) ),
the quantum geometric tensor &***' is

&, = (9,u(k)|0,u(k)) — (9,u(k)|u(k)){u(k)|o,u(k)). 0

Here, a and b represent the momentum directions. The quantum geometric
tensor can be decomposed into real and imaginary partsas & = G — iF /2,
where the real part G is the quantum metric and the imaginary part F is the
Berry curvature. Berry curvature arises from the phase difference between
adjacent Bloch states and characterizes the band topology of materials* .
The study of the physical consequences of the Berry curvature has been one
of the central topics in modern physics. On the other hand, the effect of
quantum metric, which measures the distance between two quantum
states, is much less studied. It was pointed out that the quantum
metric provides the size (or the so-called quadratic spread) £y, of the
optimally localized Wannier state of a band”, where £, = v/detG.
Here, G, defined in Eq. (11), is the weighted average of the quantum metric
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of the Bloch states within a band. The mathematical definition of £, which
we call the quantum metric length, measures the minimal spread of the
Wannier functions, is schematically illustrated in Fig. 1. However, the
impact of the quantum metric length £, on physical quantities was not
clear. Until very recently, the Ginzburg-Landau theory™ shown that at zero
temperature, & = £, for an exactly flat band, which is independent of the
interaction strength.

In realistic materials such as twisted bilayer graphene and related moiré
flat-band superconductors, the bands are nearly flat, but the dispersion is
still finite. One fundamental question arises: What is the interplay between
the quantum metric effect and the finite dispersion of the band? In this work,
we demonstrate that

E =\ fécg + fém . (2)

In other words, there is an anomalous quantum metric contribution to the
superconducting coherence length (recall that &zcs=7vp/A). In the flat-
band limit with vanishing vy, the quantum metric effect can be significant
and even dominant. We show that this is indeed the case for several moiré
superconductors with nearly flat bands''™"". Our result gives a possible
explanation for why the observed superconducting coherence length in the
recent experiment'' is much larger than expected. It is worth noting that the
coherence length is lattice-geometry independent while the quantum metric
is lattice-geometry dependent’*’. To resolve the discrepancy, we apply the
uniform pairing condition when evaluating the pair correlators and then
demonstrate that £, is related to the quantum metric of the minimal trace".
We delineate the physical picture that, in the presence of the quantum
metric, increasing the attractive interaction strength between electrons can
only reduce the BCS part of the coherence length and squeeze the Cooper
pair size down to the quantum metric length €5, but not further, as
demonstrated in Fig. 2.

Additionally, for a topological flat band with nontrivial (spin) Chern
number, &> a+/|C|/4m, where a is the lattice constant. At the end of this
work, we show that the quantum metric length £y, is important for the
superconducting moiré graphene family. As the new length scale gy,
defined by the quantum metric is a fundamental property of the band
structure and its importance should be manifested beyond superconducting
phenomena, we expect that £y, also plays a crucial role in other interaction-
driven ordered states (such as the magnetic or density-wave states’') in
flat-band systems.

Results

Quantum metric and coherence length

We investigate the interplay between quantum metric and band dispersion
in superconductors where superconductivity appears within an isolated
narrow band. To begin with, we describe our formalism from a multi-orbital
Hamiltonian with two components: the non-interacting part Hy and the

Fig. 1 | The schematic illustration of the quantum metric length £,,,,. In flat-band
superconductors with quantum metric, the size (or the quadratic spread) of the
optimally localized Wannier functions is £gm. £qm is also the minimal coherence
length (or the minimal size of the Cooper pairs) of the superconductor.

attractive interacting part H;,,, which read

T
Hy= ) b olioglipe, 3)
ij,af,0
ot
Hiy = — Z Ut 1 i) Gig) Giat s 4)
i
where h7 ¢ is the hopping integral and U denotes the on-site attractive

interaction strength. a;,, annihilates a fermion with spin ¢ in the orbital « at
the site i (we may call g;,,, orbital fermions). Considering an isolated band
near the Fermi energy separated from other bands with a large band gap, we
can have an effective one-band description. For s-wave superconducting
phase, it is common to introduce orbital-dependent order parameters
Ay = —U(a;40i01). The mean-field ground state has been extensively
investigated, particularly with regard to the superfluid weight determined by
the quantum metric"’. It is possible to project the orbital fermion a,,, onto
the fermion ¢, of the isolated band, which is referred as the band fermion. In
particular, we employ the following projection scheme

