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In magnetic resonance experiments, it is widely recognized that a nonuniform magnetic field can lead
to anincrease in the resonance line width, as well as a reduction in sensitivity and spectral resolution.
However, a nonuniform magnetic field can also cause shifts in resonance frequency, which has
received far less attention. In this work, we investigate the frequency shift caused by boundary
relaxation and nonuniform magnetic field with arbitrary spatial distribution. We find that this frequency
shift is spin-species dependent, implying a systematic error in NMR gyroscopes and
comagnetometers. The first order correction to this systematic error is proportional to the difference of
boundary relaxation rate, and dominates for small cells. In contrast, the third and higher order
corrections arise from the difference of gyromagnetic ratios of spin species, and dominates for large
cells. This insight helps understanding the unexplained isotope shifts in recent NMR gyroscopes and
new physics searching experiments that utilize comagnetometers. Finally, we propose a tool for wall

interaction research based on the frequency shift’s dependency on boundary relaxation.

The nuclear magnetic resonance (NMR) technique has important appli-
cations in many fields, such as biochemistry"*, medical imaging™, inertial
navigation™, and new physics detection using comagnetometers”™"’. For
gas-phase NMR, the interaction between diffusion effect and nonuniform
magnetic field has been a focus of research for decades. A nonuniform
magnetic field contributes an extra relaxation rate to the diffusive nuclear
spins, which is usually harmful to the precision of an NMR experiment.
Extensive works have been done to analyze this extra relaxation rate in
various scenarios'*”. On the contrary, the frequency shift caused by a
nonuniform magnetic field is relatively underexplored. An unexpected spin-
species dependent frequency shift caused by a nonuniform magnetic field
can introduce significant systematic error in NMR-based precision mea-
surements that need to suppress the main field fluctuation by comparing the
resonance frequencies of different spins. Such measurements recently show
great potential in the exploration of new physics'*'****. So, it is of great
interest to understand how a nonuniform magnetic field affect the reso-
nance frequency of spins.

Nonuniform magnetic fields of different magnitude can result in
significantly different behaviors. With a small nonuniform field, the
structure of the free-induction decay (FID) spectrum is not changed, and
perturbation theory can be used to estimate the frequency shift. This
region is called the fast-diffusion area, meaning that the spins can diffuse
throughout the whole cell before completely decayed. When the field

inhomogeneity is large compared to the diffusion speed, the FID spec-
trum can split due to the symmetry breaking of eigenmodes'®*. This
splitting phenomenon lies in the intermediate regime between fast- and
slow-diffusion limit, and is closely related to the well known edge
enhancement effect” . This work focuses on the small nonuniform
field region, as most of the NMR-based precision measurements lie in
this region.

In an early work of Cates et al.”, the frequency shift w of diffusive spins
filled in a spherical container of radius R is derived by applying the second
order perturbation theory on the Torrey equation:

VRZ( 2 2)
dw~-—|(|VB VB R 1
w~ s (IVB.F +1VB,F). 1)

where y is the gyromagnetic ratio of spins, By is the uniform main field along
z direction and B,, B, are the transverse fields. This formula is valid for fast-
diffusion and high-pressure limit. Similar results were also presented in later
works based on the Redfield theory”®” and in this work (Eq. (21)).
Unfortunately, this formula requires the magnetic field to hold an odd-
parity symmetry (see Supplementary Note 1 for the meaning of odd-parity
symmetry). If the odd-parity symmetry is broken, as in many practical
experiments, this formula will underestimate the magnitude of the
frequency shift.
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On the other hand, Sheng et al.”’ analyzed the frequency shift due to an
arbitrary nonuniform field by numerical simulation. They expanded the
nonuniform magnetic field using spherical harmonics and transformed the
Torrey equation into a linear ODE system, which is suitable for numerical
simulation. Through dimensional analysis, the frequency shift caused by a
quadratic gradient field was found to be
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where D is the diffusion constant and G, is the strength of quadratic gra-
dient. Due to the dependence on y and D, this frequency shift will lead to a
systematic error in *He-'*’Xe comagnetometer experiments*’. We will show
later that Eq. (2) is actually the third order perturbation correction of fre-
quency shift for quadratic gradient field (Eq. (25)).

Isotope shift, a major systematic error in comagnetometer and NMR
gyroscope setups that use *’Xe and *'Xe spins, is closely relevant to the topic
of this work. Bulatowicz et al.”* first reported this isotope shift phenomenon
in an Axion searching experiment, and showed that this systematic error is
directly related to the effective magnetic field of polarized alkali atom spins
(alkali field)"" generated by the collision between xenon and alkali-metal
atoms. They suppose that this isotope shift is originated from the possible
difference of collisional enhancement factor of *Xe and "'Xe. Later
works*™ attribute this isotope shift to the incomplete averaging of alkali
field by the two xenon isotopes, which have different relaxation time T5.
With reference to the above works, this work will start from a new per-
spective — the diffusion equation, and try to quantitatively elucidate the
origin of isotope shift.

In this work, we aim to investigate the frequency shift effect of a
nonuniform magnetic field with arbitrary spatial distribution, and especially
its interaction with boundary relaxation. Perturbation corrections up to
third order are derived to analytically illustrate the sources of frequency shift
and isotope shift. Figure 1 shows a sketch for the core mechanism that leads
to a spin-species dependent frequency shift. By saying a frequency shift is
spin-species dependent, we mean the equivalent magnetic field of this fre-
quency shift is different for different types of spin. Thus, this frequency shift
cannot be cancelled together with the main field fluctuation in comagnet-
ometer type experiments. For linear gradient magnetic field, whose spatial
distribution has odd-parity, we find that the first order correction to the
frequency shift (Eq. (21)) is similar to Eq. (1), which is inversely proportional
to the main field By and proportional to the square of transverse fields. On
the other hand, for quadratic gradient field, whose distribution does not
have odd-parity, the first order correction to frequency shift (Eq. (24)) is
proportional to the nonuniform part of the longitudinal field and does not
have a B, in the denominator, which is significantly different from Eq. (1).
This result shows that Eq. (1) may underestimate the magnitude of the

frequency shift caused by nonuniform magnetic field in experiments,
especially in NMR experiments that use a large main field. We also find that
Eq. (2) is actually the third order correction of frequency shift for quadratic
gradient field (Eq. (25)). Due to the y*/D’ and R'" dependence, this third
order correction is spin-species dependent and contributes significant iso-
tope shift for large cells.

