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Frequency shift caused by nonuniform
field and boundary relaxation in magnetic
resonance and comagnetometers

Check for updates

Xiangdong Zhang 1,2, Jinbo Hu 1, Da-Wu Xiao 1 & Nan Zhao 1

In magnetic resonance experiments, it is widely recognized that a nonuniformmagnetic field can lead
to an increase in the resonance line width, as well as a reduction in sensitivity and spectral resolution.
However, a nonuniform magnetic field can also cause shifts in resonance frequency, which has
received far less attention. In this work, we investigate the frequency shift caused by boundary
relaxation and nonuniformmagnetic field with arbitrary spatial distribution. We find that this frequency
shift is spin-species dependent, implying a systematic error in NMR gyroscopes and
comagnetometers. The first order correction to this systematic error is proportional to the difference of
boundary relaxation rate, and dominates for small cells. In contrast, the third and higher order
corrections arise from the difference of gyromagnetic ratios of spin species, and dominates for large
cells. This insight helps understanding the unexplained isotope shifts in recent NMR gyroscopes and
new physics searching experiments that utilize comagnetometers. Finally, we propose a tool for wall
interaction research based on the frequency shift’s dependency on boundary relaxation.

The nuclear magnetic resonance (NMR) technique has important appli-
cations in many fields, such as biochemistry1,2, medical imaging3,4, inertial
navigation5,6, and new physics detection using comagnetometers7–13. For
gas-phase NMR, the interaction between diffusion effect and nonuniform
magnetic field has been a focus of research for decades. A nonuniform
magnetic field contributes an extra relaxation rate to the diffusive nuclear
spins, which is usually harmful to the precision of an NMR experiment.
Extensive works have been done to analyze this extra relaxation rate in
various scenarios14–24. On the contrary, the frequency shift caused by a
nonuniformmagneticfield is relativelyunderexplored.Anunexpected spin-
species dependent frequency shift caused by a nonuniform magnetic field
can introduce significant systematic error in NMR-based precision mea-
surements that need to suppress themainfieldfluctuation by comparing the
resonance frequencies of different spins. Suchmeasurements recently show
great potential in the exploration of new physics11,12,25–32. So, it is of great
interest to understand how a nonuniform magnetic field affect the reso-
nance frequency of spins.

Nonuniform magnetic fields of different magnitude can result in
significantly different behaviors. With a small nonuniform field, the
structure of the free-induction decay (FID) spectrum is not changed, and
perturbation theory can be used to estimate the frequency shift. This
region is called the fast-diffusion area, meaning that the spins can diffuse
throughout the whole cell before completely decayed. When the field

inhomogeneity is large compared to the diffusion speed, the FID spec-
trum can split due to the symmetry breaking of eigenmodes18,33. This
splitting phenomenon lies in the intermediate regime between fast- and
slow-diffusion limit, and is closely related to the well known edge
enhancement effect34–37. This work focuses on the small nonuniform
field region, as most of the NMR-based precision measurements lie in
this region.

In anearlyworkofCates et al.15, the frequency shiftδωof diffusive spins
filled in a spherical container of radius R is derived by applying the second
order perturbation theory on the Torrey equation:

δω � γR2

10B0
∣∇Bx∣

2 þ ∣∇By∣
2

� �
; ð1Þ

where γ is the gyromagnetic ratio of spins,B0 is the uniformmainfield along
z direction and Bx, By are the transverse fields. This formula is valid for fast-
diffusion andhigh-pressure limit. Similar resultswere also presented in later
works based on the Redfield theory22,38,39 and in this work (Eq. (21)).
Unfortunately, this formula requires the magnetic field to hold an odd-
parity symmetry (see Supplementary Note 1 for the meaning of odd-parity
symmetry). If the odd-parity symmetry is broken, as in many practical
experiments, this formula will underestimate the magnitude of the
frequency shift.
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On the other hand, Sheng et al.40 analyzed the frequency shift due to an
arbitrary nonuniform field by numerical simulation. They expanded the
nonuniformmagnetic field using spherical harmonics and transformed the
Torrey equation into a linear ODE system, which is suitable for numerical
simulation. Through dimensional analysis, the frequency shift caused by a
quadratic gradient field was found to be

δω / γ3G3
2R

10

D2 ; ð2Þ

where D is the diffusion constant and G2 is the strength of quadratic gra-
dient. Due to the dependence on γ and D, this frequency shift will lead to a
systematic error in 3He-129Xe comagnetometer experiments40.Wewill show
later that Eq. (2) is actually the third order perturbation correction of fre-
quency shift for quadratic gradient field (Eq. (25)).

Isotope shift, a major systematic error in comagnetometer and NMR
gyroscope setups that use 129Xe and 131Xe spins, is closely relevant to the topic
of this work. Bulatowicz et al.25 first reported this isotope shift phenomenon
in an Axion searching experiment, and showed that this systematic error is
directly related to the effective magnetic field of polarized alkali atom spins
(alkali field)41 generated by the collision between xenon and alkali-metal
atoms. They suppose that this isotope shift is originated from the possible
difference of collisional enhancement factor of 129Xe and 131Xe. Later
works42–45 attribute this isotope shift to the incomplete averaging of alkali
field by the two xenon isotopes, which have different relaxation time T2.
With reference to the above works, this work will start from a new per-
spective – the diffusion equation, and try to quantitatively elucidate the
origin of isotope shift.

In this work, we aim to investigate the frequency shift effect of a
nonuniformmagneticfieldwith arbitrary spatial distribution, and especially
its interaction with boundary relaxation. Perturbation corrections up to
third order are derived to analytically illustrate the sources of frequency shift
and isotope shift. Figure 1 shows a sketch for the coremechanism that leads
to a spin-species dependent frequency shift. By saying a frequency shift is
spin-species dependent, we mean the equivalent magnetic field of this fre-
quency shift is different for different types of spin. Thus, this frequency shift
cannot be cancelled together with the main field fluctuation in comagnet-
ometer type experiments. For linear gradient magnetic field, whose spatial
distribution has odd-parity, we find that the first order correction to the
frequencyshift (Eq. (21)) is similar toEq. (1),which is inverselyproportional
to the main field B0 and proportional to the square of transverse fields. On
the other hand, for quadratic gradient field, whose distribution does not
have odd-parity, the first order correction to frequency shift (Eq. (24)) is
proportional to the nonuniform part of the longitudinal field and does not
have a B0 in the denominator, which is significantly different from Eq. (1).
This result shows that Eq. (1) may underestimate the magnitude of the

frequency shift caused by nonuniform magnetic field in experiments,
especially inNMR experiments that use a largemain field.We also find that
Eq. (2) is actually the third order correction of frequency shift for quadratic
gradient field (Eq. (25)). Due to the γ3/D2 and R10 dependence, this third
order correction is spin-species dependent and contributes significant iso-
tope shift for large cells.