1 ik (r. #
Aigoe — \/_ﬁ ; elk( 5 uao(k)cu(k)7 (5)

where we explicitly keep the orbital positions {d,} within a unit cell. The
Bloch state u,,(k) of the isolated band with energy e,(k) satisfies the time-
reversal symmetry u, (k) = u,4 (k) = 4 (—k). The projection in Eq. (5)
yields an effective one-band mean-field Hamiltonian H,g

H, = ij €5 (R)ch (kye, (k) + [Ac] (k)e| (—k) + h.c] )

with A = 1/NY_ 1A |us(k)[*. The projected mean-field Hamiltonian Hyyy is
independent of the choice of orbital positions {d,}. To facilitate the
theoretical analysis, we can adopt the uniform pairing condition and the
minimal quantum metric”'. The former assumes that the pairing potentials
are the same for different orbitals, and the latter is specific to orbital positions
corresponding to the minimal trace of quantum metric. Then we can define
the Cooper pair operator A(q) =13, e " #%)q, a, . which is
formulated after projection as

@) = Ak aoRe (R K + 0. ”

Here the form factor A(k + q,k) = > u’(k + q)u,(k) appears as the
overlap between two Bloch states. Then we can evaluate the pairing corre-
lator C(r) = Y qe_i‘l'r (A(q)A'(g)) to deduce the coherence length. The
pairing correlator C(r) is expected to decay exponentially as a function of ||
at zero temperature for an isotropic system. In other words, C(r) ~ ¢~ "/¢
and the decay length & is the superconducting coherence length™. As shown
in Supplementary Note 2, C(r) = 3, qe*"q"./\/l(q), where

M@ =33 1K+ 4. DPGylie, K+ 0Gy(—iv,, B (®)
nk

Here, Gy(iw,, k) is the normal Gor'’kov’s Green function of the band fer-
mions ¢, and w, = (2n + 1)zT is the Matsubara frequency, as defined in
“Methods” section. Then we can extract the coherence length by & =
! dzM(q)l

2MO) 7 g
emphasize that the validity of the expression in Eq. (8) hinges on the uni-
form pairing condition, specifically in relation to the Bloch states of the
minimal quantum metric’'. Without these conditions, the coherence length
calculated using Eq. (8) will be overestimated, and additional details can be
found in Supplementary Note 2. To see how the quantum metric affects the

with g = |q| at zero temperature. It is essential to
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Fig. 2 | Bound of the coherence length by quantum metric. a For a conventional
superconductor with a dispersive band (as illustrated by the insert) without quantum
metric, the coherence length & = Avy/A decreases as A (A is the superconducting
pairing gap) increases and & is not bounded from below. b In the presence of
quantum metric, the superconducting coherence length & has a lower bound of £,
For a superconductor with a narrow band (as illustrated in the insert), the con-
ventional contribution can be suppressed as A increases.

coherence length &, the form factor A enters M(q) such that

A+, K =1-3 G(k)g,q, + O). ©)
ab

The matrix G, is the quantum metric of Bloch states, namely the real part of
quantum geometric tensor & in Eq. (1),

Gap(k) = Re[,,(K)]. (10)

By theoretically evaluating the pairing correlator, we can obtain the
coherence length in Eq. (2) as & = fxzzcs + éflm. In fact, the structure of the

coherence length in Eq. (2) is general and works regardless of the uniform
pairing condition and the minimal quantum metric. The anomalous

coherence length is £, = \/detG,,, where G, is the weighted average of
the quantum metric of the band, which is defined by

_ SiGuk)/e(k)
S SRV

where &(k) is the dispersion of the Bogoliubov quasiparticle. In the limit of a
flat dispersion &(k), the quantum metric length £y, is reduced to the length
scale of the minimal quantum metric. The above discussions on the
coherencelength in Eq. (2) can be easily generalized to an anisotropic system
with a non-circular Fermi surface where the quantum metric length
becomes spatially dependent due to finite off-diagonal elements in the
quantum metric.