The boundary relaxation is another crucial factor that was not well
studied previously but can influence the resonance frequency by the
interaction with nonuniform field. We find that the boundary relaxation
will lead to a small correction to the first order frequency shift, and this
correction is spin-species dependent due to the wall interaction mechanism
difference of different spins. This effect of boundary relaxation is vital for
comagnetometer experiments where the first order correction of frequency
shift can completely cancel if boundary condition is not considered. We
show that the isotope shifts caused by the first and third order corrections of
frequency shift (Eqgs. (28-30)) are both important and have distinct beha-
viors. The first order correction to isotope shift is proportional to the dif-
ference of boundary relaxation and is more important for small cells, while
the third order correction only weakly depends on boundary relaxation and
is more important for large cells. The systematic errors introduced by these
corrections are fatal in new physics searching experiments where the
absolute value of frequency ratio are of great concern. As a reference, the
systematic error for the rotation signal of an NMR gyroscope can be as large
as 10 yHz in typical experiment conditions (see Fig. 3). This insight can help
explain the isotope shift effect”>*™* in recent NMR gyroscopes and new
physics searching experiments, in which alkali field is a highly nonuniform
effective—magnetic-ﬁeld“. Furthermore, based on the derived systematic
error formulas, a method for fast wall relaxation measurement is proposed.

Results and discussion

In this work, we will focus on the high-pressure and fast-diffusion limit,
which is commonly satisfied in recent NMR-based precision measurement
experiments. The high-pressure limit requires a large main field and a small
diffusion constant (i.e. yBoL*/D 3> 1)*, allowing the application of Rotating
Wave Approximation (RWA) to the Torrey equation. The fast-diffusion
limit requires a slow relaxation rate compared to the diffusion speed (i.e.
DT,/L* > 1)*, so that the spin evolution can be well approximated by a
single eigenmode and the effect of nonuniform magnetic field can be treated
with perturbation theory. Weak boundary relaxation (A <« 1) is also
assumed based on practical experiment conditions.

Torrey equation

Use Xe nuclear spin as an example. In experiments utilizing spin-exchange
optical pumping technique®, such as NMR gyroscopes and Rb-Xe
comagnetometers, the diffusion of Xe nuclear spins can be described by

Fig. 1 | Cartoon of the frequency shift mechanism. Considering the diffusion
motion and boundary relaxation of Xe spins, a nonuniform magnetic field can shift
the resonance frequency of Xe spins. The first order frequency correction slightly
depends on the boundary condition A, while the third order correction is propor-
tional to the ratio of gyromagnetic ratio yx. and diffusion constant D. Both A and
¥%./D? can be different for different Xe isotopes, thus will introduce systematic error
in comagnetometer type experiments. As an example, the systematic errors
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introduce to NMR gyroscopes, a kind of '*’Xe-"*'Xe comagnetometer, are shown by
50&55'1) and 8(2553 ¥ These systematic errors are generally not negligible, limiting
the absolute accuracy of comagnetometers as well as the long time stability of NMR
gyroscopes. On the other hand, the factor (;3; — A129) in SQ(rff’l) enables a new tool
for boundary relaxation rate measurement, which should be much faster than

previously reported methods. Refer to Egs. (24), (25), (29) and (30) for more details.
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the Bloch-Torrey equation

OM(r, t
% =DV>M(r, ) — y5 B(r) X M(r, t) 3)

- l-‘0 ° M(l‘, t) + R;[S(l‘) - M(I', t)]7

where M(r, f) is the Xe nuclear spin magnetization, D is the diffusion
constant of Xe atoms, yx. is the gyromagnetic ratio of Xe nuclear spins, B(r)
is the magnetic field distribution, T,y = I, (kX + 7y) + I',(2Z is a tensor
describing the transverse and longitudinal spin relaxation processes, and the
last term arises from the spin-exchange pumping process between Xe and
alkali atom spins, with R; the spin-exchange pumping rate, and S(r) the
alkali electron spin magnetization. Here, we assume that the alkali electron
spins are polarized along the z direction, i.e., S(r) = S,(r)z.

To further simplify Eq. (3), we assume that the magnetic field only has z
component (the effect of transverse component can be estimated using
Eq. (15)), ie,

B(r) = [B, + B, (n)]z, (4)

with |By(r)] < By. The homogeneous field B, defines the main pre-
cession frequency Qy = —yx.Bo, while the nonuniform field B;(r), which
may originate from the imperfection of the coils, the environmental stray
fields, and the alkali field, can contribute to spin relaxation and fre-
quency shift.

With assumption Eq. (4), the transverse and longitudinal components
of Eq. (3) are decoupled. The equation of motion of the transverse com-
ponents M.(r, ) = M,(r, t) + iM(r, 1) is

w = [Dv2 — T, ¢ineBZ(r)] M, (r, 1), 5)

where I, =T, + R;,, and B,(r) = B, + B(r). Below, we will focus on
Eq. (5), which determines the FID behavior of Xe spins.

Boundary condition
The boundary condition of Eq. (5) is determined by the spin relaxation
processes due to wall interaction. A perturbation treatment together with
kinetic theory gives the following boundary condition of the Xe nuclear spin
density matrix p(r, £)*

[l’l ' VP(l'> t) + ﬁP(fa t)} ’reBV =0, (6)

where 0V is the boundary of solution domain V, n is the normal vector of the
boundary (pointing outward), and j is an operator reflecting the wall-
interaction induced transitions between different components of the Xe spin
polarization.

