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With recent progress in quantum simulations of lattice-gauge theories, it is becoming a pressing
question how to reliably protect the gauge symmetry that defines such models. Recently, an

experimentally feasible gauge-protection scheme has been proposed that is based on the concept of
a local pseudogenerator, which is required to act identically to the full gauge-symmetry generator in
the target gauge sector, but not necessarily outside of it. The scheme has been analytically and
numerically shown to reliably stabilize lattice gauge theories in the presence of perturbative errors on
finite-size analog quantum-simulation devices. In this work, through uniform matrix product state
calculations, we demonstrate the efficacy of this scheme for nonperturbative errors in analog quantum
simulators up to all accessible evolution times in the thermodynamic limit, where it is a priori neither
established nor expected that this scheme will succeed. Our results indicate the presence of an
emergent gauge symmetry in an adjusted gauge theory even in the thermodynamic limit, which is
beyond our analytic predictions. Additionally, we show through quantum circuit model calculations
that gauge protection with local pseudogenerators also successfully suppresses gauge violations on
finite quantum computers that discretize time through Trotterization. Our results firm up the
robustness and feasibility of the local pseudogenerator as a viable tool for enforcing gauge invariance

in modern quantum simulators and noisy intermediate-scale quantum devices.

Gauge theories are the most complete framework for the description of
elementary particles and their interactions as mediated by gauge bosons'. A
gauge theory’s principal property is local gauge symmetry, which encodes
physical laws of nature through local constraints in both space and time”. A
paradigmatic example is Gauss’s law in quantum electrodynamics, which
imposes an intrinsic relation between the distribution of charged matter and
the surrounding electromagnetic field’. Examples of physical features aris-
ing from such local constraints include the long-ranged Coulomb law and
massless photons'.

The simulation of gauge theories on classical computers remains a
challenging task due to the exponentially large Hilbert spaces involved.
Given their importance in modern physics, an accessible means of inves-
tigating their physics is highly desirable. Over the past few years, there has

been a significant experimental drive to realize gauge theories in quantum
synthetic matter (QSM) setups™'. On the one hand, this is due to the
impressive advancement in the level of precision and control in such
setups”, which naturally makes the quantum simulation of gauge theories a
realistic possibility**™’. On the other hand, this facilitates an easily accessible
table-top framework for addressing fundamental questions from the fields
of high-energy physics and strongly correlated electrons. For example, the
thermalization of gauge theories and how it connects to early-time far-from-
equilibrium dynamics, as e.g. investigated in violent collisions of heavy
nuclei, is not fully settled™. Recently, the thermalization dynamics in a large-
scale (1 + 1) — dimensional U(1) lattice gauge theory (LGT) has been
demonstrated on a 71-site tilted Bose-Hubbard superlatticel ! which offers a
way forward in understanding this connection.
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Stabilizing gauge symmetries in QSM implementations of LGTs is
essential for the faithful modeling of their physics. Indeed, even though
gauge invariance is a postulate in nature, it does not lend itself directly to
such experimental realizations, with the exception of special realizations that
integrate out either gauge or matter fields****’. Without indefinite fine-
tuning, implementations of LGT's with dynamical matter and gauge fields as
active degrees of freedom will inevitably suffer from errors that break gauge
symmetry’. The gauge symmetry has to be engineered directly in the LGT
realization, and this can be a daunting task. A lot of theoretical work has
been directed at enforcing gauge invariance in QSM setups of LGT's through
energetic constraints”*’. However, most gauge-protection schemes based
on energy-penalty constraints originally comprised adding a term to the
Hamiltonian that is proportional to the square of the gauge-symmetry
generator. Even though this is equivalent to turning the target sector into a
ground-state manifold and thereby reliably suppressing processes that lead
away from it, the approach is in general experimentally challenging as it
involves multibody terms that can be significantly harder to engineer than
the ideal gauge theory itself. This poses a principal challenge since without
controlled gauge violations in an experiment, one cannot firmly establish the
fidelity of the observed gauge-theory physics.

Recently, an experimentally friendly scheme has been proposed for the
(1 + 1)—dimensional U(1) quantum link model (QLM)**** based on
weighted terms linear in the gauge-symmetry generator’®. This constructs a
protection term with only single-body terms, which are easier to implement
than the ideal theory itself. This linear gauge protection has been shown to
work up to indefinite times on finite systems’, and up to all accessible times
in the thermodynamic limit”. The method has also been experimentally
shown to reliably stabilize gauge invariance in an ultracold-atom imple-
mentation of the U(1) QLM’. Extensions of the scheme to non-Abelian
LGTs have also displayed promising results in exact diagonalization
(ED)"**. However, linear gauge protection brings forth no advantage for
certain gauge theories such as the Z, LGT**Y, whose gauge-symmetry
generator is itself a multibody operator proportional to its own square.

Nevertheless, the core concept from the theory of linear gauge pro-
tection has been extended to the case of the 7, LGT by employing a local
pseudogenerator (LPG) that acts identically to the full gauge-symmetry
generator in the target gauge sector, but not necessarily outside of it’*; see
Fig. 1 and the Local Pseudogenerator subsection in Results. This leaves the
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Fig. 1 | Schematic illustrating the concept of local-pseudogenerator protection.
The local pseudogenerator (LPG) Wj acts identically to the full generator Gj in the
target gauge sector, but not necessarily outside of it. Starting in the target gauge
sector g = (g, g, ..., gia"), the ideal theory H, propagates the dynamics within
this sector, but experlmentally unavoidable errors \H, create transitions to other
gauge-invariant sectors (gray). At sufficiently large but experimentally feasible
values of the protection strength V, the LPG protection VH;, = Vil Wj - &),
with ¢; a suitably chosen sequence (see main text for details), will energetically
penalize all gauge-noninvariant transitions. It will controllably suppress gauge
violations in the thermodynamic limit for all accessible evolution times even when
the error strength A is not perturbative.