The boundary relaxation is another crucial factor that was not well
studied previously but can influence the resonance frequency by the
interaction with nonuniform field. We find that the boundary relaxation
will lead to a small correction to the first order frequency shift, and this
correction is spin-species dependent due to thewall interactionmechanism
difference of different spins. This effect of boundary relaxation is vital for
comagnetometer experiments where the first order correction of frequency
shift can completely cancel if boundary condition is not considered. We
show that the isotope shifts caused by thefirst and thirdorder corrections of
frequency shift (Eqs. (28–30)) are both important and have distinct beha-
viors. The first order correction to isotope shift is proportional to the dif-
ference of boundary relaxation and is more important for small cells, while
the third order correction onlyweakly depends on boundary relaxation and
is more important for large cells. The systematic errors introduced by these
corrections are fatal in new physics searching experiments where the
absolute value of frequency ratio are of great concern. As a reference, the
systematic error for the rotation signal of anNMRgyroscope can be as large
as 10 μHz in typical experiment conditions (see Fig. 3). This insight canhelp
explain the isotope shift effect25,42–45 in recent NMR gyroscopes and new
physics searching experiments, in which alkali field is a highly nonuniform
effective-magnetic-field41. Furthermore, based on the derived systematic
error formulas, a method for fast wall relaxationmeasurement is proposed.

Results and discussion
In this work, we will focus on the high-pressure and fast-diffusion limit,
which is commonly satisfied in recent NMR-based precision measurement
experiments. The high-pressure limit requires a largemain field and a small
diffusion constant (i.e. γB0L

2/D≫ 1)22, allowing the application of Rotating
Wave Approximation (RWA) to the Torrey equation. The fast-diffusion
limit requires a slow relaxation rate compared to the diffusion speed (i.e.
DT2/L

2 ≫ 1)22, so that the spin evolution can be well approximated by a
single eigenmode and the effect of nonuniformmagneticfield can be treated
with perturbation theory. Weak boundary relaxation (λ ≪ 1) is also
assumed based on practical experiment conditions.

Torrey equation
Use Xe nuclear spin as an example. In experiments utilizing spin-exchange
optical pumping technique46, such as NMR gyroscopes and Rb-Xe
comagnetometers, the diffusion of Xe nuclear spins can be described by
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Fig. 1 | Cartoon of the frequency shift mechanism. Considering the diffusion
motion and boundary relaxation of Xe spins, a nonuniform magnetic field can shift
the resonance frequency of Xe spins. The first order frequency correction slightly
depends on the boundary condition λ, while the third order correction is propor-
tional to the ratio of gyromagnetic ratio γXe and diffusion constant D. Both λ and
γ2Xe=D

2 can be different for different Xe isotopes, thus will introduce systematic error
in comagnetometer type experiments. As an example, the systematic errors

introduce to NMR gyroscopes, a kind of 129Xe-131Xe comagnetometer, are shown by
δΩðG2 ;1Þ

rot and δΩðG2 ;3Þ
rot . These systematic errors are generally not negligible, limiting

the absolute accuracy of comagnetometers as well as the long time stability of NMR
gyroscopes. On the other hand, the factor (λ131− λ129) in δΩ

ðG2 ;1Þ
rot enables a new tool

for boundary relaxation rate measurement, which should be much faster than
previously reported methods. Refer to Eqs. (24), (25), (29) and (30) for more details.
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the Bloch-Torrey equation47–49

∂Mðr; tÞ
∂t

¼D∇2Mðr; tÞ � γXeBðrÞ×Mðr; tÞ
� Γ0 �Mðr; tÞ þ R0

p SðrÞ �Mðr; tÞ½ �;
ð3Þ

where M(r, t) is the Xe nuclear spin magnetization, D is the diffusion
constant of Xe atoms, γXe is the gyromagnetic ratio of Xe nuclear spins,B(r)
is the magnetic field distribution, Γ0 ¼ Γ20ðx̂x̂ þ ŷŷÞ þ Γ10ẑẑ is a tensor
describing the transverse and longitudinal spin relaxationprocesses, and the
last term arises from the spin-exchange pumping process between Xe and
alkali atom spins, with R0

p the spin-exchange pumping rate, and S(r) the
alkali electron spin magnetization. Here, we assume that the alkali electron
spins are polarized along the ẑ direction, i.e., SðrÞ ¼ SzðrÞẑ.

To further simplifyEq. (3),we assume that themagneticfieldonlyhas ẑ
component (the effect of transverse component can be estimated using
Eq. (15)), i.e.,

BðrÞ ¼ ½B0 þ B1ðrÞ�ẑ; ð4Þ

with ∣B1(r)∣ ≪ B0. The homogeneous field B0 defines the main pre-
cession frequency Ω0 = −γXeB0, while the nonuniform field B1(r), which
may originate from the imperfection of the coils, the environmental stray
fields, and the alkali field, can contribute to spin relaxation and fre-
quency shift.

With assumption Eq. (4), the transverse and longitudinal components
of Eq. (3) are decoupled. The equation of motion of the transverse com-
ponentsM±(r, t) ≡Mx(r, t) ± iMy(r, t) is

∂M ± ðr; tÞ
∂t

¼ D∇2 � Γ2c ∓ iγXeBzðrÞ
� �

M±ðr; tÞ; ð5Þ

where Γ2c � Γ20 þ R0
p, and Bz(r) ≡ B0 + B1(r). Below, we will focus on

Eq. (5), which determines the FID behavior of Xe spins.

Boundary condition
The boundary condition of Eq. (5) is determined by the spin relaxation
processes due to wall interaction. A perturbation treatment together with
kinetic theory gives the following boundary condition of theXe nuclear spin
density matrix ρ(r, t)50

n � ∇ρðr; tÞ þ μ̂ρðr; tÞ� ���
r2∂V ¼ 0; ð6Þ

where∂V is the boundaryof solutiondomainV,n is thenormal vector of the
boundary (pointing outward), and μ̂ is an operator reflecting the wall-
interaction induced transitions betweendifferent components of theXe spin
polarization.

We replace the operator μ̂ with a constant number for simplification,
leading to the following boundary condition:

n � ∇M±ðr; tÞ þ
λ

L
�M±ðr; tÞ

� �����
r2∂V

¼ 0; ð7Þ

where λ ≥ 0 is a dimensionless constant describing the depolarization
strength on the container wall and L is a linear size of V (e.g. the side
length for cubic V or the radius for spherical V, the choice of L does
not affect the physics). When λ → 0, the boundary condition
becomes n ⋅ ∇ M±(r, t)∣r∈∂V = 0, which represents an ideal surface
without spin depolarization effect. In the opposite limit λ → ∞, the
boundary condition becomes M±(r, t)∣r∈∂V = 0, which means the spin
magnetization is completely randomized at the wall. Compared with
the Eq. (17) of Wu’s review50, we have

λ � 3L
4λT

ξBs ; when ξBs ≪ 1; ð8Þ

where λT is the mean free path of Xe atoms and 0 < ξBs ≪ 1 represents the
depolarization probability of Xe spins on the wall. For noble gases the
depolarization probability is very small, ξBs ≲ 10�7 40. Since λT and ξBs are
physical parameters that shouldnot dependon the sizeofV, the parameterλ
actually linearly scales with L, i.e., λ ∝ L. The typical value of λ for RbH
coated cells or uncoated Pyrex cells in an experimental Rb-Xe comagnet-
ometer system is approximately 10−3 ~ 10−2 forL≈ 1 cmcubic cells. Figure 2
shows an example of λ measurement experiment. The magnitude of λ is
indeed small and has vast difference over different spin species. So, in the
derivation below, the condition λ≪ 1 always holds, and we assume that λ is
strongly spin-species dependent.

