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Unlike crystalline solids, liquids lack long-range order, resulting in diffusive shear fluctuations rather
than propagating waves. Simulations predict that liquids exhibit a k-gap in wave-vector space, where
solid-like transverse waves reappear above this gap. Experimental evidence in classical liquids has
been limited, observed only in 2D dusty plasmas. Here, we investigate this phenomenon using active
Brownian vibrators and uncover distinct gas-like and liquid-like phases depending on the packing
fraction. We measure key properties, including pair correlation functions, mean square displacements,
velocity auto-correlation functions, and vibrational density of states. In the liquid-like phase, we
confirm the k-gap in transverse excitations, whose size grows as the packing fraction decreases and
eventually disappears in the gas phase. Our findings extend the concept of the k-gap to active granular

systems and reveal striking parallels with supercritical fluids.

Collective modes are a direct macroscopic manifestation of coherent atomic
motion and have a pivotal role in determining the thermodynamic,
mechanical, and transport properties of physical systems. Phonons, collective
lattice vibrations in solids, constitute an emblematic example as they deter-
mine most of the physics of solids at low energy, including their density of
states, their heat capacity (Debye theory), and even possible superconducting
instabilities (BCS theory). Phonon dynamics can be described using elasticity
theory' or hydrodynamics’, from which one derives that their frequency at
long-wavelength is linear in the wavevector k, wy, 7= vy 1k, with the transverse
(T) and longitudinal (L) speeds of sound governed by the elastic moduli.

Because of the random atomic distribution and the absence of a fixed
equilibrium reference frame, the fate of phonons and the vibrational
properties of liquids represent a much harder challenge for both theory and
experiments’. In liquids, the dynamics of longitudinal long-wavelength
fluctuations have been experimentally ascertained’ to be qualitatively
identical to that of solids, despite a smaller sound speed. On the contrary, the
dynamics of transverse (or shear) long-wavelength fluctuations are radically
different. Liquids have a vanishing static shear modulus and, at small wave-
vector, they display a shear diffusion mode rather than propagating shear
waves (transverse phonons) as in solids'.

Leveraging on a simple viscoelastic model, Maxwell’ proposed that
shear stress in liquids has a characteristic exponential decay time 7, = /G,

where 7 is the shear viscosity and the instantaneous shear modulus G... This
timescale is now known as the Maxwell relaxation time. Based on a more
microscopic picture of liquid dynamics, Frenkel later proposed’ to identify
such a timescale with the time of local particle re-arrangements, corre-
sponding to hopping processes over potential barriers.

The emerging Maxwell-Frenkel picture of liquid dynamics (see’ for the
complete history lesson) suggest that shear fluctuations in liquids obey the
following telegrapher equation,

Wk + iwy Ty = viK (1)

In Eq. (1), vris the transverse speed of sound related to the instantaneous
shear modulus G... By solving (1) (see® for an extensive review), the dis-
persion of shear waves is obtained,

sz_Z—’TJrvT,/kz—k;

For long-wavelengths, one recovers the hydrodynamic shear diffusion
mode with collective diffusion constant D, = vi1 = 17/p (with p the mass
density of the system) predicted by Navier-Stokes equations’. Above a cri-
tical wave-vector kg, known as k-gap, the real part of the frequency becomes

with k' =2vgT )
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nonzero. Above kg, when the real part of w; becomes larger than its ima-
ginary part, propagating solid-like shear waves are then expected to emerge
in liquids. This leads to a corresponding elastic-like response below a certain
critical distance, L. = 271/k,. In simpler terms, it means that liquids are
predicted to exhibit solid-like transverse vibrational modes not only for
high-frequency, w > 1/7 (as proposed initially by Frenkel® based on a single
particle picture), but also for large wave-vectors k > k,.

The k-gap is expected to appear at the melting temperature and to
expand into the liquid phase as the temperature increases'’. It then reaches
the maximum wave vector allowed at the edge with the gas phase. The
existence of the k-gap, and its properties as described by equation (1), have
been confirmed by several molecular simulations of classical liquids'*"'” and
other liquid systems"***’, indicating the validity of the theoretical framework,
even from a quantitative perspective’'. Additionally, the similarity between
vibrational modes at high frequency/wave-vector in liquids and solids™*,
and the solid-like nature of confined liquids at low frequencies, as predicted
by the concept of an elastic critical length L, have been experimentally
verified””°. However, due to the limitations of experimental scattering
techniques at low k and w, the k-gap has not been observed experimentally
in classical liquids. The only recorded observation of the k-gap has been in
complex dusty plasmas”, which are systems of charged particles that
interact strongly via Coulomb forces and exhibit liquid-like collective
dynamics™.

Granular materials differ from conventional thermal equilibrium
systems, such as molecular gases, liquids, solids, colloidal liquids, or solids.
They are made up of macroscopic particles that experience negligible
thermal fluctuations compared to the typical energy scales of the system.
Granular materials also have high dissipation due to inter-particle solid
friction in the dense solid-like phase or inter-particle inelastic collisions in
the fluid-like phase”. This means that a continuous external energy injec-
tion is needed to maintain the fluid-like phase of a granular system, making
it a prototype of systems far from thermal equilibrium. However, this raises
questions about whether the k-gap description, commonly used for mole-
cular liquids or plasma, applies to a granular fluid. More in general, it
remains unclear whether collective modes of a granular fluid are similar to
those of classical liquids’ and, if so, what plays the role of thermodynamic
variables such as temperature.