We replace the operator ji with a constant number for simplification,
leading to the following boundary condition:

(n - VM, (r,t) + % - M, (r, t)> =0, 7)

redV

where A > 0 is a dimensionless constant describing the depolarization
strength on the container wall and L is a linear size of V (e.g. the side
length for cubic V or the radius for spherical V, the choice of L does
not affect the physics). When A — 0, the boundary condition
becomes n - V M.(r, t)|;esv = 0, which represents an ideal surface
without spin depolarization effect. In the opposite limit A — oo, the
boundary condition becomes M. (r, t)|;csv = 0, which means the spin
magnetization is completely randomized at the wall. Compared with
the Eq. (17) of Wu’s review”’, we have

3L
2 A

~ &, when&’ <1, 8)

where Ar is the mean free path of Xe atoms and 0 < Ef < 1 represents the
depolarization probability of Xe spins on the wall. For noble gases the
depolarization probability is very small, £* <1077, Since Ay and & are
physical parameters that should not depend on the size of V, the parameter A
actually linearly scales with L, i.e, A « L. The typical value of A for RbH
coated cells or uncoated Pyrex cells in an experimental Rb-Xe comagnet-
ometer system is approximately 10~ ~ 107 for L = 1 cm cubic cells. Figure 2
shows an example of A measurement experiment. The magnitude of A is
indeed small and has vast difference over different spin species. So, in the
derivation below, the condition A < 1 always holds, and we assume that A is
strongly spin-species dependent.

Perturbation treatment
The general solution of Eq. (5) has the form

M (r,0) =) a,e ¥y (n), ©)

where {a,} are expansion coefficients depending on initial state, {s,} and
{¥,(r)} are the spatial eigenvalues and eigenmodes of Eq. (5). When the
nonuniform magnetic field B, (r) is small, due to the fast decay rate of excited
modes, usually only one mode is experimentally observable (fast diffusion
limit). Thus, we have

M+(r7 t) ~ aOeisOI\PO(r)a

(10)
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Fig. 2 | A demo of Xe wall relaxation measurement. The transverse relaxation rate
1/T, of Xe spins mainly consists of the wall relaxation rate I', and the collisional
relaxation rate I copision- Due to the competition between wall trapping and thermal
motion, Iy, decreases as temperature rises. On the other hand, T onision is propor-
tional to the density of alkali atoms (e.g. Rb), and thus increases as temperature rises.
By measuring the temperature dependence of 1/T,, we can extract the wall relaxation
rate of Xe spins through nonlinear least squares fitting. This measurement is per-
formed on a RbH coated 8 mm cubic cell (Cell ID: CH7) containing 3.6 Torr Xe,
35.6 Torr *'Xe, 167 Torr Ny, 6 Torr H, and a small droplet of Rb metal. The
transverse relaxation rate of '*’Xe and *'Xe spins is measured by fitting the decaying
rate of FID signal, using the experiment setup of our previous work™. Solid and
dashed lines are fitting curves using the model in section “Experiment Measurement
of Wall Relaxation Rate" in the methods. The boundary conditions for *’Xe and
P'Xe at 110°C are estimated to be 1,9 = (5.3£2.0)x 107> and A5, =

(13.0 £3.8) X 107> using these fittings. Data points in the figure are given by a
Lorentzian fitting as shown in Fig. S1(g) of our previous work™. The error bar
represents the 95% confidence interval returned by the fitting algorithm. See Sup-
plementary Data 1 for the source data of this figure.

Communications Physics| (2025)8:93


www.nature.com/commsphys

https://doi.org/10.1038/s42005-025-01991-9

Article

which describes the FID signal of Xe spins.
The eigen equation of Eq. (5) can write as

[Ho + H, ()] ¥, () = =5, %, (), (11)
where H, = DV? — (iyy.B, + I,.) and H, = —iyy By ().

Denote {¢,(r), «,} to be the eigen solution of H, under the boundary
condition Eq. (7):

V2, (r) = 15, (0). (12)
Then, we can calculate the matrix form of H, and H, under the ortho-
normalized basis {¢,(r)} and apply the results of nondegenerate time-
independent perturbation theory, only to remember that H, and H, are
non-Hermitian. H, is diagonal, and the matrix elements of H; are (H ), =
—iyx.bapg With beg being the B, (r) induced coupling between eigenmodes:

bys = /V $o(1)B, (D5 d’r. (13)

Above, the Greek indices «, § may contain multiple integer indices, e.g.
a = [mnp]. The fundamental mode in Eq. (10), which has the slowest decay
rate, is denoted using « = 0 or 8 = 0.

We are particularly interested in the perturbation correction of the

the following {bsgt)}:

(tot) __ Vxe + g
bfxﬂ = btxﬁ + Z bvtybyﬂ’

2o — (DG + o) | 5

(15)

bl = /V $,(0) [Bx(r) + iBy(r)] $s(Odr. (16)

For typical experiment conditions, By is much larger than B,, B,, B, and
(D3 + Ty )/ yxe- S0, in Eq. (15), compared with By, the effect of B, is
suppressed by a factor of B,/B, (and the same for B), ie. hgm) is typically
dominated by b,g. This validates the previous assumption Eq. (4{ The effect of
transverse magnetic field gets important only when b,g, the contribution of B,
vanishes due to symmetry reason (see Supplementary Note 1 for examples).

Frequency shift from gradient field
So far, we have not specified the shape of solution domain V. Thus, the
solutions above are applicable to arbitrary V. Now, let us consider a cubic
domain

V= {(x,y,z)I—L/ZSx,y,zS —I—L/Z}7 (17)
with L the cubic’s side length. The eigenmodes in this cubic domain have a

separable form (see section “Unperturbed Eigenmodes in Cubic Domain" in
the methods for details):

eigenvalue s, of the fundamental mode, which can be directly observed via B (™) = 4,,(),,(1)$,(2), (18)
the FID frequency shift and the spin decay rate. The eigenvalue of the
fundamental mode, up to third order correction, is
boab boabagbpo boab
— DiE4T ive B 4 ive b 2 0a%0 . .3 a”aB B i b 0aYa0
So 0 1 Doc +1pxe By + 1pxeBg0 + yXeZato D(x2 — <) IYXeZaﬁ#) D (2 — ) (;cz B K%> + ke OOZWO D (2 — K%)z
0™ order 1% order « B (14)
27 order 39 order (a) 3 order (b)

= sf)o) + sgl) + sgz) + 583) )
where sgk) denotes the k™ order correction, and {2} is the eigenvalues of ~ where
Laplacian operator V* as defined in Eq. (12). The FID signal of Xe 1. (p+ n
spins observed in experiment is usually determined by the fundamental $p(2) = ATsm<KpZ + 6p>7 o, = 5 (19)

P

mode eigenvalue s,. The real part of Oth order correction represents the
intrinsic relaxation rate of Xe spins, in which T, is the relaxation due to
gaseous-atom collisions (e.g. collision between Rb and Xe atoms), and Dx3 is
the relaxation due to wall interaction. The imaginary part of Oth order
correction, iyxeB, is the main part of FID frequency that determined by the
main field B,,.