Perturbation treatment
The general solution of Eq. (5) has the form

Mþðr; tÞ ¼
X
α

aαe
�sαtΨαðrÞ; ð9Þ

where {aα} are expansion coefficients depending on initial state, {sα} and
{Ψα(r)} are the spatial eigenvalues and eigenmodes of Eq. (5). When the
nonuniformmagneticfieldB1(r) is small, due to the fast decay rate of excited
modes, usually only one mode is experimentally observable (fast diffusion
limit). Thus, we have

Mþðr; tÞ � a0e
�s0tΨ0ðrÞ; ð10Þ
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Fig. 2 | A demo of Xe wall relaxation measurement. The transverse relaxation rate
1/T2 of Xe spins mainly consists of the wall relaxation rate Γw and the collisional
relaxation rate Γcollision. Due to the competition between wall trapping and thermal
motion, Γw decreases as temperature rises. On the other hand, Γcollision is propor-
tional to the density of alkali atoms (e.g. Rb), and thus increases as temperature rises.
Bymeasuring the temperature dependence of 1/T2, we can extract thewall relaxation
rate of Xe spins through nonlinear least squares fitting. This measurement is per-
formed on a RbH coated 8 mm cubic cell (Cell ID: CH7) containing 3.6 Torr 129Xe,
35.6 Torr 131Xe, 167 Torr N2, 6 Torr H2 and a small droplet of Rb metal. The
transverse relaxation rate of 129Xe and 131Xe spins is measured by fitting the decaying
rate of FID signal, using the experiment setup of our previous work33. Solid and
dashed lines are fitting curves using themodel in section “ExperimentMeasurement
of Wall Relaxation Rate" in the methods. The boundary conditions for 129Xe and
131Xe at 110∘C are estimated to be λ129 ¼ ð5:3 ± 2:0Þ× 10�3 and λ131 ¼
ð13:0 ± 3:8Þ× 10�3 using these fittings. Data points in the figure are given by a
Lorentzian fitting as shown in Fig. S1(g) of our previous work33. The error bar
represents the 95% confidence interval returned by the fitting algorithm. See Sup-
plementary Data 1 for the source data of this figure.
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which describes the FID signal of Xe spins.
The eigen equation of Eq. (5) can write as

Ĥ0 þ Ĥ1ðrÞ
� �

ΨαðrÞ ¼ �sαΨαðrÞ; ð11Þ

where Ĥ0 � D∇2 � ðiγXeB0 þ Γ2cÞ and Ĥ1 � �iγXeB1ðrÞ.
Denote {ϕα(r), κα} to be the eigen solution of Ĥ0 under the boundary

condition Eq. (7):

∇2ϕαðrÞ ¼ �κ2αϕαðrÞ: ð12Þ

Then, we can calculate the matrix form of Ĥ0 and Ĥ1 under the ortho-
normalized basis {ϕα(r)} and apply the results of nondegenerate time-
independent perturbation theory, only to remember that Ĥ0 and Ĥ1 are
non-Hermitian.H0 is diagonal, and thematrix elements ofH1 are ðH1Þαβ ¼
�iγXebαβ with bαβ being the B1(r) induced coupling between eigenmodes:

bαβ �
Z
V
ϕαðrÞB1ðrÞϕβðrÞd3r: ð13Þ

Above, the Greek indices α, β may contain multiple integer indices, e.g.
α = [mnp]. The fundamental mode in Eq. (10), which has the slowest decay
rate, is denoted using α = 0 or β = 0.

We are particularly interested in the perturbation correction of the
eigenvalue s0 of the fundamental mode, which can be directly observed via
the FID frequency shift and the spin decay rate. The eigenvalue of the
fundamental mode, up to third order correction, is

where sðkÞ0 denotes the kth order correction, and fκ2αg is the eigenvalues of
Laplacian operator ∇2 as defined in Eq. (12). The FID signal of Xe
spins observed in experiment is usually determined by the fundamental
mode eigenvalue s0. The real part of 0th order correction represents the
intrinsic relaxation rate of Xe spins, in which Γ2c is the relaxation due to
gaseous-atomcollisions (e.g. collisionbetweenRbandXeatoms), andDκ20 is
the relaxation due to wall interaction. The imaginary part of 0th order
correction, iγXeB0, is themain part of FID frequency that determined by the
main field B0.

As the perturbationmatrix element bαβ is real, the 2ndorder correction
is real, which represents the extra relaxation rate caused by the nonuniform
magnetic field. The 1st and 3rd order corrections are purely imaginary,
which contribute to the frequency shift. The b00 in 1st order correction is a
weighted average of the nonuniform field B1(r) (along z direction). In the
absence of boundary relaxation (λ = 0), the weight ϕ0(r)

2 = 1/V is constant
over the space, making b00 just a trivial average of B1(r). For 0 < λ≪ 1, the
boundary relaxation makes the fundamental mode ϕ0(r) slightly different
from uniform distribution, and the first order correction will have a small
dependence on λ.

When the solutiondomainandB1(r) haveparity symmetry, the 1st and
3rd order corrections above may vanish due to the parity symmetry of
eigenmodes {ϕα(r)} (i.e. bαβ = 0 when ϕα(r)B1(r)ϕβ(r) is an odd function).
Then, the effect of transverse magnetic field (Bx, By) is not negligible. Fol-
lowing the derivation in section “Perturbation Treatment of the 3D Torrey
Equation" in the methods, we find that in order to calculate the effect of
transversemagneticfield,we can simply replace all the fbαβg in Eq. (14)with

the following fbðtotÞαβ g:

bðtotÞαβ � bαβ þ
γXe

2 γXeB0 � i Dκ2β þ Γ2c

� �h iX
γ

bþαγb
�
γβ; ð15Þ

b±
αβ �

Z
V
ϕαðrÞ BxðrÞ± iByðrÞ

h i
ϕβðrÞd3r: ð16Þ

For typical experiment conditions, B0 is much larger than B1, Bx, By and
Dκ20 þ Γ2c
	 


=γXe. So, in Eq. (15), compared with B1, the effect of Bx is
suppressed by a factor of Bx/B0 (and the same for By), i.e. b

ðtotÞ
αβ is typically

dominated by bαβ. This validates the previous assumption Eq. (4). The effect of
transverse magnetic field gets important only when bαβ, the contribution of B1,
vanishes due to symmetry reason (see Supplementary Note 1 for examples).