The densely packed configurations of granular materials often exhibit
fluid-like behaviors when subjected to external forces™ . However, due to
the presence of permanent contacts and force chains®, measuring the
Hessian matrix directly in densely packed granular matter has proventobea
challenging task, even in the quasi-static limit” . In contrast, loose granular
matter, where collisions primarily govern particle interactions, has seen
theoretical analyses of hydrodynamics and collective modes in granular
fluids. This involves formulating transport equations for essential hydro-
dynamic quantities like mass, momentum, and heat, followed by a linear
stability analysis of the homogeneous states*"". While transverse modes
decouple®, the longitudinal sector becomes intricate due to the non-
conservation of energy, leading to significant modifications in the long-
itudinal channel. To the best of our knowledge, the discussion of the k-gap in
the hydrodynamics of granular fluids has been absent, as it extends beyond
the conventional long-wavelength hydrodynamic description. From an
experimental standpoint, the primary advantage of granular fluids over
traditional molecular liquids is the macroscopic size of the particles, which
are measured in centimeters in this case. This larger size significantly
facilitates the tracking of particle positions and dynamics using cameras. In
contrast, such tracking is extremely challenging, if not impossible, with
molecular liquids. In those cases, excitations can only be investigated
through techniques like X-ray or inelastic neutron scattering, which are far
more complicated, especially in the frequency and wave-vector ranges
where the k-gap is expected to emerge.

If the k-gap description can apply to granular fluids, then a homo-
geneously driven granular fluid would be the most straightforward scenario
to explore. However, creating a homogeneously driven experimental system
has proven challenging”™ due to the influence of gravity and anisotropic

driving in three-dimensional (3D) systems or the implementation of
boundary driving in quasi-two-dimensional (2D) vertical systems’"”.
Additionally, the influence of 3D effects in quasi-2D horizontal systems has
made it difficult to achieve homogeneous driving™ . While a few quasi-2D
systems have achieved homogeneous driving****”, some lacked single-
particle velocity Gaussian statistics™*”. In contrast, others incorporated
persistent unidirectional rotation at the single-particle level®, introducing
additional complexities in energy injection at the single-particle scale.
Recently, Chen et al. designed an experimental system that achieves
homogeneous driving, single-particle velocity and rotation statistics with
Gaussian distributions of zero means in a quasi-2D system***’. This system
closely aligns with the active Brownian particles introduced in theoretical
studies from the perspective of active matter*’. We notice that our experi-
mental setup can be considered as an active system since the external energy
input, that maintains the system out of equilibrium, acts individually and
independently on each “active particle™”.

Compared to a dusty plasma, a nonequilibrium system made up of
micron-sized charged particles suspended in a plasma, an active granular
system differs significantly in its interaction potential and driving
mechanism. In dusty plasmas, the potential is governed by a Yukawa
potential, while in active granular systems, interactions occur through
inelastic collisions and solid friction. Additionally, the driving mechanisms
differ: dusty plasma is driven by laser heating at the boundaries, while active
granular systems experience homogeneous and random driving of indivi-
dual particles. Our experimental findings add to the previous experimental
observation of a k-gap dispersion in a dusty plasma”, demonstrating the
universality of the k-gap phenomenon in the liquid phases of matter.

Active granular systems provide a novel platform for exploring the
emergence of collective dynamics and showcasing a rich interplay of
complex phases and phenomena. Our study focuses on bi-disperse active
Brownian vibrators. Through measurements of the pair correlation func-
tions, mean square displacements, velocity auto-correlation functions,
vibrational density of states, and a detailed analysis of particle motion, we
demonstrate that this active system exhibits both gas-like and liquid-like
phases, depending on the packing fraction, despite pure hard-disk-like
repulsive interactions. Within the granular liquid-like phase, we experi-
mentally validate the existence of a k-gap in the dispersion of transverse
excitations. This gap becomes more significant with a decrease in packing
fraction and becomes ill-defined in the gas phase because of the dis-
appearance of well-defined modes, aligning with theoretical expectations.
Our results offer a direct experimental confirmation of the k-gap phe-
nomenon, extending its relevance beyond classical thermal liquids to active
granular systems, and reveal the existence of similarities between the physics
of active granular matter and supercritical fluids.

Result and discussions

Granular Brownian vibrators

Figure 1 displays the top view of a layer of bi-disperse Brownian vibrators
positioned on the surface of a shaker. This layer of particles is confined
within a flower-shaped boundary to prevent the creep motion of particles
near the boundary. Each Brownian vibrator has a flat, disk-shaped cap with
twelve alternatively inclined legs below the cap. When a vertical sinusoidal
vibration is applied to the supporting base, each single Brownian vibrator
performs 2D Brownian motion. Previous studies by Chen et al. revealed that
the translational and rotational velocities of a single Brownian vibrator
follow Gaussian distributions with zero means®. These features lead us to
term the particle an “active Brownian particle”, closely mimicking the
conditions studied in theoretical investigations of active matter systems™.
Moreover, in a collection of Brownian vibrators of the same size, the
translational velocities of individual particles follow a Maxwell-Boltzmann
distribution for low and intermediate speeds, but show high-energy tails that
deviate significantly from the Maxwell-Boltzmann distribution for large
speeds, which can be attributed to the inelastic collisions of particles and the
homogeneous driving”. Unlike the mono-disperse systems studied

earlier”™, the present system is bi-disperse, which prevents crystallization at
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high packing fractions, as depicted in Fig. 1. More details about this setup are
presented in the Methods. We emphasize that the frequency of the vertical
sinusoidal vibration applied is of 100 Hz. In the rest of the manuscript, we
will consider only time-scales which are parameterically longer than the
driving frequency. In that regime, equilibrium thermodynamic and
hydrodynamic concepts can still be applied.