As the perturbation matrix element b, is real, the 2nd order correction
is real, which represents the extra relaxation rate caused by the nonuniform
magnetic field. The 1st and 3rd order corrections are purely imaginary,
which contribute to the frequency shift. The by in 1st order correction is a
weighted average of the nonuniform field B;(r) (along z direction). In the
absence of boundary relaxation (A = 0), the weight ¢(r)* = 1/V is constant
over the space, making by, just a trivial average of B, (r). For 0 <A < 1, the
boundary relaxation makes the fundamental mode ¢o(r) slightly different
from uniform distribution, and the first order correction will have a small
dependence on \.

When the solution domain and B; (r) have parity symmetry, the 1stand
3rd order corrections above may vanish due to the parity symmetry of
eigenmodes {Pa(r)} (i.e. by = 0 when ¢,(r)B;(r)¢p(r) is an odd function).
Then, the effect of transverse magnetic field (B,, B,) is not negligible. Fol-
lowing the derivation in section “Perturbation Treatment of the 3D Torrey
Equation" in the methods, we find that in order to calculate the effect of
transverse magnetic field, we can simply replace all the {b,;} in Eq. (14) with

Obviously, ¢,(z) has parity: ¢,(2) =¢,(—2) for even p and
$p(2) = —¢(—2) for odd p. Using this symmetry, one can immediately
derive that, for linear gradient field Bi(r) = G; - z, by = 0 and
boabagbpo =0,V a, B # 0. So, the frequency shift vanishes up to third order if
we omit the effect of transverse magnetic field.

To count the transverse field, we note that a linear gradient field with
axial symmetry should have the form

1 .
B =G, {— 3 (x5c -l—yji) + zz] . (20)
Substitute this magnetic field distribution into Egs. (15) and (16), we get the

first order correction of frequency shift in Eq. (14) to be (see section “Fre-
quency Shift Formulas for Gradient Fields" in the methods for details)

GiL? 2
Sl = is) v — T TIZ (1 — EA) + 0. (1)

48B,
The A° part of Eq. (21) has similar form with Eq. (1) by noting that
VB, |* = |VB),|2 = G2 /4. Zheng et al. also obtained the A° part of this
formula for a cubic domain based on Redfield theoryzz, and is consistent
with our result (see Supplementary Note 2 for details).
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The second order correction, which contributes to relaxation rate, is

1 @ o VeGiL* A 2
— = R L o).
7~ 0 T 120D 3)TOM 22)

Equation (22) is derived using {b,g}, because byabao does not vanish and the
contribution from transverse field is negligible.
For an axial symmetric, quadratic gradient field
B = G, [—xzk — yzj + 2], (23)
parity symmetry can no more guarantee bog = 0 or boabasbpo =0,V o, § % 0.
The frequency shifts and relaxation rate in Eq. (14) are (see section “Fre-
quency Shift Formulas for Gradient Fields" in the methods for details)

1) _ . (1) o )/ G LZ 2
o) =isy) ~ —% -2 +0(\?), (24)
3 G3L10
86 = is) ~ YTX (1+x,1) + 00, (25)
1 o rkGL 2 2
— =5 a2 (1) o),
7%~ 0 7 7560D 5h) T Od) (26)
where
X, A~ 6.68056x 1078, y, A2 0.646886. (27)

Unlike the previously well known result Eq. (1), these two frequency shifts
are determined by the distribution of longitudinal field B;(r) rather than
transverse fields. They cannot be suppressed by alarge By and are sensitive to
boundary relaxation.

The substantial difference between Eqs. (21) and (24) comes from the
symmetry of the magnetic field spatial distribution. First order correction is
proportional to the botgt) defined in Eq. (15), in which by ~ B, represents the
contribution from longitudinal field, and the remaining part (hgtg‘) — b)) ~
(B + B;)/B, is the contribution from transverse field. In the calculation of
Eq. (21), we have by = 0 due to the odd-parity of the linear gradient field.
Thus, the frequency shift comes from the remaining part, which is pro-
portional to GIL? and has a By in the denominator. In the calculation of
Eq. (24), by is nonzero. Since B, is much larger than nonuniform fields B,
and B, b should be dominated by by, Thus, the frequency shift is
proportional to G,L* and has no B, in the denominator.

Systematic error of comagnetometer

In NMR gyroscopes® and comagnetometer® experiments, two different
kinds of nuclear spins are used to compensate the fluctuation of main field
B,. However, Eqs. (21), (24) and (25) show that nonuniform magnetic field
will lead to frequency shifts depending on A, y and D, which can be different
for different nuclear spins. These spin-species dependent frequency shifts
may lead to imperfect compensation of magnetic field fluctuation. Fol-
lowing the analysis in section “Systematic Error of NMR Gyroscope" in the
methods, Egs. (21), (24) and (25) will respectly contribute systematic errors
to the rotation signal of a NMR gyroscope as

Aisy — Ao PG2L3
505061,4,1) ~ 131 129 YU1 7 (28)
L 3608,
Gl . Msp — Apo PG,L?
50505, ) o M3t , 129 9% 7 (29)
2
G,3) V4 yz _
saie? ~ =, (—Dlz” o )ychw, (30)
129 131

where 805" = Q%) _ O is the difference between the gyroscope
output Qi(z)f’ ) and the real rotation rate Qrot- M29/131> V1207131 and D131 are
the boundary conditions, gyromagnetic ratios and diffusion constants for
the "Xe and "*'Xe spins, respectively. The value of gyromagnetic ratios are”
V1o = —27(11.860156 mHz - nT™"), y,5, = +27(3.515769 mHz - nT ")

and

Y129Y131

y= = —2n(2.711874mHz - nT™"). (31)

Y131 — Y120

Systematic error of Eq. (30) was experimentally studied by Sheng et al. using
He-'*’Xe comagnetometer, showing a good consistency between experi-
ment data and numerical simulation result".