To understand the physical consequence of the anomalous coherence
length, we note that for a conventional superconductor, & = &5 decreases as
the interaction strength (or equivalently A) increases, as schematically
shown in Fig. 2a. However, in the presence of the quantum metric, &
decreases as A increases, but approaches the quantum metric length £, (see
Fig. 2b). In the flat-band limit, the coherence length (at zero temperature) is
independent of the interaction strength and given by £;,,. In the presence of
finite quantum metric, interactions cannot squeeze the Cooper pairs to a size
smaller than £y,

Ql

(11

Topologically trivial flat-band model

To support the analytical results mentioned above, we employ the mean-
field theory on a microscopic model, which features exactly flat bands
without dispersion””. The normal state Hamiltonian h(k) for electrons

with spin index s reads

hy(k) = —t[A, sin(ay) + s)ty cos(ay,)]. (12)
Here, oy, = y[cos(k,a) + cos(kya)] and A, are the Pauli matrices in orbital
basis. s = +1 denotes the spins  and |. The hy(k) has a pair of perfectly flat
bands at energies €; = =t which are depicted in Fig. 3a (solid lines) and the
corresponding wave functions are |u, ) = 1/v/2(%1, ise“)" for the
upper band (+) and the lower band (—). The flat band is topologically trivial
with the Berry curvature vanishing over the whole Brillouin zone. We can
tune the quantum metric by altering the parameter y in ay. It is straight-
forward to obtain the quantum metric for + band with components
G(k) = y*a*sin(k,) sin(k,) /4, which is the minimal quantum metric
since the orbitals are located at high-symmetry positions. The averaged
quantum metric defined by Eq. (11) is given by G, = 8,,x>/8 which is
related to the quantum metric length £, = /2y /4. In Fig. 3b, we plot the
distribution of Tr[G(k)] that respects the C, symmetry and that Tr[G(k)]
reaches its maximum at M/2. Since we are interested in a superconducting
phase, we do not include other possible ground state ansatz. In the Nambu
basis ¥y = (a4 k1, 9p g4+ aL_ki, a;_H)T with an attractive interaction as
Eq. (4), we have the mean-field Hamiltonian H,,,¢

hy(k) — u A
Hy=S 00 1 Y (13
% A —h)(=k) +

Here, A = diag[A,, Ag] is the mean-field pairing order parameters. The
Fermi energy u is chosen such that the + band is half-filled. The solutions of
the order parameters yield A4 = Ag = U/4, which satisfy the uniform pairing
condition.

Due to the absence of band dispersion, the coherence length & =
v/2x/4 depends solely on the quantum metric. This is illustrated in Fig. 3d,
where the numerical results [Eq. (8)] of pair correlation functions align with
£qm- To incorporate the finite band dispersion, one can introduce an addi-
tional nearest-hopping term 8h = —2t,[cos(k.a) + cos(k,a)]A, to hy(k),
where Ay is the 2 x 2 identity matrix. This term gives rise to a band dispersion
as well as the conventional contribution &g to the total coherence length &.
In Fig. 3¢, the total coherence length gradually decreases for t, = 0.01t, 0.02¢
when the attractive interaction strength U increases. In particular, &
approaches £y, in the flat-band limit due to the suppression of &pcg, as
expected from Eq. (2).

Topological bound of the coherence length
In the previous subsection, we have demonstrated how the quantum metric
gives a lower bound for the superconducting coherence length. We now
consider a system which possesses topological flat bands. As pointed out
previously”*, the quantum metric has a lower bound which is proportional
to the Chern number. Therefore, we expect that there is a finite quantum
metric length which serves as the lower bound of the superconducting
coherence length for a superconductor with nontrivial spin Chern numbers.
Specifically, the quantum geometric tensor is a positive semidefinite
matrix, and in two spatial dimensions, we have the inequality
\/detG(k) = |F (k)| /2, which implies that a topological band must
necessarily possess a finite quantum metric. According to Eq. (2), this
indicates that there is a lower bound on the coherence length & which is
determined by the topology of the band such that

Ezéqmza\/lCl/Mr,

where C denotes the (spin) Chern number of a band with a lattice constant a.
For demonstration, we consider a two-orbital square lattice with short- and
long-range hoppings (Fig. 4a) with a finite spin Chern number™ . Under
the basis ay, = (a4, apo) > the non-interacting Hamiltonian is
Hy =>4 .0, Hgag,» where Hy = 2 hk)A. Here hy(k) = (V2 —1)
cos(2k,a) cos(2k,a)/2, h(k) = —/2[cos(k,a) + cos(k,a)l/2, h,(k) =