Unlike conventional polar particles studied previously™, the lack of
particle-scale built-in asymmetry makes our experimental system unique
and novel. The active force on each nonpolar particle results from collisions
between the tilted legs and the vibrating bottom surface, causing the par-
ticle’s central axis to tilt slightly away from gravity, allowing only some
legs—often represented as a single leg—to be propelled upon contact with the
surface. These interactions produce minimal correlation in the contact
angle, leading to random driving force directions while maintaining a nearly
constant magnitude (see refs. 49,50 for details). In this system, there is no
fluid flow from a surrounding solvent, and the main dissipation with the
environment results from friction and inelastic collisions. Consequently, our
system naturally belongs to the category of dry active matter.

In our present system of bi-disperse (nonpolar) Brownian vibrators, we
have observed no global flocking within the several-hour experimental time

Fig. 1 | Active granular matter in the Lab. Top view of a layer of active Brownian
vibrators. The packing fraction in this layer is ¢ = 0.822. In the upper left corner, one
Brownian vibrator is shown. The total area of large and small particles has a fixed
ratio of 1/1, and their diameters have a ratio of dj/d; = 1.4/1.

T

window, which is likely due to the disorder introduced by bidispersity, in
contrast to our previous monodisperse systems™’, where we observed global
flocking, aligning with the theoretical investigation of active Brownian
particles’. Furthermore, we have not observed any phase separation, unlike
the self-propelled binary colloids known as Quincke rollers, where sig-
nificant demixing of small and large colloidal particles occurs after the
system begins a global rotational collective motion®. On a microscopic level,
the interactions between these Quincke rollers are influenced by electro-
static and hydrodynamical forces, which are quite different from the
interactions observed in our nonpolar granular disks in a dry environment.
While examining phase separation in nonpolar disks is an promising area
for future research, it is currently beyond the scope of this study. Real-time
videos of the particle motion are provided with from the Supplementary
Movie 1 to 4 for different packing fraction to confirm these statements.

Structural and dynamical crossovers

We experimentally investigate our active granular system by measuring the
pair correlation function g(r). In Panel (a) of Fig. 2, we show the results for
different values of packing fraction ¢, which is the fractional area occupied by
the particles over the whole system. The first set of peaks corresponds to three
peaks of g(r) within the range of 1d, < r < 2d,. It arises from the bi-dispersity of
particle sizes, causing a single peak to split into three peaks. The second peak
of g(r) is located within 2d; < r < 3d,, and the third peak is in the range of 3d <
r < 4d,. As we decrease the packing fraction, we observe a considerable
decrease in the height of the first set of peaks, and the second and third peaks
disappear. This observation implies that as we decrease the packing fraction,
the medium-range order vanishes, and the system undergoes a structural
crossover. This transition occurs at about ¢ = 0.618 and is known in the
context of supercritical fluids as the Fisher-Widom line™.

To establish a connection between structure and dynamics, as achieved
for supercritical fluids in ref. 65, in Fig. 2b—d we present the experimental
results for the velocity auto-correlation functions (VACF) C(t), the mean
square displacements (MSD), and their corresponding second derivatives
with respect to time g—; MSD (t), as functions of time for various values of
the packing fraction ¢.

We begin by defining the unnormalized VACF Z(t) as

Z(t) = (v, (0i(t)) = = (T (0)V (1)), 3)

QU —

where the index i specifies the Cartesian component of the velocity ¥ with
i=x, yand d = 2 for our system. The statistical average (-) is first taken over
different initial times ‘0’ for a given particle and then over all particles. The
VACEF C(t) is then defined as C(t) = Z(¢)/Z(0).

The VACEF of a gas decreases continuously with time, while for liquids
near melting point and solids, it shows a combination of an oscillatory and a
decaying term. The presence of an oscillatory part in the C(f) can be iden-
tified by looking for the occurrence of a minimum or a change in its slope.
For high packing fractions, C(#) displays a clear minimum below ¢ = 0.1s that

C o

= ¢ = 0618

$=0.773
——¢ = 0.811
% ¢ = 0.822

2 4

3 0.2 0.3
r(d,) t(s)
S
Fig. 2 | Disappearance of medium-range order and the dynamical transition
between a liquid-like to gas-like phase. a The pair distribution functions g(r). b The
normalized velocity auto-correlation functions (VACF). ¢ The mean square dis-
placement (MSD) of particles. d The second derivative of MSD with respect to time.

Here, the values of MSD are properly normalized using 2Z(0), where Z(¢) is defined
in (3). In panels (a-d), the same set of packing fractions ¢ is chosen following the
color scheme described in the legend in (d).
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gradually disappears as the packing fraction decreases, as shown in Fig. 2b.
At a packing fraction ¢ = 0.618, the minimum in the VACF is no longer
present, and C(#) becomes a continuously decreasing function, as expected
in a gas. In the field of supercritical fluids, this dynamical transition deter-
mines the so-called Frenkel line that separates the rigid liquid phase, pre-
senting oscillatory motion, and the non-rigid gas-like fluid phase. Evidence
for the structural nature of the Frenkel line, hinting towards a possible
equivalence with the Fisher-Widom line concept, has been reported in
supercritical fluids*. Despite the complete equivalence between the struc-
tural and dynamical criteria remains unproved, a direct connection between
the dynamical crossover and thermodynamics has been demonstrated”.
Aware of these distinctions, in the rest of the manuscript, we will adopt the
jargon rigid (liquid-like) and non-rigid (gas-like) states interchangeably.
According to Frenkel’s theory’, this dynamical crossover corresponds
microscopically to a situation where the jumping time between oscillatory
motion around different local minima of the potential becomes comparable
with the shortest vibration time. This dynamical crossover is also expected to
coincide with the disappearance of collective shear waves at all frequencies
in the liquid. Frenkel idea relies on a single particle picture, while the k-gap
equation (1) describes collective dynamics. The time-scale 7 appearing in
Eq. (1) is therefore more correctly identified with the Maxwell relaxation
time. In simple fluids the Maxwell time is very close to the lifetime of local
connectivity®, that is another single particle concept that will be analyzed
below. The critical packing fraction of ¢ = 0.618 is very close to the value at
which medium-range order disappears in the pair correlation functions
shown in panel (a). This suggests a significant link between structure and
collective dynamics in active granular systems, similar in spirit to the results
presented in ref. 66. We notice that there is now firm experimental evidence
that the change of particle dynamics at the Frenkel line is seen in structural
changes”. Despite a complete analysis of these structural changes being
beyond the scope of the present work, in the Supplementary note 2, we
provide a preliminary study of the experimental structure factor S(k) for four
different packing fractions that confirms the gradual disappearance of
structural order by decreasing the packing fraction. The relation between
structural changes and dynamics in liquids is still poorly understood (see, for
example,’). It would be necessary to explore this connection further in
granular fluids.