Frequency shift from gradient field
So far, we have not specified the shape of solution domain V. Thus, the
solutions above are applicable to arbitrary V. Now, let us consider a cubic
domain

V ¼ ðx; y; zÞj � L=2≤ x; y; z ≤ þ L=2
� �

; ð17Þ

with L the cubic’s side length. The eigenmodes in this cubic domain have a
separable form (see section “UnperturbedEigenmodes inCubicDomain" in
the methods for details):

ϕmnpðrÞ ¼ ϕmðxÞϕnðyÞϕpðzÞ; ð18Þ

where

ϕpðzÞ ¼
1
N p

sin κpz þ δp

� �
; δp ¼

ðpþ 1Þπ
2

: ð19Þ

Obviously, ϕp(z) has parity: ϕp(z) = ϕp(−z) for even p and
ϕp(z) =−ϕp(−z) for odd p. Using this symmetry, one can immediately
derive that, for linear gradient field B1(r) = G1 ⋅ z, b00 = 0 and
b0αbαβbβ0 = 0, ∀ α, β ≠ 0. So, the frequency shift vanishes up to third order if
we omit the effect of transverse magnetic field.

To count the transverse field, we note that a linear gradient field with
axial symmetry should have the form

B ¼ G1 � 1
2

xx̂ þ yŷ
	 
þ zẑ


 �
: ð20Þ

Substitute thismagnetic field distribution into Eqs. (15) and (16), we get the
first order correction of frequency shift in Eq. (14) to be (see section “Fre-
quency Shift Formulas for Gradient Fields" in the methods for details)

δωð1Þ
G1

� isð1Þ0 � � γXeG
2
1L

2

48B0
1� 2

15
λ

� �
þ Oðλ2Þ: ð21Þ

The λ0 part of Eq. (21) has similar form with Eq. (1) by noting that
j∇Bxj2 ¼ j∇Byj2 ¼ G2

1=4. Zheng et al. also obtained the λ0 part of this
formula for a cubic domain based on Redfield theory22, and is consistent
with our result (see Supplementary Note 2 for details).

s0 ¼ Dκ20 þ Γ2c þ iγXeB0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0th order

þ iγXeb00|fflfflffl{zfflfflffl}
1st order

þ γ2Xe
X

α≠0

b0αbα0
D κ2α � κ20
	 
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2nd order

�iγ3Xe
X

α;β≠0

b0αbαβbβ0

D2 κ2α � κ20
	 


κ2β � κ20

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

3rd order ðaÞ

þ iγ3Xeb00
X

α≠0

b0αbα0
D2 κ2α � κ20

	 
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
3rd order ðbÞ

� sð0Þ0 þ sð1Þ0 þ sð2Þ0 þ sð3Þ0 ;

ð14Þ
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The second order correction, which contributes to relaxation rate, is

1

TG1
2

� sð2Þ0 � γ2XeG
2
1L

4

120D
1� λ

3

� �
þ Oðλ2Þ: ð22Þ

Equation (22) is derived using {bαβ}, because b0αbα0 does not vanish and the
contribution from transverse field is negligible.

For an axial symmetric, quadratic gradient field

B ¼ G2 �xzx̂ � yzŷ þ z2ẑ
� �

; ð23Þ

parity symmetry can nomore guarantee b00 = 0 or b0αbαβbβ0 = 0, ∀ α, β ≠ 0.
The frequency shifts and relaxation rate in Eq. (14) are (see section “Fre-
quency Shift Formulas for Gradient Fields" in the methods for details)

δωð1Þ
G2

� isð1Þ0 � � γXeG2L
2

12
1� 2

15
λ

� �
þ Oðλ2Þ; ð24Þ

δωð3Þ
G2

� isð3Þ0 � γ3XeG
3
2L

10

D2 χ1 1þ χ2λ
	 
þ Oðλ2Þ; ð25Þ

1

TG2
2

� sð2Þ0 � γ2XeG
2
2L

6

7560D
1� 2

15
λ

� �
þ Oðλ2Þ; ð26Þ

where

χ1 � 6:68056× 10�8; χ2 � 0:646886: ð27Þ

Unlike the previously well known result Eq. (1), these two frequency shifts
are determined by the distribution of longitudinal field B1(r) rather than
transversefields.They cannot be suppressedby a largeB0 andare sensitive to
boundary relaxation.

The substantial difference between Eqs. (21) and (24) comes from the
symmetry of themagnetic field spatial distribution. First order correction is
proportional to the bðtotÞ00 defined in Eq. (15), inwhich b00 ~B1 represents the
contribution from longitudinalfield, and the remainingpart ðbðtotÞ00 � b00Þ �
ðB2

x þ B2
yÞ=B0 is the contribution from transverse field. In the calculation of

Eq. (21), we have b00 = 0 due to the odd-parity of the linear gradient field.
Thus, the frequency shift comes from the remaining part, which is pro-
portional to G2

1L
2 and has a B0 in the denominator. In the calculation of

Eq. (24), b00 is nonzero. Since B0 is much larger than nonuniform fields Bx
and By; b

ðtotÞ
00 should be dominated by b00. Thus, the frequency shift is

proportional to G2L
2 and has no B0 in the denominator.

Systematic error of comagnetometer
In NMR gyroscopes6 and comagnetometer40 experiments, two different
kinds of nuclear spins are used to compensate the fluctuation of main field
B0. However, Eqs. (21), (24) and (25) show that nonuniformmagnetic field
will lead to frequency shifts depending on λ, γ andD, which can be different
for different nuclear spins. These spin-species dependent frequency shifts
may lead to imperfect compensation of magnetic field fluctuation. Fol-
lowing the analysis in section “Systematic Error of NMRGyroscope" in the
methods, Eqs. (21), (24) and (25) will respectly contribute systematic errors
to the rotation signal of a NMR gyroscope as

δΩðG1 ;1Þ
rot � λ131 � λ129

L

�γG2
1L

3

360B0
; ð28Þ

δΩðG2 ;1Þ
rot � λ131 � λ129

L

�γG2L
3

90
; ð29Þ

δΩðG2 ;3Þ
rot � �χ1

γ2129
D2

129

� γ2131
D2
131

� �
�γG3

2L
10; ð30Þ

where δΩðGk ;nÞ
rot ¼ Ωð2ωÞ

rot �Ωrot is the difference between the gyroscope
outputΩð2ωÞ

rot and the real rotation rateΩrot. λ129/131, γ129/131 andD129/131 are
the boundary conditions, gyromagnetic ratios and diffusion constants for
the 129Xe and 131Xe spins, respectively. The value of gyromagnetic ratios are51

γ129 ¼ �2π 11:860156mHz � nT�1
	 


; γ131 ¼ þ2π 3:515769mHz � nT�1
	 


and

�γ � γ129γ131
γ131 � γ129

¼ �2π 2:711874mHz � nT�1
	 


: ð31Þ

Systematic error of Eq. (30) was experimentally studied by Sheng et al. using
3He-129Xe comagnetometer, showing a good consistency between experi-
ment data and numerical simulation result40.