LPG with significantly fewer engineering requirements than its full coun-
terpart, rendering it ideal for QSM implementations. LPG protection has
been shown to work robustly for perturbative errors on finite-size quantum
simulators up to all accessible evolution times in ED, and analytic deriva-
tions have demonstrated that the protected dynamics is faithfully repro-
duced by emergent gauge theories with well-defined timescales. However,
for experimentally feasible implementations in the thermodynamic limit,
the analytic formalism of ref. 78 does not guarantee reliable gauge protec-
tion, and even predicts its complete breakdown in a worst-case scenario.

In this work, we test the performance of LPG protection on infinite-size
analog quantum simulators in the presence of nonperturbative gauge-
breaking errors using infinite matrix product state (iMPS) techniques®,
which work directly in the thermodynamic limit. Our numerical results
demonstrate controlled gauge violations for sufficiently large volume-
independent protection strengths. Moreover, we also test the LPG protec-
tion on a numerical simulation of a finite-size quantum computer that
employs Trotterized dynamics, showing excellent performance for experi-
mentally relevant settings.

Results

Local pseudogenerator

A gauge theory H is invariant under a gauge symmetry with generator G, >
defining a local constraint centered at the spatial degree of freedom j. Gauge
invariance is encoded in the commutation relations [H,, G] =0, Vj. The
gauge-symmetry generator G has eigenvalues g, and a given conﬁguratlon
g=(g1,£ ...»g) definesa gauge -invariant sector, where L is the number of
local constraints. In a realistic implementation of gauge theories with
dynamical matter and gauge fields, gauge-breaking errors AH, at strength A
will always be present, where [H,, G; 10, and so gauge invariance is no
longer preserved in their presence. Controlhng gauge violations due to such
errors is crucial if the quantum simulation is to yield reliable gauge-theory
physics.

The theory of gauge protection through a local pseudogenerator has
been introduced in ref. 78. It is based on the following idea: assume the
system to be governed by a faulty gauge theory H = H, + AH, + VH,,,
where a protection term VH ,, of strength V has been added for the purpose
of suppressing gauge violations. If the dynamics of the system is to be
restricted to a  specific  target  gauge-invariant  sector

g = (g, g5, ..., g™), then it suffices to construct the protection term

H\y, using LPGs W that act identically to the full generators Gj in the target
sector, but not necessarily outside of it (see Fig. 1). Naturally, this sig-
nificantly relaxes implementational requirements as it can allow to realize
Wj with fewer-body terms than Gj, which is highly desirable in current QSM
implementations that are at the scale of a few sites or qubits. In particular, the
LPG protection term takes the form

Vﬁw = Vch(Wj —g]t-ar>7 1)
j

where ¢; are appropriately chosen real coefficients, as we will discuss in the
following. At every local constraint defined by the spatial coordinate j, the
LPG must satisfy the relation

Wily) =g™lv) < Gly) =g"ly), )
over the set of gauge-invariant states {|y)}.

Let us denote by w; the eigenvalues of Wj. When the coefficients ¢; are
rational numbers satisfying the compliance condition

ch(wj - ar) =0 = w; = gtarv Vi 3)
j

it can be analytically shown, by adapting the formalism of ref. 89 for the slow
heating of fast-driven systems, that gauge invariance is stabilized up to a
timescale exponential in V’*. The power of the compliant sequence lies in the
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fact that it allows the LPG protection to energetically isolate the target sector
from all other gauge-invariant sectors, such that any processes away from it
become nonresonant at leading orders in AH; cf. Fig. 1.

This compliant sequence, however, will have to grow exponentially
with system size in order to satisfy the compliance condition (3) at a given
value of V. As such, it is impractical for large-scale implementations of
LGTs, let alone in the thermodynamic limit. Turning to periodic non-
compliant sequences, one can still analytically prove and numerically
demonstrate that LPG protection stabilizes gauge invariance up to a time-
scale 7,4 o V/ (V,L)?, where Vj is a volume-independent energy term”.
This is because LPG protection leads to the emergence of an adjusted gauge
theory H. adj = Hy + AP H, P, where P, is the projector onto the target
gauge sector, up to an error upper bound o tV2L?/V, as can be derived
using the quantum Zeno effect” ™.

In the thermodynamic limit L — oo, it is clear that the above analytic
arguments predict, in a worst-case scenario, a complete breakdown of LPG
protection at any evolution time > 0, as then the error upper bound of the
dynamics propagated by the emergent gauge theory H,y will be «
tV% ? /V — oo forrealistic values of V. However, recent works have shown
that gauge invariance has intrinsic timescales over which it persists, even
without protection, in the presence of perturbative errors’*”. Furthermore,
explicit gauge violations have been shown to remain localized even in large-
scale simulators in the presence of linear protection**”, performing better
than the analytically predicted worst-case scenarios. Therefore, it is natural
to ask not only whether LPG protection will fare well in the thermodynamic
limit, but also whether it will do so in the presence of nonperturbative errors
that can arise in QSM setups’.

Model and quench protocol
We consider in this work the (1 + 1) — D 7, LGT***”*7* with L matter sites
and L gauge links, given by the Hamiltonian

=~

—1

L
Hy=—] (AJ'TAJ?]H‘A’;'H + H-C') - hz T )
j:l

1

.
I

The hard-core bosonic annihilation (creation) operator is denoted by &](-ﬂ on
matter site j, the number operator for hard-core bosons on matter site j is
;= &T&j, and the electric (gauge) field is represented by the Pauli matrix
i’fj(i)l on the link between matter sites jand j + 1. The 7, gauge symmetry of
this model is generated by

Gy = (=D )

This operator has two eigenvalues, g; = + 1. It is easy to check that
[Hy, Gj] = 0, Vj, embodying the gauge invariance of the system.