(14)
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Fig. 3 | Quantum metric and coherence length for the topological trivial flat-
band model. a The energy spectrum of the flat-band model in ref. 33. The solid
(dashed) lines denote ¢, = 0 and t, = 0.02¢, respectively. t, denotes the nearest
hopping which makes the band dispersive. b The profiles of the quantum metric
Tr[G] of the conduction band in the first Brillouin zone. The color bar denotes the
magnitude of Tr[G]. ¢ The calculated coherence length & for y = 5 as a function of the

attractive interaction U/t. The red, purple, and blue denote the cases of t, = 0,

t, = 0.01t and t, = 0.02t, respectively. The theoretical bound €y, is indicated by a
dashed green line which coincides with the red one. d The quantum metric
dependence of £ as the parameter y varies when U = 0.4t. The dashed light blue line
marks the length scale £,,. All calculations are conducted at kg T=0.001¢ and at half-
filling u = ¢.
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Fig. 4 | Quantum metric and coherence length for topological flat-band model.
a A two-orbital square lattice with short- and long-range hoppings, b the electronic
band structure, ¢ the quantum metric distribution of the lower flat band, and

d coherence length &v.s. pairing gap A. In (a), the inter-orbital nearest hopping, intra-

d

Tr{G](a?)
W T M) 0.45
w " 0.6

04 <
G “% W 0.4 —
402 JVIC|/4m V/detG

- . alo
I o3sL . . . .
X 0.05 0.1 0.15 0.2 025 03

A

orbital next-nearest-neighbor and fifth-nearest-neighbor hoppings are labeled. In
(b), the lower band (purple) has nearly zero bandwidth with the Chern number
C=2.1In(d), the coherence length is extracted from the pair correlation function and
it is bounded by a Chern number, which is guided by the dashed green line.

V2[cos(k,a) — cos(kya)] /2, and h,(k) = —~/2sin(k,a) sin(kya). The A;
are the Pauli matrices on the orbital basis. Importantly, the lowest band is
nearly flat with a spin Chern number C = 2 (see Fig. 4b). The bandwidth is
~1% of the total band gap.

In Fig. 4c, we depict the distribution of Tr[G(k)], which exhibits C,
symmetry and has a large quantum metric at X/2 and points connected
by symmetry. To demonstrate the effect of the nontrivial Chern number,
in the mean-field calculations, we assume the flat band is half-filled for
simplicity. The uniform pairing condition is also satisfied as A4 = Ag = A.
Furthermore, we have calculated the Cooper pair correlation functions
and extracted the coherence length from Eq. (8), which exhibits a
decreasing trend as the band pairing potential A increases, as shown in
Fig. 4d. Especially, in the limit of large A, the coherence length & con-

verges to ~4/det G which is larger than +/|C|/4na as predicted by Eq.
(14). This result clearly demonstrates how the superconducting coher-
ence length is related to the quantum geometry (both the quantum
metric and the topology) of the relevant band.

Application to Moiré materials

The graphene-based moiré systems provide versatile platforms to explore
the exotic phenomena related to the flat bands®***’. In the superconducting
graphene-based moiré family", the quantum metric effect is indeed very
crucial. Particularly, the quantum metric plays a significant role in deter-
mining the coherence length in magic-angle twisted bilayer graphene
(MATBG) with twisted angle 6 = 1.08°. To provide a qualitative estimation

of the impact of the quantum metric, we employ the Bistritzer-MacDonald
model to elucidate the significance of the quantum metric in the context of
graphene-based moiré materials®’. We also assume the presence of an s-
wave superconducting phase. As shown in Fig. 5, the quantum metric length
£qm = 1.2Lp; = 13 nm. Here, L, = ay/0 represents the moiré lattice constant.
By employing the self-consistent mean-field study (in Supplementary
Note 4), we calculate the total coherence length using Eq. (8) to take into
account the band dispersion. Using the interaction strength U= 0.6 meV,
which gives T, = 1.7 K, we obtain a conventional contribution of ~3 nm and
£qm ~ 13 nm at §=1.08°. Therefore, the total superconducting coherence
length given by Eq. (2), is indeed dominated by the quantum metric
contribution.