Figure 3 shows an example of the typicalmagnitude of these systematic
errors for various cell size. For small cell,first order correctiondominates the
systematic error. Matching the λ value of different spins helps reduce this
systematic error. As cell size gets larger, third order (and higher order)
correction become significant and finally blows up. The characteristic cell

length where δΩðG2 ;1Þ
rot

��� ��� ¼ δΩðG2 ;3Þ
rot

��� ��� is

LðG2Þ
c ¼ λ131 � λ129

90χ1G
2
2L

γ2129
D2
129
� γ2131

D2
131

� �
������

������
1
7

: ð32Þ

A 2 cm cubic cell (usually used in new physics searching experiments)
can gain systematic errors in 10 μHz order. These errors should play an
important role in understanding the fundamental precision limit of NMR
gyroscopes and new physics detection based on comagnetometers. Our
result can be used to explain the isotope shift effect observed in comag-
netometer type experiments25,42–45 by noticing that the alkali field has a
highly nonuniform spatial distribution, leading to complex spin-species
dependent frequency shifts.

Equations (28) and (29) convert the boundary condition λ into a fre-
quency signal δΩðGk ;1Þ

rot , thus can be used tomeasure the wall relaxation rate

0 0.5 1 1.5 2 2.5 3
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100
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Fig. 3 | The relativemagnitude of different systematic errors.The systematic error
from the third order frequency correction, δΩðG2 ;3Þ

rot , is significant for large cell and
negligible for small cell due to the strong dependence on the cell size L. The char-
acteristic cell length, where first and third order corrections have similar size, is in the
order of 2 cm and inversely dependent on field gradient, as shown in Eq. (32). The
contribution from linear gradient field is much smaller than from quadratic field
because of the suppression by a large main field B0. In the numerical calculation,
B0 = 20000 nT,G1 = 10 nT ⋅ cm−1 andG2 = 10 nT ⋅ cm−2 are used. The values of λ and
D are chosen to be the experimentally measured results presented in section
“Experiment Measurement of Wall Relaxation Rate" in the methods. See Supple-
mentary Data 1 for the source data of this figure.
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of nuclear spins. Compared to previous wall relaxation experiment, as
shown in Fig. 2, which needs to sweep cell temperature50,52–57, our proposed
method is much faster and capable of real-timemonitoring the change of λ.
The amplitude of δΩðG2 ;1Þ

rot =ð2πÞ in Eq. (29) is approximately 5 μHz (using
typical values λ≈ 10−3 and�γG2L

2=ð2πÞ � 0:5Hz), and should be detectable
using state-of-the-art comagnetometer technique. As a reference, the NMR
gyroscope output signal reported in Fig. 9(a) of Gao’s work58 shows an
~0.5 μHz RMS noise (after 100 s average) and ~2 μHz long time drift (over
8 h). However, to experimentally apply this method, there are still some
challenges. For example, the nonuniform alkali field generated by polarized
alkali spins can interfere with the coil gradient field in the third order
correction. A careful calibration of the effect of the alkali field is needed to
ensure the accuracy of λ measurement. The suppression of comagnet-
ometer’s long time drift is also important if real-time monitoring of λ is
desired.

Conclusion
The frequency shift formulas presented in this work show quite different
behaviors with the previously well known formula Eq. (1) formagnetic field
gradient. It turns out that Eq. (1) is a special case where magnetic field
distribution and solution domain both have parity symmetry. The use of
Eq. (1) may severely underestimate the actual frequency shift caused by a
nonuniform field.

It is notable that different spins have slightly different frequency shifts.
This deviation of frequency shift can introduce significant systematic errors
in comagnetometer experiments as well as other precision measurement
experiments that rely on comparing the Larmor frequency ofmultiple kinds
of spins. This systematic error could be one of the sources that limit the
detection threshold of comagnetometer, which is a novel tool for dark
matter searching7,8,10,11,32, exotic interaction detection26,28,31 and the verifica-
tion of many other new physics models9.

Equations (28) and (29) provide a tool for the study of spin-wall
interaction. Since frequency measurement is one of the most precise mea-
surements, thismethod has great advantages in precision and bandwidth. It
should be a tool with great potential for spin-solid interaction research.

Methods
(Note: In order not to introduce confusion, in this article, subscriptm, n, p
will always represent a single integer index, while a Greek subscript such as
α, β, γ represents multiple indices.).

Perturbation treatment of the 3D Torrey equation
This section considers the effect of transversemagnetic field in the presence
of a large main field B0. Equation (3) can rewrite to the following form:

∂Mz

∂t
¼D∇2Mz � Γ1cMz þ R0

pSz

� i
2
γXe BþM� � B�Mþ

	 

;

ð33Þ

∂Mþ
∂t

¼ D∇2Mþ � iγXe BzMþ � BþMz

	 
� Γ2cMþ; ð34Þ

with

B � BxðrÞx̂ þ ByðrÞŷ þ BzðrÞẑ; ð35Þ

B± � BxðrÞ± iByðrÞ; ð36Þ
and the boundary condition

n �∇Miðr; tÞ þ
λ

L
�Miðr; tÞ

� �����
r2∂V

¼ 0; ð37Þ

where Mi stands for Mx, My or Mz. Γ1c � Γ10 þ R0
p; Γ2c � Γ20 þ R0

p. Sup-
pose Bz = B0 + B1(r) where B0 is a large uniform main field and B1(r) is a
small nonuniform field. Introduce the rotating frame with
~M ± � M ± e ± iγXeB0t . Then, Eqs. (33) and (34) becomes

∂Mz

∂t
¼D∇2Mz � Γ1cMz þ R0

pSz

� i
2
γXe Bþ ~M�e

þiγXeB0t � B� ~Mþe
�iγXeB0t

	 

;

ð38Þ

∂ ~Mþ
∂t

¼ D∇2 ~Mþ � Γ2c ~Mþ

� iγXeB1
~Mþ þ iγXeBþMze

þiγXeB0t :

ð39Þ

In the rotating frame, the change of ~M ± andMz should be slow compared to
the Larmor frequency γXeB0. So, in Eqs. (38) and (39), the high frequency
terms which contain e± iγXeB0t factors can be directly ignored to the first
approximation. This is called the RWA, leading to the decoupling ofMz and
~M ± , and justifies the previous assumption of omitting the transverse
component of magnetic field (Eq. (4)).