Figure 3 shows an example of the typical magnitude of these systematic
errors for various cell size. For small cell, first order correction dominates the
systematic error. Matching the A value of different spins helps reduce this
systematic error. As cell size gets larger, third order (and higher order)
correction become significant and finally blows up. The characteristic cell

length where ’6 QiOGf’l) ‘ = ‘6 Qfﬁ’3) is

Al3l — A129
2
901, GL (e - Jv)

129 Dl}l

(32)

G.
L£ 2) —

A 2 cm cubic cell (usually used in new physics searching experiments)
can gain systematic errors in 10 yHz order. These errors should play an
important role in understanding the fundamental precision limit of NMR
gyroscopes and new physics detection based on comagnetometers. Our
result can be used to explain the isotope shift effect observed in comag-
netometer type experiments™*>™" by noticing that the alkali field has a
highly nonuniform spatial distribution, leading to complex spin-species
dependent frequency shifts.

Equations (28) and (29) convert the boundary condition A into a fre-

quency signal 6! Q(mle‘l), thus can be used to measure the wall relaxation rate

102

< 10°F
jas
2
S 102}
=
g — g
— o — — — 500
mﬁfg‘“
. — oo e
10 0 0.5 1 1.5 2 25 3

L (cm)

Fig. 3 | The relative magnitude of different systematic errors. The systematic error
from the third order frequency correction, 805 is significant for large cell and
negligible for small cell due to the strong dependence on the cell size L. The char-
acteristic cell length, where first and third order corrections have similar size, is in the
order of 2 cm and inversely dependent on field gradient, as shown in Eq. (32). The
contribution from linear gradient field is much smaller than from quadratic field
because of the suppression by a large main field B,. In the numerical calculation,
By =20000 nT,G; =10nT-cm 'and G, =10 nT - cm are used. The values of A and
D are chosen to be the experimentally measured results presented in section
“Experiment Measurement of Wall Relaxation Rate" in the methods. See Supple-
mentary Data 1 for the source data of this figure.
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of nuclear spins. Compared to previous wall relaxation experiment, as
shown in Fig. 2, which needs to sweep cell temperature™”**”, our proposed
method is much faster and capable of real-time monitoring the change of A.
The amplitude of 895‘?‘2’1) /(2m) in Eq. (29) is approximately 5 yHz (using
typical values A = 10 and G, L*/(27) & 0.5 Hz), and should be detectable
using state-of-the-art comagnetometer technique. As a reference, the NMR
gyroscope output signal reported in Fig. 9(a) of Gao’s work™ shows an
~0.5 yHz RMS noise (after 100 s average) and ~2 yHz long time drift (over
8h). However, to experimentally apply this method, there are still some
challenges. For example, the nonuniform alkali field generated by polarized
alkali spins can interfere with the coil gradient field in the third order
correction. A careful calibration of the effect of the alkali field is needed to
ensure the accuracy of A measurement. The suppression of comagnet-
ometer’s long time drift is also important if real-time monitoring of A is
desired.

Conclusion

The frequency shift formulas presented in this work show quite different
behaviors with the previously well known formula Eq. (1) for magnetic field
gradient. It turns out that Eq. (1) is a special case where magnetic field
distribution and solution domain both have parity symmetry. The use of
Eq. (1) may severely underestimate the actual frequency shift caused by a
nonuniform field.

It is notable that different spins have slightly different frequency shifts.
This deviation of frequency shift can introduce significant systematic errors
in comagnetometer experiments as well as other precision measurement
experiments that rely on comparing the Larmor frequency of multiple kinds
of spins. This systematic error could be one of the sources that limit the
detection threshold of comagnetometer, which is a novel tool for dark
matter searching”*''", exotic interaction detection’***’" and the verifica-
tion of many other new physics models’.

Equations (28) and (29) provide a tool for the study of spin-wall
interaction. Since frequency measurement is one of the most precise mea-
surements, this method has great advantages in precision and bandwidth. It
should be a tool with great potential for spin-solid interaction research.

Methods

(Note: In order not to introduce confusion, in this article, subscript m, n, p
will always represent a single integer index, while a Greek subscript such as
a, f3, y represents multiple indices.).

Perturbation treatment of the 3D Torrey equation
This section considers the effect of transverse magnetic field in the presence
of a large main field B,. Equation (3) can rewrite to the following form:

oM
tz =DV’M, —T'\:M, + RS,

J i (33)
3% (B+M— - B—M+)7

M,

ot DV:M, — iyx, (BzM+ - B+MZ) — LM, (34)
with
B = B, (r)x + B,(r)y + B,(1)z, (35)
B, = B,(r)£iB,(r), (36)
and the boundary condition
A
n- VM(r, t) + —- M(r,t) =0, (37)
L reoV

where M; stands for M, M, or M. T, = T}y + R}, I, = Iy + R;,. Sup-
pose B, = By + B(r) where B, is a large uniform main field and B(r) is a

small nonuniform field. Introduce the rotating frame with
M, = M, e*xBo Then, Egs. (33) and (34) becomes
oM
£ =DV*M, —I'':M, + RS
ot P (38)
_ %YXe (B+M_ e+i)’XeBot _ B_M+e7inEBUt)7
oM, _ _
—+t=DV’M, —-T,.M
ot + 2+ (39)

— iyxBiM,, + iyy B, M, et

In the rotating frame, the change of M, and M, should be slow compared to
the Larmor frequency yx.Bo. So, in Egs. (38) and (39), the high frequency
terms which contain e*7x5! factors can be directly ignored to the first
approximation. This is called the RWA, leading to the decoupling of M, and
M, and justifies the previous assumption of omitting the transverse
component of magnetic field (Eq. (4)).