A large family of moiré systems exhibit superconductivity, such as
magic-angle twisted trilayer graphene (MATTG)" and twisted double-
bilayer graphene (TDBG)"”. Similar to MATBG, the quantum metric effects
cannot be neglected, as shown in Fig. 5. For MATTG, Cqm =12Ly and for
TDBG, £q, = 0.5Ly. The calculations of £y, in Fig. 5 are made by averaging
the quantum metric over the moiré Brillouin zone without considering the
quasiparticle energy in Eq. (11). Notably, the flat band in TDBG carries a
non-zero valley Chern number C = 2, leading to a topology-bound coher-
ence length, as discussed previously. We focus on the quantum metric
within a single band, while the generalization to multiple nearly degenerate
flat bands consists of replacing the one-band quantum metric with the non-
abelian quantum metric®”’. The quantum metric length calculated for the
moiré systems is a qualitative estimation because of the limitations of the
continuum model and the simple s-wave pairing assumption. It will be an
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Fig. 5 | A list of the moiré band structures, quantum metric, and geometric
contributions of the coherence length £,,, for magic-angle twisted bilayer gra-
phene (MATBG), magic angle twisted trilayer graphene (MATTG) and twisted
double bilayer graphene (TDBG). For both MATBG and MATTG, the quantum
metric is plotted for the highest valence band, and it exhibits divergence near the K

points. In TDBG, an electric field potential of V' =40 meV is applied, leading to flat
bands near charge neutrality with Chern number C = +2. The quantum metric is
plotted for the lowest conduction band. In evaluating £, we ignore the band
dispersion.

open question of the role that quantum metric plays in unconventional
superconductivity for moiré systems.

Conclusion

In this work, we highlight that an intrinsic length scale, Lo derived from the
quantum metric, gives rise to an anomalous contribution of the coherence
length in superconductors. Particularly in the case of flat bands, £y, plays a
dominant role in determining the length scale of physical quantities, such as
the superconducting coherence length. This length scale is likely also related
to the size of vortices, Andreev bound states etc. We propose that our theory
may also be applicable to quantum ordered phase in flat-band systems, since
£qm is derived from the quantum geometry of the band and is independent of
the interaction-driven order parameter. Furthermore, it would also be
interesting to explore potential extensions of £u, to the physical properties
of other ordered states (such as ferromagnetic and antiferromagnetic states)
with flat bands and quantum metric.

Methods

Mean-field theory and Gor’kov Green function. For a mean-field study, we
can decouple the interaction term H;, in Eq. (4) with pairing order para-
meters A, = —U(dy, d;4) to yield a mean-field Hamiltonian H¢

H = Z‘I’;(ﬁ ®7T,+ReA® 7, +ImA ® 7,) ¥ (15)
k

where the ‘I’k is the spinor with components (¥y),, = a,(k) and
(Yo, = a4 ¢( k). Here a,, is a Fermion operator on the orb1ta1 basis and
T4y, are the Pauli matrices. The h is the matrix with elements (h)aﬁ =

hypg(k) — ué,5 and the pairing matrix A has elements (A)“ﬂ = A,0,p-
Within the mean-field Hamiltonian, we can define the Green function

Gaat 00 (i@, k) = () o (i@, ) (WD), (i@,)) With

. 1
G(iw,, k) = - = ~ = - (16)
iw,—(h®71,+ReA® 7, +ImA®T))
where w,=(2n+ 1)mkgT is the Matsubara frequency. Then one may

evaluate the pairing correlation function C(r, #’) with the Green function for
amulticomponent fermion a,,. For an s-wave superconductor, we expect an
exponential decay behavior in C(r, ') as a function of |r — r'|.

On the other hand, we apply a mean-field theory to the effective
two-band model after the projection. For a superconducting phase,
we can introduce an s-wave pairing order parameter A =
_%Zk«d(_k)%(k))v and set A to be real via fixing the gauge. Here
¢, is a Fermion operator on the flat band. Then we can have a mean
field Hamiltonian

— T + ATy,

Hye = > yille(®) (17)
k

where vy = [c,(k), ci(—k) ]T is the Nambu spinor. One can directly
extract the Green’s function G for the band fermions as

—iw, T, —
w? + [e(k) —

[e(k) — p]r, — Az

Gliw,, k) = P4 =, (18)

In evaluating physical quantities such as the pairing correlation function,
one should first project the observables onto an isolated band, and then
apply WicK’s theorem via Gor’kov’s Green function. The projection helps
uncover the role of quantum metric in physical quantities such as the
coherence length.
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Data availability
The data generated from our codes that support the findings of this study are
available from the corresponding author upon reasonable request.