A building block of this model has recently been implemented using a
Floquet setup in an ultracold-atom experiment’. The implementation is
based on periodically driving the two-component ultracold atoms in a
double-well potential resonantly at the on-site interaction strength”. With
the appropriate modulation parameters, the resulting effective Floquet
Hamiltonian hosts a Z, gauge symmetry. Nevertheless, the driving also
leads to terms that explicitly break the 7, gauge symmetry. These errors
have been quantified to take the form’

L—-1
A =AY [(ala}%;jﬂajﬂ oyl T H.c.) "
f= 6

~ ~ ~Z
+ <0c3nj - oc4nj+1> Tj‘j+1} ,

on an extended lattice, where the coefficients a; .4 depend on the driving
parameters of the Floquet setup, and are normalized such that they sum to
unity. At small A, without any protection term, gauge invariance in this
model exhibits intrinsic timescales « /A, s=1, 2, ..., L/2 over which it
persists in a staircase of prethermal plateaus in finite systems’>”. Eventually,

however, the system relaxes into a steady state of maximal gauge violation if
no gauge protection is employed*'.

Gauge protection in the 7, LGT has been first addressed using a
protection term with the full generator, oc V3, Gj“. Even though the
performance has been demonstrated to be formidable, with a controlled-
error regime where the violation plateaus at a value o A*/V* at sufficiently
large V, implementing such a protection term is quite challenging in current
QSM setups, given that Gj is a three-body two-species term, see Eq. (5).
Thereafter, the concept of LPG protection (1) has been introduced and
shown to successfully enable experimentally feasible gauge-symmetry sta-
bilization, with the LPG, given by

Wi =110 + 28", @
composed of at most two-body single-species terms’®. These are
experimentally easier to implement than the ideal gauge theory (4) itself.

However, the analysis in ref. 78 has only focused on finite systems and
perturbative errors. Even though its analytic derivations guarantee that LPG
protection works in the thermodynamic limit with a compliant sequence c;,
i.e, one that satisfies condition (3), the latter will grow exponentially in
system size, rendering it impractical for large systems. Furthermore, an
experimentally feasible sequence in the thermodynamic limit, such as the
noncompliant periodic sequence ¢;= [6(— 1Y + 5]/11 used in ref. 78 for finite
systems, has been analytically predicted to completely fail in the thermo-
dynamic limit in a worst-case scenario.

In the following, we will demonstrate numerically, and argue analyti-
cally, why LPG protection far outperforms this scenario. For this purpose,
we prepare our system in a gauge-invariant initial state ly,) in the target
sector GJ-|l[/0 >A= |V/0> (ie., g]t.*:r = 1), Vj, and then quench with the faulty
theory H = H, + AH, + VH,. We are interested in the resulting quench
dynamics of the temporally averaged gauge violation, the staggered boson
occupation, and the total electric flux,

=1~ /0 a5 S ()G Iws), (83)
j
e = 7 37 Dyl (o), (sb)
)
B = 1 S (y Ol ), 59

J

respectively, where |y(t)) = e[y, ). We will numerically calculate this
quench for an analog quantum simulator in the Analog Quantum Simu-
lation in the Thermodynamics Limit subsection and for a quantum com-
puter in the Quench Dynamics on a Quantum Computer subsection in the
Results.

Analog quantum simulation in the thermodynamic limit

The simulation of gauge theories on large-scale quantum simulators has
recently garnered a lot of attention, allowing the observation of gauge
invariance in a ramp protocol through the Coleman phase transition’, and
the investigation of thermalization dynamics' in the U(1) QLM through
implementations employing energetic protection schemes. The LPG pro-
tection is a very promising scheme for the realization of large-scale
experimental implementations of the Z, LGT with stable gauge
invariance'”. It is therefore instructive to investigate how LPG protection
will fare in the thermodynamic limit for accessible evolution times. A
prominently successful numerical method for this purpose is the infinite
matrix product state (iMPS) technique, which we employ here within the
framework of the time-dependent variational principle'”"'"*. For our most
stringent numerical simulations, we find that convergence of our iMPS
results is achieved with a time-step of 10%/J and a bond dimension of 400.
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Let us first take the initial state to be the staggered-matter state defined
as|e— o — e < o <) on a unit cell composed of four matter sites
(e = occupied, - = empty) and four gauge links (arrows denote eigenstates of
local electric-flux operator) that repeats indefinitely (thermodynamic limit).
This initial state is in the target sector Gj l¥o) = |,), Vjandisathalf-filling
of the global U(1) symmetry due to the conservation of boson number in our
model. We now quench the staggered-matter state with the faulty-theory
Hamiltonian H = H0 + )LH +VH w defined in Egs. (4), (6), and (1). The
LPG is given in Eq. (7) w1th g = 1, while the employed sequence is
¢;€{—1,3,—7,17}/17, which is compliant over the four-site four-link unit
cell but, since it repeats indefinitely, is a noncompliant sequence in the
thermodynamic limit. Furthermore, we choose «; = 0.5110, a, = — 0.4953,
as = 0.7696, and oy = 0.2147 in Eq. (6), which correspond to an experi-
mentally friendly value of the driving parameter in the Floquet setup of ref. 7.
However, we stress that this choice of parameters is not at all special
otherwise, and we have checked that our qualitative conclusions are quali-
tatively the same for other values of these coefficients.

The resulting dynamics of the gauge violation (8a) at a fixed non-
perturbative error strength A = J are shown for various values of the pro-
tection strength V in Fig. 2(a). The gauge violation grows o A’ at early
times, as can be calculated from time-dependent perturbation theory
(TDPT)"". Thereafter, two distinct regimes are apparent in this plot. The first
occurs at sufficiently small V, where the gauge violation grows uncon-
trollably towards a maximal value. The second regime occurs at sufficiently
large V, whereby the gauge violation stops increasing at a timescale o« 1/V
and enters a stable plateau with a value o A*/V2 This plateau has been
analytically derived in degenerate perturbation theory in the case of full
protectionoc V3, G %, which has also been analytically predicted to reliably
stabilize gauge 1nvar1ance for a volume-independent value of V** based on
formalism extended from the case of slow heating in fast-driven systems®. It
is therefore quite remarkable that the LPG protection with a noncompliant
sequence shows qualitatively similar behavior in the thermodynamic limit,
which far exceeds the analytic predictions of ref. 78.