Another substantial dynamical quantity, besides the VACEF, is the MSD
of particle motion. This is shown in Fig. 2c, where curves for the same set of
packing fractions ¢ as in panel (b) are drawn. For ¢ = 0.618 and below (data
not shown), MSD is quasi-ballistic for ¢ < 0.1s, indicating underdamped
particle dynamics. For ¢ > 0.1s, the slope of MSD is close to one, showing the
diffusive motion of a particle. However, for very large ¢, the slope of MSD
deviates from one due to the finite system size as the length scale of MSD
gradually approaches the system size. For ¢ >0.618, the quasi-ballistic
motions at small ¢ are not clearly visible, and a subdiffusive regime at
intermediate times emerges. The upper bound of this regime depends on the
value of ¢, beyond which the diffusive behaviors recover for the curves
corresponding to ¢ =0.773 and ¢ =0.811. At ¢ =0.822, within the entire
observation time window of 0.025s < ¢t < 1000s, the MSD shows subdiffusive
behaviors, indicating the progressively more significant glassy dynamics
with the increment of ¢.

The MSD and the VACF are closely related to each other since
g—; MSD() = 4Z(t)”". This equivalence has been already utilized in ref. 66 to
investigate the “liquid-gas” transition. Upon comparing panels b and d of
Fig. 2, we experimentally verified this equivalence, and the results show an
excellent quantitative mutual agreement.

Granular systems are athermal in nature because of the macroscopic
size of their constituents. At fixed activity, it is therefore necessary to
understand which parameter plays an analogous role of temperature in
thermal fluids, driving the system from a gas-like to a liquid-like phase. Both
structural and dynamical observables suggest that the packing fraction ¢ of
the Brownian vibrators plays such a role. In order to provide further qua-
litative evidence for this analogy, in Fig. 3, we plot the average velocity
squared Z(0), that is proportional to the average kinetic energy, as a function

10 T T

Z(0)(d%/s?)
1
/

O 1 1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

¢

Fig. 3 | The role of the packing fraction in active granular matter. The average
velocity squared Z(0) for small (red), large (blue) and all (gray) particles as a function
of the packing fraction ¢. All the data are well fitted by a phenomenological function
Z(0) = ay/b — ¢, where b = 0.8318 for all curves. The error bar of averaged value
here is obtained as the difference of minimum and averaged value.

of the packing fraction for small (red), large (blue) and all (gray) particles.
We observe a clear anti-correlation between the two quantities, which is well
fitted by a phenomenological function Z(0) o< /¢, — ¢, with ¢, = 0.8318.
In the literature (e.g.”'), Z(0) has been often associated to an effective
granular temperature, T,. Our results demonstrate therefore that T, anti-
correlates with ¢, consistent with the dynamics experimentally observed
both at the particle-level and collective scale. Temperature is clearly defined
only in equilibrium thermodynamic systems. Defining temperature rigor-
ously in non-equilibrium systems is often very challenging. Here, we
introduce the term ‘temperature’ for our system only in a vague, intuitive
sense, drawing an analogy with well-defined meanings for ordinary mate-
rials made of molecules in thermal equilibrium. It is necessary to notice that
the scaling of the experimental data follows a mean-field behavior. We are
not aware of any theoretical explanation of this phenomenon. This analysis
suggests the existence of a critical packing fraction ¢, which might be
connected to a jamming type transition in active granular systems. We leave
the exploration of these two points for future research. Finally, we notice that
the average velocity squared Z(0) for large particles is consistently larger
than that of small particles, with this difference becoming more pronounced
for small packing fraction. Given that the steady state velocity is a result of
the balance between the energy injected and the energy loss caused by
friction, this might be explained by the fact that larger particles experience
stronger drag force induced by activity.
The radial pair correlation function is defined as,

1 N N R
80 =50 8(r=1751), @

i=1 j#i

where 7 ij is the vector between ith and jth particles, N'is the total number of
particles, and p is the particle density of system. As shown in Fig. 2 a, three
peaks appear below r = 2d;. The first peak is at r = 1d,, which indicates small-
small particle pairing, the second indicates small-big particle pairing at
r=1.2d,, and the third is big-big particle pairing at r = 1.4d,, which is also the

diameter of the big particle.
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Fig. 4 | From isotropic gas-like motion to collective liquid-like dynamics. The
experimental vibrational density of states (VDOS) for packing fraction

¢ =0.618, ¢ = 0.773, ¢ = 0.811, and ¢ = 0.822 from panels (a) to (d). The VDOS is
represented by gray, blue, and red lines, indicating the total VDOS and longitudinal
and transverse components respectively. The VDOS is normalized by setting its area
Jg(w)dw to 1, and the frequency is measured in Hz. The black dashed line in panel (a)

30 40 0 10 30 40

liquid — like

shows the Lorentzian line shape a/(w* 4+ o?) with a = 3.3. The top insets show the

displacement configuration, with the intensity of the color indicating the amplitude
of the single particle displacement, with darker shades representing more significant
displacement. The displacement vectors have been enlarged x1, x2, x3,and x10 in
panels (a) to (d), respectively. The bottom panels (e) and (f) show the trajectories of
each particle, with the color changing from green to yellow indicating time evolution.