Received: 6 November 2024; Accepted: 24 December 2024;
Published online: 14 January 2025

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of
superconductivity. Phys. Rev. 106, 162 (1957).

Carbotte, J. Properties of boson-exchange superconductors. Rev.
Mod. Phys. 62, 1027 (1990).

Sigrist, M. & Ueda, K. Phenomenological theory of unconventional
superconductivity. Rev. Mod. Phys. 63, 239 (1991).

Blatter, G., Feigel’'man, M. V., Geshkenbein, V. B., Larkin, A. |. &
Vinokur, V. M. Vortices in high-temperature superconductors. Rev.
Mod. Phys. 66, 1125 (1994).

Stewart, S. G. Heavy-fermion systems. Rev. Mod. Phys. 56, 755
(1984).

Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J.
From quantum matter to high-temperature superconductivity in
copper oxides. Nature 518, 179-186 (2015).

Cao, Y. et al. Unconventional superconductivity in magic-angle
graphene superlattices. Nature 556, 43-50 (2018).

Yankowitz, M. et al. Tuning superconductivity in twisted bilayer
graphene. Science 363, 1059-1064 (2019).

Arora, H. S. et al. Superconductivity in metallic twisted bilayer
graphene stabilized by wse2. Nature 583, 379-384 (2020).

Oh, M. et al. Evidence for unconventional superconductivity in twisted
bilayer graphene. Nature 600, 240-245 (2021).

Tian, H. et al. Evidence for Dirac flat band superconductivity enabled
by quantum geometry. Nature 614, 440-444 (2023).

Liu, X. etal. Tunable spin-polarized correlated states in twisted double
bilayer graphene. Nature 583, 221-225 (2020).

Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P.
Tunable strongly coupled superconductivity in magic-angle twisted
trilayer graphene. Nature 590, 249-255 (2021).

Park, J. M. et al. Robust superconductivity in magic-angle multilayer
graphene family. Nat. Mater. 21, 877-883 (2022).

Hu, X., Hyart, T., Pikulin, D. I. & Rossi, E. Geometric and conventional
contribution to the superfluid weight in twisted bilayer graphene.
Phys. Rev. Lett. 123, 237002 (2019).

Julku, A., Peltonen, T. J., Liang, L., Heikkilg, T. T. & Térma, P.
Superfluid weight and berezinskii-kosterlitz-thouless transition
temperature of twisted bilayer graphene. Phys. Rev. B 101, 060505
(2020).

Peotta, S. & Térma, P. Superfluidity in topologically nontrivial flat
bands. Nat. Commun. 6, 8944 (2015).

Toérma, P., Peotta, S. & Bernevig, B. A. Superconductivity,
superfluidity and quantum geometry in twisted multilayer systems.
Nat. Rev. Phys. 4, 528-542 (2022).

Julku, A., Peotta, S., Vanhala, T. I., Kim, D.-H. & Térm&, P. Geometric
origin of superfluidity in the lieb-lattice flat band. Phys. Rev. Lett. 117,
045303 (2016).

Liang, L. et al. Band geometry, berry curvature, and superfluid weight.
Phys. Rev. B 95, 024515 (2017).

Liang, L., Peotta, S., Harju, A. & Torma, P. Wave-packet dynamics of
bogoliubov quasiparticles: quantum metric effects. Phys. Rev. B 96,
064511 (2017).

Iskin, M. Berezinskii-kosterlitz-thouless transition in the time-
reversal-symmetric hofstadter-hubbard model. Phys. Rev. A 97,
013618 (2018).

Iskin, M. Quantum-metric contribution to the pair mass in
spin-orbit-coupled Fermi superfluids. Phys. Rev. A 97, 033625
(2018).

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Iskin, M. Exposing the quantum geometry of spin-orbit-coupled Fermi
superfluids. Phys. Rev. A 97, 063625 (2018).

Mondaini, R., Batrouni, G. G. & Grémaud, B. Pairing and
superconductivity in the flat band: Creutz lattice. Phys. Rev. B 98,
155142 (2018).

Iskin, M. Origin of flat-band superfluidity on the Mielke checkerboard
lattice. Phys. Rev. A 99, 053608 (2019).

Xie, F., Song, Z., Lian, B. & Bernevig, B. A. Topology-bounded
superfluid weight in twisted bilayer graphene. Phys. Rev. Lett. 124,
167002 (2020).