However, according to Eq. (38), the solution of M, can contain a small
e xBo! component. Then, the M,e™xo! term in Eq. (39) will generate a
DC contribution which might have some effects to the solution of M +-So,
let us consider the case when RWA is not directly applied to Egs. (38)
and (39).

Denote the eigenmodes of V> operator under the above boundary
condition as

V0= K00 [0 mpmdt=0, @)
Then, the solution of M can be expanded as
MZ = Zcz,a(t)¢a(r)7 Mi = Zzi ,a(t)¢a(r)7 (4])

with ¢_ , =} ,. Using these expansions and the orthonormality of
eigenmodes, one can transform Egs. (38) and (39) into the following linear
equation system of expansion coefficients:

dcz.tx 2 /
= == (D, + Ty )e, o + R,
i +Hiyy Byt + ~
- E Vxe€ 7 ng: baﬁc—ﬁ (42)
i .
e > bt g
B
&
e (D4 T2,
“o sy, @
— 1Yxe Z bugcy g+ ipg.e” e Z bagcep-
B B
where
bag = / $o(D)B. (1)¢,(r)d’r, (44)
\'%4
bos = /V $o(D)B, (D0 d’r, (45)
d,,= / ¢, (08, (r)d’r. (46)
JV

Equations (42) and (43) can be directly used in numerical simulation.
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Integrate the c,, equation in Eq. (42), one gets
Cz‘oc(t) = Cz,a(o) + / |:RPdZ a
i o B~
iy [[eee o)
B
i _ i -
+ 7 xe Eﬂ: ba/; (/ iyxeBot 7 (t )dt' >

(DKi + rlc)cz.,a(t/)] dt/

(47)

Based on the picture of Larmor precession and numerical simulation, we
can safely assume that

Ty (1) 2 Cy ,(0) exp(Fiw,t — T,t), (48)
where I, &~ D«2 + T, is the relaxation rate of ¢,(r) mode, and w, is the
frequency correction of this mode. Then, the integration above becomes

t
/ * ‘VXeBo (t )dt
0

Insert Eqs. (47) and (49) into the ¢, , equation of Eq. (43). Noticing
that |wpl < |3/XQBO| we can use RWA, ignoring all the terms with e x5! or
eHirxeBotep)t gy ctor. Finally, we get

C;ﬁ(o)
i yxeBo + w5) — Ty

[eﬁ(yXeBow,;)r—rﬁr _ 1} '

(49)

de, z i c
ﬁ ~ —(Dx, + rzc)CJr,rx ~ Dxe Z bapC g
B

+ % b"‘ybyﬂ C+’/3 (50)
By rﬁ + 1<YXeBo + “’/3)
(DK + FZC)CJr o 1yXe Z bzxt;t)EJr B
where
B = b, + Ve bt by,
B B Z[YXe (sz +r2c>] Z y OB (51)

If we directly apply RWA to Eq. (39), which means ignoring all the
effects of B, and B,, then Eq. (50) becomes

de, - : =
dt‘a - (Dxi + I‘Zc)c+‘tx — 1% Z bapCy ps
B

(52)

which is equivalent to the eigen equation Eq. (11). Comparing Egs. (50) and
(52), it is easy to see that, to account the leading order effect of B, and B,, we
just need to replace the {b,4} in Eq. (14) with {b (ot } Slnce the main ﬁeld B,
is much larger than nonuniform field B, B, and B,,, b, (0 is dominated by
bag. The effect of B, is suppressed by a factor Bx/y/BO compared with Bj.
Also, the imaginary part of b(m) should be much smaller than its real part.

Unperturbed eigenmodes in cubic domain
This section will derive the eigenmodes and eigenvalues of the Torrey
equation in a cubic domain of the form Eq. (17).

Consider the following eigen equation:

The eigenmodes {¢,,,,,,(r)} of Eq. (53) can be written in a factorized
form of
Pounp (1) = ,(), ()¢, (2), (54)
where m, n and p are non-negative integers labelling the eigenmodes in the
x, y and z directions, respectively. It is easy to check that the 1D eigenmodes
have the form

¢p(z) P s1n(;< z+46 ) (55)

where N, is normalization factor, and % and 8P are real numbers deter-
mined by the boundary condition Eq. (7). The wave numbers #, are the
solutions of the transcendental equation

2Ak, L
_ p
tan(KpL> = KIZ)LZ 2 (56)
and the phase shifts are determined by
5y st
tan <6p ) = (57)

Using the normalization condition | ¢12, (z)dz = 1, the normalization factor
is

AL
Ne=\a e 9

The eigenvalues corresponding to @,,,,,(r) are
Egzrp - Dximp + I‘2c + ineBm (59)

where Kfnnp =12+ + KIZ,. The real part of the -eigenvalue,
I, = kanp + T, is the decay rate of the eigenmode ¢,,,,,,(r), and the

imaginary part, px.Bo, is the spin precessmn frequency in the uniform
magnetic field By. The superscript of s, smnp represents that this is the Oth order
correction of the perturbation solution presented in Eq. (14).

Figure 4 gives the numerical solutions of «, for various A values. To
reveal the underlying physics of the wall-relaxation, we expand the tangent
function in Eq. (56) in the neighborhood of #,L = pm, and find the solution of
wave number in the limit of A <1 to be

{ V21 p=
L
K, ~ (60)
P pUy 2) P
5 + errL IjT » P=
The exact solution of &, (without assuming A < 1) is
(p+ Dn
8, = 5 (61)

For the fundamental mode (1 = n = p =0), the wall-interaction contributes a
relaxation rate through diffusion:

D

Top0 = Dty & 6AF (62)

For the excited modes ([m, n, p] # [0, 0, 0]), the relaxation rate due to spin

sz(pmnp - (ineBO + FZC)¢mnp mnp(pmnp’ (53) diffusion is
where —sf,?,)qp is the eigenvalue of the eigenmode ¢,,,,,,(r). =D~ (m 4+ p)r D (63)
mnp — mnp L2
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Fig. 4 | The eigen spectrum of spatial eigenmodes for different boundary
relaxation strength. The solid lines are the exact value calculated from numerical
method. The dashed lines are the approximation value calculated from Eq. (60). See
Supplementary Data 1 for the source data of this figure.