However, according to Eq. (38), the solution ofMz can contain a small
e�iγXeB0t component. Then, theMze

þiγXeB0t term in Eq. (39) will generate a
DC contribution which might have some effects to the solution of ~Mþ. So,
let us consider the case when RWA is not directly applied to Eqs. (38)
and (39).

Denote the eigenmodes of ∇2 operator under the above boundary
condition as

∇2ϕαðrÞ ¼ �κ2αϕαðrÞ;
Z
V
ϕαðrÞϕβðrÞd3r ¼ δαβ: ð40Þ

Then, the solution ofM can be expanded as

Mz �
X
α

cz;αðtÞϕαðrÞ; ~M± �
X
α

~c± ;αðtÞϕαðrÞ; ð41Þ

with ~c�;α ¼ ~c�þ;α. Using these expansions and the orthonormality of
eigenmodes, one can transform Eqs. (38) and (39) into the following linear
equation system of expansion coefficients:

dcz;α
dt

¼ � Dκ2α þ Γ1c
	 


cz;α þ R0
pdz;α

� i
2
γXee

þiγXeB0t
X
β

bþαβ~c�;β

þ i
2
γXee

�iγXeB0t
X
β

b�αβ~cþ;β;

ð42Þ

d~cþ;α

dt
¼ � Dκ2α þ Γ2c

	 

~cþ;α

� iγXe
X
β

bαβ~cþ;β þ iγXee
þiγXeB0t

X
β

bþαβcz;β:
ð43Þ

where

b±
αβ �

Z
V
ϕαðrÞB± ðrÞϕβðrÞd3r; ð44Þ

bαβ �
Z
V
ϕαðrÞB1ðrÞϕβðrÞd3r; ð45Þ

dz;α �
Z
V
ϕαðrÞSzðrÞd3r: ð46Þ

Equations (42) and (43) can be directly used in numerical simulation.
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Integrate the cz,α equation in Eq. (42), one gets

cz;αðtÞ ¼ cz;αð0Þ þ
Z t

0
R0
pdz;α � Dκ2α þ Γ1c

	 

cz;αðt0Þ

h i
dt0

� i
2
γXe

X
β

bþαβ

Z t

0
eþiγXeB0t

0
~c�;βðt0Þdt0

� �

þ i
2
γXe

X
β

b�αβ

Z t

0
e�iγXeB0t

0
~cþ;βðt0Þdt0

� �
:

ð47Þ

Based on the picture of Larmor precession and numerical simulation, we
can safely assume that

~c± ;αðtÞ � ~c± ;αð0Þ exp ∓iωαt � Γαt
	 


; ð48Þ

where Γα � Dκ2α þ Γ2c is the relaxation rate of ϕα(r) mode, and ωα is the
frequency correction of this mode. Then, the integration above becomes

Z t

0
e ± iγXeB0t

0
~c∓;βðt0Þdt0 ¼

c∓;βð0Þ
±i γXeB0 þ ωβ

� �
� Γβ

e±i γXeB0þωβð Þt�Γβt � 1
h i

:

ð49Þ

Insert Eqs. (47) and (49) into the ~cþ;α equation of Eq. (43). Noticing
that ∣ωβ∣≪ ∣γXeB0∣, we can use RWA, ignoring all the termswith eþiγXeB0t or
eþi 2γXeB0þωβð Þt factor. Finally, we get

d~cþ;α

dt
� � Dκ2α þ Γ2c

	 

~cþ;α � iγXe

X
β

bαβ~cþ;β

þ γ2Xe
2

X
β;γ

bþαγb
�
γβ~cþ;β

Γβ þ i γXeB0 þ ωβ

� �
� � Dκ2α þ Γ2c

	 

~cþ;α � iγXe

X
β

bðtotÞαβ ~cþ;β;

ð50Þ

where

bðtotÞαβ � bαβ þ
γXe

2 γXeB0 � i Dκ2β þ Γ2c

� �h iX
γ

bþαγb
�
γβ: ð51Þ

If we directly apply RWA to Eq. (39), which means ignoring all the
effects of Bx and By, then Eq. (50) becomes

d~cþ;α

dt
� � Dκ2α þ Γ2c

	 

~cþ;α � iγXe

X
β

bαβ~cþ;β; ð52Þ

which is equivalent to the eigen equation Eq. (11). Comparing Eqs. (50) and
(52), it is easy to see that, to account the leading order effect of Bx and By, we
just need to replace the {bαβ} in Eq. (14) with fbðtotÞαβ g. Since themain field B0
is much larger than nonuniform field B1, Bx and By; b

ðtotÞ
αβ is dominated by

bαβ. The effect of Bx/y is suppressed by a factor Bx/y/B0 compared with B1.
Also, the imaginary part of bðtotÞαβ should be much smaller than its real part.

Unperturbed eigenmodes in cubic domain
This section will derive the eigenmodes and eigenvalues of the Torrey
equation in a cubic domain of the form Eq. (17).

Consider the following eigen equation:

D∇2ϕmnp � ðiγXeB0 þ Γ2cÞϕmnp ¼ �sð0Þmnpϕmnp; ð53Þ

where �sð0Þmnp is the eigenvalue of the eigenmode ϕmnp(r).

The eigenmodes {ϕmnp(r)} of Eq. (53) can be written in a factorized
form of

ϕmnpðrÞ ¼ ϕmðxÞϕnðyÞϕpðzÞ; ð54Þ

wherem, n and p are non-negative integers labelling the eigenmodes in the
x, y and z directions, respectively. It is easy to check that the 1D eigenmodes
have the form

ϕpðzÞ ¼
1
N p

sin κpz þ δp

� �
; ð55Þ

where N p is normalization factor, and κp and δp are real numbers deter-
mined by the boundary condition Eq. (7). The wave numbers κp are the
solutions of the transcendental equation

tan κpL
� �

¼ 2λκpL

κ2pL
2 � λ2

; ð56Þ

and the phase shifts are determined by

tan δp �
κpL

2

� �
¼ κpL

λ
: ð57Þ

Using the normalization condition
R
ϕ2pðzÞdz ¼ 1, the normalization factor

is

N p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L
2
þ λL

κ2pL
2 þ λ2

s
: ð58Þ

The eigenvalues corresponding to ϕmnp(r) are

sð0Þmnp ¼ Dκ2mnp þ Γ2c þ iγXeB0; ð59Þ

where κ2mnp � κ2m þ κ2n þ κ2p. The real part of the eigenvalue,
Γ2 ¼ Dκ2mnp þ Γ2c, is the decay rate of the eigenmode ϕmnp(r), and the
imaginary part, γXeB0, is the spin precession frequency in the uniform
magneticfieldB0. The superscript of s

ð0Þ
mnp represents that this is the 0th order

correction of the perturbation solution presented in Eq. (14).
Figure 4 gives the numerical solutions of κp for various λ values. To

reveal the underlying physics of the wall-relaxation, we expand the tangent
function inEq. (56) in theneighborhoodof κpL=pπ, andfind the solutionof
wave number in the limit of λ≪ 1 to be

κp �
ffiffiffiffi
2λ

p
L ; p ¼ 0

pπ
L þ 2λ

pπL �
pπ
L ; p ¼ 1; 2; . . .

