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Tailoring bound state geometry in high-
dimensional non-hermitian systems
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It is generally believed that the non-Hermitian effect (NHSE), due to its non-reciprocal nature, creates
barriers for the appearance of impurity bound states. In this paper, we find that in two and higher
dimensions, the presence of geometry-dependent skin effect eliminates this barrier such that even an
infinitesimal impurity potential can confine bound states in this type of non-Hermitian systems. By
examining bound states around Bloch saddle points, we find that non-Hermiticity can disrupt the
isotropy of bound states, resulting in concave dumbbell-shaped bound states. Our work reveals a
geometry transition of bound state between concavity and convexity in high-dimensional non-
Hermitian systems, offering theoretical insights for the experimental manipulation of bound states.

The non-Hermitian Hamiltonian serves as an effective tool for describing
systems that interact with environments1–15. Recently, non-Hermitian band
systems have drawnmuch attention due to their intriguing phenomena that
surpass the Bloch band framework16,17. A representative phenomenon is the
non-Hermitian skin effect (NHSE)18–41. In one dimension, the NHSE is
characterized by a large number of eigenstates localized at the ends of an
open chain, well understood in the generalized Bloch band
framework18,21,25,28,34. In higher dimensions, the NHSE exhibits more com-
plexity due to the interplay between mode localization and boundary geo-
metries. Particularly, the NHSE may disappear under certain geometry but
reappear under others. This dimensionality-enriched phenomenon is
referred to as the geometry-dependent skin effect (GDSE)38,42–49.

Impurities are fundamental in Hermitian systems and have been
extensively studied for their broad applications. For example, magnetic
impurities inmetals induce phenomena such as the Kondo effect50, while in
s-wave superconductors, they manifest as Yu-Shiba-Rusinov bound
states51–53. Recently, the investigation of impurity states in non-Hermitian
settings, especially their interplay with NHSE, has revealed various physical
phenomena54,55. A key aspect is that, NHSE creates barriers for the forma-
tion of impurity bound states due to its non-reciprocal nature56,57. Conse-
quently, afinite impurity potential is necessary to induce abound statewhen
NHSE is present58. However, these phenomena have primarily been studied
in 1D non-Hermitian systems, it is still unclear whether impurity states can
exhibit different properties in higher dimensions. Additionally, NHSE
presents unusual characteristics in higher dimensions38,59,60, such as GDSE.
The potential for impurity states to exhibit different behaviors in interaction
with these emerging forms of NHSE in higher dimensions remains a sig-
nificant and largely unexplored research gap.

In this paper, we find that in the presence of GDSE, the impurity
potential exhibits a zero threshold for the emergence of bound states. We
establish an exactmapping between the bound state energy and the required
impurity potential, demonstrating that even an infinitesimal impurity
potential can confine bound states in a non-Hermitian system exhibiting
GDSE. A key reason is that the GDSE ensures the presence of Bloch saddle
points, which eliminate barriers to impurity-bound state formation.

In two and higher dimensions, the geometry of equal amplitude con-
tours of wavefunction introduces a unique characteristic for non-Hermitian
impurity-bound states. We determine the geometry of bound states using
the mathematical concept of amoeba. In two dimensions, impurities can
host anisotropic, concave bound states, in sharp contrast to the isotropic,
convex bound states in Hermitian systems. Furthermore, we reveal a geo-
metric transition from convexity to concavity in bound states by manip-
ulating the impurity potential. This transition, characterized using our
method, is observable in experimental setups, such as through local density
of states patterns (See details in Supplementary Note. III).

Result
A general theory of bound states in non-Hermitian systems
We start from a general tight-binding Hamiltonian with finite range cou-
plings in two dimensions,

H0 ¼
X
x;y

X
s;l

ts;ljx; yihx þ s; y þ lj

¼
X

kx ;ky2BZ

H0ðkx; kyÞjkx; kyihkx; kyj;
ð1Þ
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where H0ðkx; kyÞ ¼
Pl¼M;s¼N

l¼�m;s¼�nts;lðeikx Þ
sðeiky Þl , (x, y) represents the posi-

tion of lattice site, and ts,l indicates the hopping strength. The Bloch spec-
trum is formed by the eigenvalues ofH0ðkx; kyÞ as kx and ky scan over the
entire Brillouin zone (BZ), which we denote by σPBC [red dots in Fig. 1a].
Note that though we focus on two-dimensional case here, the theory can be
easily generalized to higher dimensions(see more detail in the Supplemen-
tary Note. I).