In the framework of iMPS, we are limited in terms of maximal evo-
lution times that we can access, and guaranteeing the stability of the vio-
lation plateaus at much longer times is not possible. However, it is worthy to
note here that there is great agreement in the plateau values at a given value
of V between the iMPS result and its counterpart from ED for the corre-
sponding system of four matter sites and four gauge links with periodic
boundary conditions, as shown in Fig. 2a. In order to rule out trivial or
localized dynamics that would make going to larger systems redundant, we
show in Methods that the dynamics of observables such as the staggered
boson occupation is significantly different at finite size from its corre-
sponding counterpart in the thermodynamic limit. Moreover, despite their
limited maxima, the times achieved in Fig. 2a are relevant from the per-
spective of ongoing QSM experiments. For instance, the recent large-scale
Bose-Hubbard superlattice implementation of a U(1) gauge theory''
reaches evolution times of approximately 3/J. In our iMPS calculations, we
reach a maximal evolution time of £ ~ 10/J in the controlled-error regime of
V = 100], see Fig. 2a. This is well within the range of maximal lifetimes
achieved in state-of-the-art QSM platforms.

We now turn our attention to local observables, which in a typical
experiment are more easily accessible than the gauge violation, although the
latter has recently been observed’. In particular, we show the dynamics of the
staggered boson occupation (8b) in Fig. 2b for the staggered-matter initial
state. Already at V = 16], the dynamics under the faulty theory H is well-
reproduced by  the  emergent  adjusted  gauge  theory
H adj = =H, + \P,H, ’PO, with P, the projector onto the target gauge sector,
where the derivation of H, o 18 based on the quantum Zeno effect””. It is
important to note that starting in the target gauge sector, H,q; faithfully
reproduces the dynamics of the faulty theory at sufficiently large V within an
error upper bound o tV3L?/V, with V, an energy term depending on the
parameters of H, but not on V", In other words, up to a timescale

Toqg X V/ (V,L)?, the dynamics under H are guaranteed to exhibit con-
trolled gauge invariance, which is essential for faithfully simulating gauge-

¢ € {~1,3,-7,17}/17
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Fig. 2 | Quench dynamics of the staggered-matter state. Quench dynamics under
the faulty theory H = H, + AH, 4+ VH,, obtained from iMPS in the thermodynamic
limit starting in the staggered-matter state defined by the unit cell

|6 - o — & < o <), which lies in the target sector G]-|I//O> = |y,), Vj. The LPG
protection employs the sequence ¢; € { — 1, 3, — 7, 17}/17, which although compliant
over the unit cell, is noncompliant in the thermodynamic limit. a The gauge violation
(8a) shows two distinct behaviors over the accessible evolution times in iMPS. For
sufficiently small protection strength V, the gauge violation will continue growing
towards a maximal value in the presence of gauge-breaking errors (A > 0). At sufficiently
large V, the gauge violation enters a plateau of value o A*/V” at a timescale o 1/V, and
this plateau seems stable at all evolution times reached in iMPS, despite the errors being
nonperturbative in strength (A = J). Corresponding exact diagonalization results on a
finite system with four matter sites and four links under periodic boundary conditions
(dotted lines) show excellent agreement with their counterparts in the thermodynamic
limit (solid lines), indicating that the gauge violation, at least over accessible evolution
times, is system-size independent under LPG protection. b, ¢ As analytically derived
using the quantum Zeno effect, the LPG protection leads to the emergence of an adjusted
gauge theory H adj = Hy + A7SOH 1750, with 750 the projector onto the target gauge
sector. For V = 16] and A = J, we find that the LPG protection yields dynamics that are
very well reproduced by the adjusted gauge theory for the case of the staggered boson
number (8b) in the thermodynamic limit, therefore surpassing worst-case analytic
predictions of ref. 78. The total electric flux (8c) is also well-reproduced by H. A at

V = 32]. The insets show that the dynamics at V = 0 and A = J significantly deviates from
that under the adjusted gauge theory. This highlights the strength of the LPG protection
in that such nonperturbative errors are efficiently suppressed in the thermodynamic limit
at experimentally feasible values of V.

theory dynamics in a QSM setup. However, in the thermodynamic limit,
this timescale goes to zero, predicting a worst-case scenario where the faulty
theory can produce no controlled gauge-theory dynamics. As such, the
results of Fig. 2b show that this worst-case scenario can be avoided up to all
accessible times using LPG protection even with a noncompliant sequence
in the presence of nonperturbative errors. Moreover, A = Jand V = 16] are
well within the feasible parameter ranges that can be accessed in modern
QSM setups””'"*°. This is indeed impressive given that here the gauge-
breaking error is nonperturbative, yet already V < 16] is sufficient to pro-
duce stable gauge-theory dynamics up to ¢ > 10/J, which are relatively large
experimental lifetimes. It is also important to note here that the unprotected
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Fig. 3 | Quench dynamics of the charge-density-wave state. Time evolution of the
(a) gauge violation, (b) staggered boson occupation, and (c) total electric flux when
starting in the charge-density-wave (CDW) state defined by the unit cell

lo > & < o < o «), which lies in the target sector G;ly,) = |y,), ¥j. The
qualitative behavior is identical to that of the staggered-matter initial state shown in
Fig. 2, indicating the generality of LPG protection with a noncompliant sequence in
the thermodynamic limit in the presence of nonperturbative gauge-breaking errors.

dynamics (V = 0) significantly deviates from that under the adjusted gauge
theory (see inset), indicating that the error term is by no means benign.
Therefore, LPG protection is crucial in stabilizing the gauge-theory
dynamics in the presence of such errors. Turning our attention to the
total electric flux (8¢c) in Fig. 2(c), we arrive at the same qualitative con-
clusions as in the case of the staggered boson number, albeit here a larger
V = 32 is required for the total electric flux to agree in its dynamics under H
with that under H adj- Nevertheless, such a value of the gauge protection
strength is still within the range of current experiments, and it is important
to note that the electric-flux dynamics in this case seem to be trivial in that
they average over time to a value close to zero.