As A S 1072 even for the lowest excited modes (with m* + n* + p> = 1), the
decay rate is much faster than the fundamental mode, i.e., Ty, > Tooo.
In the A < 1 limit, ¢,(2) are approximately

bo(2) ~ 1—Az2/12
’ \/L(1 = 1/6 +)L2/80)7 69
Fsin| (42 )z|, pisodd
$,(2) > 1" [(L PL) } ,p>0. (65)

Frequency shift formulas for gradient fields
In this section, we calculate the frequency shift formulas for two simple
forms of nonuniform magnetic field in a cubic domain V.

Linear gradient field. Let us first consider a linear gradient field
B, = B, + G - z.Since areal magnetic field should obey the Gauss law, if
we assume axial symmetry, the magnetic field should have the following
distribution:

L, . . N N
B(r) =G, |- 3 (xx +yp) + 22| + Byz, B,(r) =Gz (66)

This is the field distribution of a linear gradient compensation coil normally
used in NMR experiments.

=[2p—1,0,0] or @ =[0,2p — 1,0], p= 1. Thus, we have

. Gl +L/2
oo =3 [ b9y (e

N V2G,L 1 1 (67)
~ Y e {1 - {8 S 2p- l)znz} A}
+0(),
N Gl +L/2 )
== [, IO 0y
N f 2G,L 1 1 (68)
Y G e {1 - {E S 2p- 1)2n2H

+ O(AZ).

Above, we use Egs. (64) and (65) as the approximate expressions of
eigenmodes, and expand the result around A = 0. Combining them together,
we have

Z b(?zx b;O

o

o0
Z( 0,[2p—1,0,0] 0[2p 100]+b0[02p 10150[021; 10])

p=1
o 2 (69
~3 (G (- b-a )

= 2p — 1)’ 6 (2p—1)yn?

GfL2 )
o ( ——/1) +0(1%).

The first order frequency shift is:

o 2 bouby
1551) = _YXeb(t )~ xe 21;) 0
0
GI? 2 70)
%_YXG_I 1—=2 +O(/\2).
48B, 15

Second order correction mainly consists of the contribution from
longitudinal component. Due to symmetry reason, by, is nonzero only when
a=[0,0,2p — 1], p = 1. Using the approximate eigenmode in Egs. (64) and
(65), we have

+L/2
b0¢[0,0a2p—1] :Gl [L/z Z¢O(Z)¢2P71(Z)dz
~ (= ﬂ{ _F_;} } 71)
1 (2p — 1y’m? ! 6 (2p—1)2n2)L
+ 0(\%).

The result above is a Taylor expansion around A = 0. So, the second order
correction is

2
D 2
=1 [(Zp — D+ (2;%1)4 -2

The first order term by is zero, for the reason that B;(r) = G,z is odd N VLN 8GHL? ] A (72)
function and ¢y(z) in Eq. (64) is even function. So, the first order frequency D }; @2p—1 )on6 E)
shift of a linear gradient field is mainly contributed from transverse com- ) 24
ponents. We need to calculate the b(mt) in Eq. (51). Let us first calculate by, = VxeGi L (1 — /}) + 0(?).
using the definition Eq. (44). According to the parity of the apprommate 120D 3
eigenmode expressions in Egs. (64) and (65), bota is nonzero only when
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Quadratic gradient field. For quadratic gradient field B, = By + G, - 2%, if
assume axial symmetry, the spatial distribution should be

B = G,[—xzx — yzJ + 2°Z] + Byz, B,(r) = G,z". (73)
First order correction can be calculated directly using the approximate
eigenmode in Eq. (64):

.+%
b= G, [, P
G LIZ_E 2 78
Ss 2 2
~ (1 15A> +002).

The calculation of second order correction is similar to linear gradient
field. Due to symmetry reason, by, is nonzero only when « = [0, 0, 2p], p > 1.
Using the approximate eigenmode in Egs. (64) and (65), we have

+L/2
bogoosp = Ga / 12 22¢o(2)¢2p(2)dz

G,L? 1 5 ) 73)
~ (=1F T { (8_4;72712)4 + 0.
Thus, the second order correction is
O = Bel’§F (bOv[°<°~2P1)2
p=1 [an—i— zpﬂ] —-21
(76)

2 12 00 274
SR
D = 8pon® 3 pPr?

2 276
Vx G2 L 2 2
= 1——A O(A).

7560D ( 15 +ow)

The calculatlon of third order correction is a bit complicated. The
calculation of s ) term is similar to s
2
(Poo2n)

{(an + Zpﬂ>2 - ur

@b)  ; Ve 14
SO ~ lD_ZeL b
(77)
. V% GLY 52 B
Xe 27 o\
3628800D2 165 + 0.

When calculating 50 ’9 we need the matrix element bap. Due to sym-
metry reason, only when «a = [0,0,2p] and 8 = [0, 0, 2n], the product
boabagbpo in the numerator of s ¥ is nonzero. Using the approximate
eigenmode in Egs. (64) and (65), we have

+L/2
bug = Gz/ zngzp(z)(pz”(z)dz
—L/2

(=1)""PG,L2(n*+p*) n—10n2p*+p* 78

~ (nLin)znz [ WP )‘] pzn 9
- 2p* =6 ’
I === R B

where a = [0, 0, 2p], B = [0, 0, 2n], n, p > 0. The result above is Taylor
expanded near A = 0. According to Eq. (14), we have

3

_‘&Lzloo 00
i Zz;

n=1

bo,[o,o,zp]b[o,o,zp].[o,o,zn] bo,[o,otzn]

{(2;711 + an) = ZA] Kznn + Zz,jn)z - 24 |

(79)

$g3a) ~

Taylor expand the above formula at A = 0 (up to first order), we get

3 3710
Go) . YxeGL A A
T ) Kl" Si+3mS
19y, G3L"° 659 50
—i Vxe'72 5 _ 1)+ O(A2)7
59875200D 5460
where
00 n—1 2 2
n°+p
S = TP 1 0.0375373, 81
V=2 e — &1
0 n—-1_4 2.2 4
n* + 8n°p~ +
5= szz ~ 0.0892948. (82)
"= o= nop(n? — p)
Summing s(3a) and s(3b) together, we finally get the third order correction:
3 G3LI0
s e =i B (1410 + 00, (83)
with
S, 1 s
= ————— X 6.68056 X 10 84
1= T6nm0 23950080 ’ 6
— S S
X2 = <32691158857912000 ~ g T Tnzlz) /X (85)

%

0.646886.