To generate an impurity bound state, we place a single impurity
potential of strength λ at the origin of the lattice, where the coordinate is set
to (x0, y0) = (0, 0). The impurity potential takes the form

V ¼ λ
X
x;y

δðx; yÞjx; yihx; yj: ð2Þ

One can tune the impurity strength λ such that the excited bound state has
an energy EBS appearing beyond the region of σPBC [the black cross in
Fig. 1a]. Utilizing Green’s functionmethod, the wavefunction of this bound
state can be analytically obtained as61

ψEðx; yÞ ¼ λψEð0; 0ÞG0ðE; x; yÞ; ð3Þ

whereG0(E; x, y) = 〈x, y∣1/(E−H0)∣0, 0〉 is the Green’s function,H0 is given
by Eq. (1), and ψE(0, 0) is determined by the wavefunction’s normalization
condition. Setting x and y to zero in Eq. (3), the relationship between the
bound state energyEBS and the required impurity strength λ is established as

λ�1ðEBSÞ ¼ G0ðEBS; 0; 0Þ: ð4Þ

Under PBC, the Green’s function on the right-hand side of Eq. (4) can
be expandedunderBloch basis as an integral form, and thus the relationship

becomes

λ�1ðEBSÞ ¼
Z

BZ

dkxdky
ð2πÞ2

1
EBS �H0ðkx; kyÞ

: ð5Þ

Typically, a statewith energywithin a continuum spectrum is expressed as a
scattering state. Correspondingly, the energy of a bound state should lie
outside the region of σPBC. The critical point, where the bound state energy
mergeswith the PBC continuous spectrum, signifies a phase transition. This
phase transition determines the minimum impurity strength required to
create bound states. Consequently, we can define the set of minimum
impurity strengths as

Λ ¼ lim
EBS!Eb

λðEBSÞjEb 2 ∂σPBC

� �
; ð6Þ

where ∂σPBC represents the boundary of PBC continuum spectrum, and Eb
denotes a spectral boundary point. We define the impurity strength
threshold λ0 as the minimum absolute value ∣λ∣ in the set Λ. The Bloch
saddle points (BSPs), denoted as ðksx; ksyÞ, refer to the saddle points in the BZ
where the relation holds: ∂kiH0ðksx; ksyÞ ¼ 0 for i = x, y. In the following, we
demonstrate that zero threshold of impurity strength is ensured by the
presence of BSPs in the Bloch spectrum σPBC.

The critical response to impurity potential near BSPs
Here, we examine excitations around the BSP energy, assumed to be at the
spectrum boundary Eb. The lattice Bloch Hamiltonian can be expanded at
the BSP as H0ðqx; qyÞ ¼ Eb þ tðq2x þ a q2y þ b qxqyÞ, where qx and qy are

deviations from the BSP momentum, and Eb, t, a, b are expansion

Fig. 1 | Energy response of impurity strength.
a shows the PBC spectrum of the Hamiltonian
eiπ=6 cosðkx þ kyÞ þ eiπ=3 cos kx , with four black
points denoting the energies at its BSPs. The black
cross represents the bound state energy induced by
the impurity. b illustrates the 1D Bloch saddle lines
(BSLs) in the BZ, with brown lines representing
∂kyH0ðkx; kyÞ ¼ 0 and gray lines for
∂kxþky

H0ðkx; kyÞ ¼ 0. The corresponding spectral
lines H0ðkx; kyÞ are shown in the same color in (a).
The four intersection points, i.e., high-symmetry
k points in the BZ, are the BSPs and correspond to
the four vertices in the spectrum shown in (a). Show
the function ∣λ(δE)∣, corresponding to the blue and
orange trajectories in (a), respectively. Here, δE is
defined as E �H0ð0; 0Þ in (c) and E �H0ðπ=3; 0Þ in
(d). The insets in (c, d) show zoomed-in results
as ∣λ∣ → 0.
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coefficients.The linearqx andqy termsareomitted sinceEb is aBSP.Theqxqy
cross term can be eliminated through proper momentum basis rotation,

when jbj2
jaj2 ≤

ðsinðarg aÞÞ2
sinðarg a�arg bÞ sinðarg bÞ. Therefore, the expanded Hamiltonian

around aBSPcanbe classifiedby the coefficientsa,b. For demonstration,we
utilize the following concrete lattice Hamiltonian:

H0ðkx; kyÞ ¼ cos kx þ a cos ky þ b sin kx sin ky: ð7Þ

Withaweak impurity potential, the excitedbound state energy shifts slightly
from the BSP energy Eb ¼ H0ð0; 0Þ, i.e., ∣δE∣ = ∣EBS− Eb∣ ≪ 1. Substituting
Eq. (7) intoEq. (5),when ∣b∣, ∣δE∣ ≪ 1, the relationshipbetween the impurity
strength λ and the bound state energy EBS becomes (see details in Supple-
mentary Note. II): λ�1ðδEÞ ¼ A 5 ln 2� lnB� ln δEð Þ=2π, where the

parameters A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 2b2Þ=ða2 � ab2Þ

q
and B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 1Þ=ða� b2Þ2

q
.