In order to check the generality of these results, we now consider the
charged-density-wave (CDW) initial state defined  as
|e — @ <« o « o <) onanindefinitely repeating four-site four-link unit
cell (thermodynamic limit). As shown in Fig. 3, the conclusions are quali-
tatively identical to those of the staggered-matter initial state of Fig. 2, with
the electric flux showing even better quantitative agreement with the
adjusted-theory prediction, which we attribute to its dynamics being non-
trivial compared to the case of the staggered-matter initial state. Indeed, the
two-regime picture of the gauge violation is also present in Fig. 3a with &()
rendered controlled at a stable value o A*/V* after a timescale o 1/V at
sufficiently large V, whereas at values of V that are too small, it seems to
continually grow in time. Once again, we see that the gauge violation for the
corresponding finite system with four matter sites and four gauge links with
periodic boundary conditions is essentially quantitatively identical to its
counterpart in the thermodynamic limit.

The robustness of the quantum Zeno effect is confirmed in Fig. 3b, c:
the dynamics of the staggered boson occupation (8b) and electric flux (8c),
respectively, under the faulty theory show very good agreement with those
from the adjusted gauge theory for V' 2 16] over all accessible evolution

times in iMPS, once again exceeding analytically predicted worst-case sce-
narios for the thermodynamic limit®.

Even though we have set A = Jand h = 0.3 for the results of Figs. 2, 3, we
have checked that our conclusions remain qualitatively the same for dif-
ferent values of these parameters.

As a summary of this section, we have shown that LPG protection with
a properly chosen sequence that is compliant over the unit cell, though
noncompliant over the whole lattice, will produce reliable gauge invariance
with a violation controlled o< A*/V? for all accessible evolution times in iMPS
even in the presence of nonperturbative gauge-breaking errors. For mod-
erately small values of the protection strength V, we find that the dynamics
of local observables is already well-reproduced by an emergent gauge theory
during all the evolution times we reach. This shows that LPG protection has
substantial potential to stabilize current and future QSM implementations
of Z, LGTs and possibly other more general gauge theories.

Itis worthy to note here that even thoughAH agj and H, are not identical,
one can still engineer an additional term in VH,, that aims to cancel gauge-
invariant processes in AH,. Indeed, A2, H, P, is nonzero only due to such
processes, and eliminating them through an additional term in VH,, will
render H adj = H,. The feasibility of engineering this additional term is
specific to the setup employed in the quantum simulation.

Quench dynamics on a quantum computer
We now investigate the efficacy of LPG protection by numerically simu-
lating a digital quantum computer that implements the gauge-theory
dynamics through discrete, Trotterized time-steps. In recent years, quantum
advantage beyond classical capabilities has been demonstrated on various
quantum computing platforms such as superconducting quantum devices
and photonic systems'”"'%, and the associated rapid engineering progress
has motivated the use of such devices to probe high-energy physics phe-
nomena theoretically and experimentally*®*'*~"",

In this vein, we again consider the (1 + 1) — dimensional 7, LGT, but
rewrite its Hamiltonian as

L-1

H, = —]Z(‘ﬁﬁjw‘ﬁa + H'C'> - hz%ﬁjﬂ’ ©)

=t j=1

where we have now replaced the hard-core boson notation with its
equivalent representation in Pauli matrices, as is the traditional convention
when dealing with quantum circuits. We consider a one-dimensional
arrangement of qubits that alternatingly represent matter (6) and gauge (7)
fields, and we employ open boundary conditions; cf. Figure 4.

Near-term realizations on quantum computers in the NISQ era will
unavoidably be subject to coherent errors, e.g,, due to imperfect gate cali-
brations or further systematic errors. In order to mimic these, we exem-
plarily choose as explicitly gauge-violating terms both phase flips on gauge
fields and unassisted tunneling between matter sites, described by the term

MH, =\ (3, + 6767, + He), (10)
j

where, in following with implementational relevance'”, we will set A = 0.1]
for the rest of our discussion. To constrain the gauge violation introduced by
AH |, we make use of the protection term VH, of Eq. (1) where the LPG is
given in Eq. (7) with ; = (67 + 1)/2. o R
The time evolution propagated by the faulty theory H = H, + AH, +
VH,, is now implemented in layers exp(—iH ;61), exp (—iH,0t),
exp (—iAH,8t),and exp (—iV H,0t) with the Trotter time-step 0. To this
end, we separate the Z, LGT Hamiltonian H,, into the three-body terms
coupling matter and gauge fields, H ;=] Z.L;II(?J;' 7105, + Hee,
and H, = —h ¢, ;.
matter-site term in VH,, ie., Vi)

The Trotterized time evolution by Hj, and the

07, are implemented by single-
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qubit  rotations X(I j+1($) = exp(—it;;,,¢/2)  and R, i®) =

exp(—i&;(p /2), where the rotation angle ¢ is given by the relative weight in
the eg,  exp(—iH,0t)= @, exp(it};, hot) =
®ij,(j j+1(—2hé1). The implementation of exp(—zH ;0t) consists of
layered three-qubit interactions, which we assume to be ideal here as we
focus on the effects and suppression of explicit gauge violations introduced

by AH,. The remainder of the LPG protection term VH,, ie., the part
acting on the gauge-fields, can then be implemented by two-qubit gates as

Hamiltonian,

4 Y 4 3\ 4 \
05 =1 Rz
T T . R e
Hj |
01 —T7 R, |
T2 T — R T M
\. J \ J . —
H, \H, VHw

Fig. 4 | Quantum circuit. Elementary unit of a single Trotter step. Qubits repre-
senting matter (gauge) fields are denoted by ¢ (7). The implementation of the time
evolution by H, of Eq. (9) is a combination of the layered three-qubit interactions
between qubsits representing both matter and gauge fields, i.e., exp(—ifl ;8t), and
single-qubit x-rotations R, on the qubits representing gauge fields. In NISQ devices,
the ideal dynamics will typically be plagued by gauge-violating error terms AH,,
which will depend on the implementation. To mitigate them, the LPG protection
term VH,, of Eq. (7) can be implemented by single-qubit z-rotations R, on matter
qubsits and the two-qubit gates acting on gauge qubits exp(—ic; Vrj‘ i+ 1Tf+1 4200
which is denoted by x-x.

exp(—i¢;VT};, 7}y j4,0t). With this, the implementation of the LPG

protection term is less complex than that of the lattice gauge theory itself,
which is beneficial for experimental realizations. A sketch of the resulting
circuit model is given in Fig. 4.