From gas-like to liquid-like dynamics

To study collective motion, we examine displacement vectors and vibra-
tional density of states (VDOS) g(w), which can be obtained by diag-
onalizing the dynamical matrix computed from the displacement
correlation matrix (see Methods).

In Fig. 4a, we observe that for the lowest packing fraction data, the
VDOS decreases monotonically with frequency and can be accurately
described by a Lorentzian line shape, g(w) = a/(o” + w”) (dashed black line),
at least for frequencies below 5 Hz. This line shape is indicative of purely
Langevin diffusive dynamics. It is typical of a gas-like state, where particle
collisions are almost uncorrelated and independent and can be described by
kinetic theory. The Lorentzian fit becomes less accurate at higher fre-
quencies, indicating that the low-packing fraction system is a dilute liquid
rather than an ideal gas of free particles. Additionally, the longitudinal and
transverse components of g(w) are identical, confirming the emergent

isotropy of the low-packing fraction phase. Due to the dilute packing, the
constituent particles exhibit random, uncorrelated motion in both ampli-
tude and direction. Individual particles’ motion is collisional, resulting in
substantial displacements away from their initial positions.

Upon increasing the packing fraction and entering the rigid liquid
phase described above, the VDOS undergoes significant changes. A weak
and broad peak emerges around 7 Hz in both the transverse and long-
itudinal components, indicating the emergence of strongly overdamped
collective motion. The VDOS is no longer monotonic, and the transverse
and longitudinal components begin to display a rich behavior, that can be
possibly thought as the combination of a gas-like and a solid-like con-
tribution as proposed in ref. 72. The correlated motion also appears at the
level of the single particle displacement field. This field now presents geo-
metric structures composed of vortex-like and string-like patterns and an
increasing degree of heterogeneity with localized areas of large displacement
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Fig. 5 | Emergence of wave-vector gapped shear waves in liquid granular matter.
The longitudinal (blue) and transverse (red) dynamical structure factors S; (w, k)
for packing fraction ¢ = 0.618, ¢ = 0.773, ¢ = 0.811 and ¢ = 0.822 from (a) to (d) on
top and from (e) to (h) on bottom. d is the diameter of small particles. In (c, d), the
solid black lines show the fitting to the linear dispersion relation Re(w) = v k. The
fitted longitudinal speed of sound is v, = 101.2 and v; = 116.9 respectively in unit of
(dy/s). The colored bullets indicate the peak position obtained by fitting S;(w, k) at
fixed values of the wave vector k. In (g, h), the numerical data are fitted with the k-gap

20 C 40 d
35 35 .
30 30
25 25
— s
N N
o Lo
3 3
15 15
10 10
5 5% 0
0 0
0 0.1 0.2 03 0.4 0 0.1 02 03 0.4
-1 R
k (d k (d
(@) (@)
w0 g w0 h
35 35
1
30 30
25 25
N N
LT LT
3 3
15 15
10 10
5 t} 5 . 0
0 — 0
0 0.1 02 03 04 0 0.1 02 03 04
&1 -1
k(dy) k(d,)

formula Re(w) = 4 /1/2T(k2 — k;) where k, is the size of the k-gap. We obtain a k-gap

0f 0.093 for ¢ = 0.811 (g) and 0.068 for ¢ = 0.822 (h) in units of d;l. The fitted
transverse speed of sound is vy-=48.5 and v = 71.7 respectively in unit of (d/s). In all
panels, the error bar indicates the linewidth of the corresponding peak in the
dynamic structure factor. The dynamical structure factor is dimensionless and
normalized by its maximum value, hence, the color bar goes from 0 to 1 in all panels.

(intense purple color) separated by more rigid regions can be observed
(see Fig. 4b).

Moving further to ¢ = 0.811 (Fig. 4c) results in the disappearance of
the Lorentzian gas-like contribution to the VDOS at low frequency. The
total VDOS increases monotonically with frequency up to a peak located
around w=15Hz, which corresponds approximately to the average
pseudo-Van Hove energy of the emergent collective longitudinal and
transverse excitations, as shown in Fig. 5. The zero-frequency values of the
total VDOS g(0) exhibit a substantial decrease with an increase in the
packing fraction ¢. This value correlates with the self-diffusion constant D,
and a direct relation between D and g(0) can be derived for pure Langevin
diffusion. This is consistent with the experimental data for the MSD pre-
sented in Fig. 2c. g(0) is largely dominated by the transverse component,
and g;(0) is almost zero at ¢ = 0.811. Additionally, the system becomes
strongly anisotropic as the longitudinal and transverse VDOS are sig-
nificantly different, and higher-energy modes appear in the spectrum up to
a frequency of approximately 35 Hz. The maximum frequency mentioned
is determined by the highest acquisition rate of the cameras we use to track
the position of particles in our granular matter system, which is 40 Hz. This
maximum frequency has no intrinsic physical significance and is unrelated
to the driving frequency.