Here, λ−1(δE) diverges asymptotically as ln δE when δE → 0, which is
expressed as:

λ�1ðδEÞ / ln δE: ð8Þ

Weemphasize that, as shownbyEq. (8), the bound state energynear theBSP
is highly sensitive to the impurity potential, verified in Fig. 1c. This contrasts
sharply with the linear response observed near the regular spectrum
boundary energy, depicted inFig. 1d.This sensitivity canbeutilized todetect
BSPs in higher-dimensional non-Hermitian systems45–47. As δE approaches
zero, the required impurity potential λ also tends to zero, indicating a zero
threshold at the BSPs, leading to the conclusion that BSPs ensure a zero
threshold for impurity potential.

Numerical verification for the zero threshold at BSPs is illustrated in
Fig. 1. As EBS approaches EBSP along the blue line in Fig. 1a, the required
impurity potential decreases to zero (Fig. 1c). Conversely, when EBS
approaches a regular spectral boundary energy along the orange trajectory
in Fig. 1a, the impurity potential reaches afinite value (Fig. 1d).Dashed lines
in Fig. 1c, d indicate the asymptotic behavior near the boundary.

A natural question arises: which systems ensure the existence of BSPs
in higher dimensions? The answer lies in systems exhibiting GDSE. In
GDSE, there are two special directions, k1 and k2. When boundary cuts are
made along these directions, the open boundary eigenstates manifest as
Bloch waves. By imposing open boundary conditions along k1 and periodic
boundary conditions along k2, the k2 momentum is conserved, treating the
Hamiltonianas a 1Dk1-subsystem for afixedk2.Withno skin effect in the k1
direction, the energy spectrum forms an arc whose endpoints satisfy
∂k1H0ðkx; kyÞ ¼ 0. As k2 varies from − π to π, these endpoints form two
lines (brown lines in Fig. 1b). Similarly, two lines canbeobtained for k2 (gray
lines inFig. 1b).At their intersections, theBSPconditions∂kiH0ðksx; ksyÞ ¼ 0
for i = 1, 2 are satisfied, corresponding to four BSPs within the BZ. An
example with {k1, k2} = {kx, kx + ky} is shown in Fig. 1b, where the inter-
sections are marked by black dots.

Tailoring the geometry of bound states
According to Eq. (3), the bound state wave function is determined by
Green’s function. TheGreen’s function can be expressed in an integral form
with the Hamiltonian H0 given by Eq. (1):

G0ðEBS; x; yÞ ¼
I

T2

dzxdzy
ð2πiÞ2

ex ln zxþy ln zy

zxzyðE �H0ðzx; zyÞÞ
ð9Þ

Here, we extend the real momentum k to the complex value ~kj ¼ kj þ iμj
and define zj ¼ eikj for j= x, y. Under PBC, the integration contour is the BZ
(∣zx∣ = ∣zy∣ = 1), a torus inC2 space, denoted asT2. To compute this double
integral, we adopt a step-by-step integration strategy. Firstly, we evaluate the
first integral using the residue theorem. Noteondly, for the second integral,
as we are primarily concerned with the asymptotic behavior of the wave
function far from the impurity (∣x∣, ∣y∣ ≫ 1), we can use the saddle-point

approximation to handle the second integral, resulting in:

ψEBS
ðx; yÞ / G0ðEBS; x; yÞ / ei

~ksðθÞ�r: ð10Þ

Here, r = (x, y) and the complex momentum vector ~ksðθÞ ¼
ð~ks;xðθÞ; ~ks;yðθÞÞ is a saddle point of the exponent x ln zx þ y ln zy ¼
x~kx þ y~ky in Eq. (9), depending on the spatial direction θ ¼ argðrÞ. Eq. (10)
demonstrates that the bound state wave function exhibits exponential
behavior characterizedby the complexmomentum ~k along afixed direction
θ, resulting in anisotropy in space. Therefore, we define the characteristic
localization l that satisfies the relation: jψEBS

ðlx; lyÞj=jψEBS
ð0; 0Þj ¼ e�1,

which is further expressed as:

μxlx þ μyly ¼ 1: ð11Þ

Here, ðlx; lyÞ ¼ l ðcos θ; sin θÞ forms a closed loop as θ changes, which
characterizes the localization behavior and describes the geometric shape of
impurity bound states.