We choose an alternating, noncompliant sequence of coefficients
G = [6(—1)Y + 5]/11, illustrating that no fine-tuning of parameters is
required. Taking the system size to be 2L = 12 sites (L = 6 matter sites and
L = 6 gauge links), we consider as initial states |y, ) the staggered-matter
state @ <~ 0 < e —> 0 —> @ <0 <—> as well as the domain-wall state
e <~ o —> @<« o0 <« o0 «o «) These lie in the target sector
Gjll[/0> = ly,)» ie, g =1, Vj (to define the constraint at j = 1 in the
presence of open boundary conditions, one can add a fictitious electric field
atj — 1, 1 that is fixed to the value + 1). To perform these calculations, we
employ Cirq'"®, a Python library dedicated to designing and optimizing
quantum circuits.

Focusing first on the case of the staggered-matter initial state, we
present the corresponding quench dynamics of the raw (i.e., not temporally
averaged) gauge violation

1- —Z<w(t)|c ly(®)),

j>1

Eran(t) = 11)

its final value &f = &.,,,(t = 20/]), the staggered boson number (8b), and the
total electric flux (8c), respectively, in Fig. 5. These results are shown for a
Trotter time-step 6t = 0.2/] with up to 100 Trotter steps, which covers
abundantly the lifetimes achievable with current quantum processors'".
The gauge violation shows two distinct regimes in Fig. 5a over the
accessible evolution times. For very small values of the protection strength
V, the violation seems uncontrolled and increases steadily throughout the
time evolution. At moderate values of V, the gauge violation is suppressed
o A%/ V2, just like on an analog quantum simulator. Indeed, we show in the
same plot the corresponding analog results (i.e., continuous time; dotted
lines), and the agreement with their digital counterparts is very good. The

1
s (b
-1
¢j = [6(=1)" +5]/11 1077 ¢
cas T MW.W“ AJ =01
P 10-2] na=03 ]
8t =0.2/J, \[J =0.1, h/J = 0.3 =
A "
il 10-3 <, analog
controllederror regime — g:i:t:i ng i 821’//‘;;
eroch? /V  , digital (3t = 0.1/.])
. . | .
0 0.03 0.05 01J/V 0.2 0.4 0.8 2
!
@
A R
S0.1F g : . KK 1
% CORY A LN R
& SR A A K
% . N
6t =02/J : -0.2+ g o Y R
MJ =01 e/ =0 wnaV/J =0 tee”
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m—V/J =4 —/J =4 AT =01
—6(— = — /] =8 _ |f w—V/]=8 _ = — 0.4 i
g o = [B(=1y 8/ ideal theory 0.3 ideal theory [B(-17 +5)/11  h/T=03
-0.5% , . . i | . .
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Fig. 5| Trotterized dynamics of the staggered-matter state. Quench dynamics ona
finite quantum circuit of the initial staggered-matter state

|e <~ o < & — 0o — e < o « ) under the faulty theory

H = H,+ A\H, + VH,,, simulated from quantum-circuit numerical calculations
with open boundary conditions using Cirq. The LPG protection includes the non-
compliant sequence ¢; = [6(—1) + 5]/11. a The time evolution of the raw gauge
violation (11) with a Trotter time-step 8t = 0.2/] (solid lines) shows that at moderate
values of V the violation plateaus at a timescale o 1/V to a value o A*/V* over all
calculated evolution times. The corresponding analog results (dotted lines) are
shown for comparison. Agreement with the digital result is quite good, except for
larger values of V that approach Vige, ~ 71/(20t) (see main text for details). b A two-
regime picture appears when scanning the value of the gauge violation at the final

evolution time t = 20/], where for a given Trotter time-step dt, for sufficiently large
V/A but with V < Vig.,), the gauge violation is controlled o A*/V? (coincides with
dashed yellow line). Outside this regime, the value of the gauge violation cannot be
directly inferred from the value of V. Without any protection, (c) the staggered boson
number (8b) and (d) the total electric flux (8c) quickly and significantly deviate from
the ideal-theory dynamics, which for the case of the error term (10) is the “adjusted”
gauge theory obtained from the quantum Zeno effect. Upon introducing LPG
protection, the ideal-theory dynamics is restored already at moderate values of V,
allowing the use of a larger Trotter time-step, thereby reducing computational
overhead on a quantum computer. Even though here we have set & = 0.3], we have
checked that our results are qualitatively the same for different values of h.
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behavior is further confirmed when scanning the final value of the gauge
violation at t =20/J as a function of J/ V, shown in Fig. 5b. The transition from
an uncontrolled-error regime to a controlled one where the violation scales
o A*/V* occurs around V = 2.5] when A = 0.1] for all Trotter time-steps
considered (see legend). Going to smaller Trotter time-steps further extends
the controlled-error regime, but then the maximal evolution times will be
more challenging to reach in a realistic device with finite gate fidelity.

Indeed, there is an ideal choice of the protection strength Vi4e, for any
given Trotter time-step t. As the existence of such a V4., is a consequence
of the periodic redundancy of gate angles in the circuit model, it is roughly
given as Vigea ~ 71/(20t). Larger choices of V' > Vi4e, therefore induce less
effective protection and result in a higher ¢. For sufficiently large V/A with V'
also sufficiently smaller than V,4e, LPG protection displays the controlled-
error regime where the gauge violation is suppressed o (1/V)* and lies on
top of the corresponding analog result (thick red line). Thanks to the
comparatively small values of V required to be in the controlled-error
regime, one is able to use relatively large Trotter time-steps, which reduces
computational time, and hence incoherent errors, on an actual quantum
computer. This highlights a very useful facet of LPG protection on quantum
computers.