Systematic error of NMR gyroscope
In NMR gyroscope experiments, one often simultaneously measure the
Larmor precession frequency of both '*’Xe and *'Xe nuclear spin. The
Larmor frequencies of these two Xe isotopes are
- _Yu(BO + 6Bu) - Qrot7 (86)

where 1 = 129 or 131, and 6B,, = 3[so]/y,, — By is the frequency shift caused
by nonuniform field. Q. is the laboratory reference frame’s rotation
angular velocity along z direction.

One usually estimates the rotation speed by the following estimator™:

Qo — [Rywy31] — lwigl

T 14 IRy &)
Y129

= sgn[B,]( Q. + —12
Sgl’l[ 0]( rot+l+ |R0|bA)>

where by = 0Bjy9 — 0By3; is called the differential field, and Ry = y120/y131 =
—3.373417. Obviously, this estimator introduces a systematic error propor-
tional to b,. Utilizing the frequency shift formulas derived in the above
section, it is straight forward to get the Egs. (28), (29) and (30) (assum-
ing By > 0).

Experiment measurement of wall relaxation rate
According to literature’®”’, the transverse relaxation rate 1/T; of Xe spins
mainly consists of two parts:

. _

— = T

T = ¢;npyp(T) + ¢, exp (k T)
T _/—/

(88)

collision

T,

W

where T is the cell temperature in degrees kelvin, np,(T) is the Rb atom
number density, E is a characteristic energy, kg is the Boltzmann’s constant,
and ¢;, ¢, are constant coefficients. I'copision arises from the spin exchange
collisions between Xe and Rb atoms and is proportional to Rb density.

Communications Physics| (2025)8:93


www.nature.com/commsphys

https://doi.org/10.1038/542005-025-01991-9 Article

Table 1 | Fitting result of the boundary conditions

c1(10 % cm®.s7) co(103s7) E (meV) lw(s)@110°C
29%e 1.343 +0.021 1.23+0.34 95.4+86 0.0222 + 0.0084
®1Xe 0.382 £ 0.028 0.363 £0.075 165.6 +6.4 0.055+0.015

The range indicated here corresponds to the 95% confidence interval returned by the fitting algorithm.

I, comes from the wall interaction, which depends on cell temperature via  13. Jackson Kimball, D. F. et al. Probing Fundamental Physics with Spin-

an Arrhenius factor. Based Quantum Sensors. Phys. Rev. A 108, 010101 (2023).

The solid lines in Fig. 2 is fitted curves using model Eq. (88), with ~ 14. Schearer, L. D. & Walters, G. K. Nuclear Spin-Lattice Relaxation in the
¢y, ¢,, E the fitting parameters. Rb density ng;,(T) is calculated using the Rb Presence of Magnetic-Field Gradients. Phys. Rev. 139, A1398-A1402
vapor-pressure formula Eq. (1) in Steck’s handbook® (also see Alcock (1965).
et al.”") together with the Ideal Gas Law. The fitting result is shown in  15. Cates, G. D., Schaefer, S. R. & Happer, W. Relaxation of Spins due to
Table 1. Quadrupole splitting of "*'Xe is not observed in the experiment Field Inhomogeneities in Gaseous Samples at Low Magnetic Fields
of Fig. 2. and Low Pressures. Phys. Rev. A 37, 2877-2885 (1988).

From Eq. (14), the relaxation rate contributed from boundary condi- 16. Cates, G. D., White, D. J., Chien, T. R., Schaefer, S. R. & Happer, W.
tion is T, = Dxg. Thus, for cubic cell, using the solution in section Spin Relaxation in Gases due to Inhomogeneous Static and
“Unperturbed Eigenmodes in Cubic Domain" in the methods, we can Oscillating Magnetic Fields. Phys. Rev. A 38, 5092-5106 (1988).
estimate the value of A by I',,: 17. McGregor, D. D. Transverse Relaxation of Spin-Polarized *He Gas

Due to a Magnetic Field Gradient. Phys. Rev. A 41, 2631-2635 (1990).

r — @ (89) 18. Stoller, S. D., Happer, W. & Dyson, F. J. Transverse Spin Relaxation in

w2 Inhomogeneous Magnetic Fields. Phys. Rev. A 44, 7459-7477 (1991).
19. Zielinski, L. J. & Sen, P. N. Relaxation of Nuclear Magnetization in a

The diffusion constant can be measured using the method described Nonuniform Magnetic Field Gradient and in a Restricted Geometry. J.

in Sec. II D of the Supplemental Material of Zhang et al.’s work™. The Magn. Reson. 147, 95-103 (2000).

result is Dj,o = D;3; = (0.45+0.03)cm? - s!. The inner side length 20. Zhao, K. F., Schaden, M. & Wu, Z. Method for Measuring Surface-

of cell is L =(0.80+0.01)cm. Using these parameters, we get the Interaction Parameters of Spin-Polarized Rb Atoms on Coated Pyrex

boundary condition at 110°C to be A,y = (5.3+£2.0)x107° Glass Surfaces using Edge Enhancement. Phys. Rev. A 78, 034901

and A;;; = (13.0+3.8)x 1072, (2008).

21. Golub, R.,Rohm, R. M. & Swank, C. M. Reexamination of Relaxation of

Data availability Spins Due to a Magnetic Field Gradient: Identity of the Redfield and

The data that support the findings of this study are available from the Torrey Theories. Phys. Rev. A 83, 023402 (2011).
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