Verma, N., Hazra, T. & Randeria, M. Optical spectral weight, phase
stiffness, and t ¢ bounds for trivial and topological flat band
superconductors. Proc. Natl. Acad. Sci. 118, 2106744118 (2021).
Herzog-Arbeitman, J., Peri, V., Schindler, F., Huber, S. D. & Bernevig,
B. A. Superfluid weight bounds from symmetry and quantum
geometry in flat bands. Phys. Rev. Lett. 128, 087002 (2022).
Kitamura, T., Yamashita, T., Ishizuka, J., Daido, A. & Yanase, Y.
Superconductivity in monolayer fese enhanced by quantum
geometry. Phys. Rev. Res. 4, 023232 (2022).

Huhtinen, K.-E., Herzog-Arbeitman, J., Chew, A., Bernevig, B. A. &
Toérma, P. Revisiting flat band superconductivity: dependence on
minimal quantum metric and band touchings. Phys. Rev. B 106,
014518 (2022).

Mao, D. & Chowdhury, D. Upper bounds on superconducting and
excitonic phase stiffness for interacting isolated narrow bands. Phys.
Rev. B 109, 024507 (2024).

Hofmann, J. S., Berg, E. & Chowdhury, D. Superconductivity, charge
density wave, and supersolidity in flat bands with a tunable quantum
metric. Phys. Rev. Lett. 130, 226001 (2023).

Mao, D. & Chowdhury, D. Diamagnetic response and phase stiffness
for interacting isolated narrow bands. Proc. Natl. Acad. Sci. 120,
2217816120 (2023).

Gao, A. et al. Quantum metric nonlinear hall effect in a topological
antiferromagnetic heterostructure. Science 381, 181-186 (2023).
Wang, N. et al. Quantum-metric-induced nonlinear transport in a
topological antiferromagnet. Nature 621, 487-492 (2023).

Kaplan, D., Holder, T. & Yan, B. Unification of nonlinear anomalous hall
effect and nonreciprocal magnetoresistance in metals by the quantum
geometry. Phys. Rev. Lett. 132, 026301 (2024).

Yu, J. et al. Non-trivial quantum geometry and the strength of
electron—-phonon coupling. Nat. Phys. 20, 1-7 (2024).

Chen, S. A. & Law, K. Ginzburg-landau theory of flat-band
superconductors with quantum metric. Phys. Rev. Lett. 132, 026002
(2024).

Provost, J. & Vallee, G. Riemannian structure on manifolds of quantum
states. Commun. Math. Phys. 76, 289-301 (1980).

Berry, M. V. Quantal phase factors accompanying adiabatic changes.
Proc. R. Soc. Lond. A. Math. Phys. Sci. 392, 45-57 (1984).

Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy
determination of the fine-structure constant based on quantized hall
resistance. Phys. Rev. Lett. 45, 494 (1980).

Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M.
Quantized Hall conductance in a two-dimensional periodic potential.
Phys. Rev. Lett. 49, 405 (1982).

Bellissard, J., van Elst, A. & Schulz-Baldes, H. The noncommutative
geometry of the quantum hall effect. J. Math. Phys. 35, 5373-5451
(1994).

Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev.
Mod. Phys. 82, 3045-3067 (2010).

Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors.
Rev. Mod. Phys. 83, 1057-1110 (2011).

Shapere, A. & Wilczek, F. Geometric Phases in Physics, Vol. 5 (World
Scientific, 1989).

Anandan, J. & Aharonov, Y. Geometry of quantum evolution. Phys.
Rev. Lett. 65, 1697 (1990).

Communications Physics| (2025)8:20


www.nature.com/commsphys

https://doi.org/10.1038/s42005-024-01930-0

Article

49. Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier
functions for composite energy bands. Phys. Rev. B 56, 12847
(1997).

50. Simon, S. H. & Rudner, M. S. Contrasting lattice geometry dependent
versus independent quantities: Ramifications for berry curvature,
energy gaps, and dynamics. Phys. Rev. B 102, 165148 (2020).

51. Han, Z., Herzog-Arbeitman, J., Bernevig, B. A. & Kivelson, S. A.
"quantum geometric nesting" and solvable model flat-band systems.
Phys. Rev. X 14, 041004 (2024).

52. Annett, J. F. Superconductivity, Superfluids and Condensates, Vol. 5
(Oxford University Press, 2004).

53. Hofmann, J. S., Chowdhury, D., Kivelson, S. A. & Berg, E. Heuristic
bounds on superconductivity and how to exceed them. npj Quantum
Mater. 7, 83 (2022).