We now turn our attention to the staggered boson number 71;,(f) and
the total electric flux E(t) in Fig. 5¢, d, respectively, in order to see how well
LPG protection restores the ideal-theory dynamics. As discussed in the
Analog Quantum simulation in the Thermodynamic Limit subsection in
“Results” and ref. 78, in the presence of an error term AH, , LPG protection at
sufficiently large volume-independent protection strength V gives rise to an
adjusted gauge theory H adj = H, + AP, H, P,. Analytically, this is derived
from the quantum Zeno effect’””™. Unlike for the error term of Eq. (6),
PyH, P, = 0 for the error term of Eq. (10), rendering the adjusted gauge
theory identical to the ideal theory H,. We see that the dynamics under the
ideal theory is essentially fully restored for a moderate protection-strength
value of V' = 4] within the accessible evolution times calculated in Cirq for
both ng.,(f) and E(f). This is quite impressive considering that the

unprotected faulty theory H,, + AH, quickly and significantly deviates in its
dynamics from the ideal gauge theory H,.

In order to show that our conclusions are general, we now repeat these
results for the domain-wall initial state in Fig. 6. The conclusions are qua-
litatively identical to those obtained in the case of the staggered-matter initial
state. The two-regime behavior of the gauge violation is clear, where at or
above moderate values of V the gauge violation is suppressed o A*/V* over
all evolution times ¢ > 1/V, as shown in Fig. 6a, b. Once again, the quantum
Zeno effect demonstrates its power in Fig. 6¢, d, with the LPG protection
restoring the ideal-theory dynamics at moderate values of V for both the
staggered boson number and the total electric flux.

Conclusion
We have performed numerical calculations using the infinite matrix
product state technique, which works directly in the thermodynamic
limit, of quench dynamics in gauge theories with experimentally
relevant nonperturbative gauge-breaking errors mitigated by local-
pseudogenerator protection. At experimentally feasible values of the
protection strength, we find that LPG protection with an experi-
mentally friendly noncompliant sequence in the thermodynamic
limit stabilizes gauge invariance up to all accessible evolution times,
which translate to state-of-the-art lifetimes in modern experimental
platforms. Furthermore, LPG protection leads to the emergence of an
adjusted gauge theory due to the quantum Zeno effect that faithfully
reproduces the dynamics for all accessible times at moderate values
of the protection strength. With the current pursuit of large-scale
analog quantum simulations of lattice gauge theories in various
quantum synthetic matter setups, our results show that an experi-
mentally feasible protection scheme has impressive potential even in
the thermodynamic limit, surpassing expectations analytically pre-
dicted in ref. 78.

Furthermore, we have showcased the performance of LPG protection
on finite-size quantum circuits using the quantum circuit toolkit Cirq. It is

s
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Fig. 6 | Trotterized dynamics of the domain-wall state. Quench dynamics on a
finite quantum circuit of the domain-wall initial state

|6 <@ —> e <o <o « o <) under the faulty theory

H = H, + AH, + VH,,, simulated from quantum-circuit numerical calculations
with open boundary conditions using Cirq. The LPG protection includes the non-
compliant sequence ¢; = [6(—1) + 5]/11. a The time evolution of the raw gauge
violation (11) with a Trotter time-step 8t = 0.2/] (solid lines) shows that at moderate
values of V the violation plateaus at a timescale o 1/V to a value o A*/V? over all
calculated evolution times. The corresponding analog results (dotted lines) are
shown for comparison. Agreement with the digital result is quite good, except for
larger values of V that approach Vjge, ~ 7/(28t) (see main text for details). b A two-
regime picture appears when scanning the value of the gauge violation at the final
evolution time t = 20/], where for a given Trotter time-step &, for sufficiently large

V/A but with V < Vigeq, the gauge violation is controlled o A*/V? (coincides with
dashed yellow line). Outside this regime, the value of the gauge violation cannot be
directly inferred from the value of V. Without any protection, (c) the staggered boson
number (8b) and (d) the total electric flux (8c) quickly and significantly deviate from
the ideal-theory dynamics, which for the case of the error term (10) is the “adjusted”
gauge theory obtained from the quantum Zeno effect. Upon introducing LPG
protection, the ideal-theory dynamics is restored already at moderate values of V,
allowing the use of a larger Trotter time-step, thereby reducing computational
overhead on a quantum computer. Even though here we have set & = 0.3], we have
checked that our results are qualitatively the same for different values of 4. The
qualitative conclusions are identical to those in the case of the staggered-matter
initial state shown in Fig. 5, indicating that the efficacy of LPG protection is general
and not restricted to particular fine-tuned initial conditions.
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Fig. 7 | Short-time dynamics. Quench dynamics of the staggered boson number
(8b) under the faulty gauge theory H = H,, + AH, 4+ VH,, with

¢ €1{— 1,3, —7,17}/17, and starting in the initial state defined by the unit cell

[ >0 — @« o <—> for the finite sizes L = 4 and 8 matter sites (ED+Lanczos
calculations, periodic boundary conditions employed), and in the thermodynamic
limit (iMPS calculations).

demonstrated that for typical errors on quantum circuits, relatively small
values of the protection strength allow for a controlled suppression of gauge
violations up to all relevant lifetimes that can be accessed in modern NISQ
devices. Not only that, but LPG protection in this case also reproduces the
ideal-theory dynamics of local observables very reliably, despite these errors
leading to vastly different dynamics in the unprotected case. Indeed, the
small protection strengths at which the LPG protection stabilizes gauge
violations allow for using larger Trotter time-steps, thereby reducing
computational effort for NISQ devices, which is highly desired in order to
minimize effects due to decoherence.

In summary, our work has gone beyond the findings of ref. 78 that
introduced the concept of local pseudogenerator and linear gauge protection
based on it, by showing that this method works in the thermodynamic limit,
in the presence of nonperturbative errors, and on NISQ-type devices.