As the packing fraction of the system increases to ¢ = 0.822, the value of
8(0) becomes extremely small but still finite, indicating that the system is
close to the solid phase but not quite there yet. This is later confirmed by the
dispersion of shear waves. The longitudinal and transverse VDOS are linear
in frequency up to about 8 Hz, as dictated by Debye’s law in 2D, and also
commonly found in bulk liquids™’*. However, a sharper peak appears
around 12 Hz, which is attributed to the flattening of the dispersion of the
collective modes obtained from the dynamical structure factor (Fig. 5d, h).
As a result, particle displacements become small, and granular particles
move very little away from their initial positions. The dynamics and

corresponding VDOS increasingly resemble those of a dense viscous liquid
with enhanced solid-like elastic vibrations or a liquid near melting.

In summary, the analysis of the VDOS and the particle displacements
reveal a continuous transition from a gas-like behavior typical of dilute
liquids to a collective and viscoelastic motion characteristic of dense liquids
by increasing the packing fraction. This perfectly aligns with the structural
and dynamical transition between a gas-like liquid and a rigid liquid phase
discussed in the previous section and displayed in Fig. 2. The study of
collective modes performed in Fig. 5 confirms that ¢ plays the role of the
inverse temperature of classical thermal liquids (see Fig. 3 and related dis-
cussion above). Indeed, the behavior of the VDOS shown in Fig. 4a-d is
perfectly compatible with that found in liquids upon decreasing T (see, for
example, Fig. 6 in ref. 72).

Gapped shear waves
To analyze the vibrational dynamics of our system, we consider the
experimental dynamical structure factor S; {k, w) (details in Methods).
Figure 5 shows a color map of the obtained dispersion relations of the
longitudinal and transverse parts for different packing fractions ¢ ranging
from the gas-like phase ¢ = 0.618 to the dense liquid-like phase ¢ = 0.822. At
the low packing fraction ¢ = 0.618, no distinct collective excitation is
observed in both the longitudinal and transverse sectors (panels (a) and (e)).
Instead, an incoherent diffusive signal, which extends from zero frequency
to approximately 10 Hz roughly independent of the wave vector, dominates
the response. Moreover, the longitudinal and transverse components are
almost identical, consistent with the emergent isotropy at low packing
fractions and the results for the VDOS in Fig. 4a. This is also compatible with
the structural analysis and the dynamical crossover observed in the VACF
shown in Fig. 2.

At packing fraction of ¢ = 0.773, panels (b) and (f), the system is in a
dilute liquid phase. This phase displays only weak indications of collective
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Table 1 | Speed of sound

¢ Vi/Vin vi/Vin
0.811 86.0 41.2
0.822 121.2 74.3

The sound velocities obtained from the experimental data in units of the thermal velocity v, derived
from Z(0) of all particles (see Fig. 3).

motion, with the exception of a strong diffusive signal around w = k = 0.
There are also faint indications of collective modes in the longitudinal and
transverse sectors. However, these excitations are strongly overdamped,
which makes it difficult to identify their energy using wave-vector cuts
precisely. Despite this, there appears to be a k-gap emerging around
k= 0.0Sd;l, where d; is the diameter of the small particles. This can be
anticipated despite the challenges in identifying the energy of the excitations
due to the broadening of the color map in panels (b) and (f).

As we move to higher packing fraction data, ¢ = 0.811, 0.822 shown in
panels (c-g) and (d-h), the fingerprints of liquid-like collective modes
become more pronounced. By fitting the dynamical structure factor, we
have extracted the frequency Q(k) and the line-width I'(k) of the lowest
collective modes in both the longitudinal and transverse sectors. Details
regarding the fitting process can be found in the Methods section, and
additional figures can be found in the Supplementary note 3. In the long-
itudinal sector, as shown in panels (c) and (d), we observe a mode that
disperses linearly at large wavelengths, with Q; (k) = vk, where v is of the
order 10 in units of dy/s. The speed increases slowly as the packing fraction
increases, confirming that ¢ plays the role of inverse temperature in classical
thermal liquids. At k &~ 0.1d ", the dispersion bends down towards a
constant pseudo-Van-hove plateau. Additionally, the longitudinal sound
mode has a linewidth that increases with the wave vector k and becomes
overdamped for small wavelengths.

The transverse component of the dynamical structure factor in the
dense liquid phase at a high packing fraction is shown in panels (g) and (h).
Apart from a strong diffusive signal near the origin, Si(k, w) presents a
distinctive k-gap dispersion for the transverse shear waves, which is con-
firmed by using cuts at constant k (red symbols). The value of the k-gap is
approximately k,=0.093 for ¢ =0.811 and k, = 0.068 for ¢ = 0.822 in units of
d_'. As the packing fraction ¢ increases, the value of the k-gap becomes
smaller, which is equivalent to decreasing the temperature in classical liquid
systems. We find that the frequency of the gapped shear waves is well fitted

by the theoretical formula Q(k) = 4/ 1/2T(k2 — kﬁ), with a transverse speed

of sound of the order of v = 48.5 and v = 71.7 in the unit of (dy/s) for
¢ = 0.811 and ¢ = 0.822, respectively. The linewidth of the shear waves
becomes larger with the wave vector k, similar to longitudinal waves.

In simple fluids with steep interactions, it has been found that v, = 10vy,
and vy = 5vy, near freezing””, where vy, is the thermal velocity of the system.
Using our experimental data, we have estimated the ratio between the sound
velocities and the thermal velocity computed from Z(0) (see Table 1). We
found that both ratios are one order of magnitude larger than in simple
fluids. We speculate that this difference is a direct consequence of the activity
of the system and of the strong deviations from local thermal equilibrium.

The lifetime of local connectivity, or 7., in classical liquids, is closely
related to the Maxwell relaxation time, or 7, as per a research study“. For a
value of ¢ = 0.822, our analysis yields a value of 7, cas 0.3 seconds, which is in
proximity to the Maxwell relaxation time of 0.11 seconds, calculated from
the size of k-gap (as shown in panel (d) of Fig. 5). This similarity in values
confirms the validity of our data analysis method for obtaining the dyna-
mical structure factor. Also, it suggests that classical liquids in the super-
critical state and granular fluids share similarities at the smallest
particle level.