(
: ð60Þ

The exact solution of δp (without assuming λ≪ 1) is

δp ¼
ðpþ 1Þπ

2
: ð61Þ

For the fundamentalmode (m=n=p=0), thewall-interaction contributes a
relaxation rate through diffusion:

Γ000 � Dκ2000 � 6λ
D
L2

: ð62Þ

For the excited modes ([m, n, p] ≠ [0, 0, 0]), the relaxation rate due to spin
diffusion is

Γmnp � Dκ2mnp � ðm2 þ n2 þ p2Þπ2 D
L2

: ð63Þ
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As λ ≲ 10−2, even for the lowest excited modes (withm2 + n2 + p2 = 1), the
decay rate is much faster than the fundamental mode, i.e., Γmnp ≫ Γ000.

In the λ≪ 1 limit, ϕp(z) are approximately

ϕ0ðzÞ �
1� λz2=L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lð1� λ=6þ λ2=80Þ
q ; ð64Þ

ϕpðzÞ �
1
N p

sin pπ
L þ 2λ

pπL

� �
z

h i
; p is odd

1
N p

cos pπ
L þ 2λ

pπL

� �
z

h i
; p is even

8><
>: ; p > 0: ð65Þ

Frequency shift formulas for gradient fields
In this section, we calculate the frequency shift formulas for two simple
forms of nonuniform magnetic field in a cubic domain V.

Linear gradient field. Let us first consider a linear gradient field
Bz ¼ B0 þ G1 � z. Since a realmagnetic field should obey theGauss law, if
we assume axial symmetry, the magnetic field should have the following
distribution:

BðrÞ ¼ G1 � 1
2

xx̂ þ yŷ
	 
þ zẑ


 �
þ B0ẑ; B1ðrÞ ¼ G1z: ð66Þ

This is the field distribution of a linear gradient compensation coil normally
used in NMR experiments.

The first order term b00 is zero, for the reason that B1(r) = G1z is odd
function and ϕ0(z) in Eq. (64) is even function. So, the first order frequency
shift of a linear gradient field is mainly contributed from transverse com-
ponents. We need to calculate the bðtotÞ00 in Eq. (51). Let us first calculate b±

0α
using the definition Eq. (44). According to the parity of the approximate
eigenmode expressions in Eqs. (64) and (65), b ±

0α is nonzero only when

α = [2p − 1, 0, 0] or α = [0, 2p − 1, 0], p ≥ 1. Thus, we have

b±
0;½2p�1;0;0� ¼ �G1

2

Z þL=2

�L=2
xϕ0ðxÞϕ2p�1ðxÞdx

� ð�1Þp
ffiffiffi
2

p
G1L

ð2p� 1Þ2π2 1� 1
6
� 1

ð2p� 1Þ2π2

 �

λ

� �
þ Oðλ2Þ;

ð67Þ

b±
0;½0;2p�1;0� ¼ �G1

2

Z þL=2

�L=2
ð±iyÞϕ0ðyÞϕ2p�1ðyÞdy

� ± ið�1Þp
ffiffiffi
2

p
G1L

ð2p� 1Þ2π2 1� 1
6
� 1

ð2p� 1Þ2π2

 �

λ

� �
þ Oðλ2Þ:

ð68Þ

Above, we use Eqs. (64) and (65) as the approximate expressions of
eigenmodes, and expand the result around λ= 0. Combining them together,
we have X

α

bþ0αb
�
α0

¼
X1
p¼1

bþ0;½2p�1;0;0�b
�
0;½2p�1;0;0� þ bþ0;½0;2p�1;0�b

�
0;½0;2p�1;0�

� �

� 2
X1
p¼1

ffiffiffi
2

p
G1L

ð2p� 1Þ2π2 1� 1
6
� 1

ð2p� 1Þ2π2

 �

λ

� �� �2

� G2
1L

2

24
1� 2

15
λ

� �
þ Oðλ2Þ:

ð69Þ

The first order frequency shift is:

isð1Þ0 ¼ �γXeb
ðtotÞ
00 � �γXe

P
α b

þ
0αb

�
α0

2B0

� � γXeG
2
1L

2

48B0
1� 2

15
λ

� �
þ Oðλ2Þ:

ð70Þ

Second order correction mainly consists of the contribution from
longitudinal component.Due to symmetry reason,b0α is nonzeroonlywhen
α = [0, 0, 2p− 1], p ≥ 1. Using the approximate eigenmode in Eqs. (64) and
(65), we have

b0;½0;0;2p�1� ¼ G1

Z þL=2

�L=2
zϕ0ðzÞϕ2p�1ðzÞdz

� ð�1Þpþ1 2
ffiffiffi
2

p
G1L

ð2p� 1Þ2π2 1� 1
6
� 1

ð2p� 1Þ2π2

 �

λ

� �
þ Oðλ2Þ:

ð71Þ

The result above is a Taylor expansion around λ = 0. So, the second order
correction is

sð2Þ0 ¼ γ2XeL
2

D

X1
p¼1

b0;½0;0;2p�1�
� �2

ð2p� 1Þπ þ 2λ
ð2p�1Þπ

h i2
� 2λ

� γ2XeL
2

D

X1
p¼1

8G2
1L

2

ð2p� 1Þ6π6 1� λ

3

� �

¼ γ2XeG
2
1L

4

120D
1� λ

3

� �
þ Oðλ2Þ:

ð72Þ
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Fig. 4 | The eigen spectrum of spatial eigenmodes for different boundary
relaxation strength. The solid lines are the exact value calculated from numerical
method. The dashed lines are the approximation value calculated from Eq. (60). See
Supplementary Data 1 for the source data of this figure.
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Quadratic gradient field. For quadratic gradient field Bz = B0+G2 ⋅ z2, if
assume axial symmetry, the spatial distribution should be

B ¼ G2 �xzx̂ � yzŷ þ z2ẑ
� �þ B0ẑ; B1ðrÞ ¼ G2z

2: ð73Þ

First order correction can be calculated directly using the approximate
eigenmode in Eq. (64):

b00 ¼ G2

Z þL
2

�L
2

z2ϕ0ðzÞϕ0ðzÞdz

� G2L
2

12
1� 2

15
λ

� �
þ Oðλ2Þ:

ð74Þ

The calculation of second order correction is similar to linear gradient
field. Due to symmetry reason, b0α is nonzero onlywhen α= [0, 0, 2p], p≥ 1.
Using the approximate eigenmode in Eqs. (64) and (65), we have

b0;½0;0;2p� ¼ G2

Z þL=2

�L=2
z2ϕ0ðzÞϕ2pðzÞdz

� ð�1Þp G2L
2ffiffiffi

2
p

p2π2
1� 1

6
� 5

4p2π2

� �
λ


 �
þ Oðλ2Þ:

ð75Þ

Thus, the second order correction is

sð2Þ0 ¼ γ2XeL
2

D

X1
p¼1

b0;½0;0;2p�
� �2

2pπþ 2λ
2pπ

h i2
� 2λ

� γ2XeL
2

D

X1
p¼1

G2
2L

4

8p6π6
1� 1

3
� 2
p2π2

� �
λ


 �

¼ γ2XeG
2
2L

6

7560D
1� 2

15
λ

� �
þ Oðλ2Þ:

ð76Þ

The calculation of third order correction is a bit complicated. The
calculation of sð3bÞ0 term is similar to sð2Þ0 :

sð3bÞ0 � i
γ3Xe
D2 L

4b00
X1
p¼1

b0;½0;0;2p�
� �2

2pπ þ 2λ
2pπ

� �2
� 2λ


 �2
� i

γ3XeG
3
2L

10

3628800D2 1� 52
165

λ

� �
þ Oðλ2Þ:

ð77Þ

When calculating sð3aÞ0 , we need the matrix element bαβ. Due to sym-
metry reason, only when α ¼ ½0; 0; 2p� and β ¼ ½0; 0; 2n�, the product
b0αbαβbβ0 in the numerator of sð3aÞ0 is nonzero. Using the approximate
eigenmode in Eqs. (64) and (65), we have

bαβ ¼ G2

Z þL=2

�L=2
z2ϕ2pðzÞϕ2nðzÞdz

�
ð�1ÞnþpG2L

2ðn2þp2Þ
ðn2�p2Þ2π2 1� n4�10n2p2þp4

4n2p2ðn2þp2Þπ2 λ
h i

; p≠ n

G2L
2

24 2þ 3
p2π2

� �
1þ 2p2π2�6

p2π2ð2p2π2þ3Þ λ
h i

; p ¼ n

8><
>: ;

ð78Þ

where α = [0, 0, 2p], β = [0, 0, 2n], n, p > 0. The result above is Taylor
expanded near λ = 0. According to Eq. (14), we have

sð3aÞ0 � �i
γ3Xe
D2 L

4
X1
n¼1

X1
p¼1

b0;½0;0;2p�b½0;0;2p�;½0;0;2n�b0;½0;0;2n�

2pπþ 2λ
2pπ

� �2
� 2λ


 �
�
2nπþ 2λ

2nπ

�2

� 2λ

� :
ð79Þ

Taylor expand the above formula at λ = 0 (up to first order), we get

sð3aÞ0 �� i
γ3XeG

3
2L

10

16D2π10
1� λ

3

� �
S1 þ

λ

2π2
S2


 �

� i
19γ3XeG

3
2L

10

59875200D2 1� 659
5460

λ

� �
þ Oðλ2Þ;

ð80Þ

where

S1 �
Xþ1

n¼1

Xn�1

p¼1

n2 þ p2

n4p4ðn2 � p2Þ2 � 0:0375373; ð81Þ

S2 �
Xþ1
n¼1

Xn�1

p¼1

n4 þ 8n2p2 þ p4

n6p6ðn2 � p2Þ2 � 0:0892948: ð82Þ

Summing sð3aÞ0 and sð3bÞ0 together, we finally get the third order correction:

sð3Þ0 � �i
γ3XeG

3
2L

10

D2 χ1 1þ χ2λ
	 
þ Oðλ2Þ; ð83Þ

with

χ1 �
S1

16π10
þ 1

23950080
� 6:68056× 10�8; ð84Þ

χ2 � 15871
326918592000 �

S1
48π10 þ

S2
32π12

� �
=χ1

� 0:646886:
ð85Þ

Systematic error of NMR gyroscope
In NMR gyroscope experiments, one often simultaneously measure the
Larmor precession frequency of both 129Xe and 131Xe nuclear spin. The
Larmor frequencies of these two Xe isotopes are

ωu ¼ �γuðB0 þ δBuÞ �Ωrot; ð86Þ

where u = 129 or 131, and δBu≡ ℑ[s0]/γu− B0 is the frequency shift caused
by nonuniform field. Ωrot is the laboratory reference frame’s rotation
angular velocity along ẑ direction.

One usually estimates the rotation speed by the following estimator33:

Ωð2ωÞ
rot � ∣R0ω131∣ � ∣ω129∣

1 þ ∣R0∣

¼ sgn½B0� Ωrot þ
γ129

1 þ jR0j
bA

� �
;

ð87Þ

where bA ≡ δB129− δB131 is called the differential field, and R0 ≡ γ129/γ131 ≈
−3.373417. Obviously, this estimator introduces a systematic error propor-
tional to bA. Utilizing the frequency shift formulas derived in the above
section, it is straight forward to get the Eqs. (28), (29) and (30) (assum-
ing B0 > 0).

Experiment measurement of wall relaxation rate
According to literature56,59, the transverse relaxation rate 1/T2 of Xe spins
mainly consists of two parts:

1
T2

¼ c1nRbðTÞ|fflfflfflffl{zfflfflfflffl}
Γcollision

þ c2 exp
�E

kBT

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Γw

; ð88Þ

where T is the cell temperature in degrees kelvin, nRb(T) is the Rb atom
number density, �E is a characteristic energy, kB is the Boltzmann’s constant,
and c1, c2 are constant coefficients. Γcollision arises from the spin exchange
collisions between Xe and Rb atoms and is proportional to Rb density.
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Γw comes from the wall interaction, which depends on cell temperature via
an Arrhenius factor.

The solid lines in Fig. 2 is fitted curves using model Eq. (88), with
c1; c2; �E the fitting parameters. Rb density nRb(T) is calculated using the Rb
vapor-pressure formula Eq. (1) in Steck’s handbook60 (also see Alcock
et al.61) together with the Ideal Gas Law. The fitting result is shown in
Table 1. Quadrupole splitting of 131Xe is not observed in the experiment
of Fig. 2.

From Eq. (14), the relaxation rate contributed from boundary condi-
tion is Γw ¼ Dκ20. Thus, for cubic cell, using the solution in section
“Unperturbed Eigenmodes in Cubic Domain" in the methods, we can
estimate the value of λ by Γw:

Γw ¼ 6λD
L2

: ð89Þ

The diffusion constant can be measured using the method described
in Sec. II D of the Supplemental Material of Zhang et al.’s work33. The
result is D129 ¼ D131 ¼ ð0:45 ± 0:03Þ cm2 � s�1. The inner side length
of cell is L ¼ ð0:80 ± 0:01Þ cm. Using these parameters, we get the
boundary condition at 110 °C to be λ129 ¼ ð5:3 ± 2:0Þ× 10�3

and λ131 ¼ ð13:0 ± 3:8Þ× 10�3.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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