For a fixed direction θ, the complex momentum ~k is determined by
solving specific constraints (see details in the Supplementary Note. I). The
first constraint is the bulk characteristic equation,

f ðEBS;
~kx; ~kyÞ ¼ det½EBS �H0ð~kx; ~kyÞ� ¼ 0: ð12Þ

The set of imaginary parts (μx, μy) of the complex momentum ~k that satisfy
the characteristic equation in Eq. (12) is termed amoeba, as represented by
the gray regions inFig. 2b1, b2. SinceEBS∉ σOBC, the corresponding amoeba
always features a central hole62, as shown by the blank region in Fig. 2b1, b2.
Moreover, by solving Eq. (12), ~kx or ~ky can be expressed as a function of the
other. By applying the saddle point approximation ∂~ky ðx~kx þ y~kyÞ ¼ 0 to
the exponential factor inEq. (10) andutilizing the implicit function theorem
∇~kH0 � d~k ¼ 0, the second constraint can be derived as

y ∂~kxH0 � x ∂~kyH0 ¼ 0: ð13Þ

For the impurity bound state, the first constraint in Eq. (12) links the solution
domain of (μx, μy) to themathematical term amoeba; the second constraint in
Eq. (13), combinedwith Eq. (12), identifies several isolated points μs(θ) on the
amoeba. By varying the spatial direction θ ¼ arg r, μs(θ) forms a closed loop,
corresponding to the amoeba’s contour63–65. In Fig. 2b1, b2, the amoeba’s
contours are depicted by the black curves. The constraint in Eq. (13) is a
homogeneous function of x and y, depending solely on the spatial direction
θ ¼ arctanðy=xÞ. Consequently, the bound state wavefunction exhibits
exponential localization away from the impurity site but is anisotropic in real
space. Furthermore, byapplying implicit function theorem∇~kH0 � d~k ¼ 0 to
Eq. (13), it can be transformed into the form r � d~k ¼ 0. Notably, this is a
complex equation, and by taking its imaginary part, we obtain

r � dμ ¼ 0: ð14Þ

This formula indicates that the inverse localization length μ(θ) of bound
states along each spatial direction r is determinedby the valueμ(θ) = (μx, μy)
on the amoeba’s contour, where the tangent direction is perpendicular to r.

As a result, for a fixed direction r, we can determine the inverse loca-
lization length μ(θ) using Eq. (12) and Eq. (13). By varying the spatial
direction θ ¼ arg r, we find that the set of μ(θ) forms a closed loop on the
amoeba, corresponding to the amoeba’s contour. Additionally, Eq. (14)
indicates that the tangent direction of μ(θ) is perpendicular to r.

By substituting the values of (μx, μy) into Eq. (11), we candetermine the
geometric shape of the bound state. As shown in Fig. 2a, the bound states
with energies EBS1 and EBS2 are depicted in Fig. 2c1, c2, respectively, with
their corresponding amoebas in Fig. 2b1, b2. To further investigate locali-
zation behaviors, we plot ln jψEBS

ðx; 0Þj and ln jψEBS
ð0; yÞj for these bound

states in Fig. 2d1, d2. Our findings indicate that the decay rates along the x
and y directions are determined by points on the amoeba’s contours,
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marked by red and blue dots in Fig. 2b1, b2. Numerical verifications in
Fig. 2d1, d2 show that the slopes at these contour points, represented by red
and blue lines,match the numerical bound statewavefunctions, as indicated
by the red and blue dots.

We conclude that the amoeba’s contour encodes the localization
lengths of the bound state along each spatial direction. Therefore, the
amoeba’s contour’s geometric properties inevitably affect the shape of the
wave function. Furthermore, since the amoeba’s contour is uniquely
determined by the bulk Hamiltonian of the system, it establishes a con-
nection between non-Hermiticity and bound state geometric features.

Geometry transition of bound state underweak impurity analysis
Using perturbation analysiswith aweak impurity potential, we demonstrate
a unique geometry transition in higher-dimensional non-Hermitian sys-
tems (see SupplementaryNote. IV for strong impurity case). Asmentioned,
non-Hermitian systems with GDSE ensure the existence of BSPs, allowing
bound state excitation by an infinitesimal impurity potential. Thus, GDSE
systems provide a platform to examine bound state geometry with weak
impurity excitation. The bound state geometry can be tailored by the
amoeba’s contour, determined by the characterization equation
f ðEBS; kx; kyÞ ¼ EBS �H0ðkx; kyÞ. We focus on its expansion near the BSP
energy EBSP, generally expressed as:

f ðEBS; kx; kyÞ ¼ EBS � EBSP � k2x � eiθk2y : ð15Þ

Here, the linear term of kx and ky vanishes due to the BSP condition, and
cross term kxky is omitted for simplicity. By applying the constraints in Eq.
(12) and Eq. (13), we can derive an algebraic curve of order 8 that describes
the amoeba’s contour (see details in Supplementary Note. II). Based on Eq.
(11), we ultimately obtain an algebraic curve that features the bound state
geometry shape:

½l2x sin αþ l2y sinðα� θÞ�2 � 4½l2x cos αþ l2y cosðα� θÞ� ¼ 4; ð16Þ

where α ¼ argðEBS � EBSPÞ. This curve describes the localization length of
thewave function along different directions and determines the shape of the
bound states.

When θ = 0, the Hamiltonian reduces to Hermitian, and the geometry
curve collapses into a circle, given by

sin α2ðl2x þ l2yÞ
2 � 4 cos αðl2x þ l2yÞ ¼ 4: ð17Þ

In the Hermitian limit, the shape of the bound state is always circular or
elliptical due to scaling factors on kx or ky. However, when θ ≠ 0, varying α
causes a transition in the bound state shape from a regular convex curve
(Fig. 2b1) to a concave, dumbbell-like curve (Fig. 2b2), a feature unique to
higher-dimensional non-Hermitian systems. This corresponds to the
amoeba’s contour transition from a regular curve (Fig. 2b1) to an irregular
curve with multiple singular nodes (Fig. 2b2). A curve is convex if it has
positive or negative curvature throughout its path, while singular nodes,
which always appear in pairs due to reciprocity symmetry inGDSE systems,
occur where the curve intersects itself. Concave geometry of bound states
occurs if andonly if the phase (α− θ) or (θ−α) fallswithin (0, θ), as detailed
in the Supplementary Note. II. For weak impurity excitation near BSPs,
when θ < α < 2θ or −θ < α < 0 (gray region in Fig. 2a), the amoeba contour
shows two nodes, resulting in a concave bound state wave function
geometry.

Conclusion
In summary, we investigate impurity-induced bound states in 2D non-
Hermitian lattice systems. The geometry of bound states is precisely
determined by the corresponding amoeba. The presence of BSPs eliminates
the threshold for the formation of impurity-bound states. The resulting
bound state wavefunctions around BSPs can exhibit concave and aniso-
tropic shapes, in stark contrast to the convex and isotropic configurations
typically observed in Hermitian systems. Furthermore, we unveil a geo-
metric transition from convexity to concavity in bound states by manip-
ulating the impurity potential. Since GDSE ensures the existence of BSPs,

Fig. 2 | The relation between bound state’s geometry and amoeba’s contour.
Parameters {t1,1, t−1,−1, t1,0, t−1,0, t0,0} for Hamiltonian in Eq. (1) are set to be
{2, 2, i, i,− 2i}. a The red points represent the Bloch spectrum near the Bloch saddle
pointH0ð0; 0Þ. The two gray regions indicate the range for energy whose amoeba has
twonodes (nnode = 2), which results in a concavewavefunction. And thewhite region
is the range where the amoeba has no node (nnode = 0). The impurity strength is
λ = 2.66+ 0.96i for bound state with energy EBS1 ¼ H0ð0; 0Þ þ 0:2 expði π4Þ and
λ = 2.27+ 2.23i for EBS2 ¼ H0ð0; 0Þ þ 0:2 expð�i 1940 πÞ). b1, b2 show the corre-
sponding amoeba’s contours for EBS1 and EBS2 respectively outlined by the black

curves. The red (blue) dot denotes the point of tangency between the red (blue)
dashed line and the amoeba’s contour. The red (blue) dashed line is perpendicular to
the red (blue) arrow. c1, c2 depict the amplitude ∣ψ∣of the bound states for EBS1 and
EBS2 respectively. The gray dashed line is the equal amplitude curve of ∣ψ(x, y)∣. d1,
d2 show a comparison of bound states between the simulated data (colored dots) and
the theoretical predictions (colored line). The red (blue) dots and line correspond to
the x(y)-axis. The slope of red (blue) line is given by the red(blue) point in (b1, b2).
The results are obtained from simulations performed on a 30 × 30 lattice.
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even an infinitesimal impurity potential in such systems can generate bound
states near the BSP energy, making them ideal platforms for studying weak
excitations. These findings demonstrate how non-Hermitian properties
significantly enrich the geometric configurations of bound states.

Code availability
All the computational codes thatwere used to generate the figures presented
in this study are available from the corresponding authors upon reasonable
request.
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