To understand how various parameters in the experimental setup is
also necessary, in addition to the packing fraction ¢, influence the k-gap

behavior. We conducted additional experiments to investigate this by
increasing the driving frequency from 100 Hz to 130 Hz while maintaining
the highest packing fraction of ¢ = 0.822. We want to emphasize that the
acceleration of the vibrator was held constant. This means that by changing
the frequency f, the amplitude of the oscillations was also altered. In Fig. 6,
we present the transverse spectrum for four different driving frequencies:
f=100, 110, 120, 130 Hz, with a constant packing fraction of ¢ = 0.822 and
acceleration a = 2.5¢.

We observe that the position of the k-gap is largely independent of
the driving frequency, at least in the range we considered. In contrast,
the dispersion of shear waves is sensitive to the driving frequency
and exhibits a complex dependence on the frequency f A similar
pattern is seen in the dispersion of longitudinal phonons, as illustrated
in Fig. 7. Further experimental investigation is necessary to thor-
oughly analyze how collective motion varies with driving frequency and
amplitude.

Although we cannot conduct experiments with frictionless granular
particles for direct comparison, we believe that interparticle friction is less
significant than the interactions resulting from inelastic collisions between
particles. Several pieces of evidence from our previous study of mono-
disperse particles*”’ support this hypothesis.

First, we observed no correlations between individual particles’
translational and rotational degrees of freedom. This suggests that particle
rotation due to interparticle friction is largely independent of their trans-
lational motions. Second, we successfully explained the flocking behavior
observed in our previous monodisperse system*’ by applying the theory of
active Brownian particles™, which completely disregards interparticle fric-
tion, as the theory assumes.

Third, we employed vertical driving instead of the more conventional
shear driving, reducing interparticle friction’s impact. Lastly, even in our
bidisperse systems at the highest packing fraction, the system remains
unjammed, indicating that the dominant interactions are due to inter-
particle collisions rather than contact forces associated with permanent
contacts, as seen in jammed solids. Therefore, we anticipate that the results
will be comparable to those of frictionless particles.

Conclusion

Our study demonstrates that, despite significant differences in the size of
composed particles and the absence of a classical thermodynamic descrip-
tion, granular matter on the Brownian vibrator exhibits various similarities
with classical liquids in the supercritical region both in the collective and
particle-level motions. These alike aspects include pair correlation func-
tions, velocity autocorrelation, mean square displacement on particle levels,
vibrational density of states, and dispersion relation of collective excitations.
With an increase in the packing fraction ¢, distinct phases from gas-like to
condensed states (liquid or solid) have been observed on both particle and
collective motion levels, suggesting the role of ¢ as an effective inverse
temperature variable, that is corroborated by the anti-correlation between
the average kinetic energy and the packing fraction. However, it is needed to
notice that the analogy of temperature is only vague and intuitive and is
limited to our specific system. Furthermore, our work experimentally
revealed the emergence of the k-gap, as predicted by viscoelasticity theory, in
granular fluids. This provides a direct link between classical liquid and active
granular matter and experimentally confirms the phenomenon of k-gap and
its theoretical premises.

Methods

Experimental setup

Our experimental system comprises a horizontal layer of granular particles
driven vertically by a sinusoidal oscillation with a fixed frequency f and
amplitude A induced by an electromagnetic shaker.

Unless indicated otherwise, the frequency f is set at 100 Hz, and the
maximum acceleration a4 is 2.5 times the gravitational acceleration
g=9.8m/s". The vibration amplitude A, defined as a/(2nf)’, is 0.062 mm,
significantly smaller than the particle’s vertical dimension (6 mm).
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Fig. 6 | Transverse dispersion relation under dif- a 40
ferent driving frequency. The transverse dynamical
structure factors under different driving frequencies 100Hz
f=100, 110,120, 130 Hz from (a) to (d). The packing
fraction is fixed to ¢ = 0.822, and the acceleration is
fixed to a =2.5¢.
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Therefore, we can neglect the vertical displacement of a particle, treating the
system as quasi-two-dimensional .

The upper left corner in Fig. 1 depicts a granular particle as a disk-
shaped body with 12 alternately inclined supporting legs. The small parti-
cle’s disk has a diameter d of 16 mm and a thickness of 3 mm. The legs, with a
height of 3 mm, are inclined inward by 18. 4°, and alternately deviated from
the mid-axis plane by + 38. 5°.

For a single particle, the distributions of rotational velocity and
translational velocity components v, and v, follow Gaussian distributions
with negligible mean values compared to their standard deviations, typically
less than ten percent. This indicates that the motion of a single particle is
both random and isotropic, leading us to term the particle an Active
Brownian Particle (ABP), closely mimicking conditions studied in theore-
tical investigations of active matter systems™.

To prevent crystallization, we utilize bi-disperse particles with a size
ratio measured in terms of disk diameters of 1: 1.4 and a number ratio of 2: 1
for small and large particles. These parameters maintain an approximately
equal area ratio between small and large particles across a range of packing
fractions. The packing fraction ¢ is defined as the ratio between the area
occupied by all particles and the confining area of the particle layer.

These ratios are derived from jamming studies of binary disks, parti-
cularly the research conducted by O’hern et al”*”. Their simulations
employed a size ratio of 1:1.4 because a large disk can have up to seven
nearest neighbor small disks, while a small disk can have up to five nearest
neighbor large disks. This configuration aligns with the theoretical concept
of the 7-5 defect roles in the KTHNY theory’.