Methods

Finite-size results

In the main text, we have seen that under the faulty gauge theory H =
Hy + AH, + VH,, with ¢ €{— 1,3, — 7, 17}/17 there is very good
qualitative and quantitative agreement in the quench dynamics of the
gauge violation (8a) for a finite system of L = 4 matter sites with periodic
boundary conditions and for a system in the thermodynamic limit at
A =] and at all values of V. However, in Fig. 7, we see that for V = 16] the
quench dynamics of the staggered boson number (8b) is significantly
different between a finite system of L = 4 matter sites and an infinite
system (L — oo). This is also the case for other values of V. As such, the
dynamics in the thermodynamic limit is not trivially reproduced in a
finite system, which is all the more impressive that LPG protection
performs so well in the thermodynamic limit.

Choice of noncompliant sequence

A compliant sequence over the whole lattice satisfies the condition
ZJ 16w, — g) =0 <= w; =g, Vj, where w; are the eigenvalues
of the LPGs W Such a sequence can be analytically shown to protect gauge
invariance up to timescales exponential in a volume-independent protection
strength V’* through an extension of formalism on slow heating in fast-
driven models®. However, as explained in the main text, this sequence is not
feasible for large-scale systems since it grows exponentially with system size.
This is the main reason why we employ noncompliant sequences ¢; in our
iMPS simulations that work directly in the thermodynamic limit. In fact, we
would not be able to use iMPS for a sequence ; that is compliant in the
thermodynamic limit, since then the MPS unit cell will have to be infinite in
size. Naturally, it is also of experimental relevance to employ noncompliant
sequences that repeat in space. In the main text, we have focused in iMPS on
the noncompliant sequence ¢; € { — 1, 3, — 7, 17}/17, which is compliant on a
finite system of L = 4 matter sites and L = 4 gauge links. As shown in Fig. 2a,
this sequence allows the suppression of gauge violations o A*/V* for all
accessible evolution times in the thermodynamic limit even when gauge-
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Fig. 8 | Gauge-violation dynamics. Quench dynamics of the gauge violation (a)
under LPG protection with the noncompliant sequence ¢;= [6(—=1Y +5]/11in (a) the
thermodynamic and (b) for a finite system with L = 4 matter sites and L = 4 gauge
links with periodic boundary conditions. The unit cell defining the initial state is
[6 >0 — e<«o <—> The gauge violation (a) leaves its early-time growth o A°£
atatimescale o 1/V;after which it settles into a controlled-violation plateau «A*/V*
at sufficiently large V. However, in the thermodynamic limit it then begins to
increase slowly at intermediate evolution times and diverges from the finite-system
result (dotted lines) at the largest evolution times we can reach in iMPS. In contrast,
for the finite system, the gauge violation is controlled at all accessible times for
sufficiently large V.

breaking errors are nonperturbative. Furthermore, the gauge violation in the
thermodynamic limit agrees quantitatively very well with its counterpart for
a finite system with L = 4 matter sites and L = 4 gauge links with periodic
boundary conditions.

It is now interesting to see how the noncompliant sequence
G = [6(—1Y + 5]/11, prominently used in ref. 78 for perturbative errors
on finite systems, will fare in the thermodynamic limit with non-
perturbative errors. The corresponding quench dynamics of the gauge
violation starting in the initial state defined over the unit cell
|6 —> o — & < o <) are presented in Fig. 8a. After the expected initial
growth o A*# at early times, the gauge violation settles into a plateau
o A%/ V? at a timescale o« 1/V when V is sufficiently large. However, soon
thereafter the gauge violation starts increasing slowly before rapidly
diverging away from the corresponding finite-size result (dotted-line) at
the largest accessible evolution times in iMPS. This divergence also seems
to occur earlier with larger V. If we look at the corresponding finite-size
results from ED in Fig. 8b, we find that at sufficiently large V the gauge
violation exhibits two plateaus both of which have values proportional to
AN*/V?, but with the first one slightly lower in value, and ending earlier
with larger V, while the second plateau persists up to all evolution times
calculated in ED. This may partly explain the divergence from the ED
result in Fig. 8a, but not completely. In reality, the sequence ¢; guarantees
controlled suppression of first-order processes in H, since these break
two adjacent local constraints, while GE {—1,3,—7,17}17 guarantees
controlled suppression of up to second-order processes in H,. It is
therefore intuitive why the latter sequence will perform better than the
former. Of course, and as mentioned in the main text, we cannot guar-
antee that the sequence ¢; € { — 1, 3, — 7, 17}/17 will reliably suppress
gauge-breaking errors at times longer than those we can access in iMPS.
However, and as we have argued in the main text, the accessible evolution
times we reach in iMPS are equivalent to experimental lifetimes in state-
of-the-art QSM setups. Therefore, LPG protection is a powerful tool for
stabilizing gauge invariance in such experiments.
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Fig. 9 | Gauge-violation fraction. The fraction R of gauge-invariant sectors satis-
s tary J tar : 5

fying 3=.c;(w; — g*") = 0 but with w;=g}*" for at least one value of j. It steadily

decreases with system size in an almost power-law fashion. This may lead to a

slowing down of the spread of gauge violations, thereby partly explaining why LPG

protection with a noncompliant sequence fares well in the thermodynamic limit.

Finally, let us consider the fraction R of gauge-invariant sectors
resonant with the target gauge sector for a given LPG sequence. These are
the gauge-invariant sectors satisfying the relation } ;c;(w; — g*") = 0 but
with w;#g;*" for at least one value of j. It is interesting to see how R behaves
as a function of system size L. As such, we consider the sequence
GE {—1,3,—7,17}/17 and calculate the fraction R as a function of L in
Fig. 9, where we see that it actually decreases with system size. This is
encouraging news because it means that even though the number of gauge-
invariant sectors resonant with the target gauge sector increases with system
size, its fraction of the total number of gauge-invariant sectors decreases, and
this will slow the proliferation of gauge violations.
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