54. Roy, R. Band geometry of fractional topological insulators. Phys. Rev.
B 90, 165139 (2014).

55. Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with
nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).

56. Yang, S., Gu, Z.-C., Sun, K. & Das Sarma, S. "Topological flat band
models with arbitrary chern numbers”. Phys. Rev. B—Condens.
Matter Mater. Phys. 86, 241112 (2012).

57. Mitscherling, J. & Holder, T. Bound on resistivity in flat-band materials
due to the quantum metric. Phys. Rev. B 105, 085154 (2022).

58. Ledwith, P. J., Tarnopolsky, G., Khalaf, E. & Vishwanath, A. Fractional
Chern insulator states in twisted bilayer graphene: an analytical
approach. Phys. Rev. Res. 2, 023237 (2020).

59. Daliao, Y. et al. Correlation-induced insulating topological phases at
charge neutrality in twisted bilayer graphene. Phys. Rev. X 11,011014
(2021).

60. Song, Z.-D. &Bernevig, B. A. Magic-angle twisted bilayer graphene as
a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601
(2022).

61. Chou, Y.-Z. & Das Sarma, S. Kondo lattice model in magic-angle
twisted bilayer graphene. Phys. Rev. Lett. 131, 026501 (2023).

62. Herzog-Arbeitman, J. et al. Topological heavy fermion principle for flat
(narrow) bands with concentrated quantum geometry. arXiv preprint
arXiv:2404.07253 (2024).

63. Hu, H. et al. Symmetric kondo lattice states in doped strained twisted
bilayer graphene. Phys. Rev. Lett. 131, 166501 (2023).

64. Zhang, X. et al. Polynomial sign problem and topological mott
insulator in twisted bilayer graphene. Phys. Rev. B 107, L241105
(2023).

65. Hu, H., Bernevig, B. A. & Tsvelik, A. M. Kondo lattice model of magic-
angle twisted-bilayer graphene: Hund’s rule, local-moment
fluctuations, and low-energy effective theory. Phys. Rev. Lett. 131,
026502 (2023).

66. Kolar, K., Shavit, G., Mora, C., Oreg, Y. & von Oppen, F. Anderson’s
theorem for correlated insulating states in twisted bilayer graphene.
Phys. Rev. Lett. 130, 076204 (2023).

67. Kwan, Y. H. et al. Kekulé spiral order at all nonzero integer fillings in
twisted bilayer graphene. Phys. Rev. X 11, 041063 (2021).

68. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer
graphene. Proc. Natl. Acad. Sci. USA 108, 12233-12237 (2011).

69. Mera, B. & Mitscherling, J. Nontrivial quantum geometry of
degenerate flat bands. Phys. Rev. B 106, 165133 (2022).

70. Herzog-Arbeitman, J., Chew, A., Huhtinen, K.-E., Torm&, P. &
Bernevig, B. A. Many-body superconductivity in topological flat
bands. arXiv preprint arXiv:2209.00007 (2022).

Acknowledgements

We thank Adrian Po for illuminating discussions. K.T.L. acknowledges the
support of the Ministry of Science and Technology, China, and Hong Kong
Research Grant Council through Grants No. 2020YFA0309600, No.
RFS2021-6S03, No. C6053-23G, No. AoE/P-701/20, No. 16310520, No.
16310219, No. 16307622, and No. 16311424.

Author contributions

K.T.L. and S.C. conceived the project. J.-X.H. performed the major part of the
calculations and analysis. J.-X.H., S.C., and K.T.L. wrote the manuscript with
contributions from all authors. All authors are involved in the discussions.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42005-024-01930-0.

Correspondence and requests for materials should be addressed to
Shuai A. Chen or K. T. Law.

Peer review information This manuscript has been previously reviewed at
another journal that is not operating a transparent peer review scheme. The
manuscript was considered suitable for publication without further review at
Communications Physics. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material
is notincluded in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

Communications Physics| (2025)8:20


https://doi.org/10.1038/s42005-024-01930-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsphys

	Anomalous coherence length in superconductors with quantum metric
	Results
	Quantum metric and coherence length
	Topologically trivial flat-band model
	Topological bound of the coherence length
	Application to Moiré materials

	Conclusion
	Methods
	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