In the original O’hern algorithm, a 1:1 number ratio was utilized.
However, it was later discovered that a 2:1 number ratio between small and
large disks, which corresponds to an area ratio of 1:1, yields even better
results. A recent experimental study on the vibrational density of states in
jammed 2D granular packing” analyzed how the density of states changed

when the number ratio varied from a hexagonal crystal (1:0) to the most
disordered binary mixture (2:1). The density of states for a system with a 2:1
ratio of small to large disks exhibited several features remarkably similar to
those found in molecular glasses””.

The particles are placed on top of an aluminum plate (60 cm x 60 cm)
and confined within a flower-shaped boundary designed to suppress creep
particle motions along the boundary”. We initiate the experiment with all
particles randomly and uniformly placed on the base plate. After applying
vibration for two hours, we achieve an initial state of particle configuration.
Subsequently, the particle layer undergoes continuous vertical vibration,
while a Basler CCD camera (acA2040-180kc) records particle motion at 40
frames/s for at least an hour.

Displacement correlation matrix and dynamical structure factor
The displacement correlation matrix C is defined as,

Cj= ("(t)i”(t)j)t: (5)

where n,(t) is the displacement of ith degree of freedom at time f. The
dynamical matrix can hence be calculated as,

0¢Cij_‘1

ij
;m;

where m; is the mass of the ith degree of freedom, and « is a dimensionful
parameter which will be later specified. Diagonalizing the matrix D, one
obtains the eigenvalues «; and the eigenfrequencies w; = ,/x;. The eigen-
vector fields u are then defined by solving the eigenvalue problem,

Du = o’u. 7)
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Fig. 7 | Longitudinal dispersion relation under

different driving frequency. The longitudinal 100Hz 110Hz
dynamical structure factor under different driving
frequencies f= 100, 110, 120, 130 Hz from (a) to (d).
The packing fraction is fixed to ¢ = 0.822 and the
acceleration to a = 2.5g.
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Up to this point, the precise numerical values of the obtained eigen- and
frequencies w; are only determined up to an unknown energy scale . In
athérmal systems, such a scale cannot bsgdetermmed using .the temperature Fp k) =z kx Z u(r;) ik ©
T, since the latter is not well defined. See” for an extensive discussion on this -

issue. In order to fix the value of o, we resorted to a more phenomenological
approach. More precisely, we have rescaled all the eigenfrequencies by
setting the value of the largest one to coincide with the highest observable
frequency of our instrument, namely 40Hz. In doing so, the corresponding
eigenfrequencies have now the correct physical dimension. We validate a
posteriori our hypothesis by noticing that the time scale obtained from k-
gap 7 is compatible with the average local connectivity time, as observed in
classical thermal liquids®®.

As an ulterior check of the validity of our criterion to fix &, we compute
the mean particle kinetic energy, (Ey,) = mZ(0) (see Fig. 3). Following the
literature”', we can define an effective granular temperature T,, and deter-
mine « using o = kgT, = (Ey,). By adopting this method, we find a nor-
malization for « that is compatible, apart from an (O(1) prefactor, with the
previous estimates. This confirms the validity of our previous arguments.
Finally, we emphasize that the value of &, apart from fixing the physical
dimension of our frequencies, affects only the values of the frequencies but
not the qualitative physical trends discussed in the main text, as for example
the shape of the VDOS or of the dispersion of collective excitations. At the
same time, the value of the k-gap does not depend on the determination of a.

To separate the longitudinal and transverse components properties, we
Fourier transform the eigenvector fields

Fp (k) =k- Z ui(rj)e_ik‘rh (8)
j

J

where the index i indicates the eigenvector field corresponding to eigen-
frequency w;, the index j indicates the jth particle, r; is the equilibrium
position of jth particle and u;; is the eigenvector field corresponding to
frequency w; and position r;. T, L stand respectively for transverse and
longitudinal. Finally, zis the spatial coordinate perpendicular to the 2D (x, y)
plane. The current correlation function can be obtained as,

2
Cr ik, w) = ’Z Fer 1) (k)00 (10)
The dynamical structure factor are given by,
) 2
Surlk, 0) o< > Fun 05, (11)

Finally, the vibrational density of states (VDOS) can be obtained
directly by counting the distribution of eigenfrequencies w;, which can be
expressed as,

g(w) = 8w — w). (12)
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Alternatively, one can integrate the current correlation function to obtain
longitudinal and transverse components separately. The separated VDOS
are given by,

g (@) = N / Coo(k, w)dk (13)

where g(w) = g1(w) + gr{w) and \V is just a normalization factor to ensure
that [g(w)dw = 2N where N is the number of particles. These two methods
give same results for the total VDOS.

Data analysis

The following fitting functions have been used to analyze the experimentally
obtained dynamical structure factor (see additional figures in the Supple-
mentary note 3). The transverse and longitudinal components of the
dynamical structure factor are respectively fitted using.

2

w 1 vy
S (w7 k) X — + N (w7 k)a 14
T (wz . Q%)z + wzl_,% 7'[(4)2 + YZ loc ( )
2
w
SL(ka) X (15)

(w2 - Qi)z + T2 .

The first terms are simply a damped harmonic oscillator with energy Q; 7(k)
and linewidth I'7 (k). The second term is a quasi-elastic contribution
modeled with a Lorentzian function. The dispersion relations Qr; (k) are
shown in Fig. 5 as colored bullets and the corresponding linewidths I';;;, by
the related errors bars. Sjo(w, k) is a term representing possible quasi-
localized low-energy modes®, and it is not relevant for the present
discussion. More details on the fitting procedure and the raw data for the
dynamical structure factors can be found in the Supplementary note 3.

Data availability
The datasets generated and analysed during the current study are available
upon reasonable request by contacting the corresponding authors.
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