communications physics

A Nature Portfolio journal

Article

https://doi.org/10.1038/s42005-025-02037-w

Tailoring bound state geometry in high-
dimensional non-hermitian systems
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It is generally believed that the non-Hermitian effect (NHSE), due to its non-reciprocal nature, creates
barriers for the appearance of impurity bound states. In this paper, we find that in two and higher
dimensions, the presence of geometry-dependent skin effect eliminates this barrier such that even an
infinitesimal impurity potential can confine bound states in this type of non-Hermitian systems. By
examining bound states around Bloch saddle points, we find that non-Hermiticity can disrupt the
isotropy of bound states, resulting in concave dumbbell-shaped bound states. Our work reveals a
geometry transition of bound state between concavity and convexity in high-dimensional non-
Hermitian systems, offering theoretical insights for the experimental manipulation of bound states.

The non-Hermitian Hamiltonian serves as an effective tool for describing
systems that interact with environments'™'°. Recently, non-Hermitian band
systems have drawn much attention due to their intriguing phenomena that
surpass the Bloch band framework'®"”. A representative phenomenon is the
non-Hermitian skin effect (NHSE)'*™*". In one dimension, the NHSE is
characterized by a large number of eigenstates localized at the ends of an
open chain, well understood in the generalized Bloch band
framework'**"****** In higher dimensions, the NHSE exhibits more com-
plexity due to the interplay between mode localization and boundary geo-
metries. Particularly, the NHSE may disappear under certain geometry but
reappear under others. This dimensionality-enriched phenomenon is
referred to as the geometry-dependent skin effect (GDSE)™**.

Impurities are fundamental in Hermitian systems and have been
extensively studied for their broad applications. For example, magnetic
impurities in metals induce phenomena such as the Kondo effect™, while in
s-wave superconductors, they manifest as Yu-Shiba-Rusinov bound
states’ . Recently, the investigation of impurity states in non-Hermitian
settings, especially their interplay with NHSE, has revealed various physical
phenomena®*. A key aspect is that, NHSE creates barriers for the forma-
tion of impurity bound states due to its non-reciprocal nature®”. Conse-
quently, a finite impurity potential is necessary to induce a bound state when
NHSE is present™. However, these phenomena have primarily been studied
in 1D non-Hermitian systems, it is still unclear whether impurity states can
exhibit different properties in higher dimensions. Additionally, NHSE
presents unusual characteristics in higher dimensions™**, such as GDSE.
The potential for impurity states to exhibit different behaviors in interaction
with these emerging forms of NHSE in higher dimensions remains a sig-
nificant and largely unexplored research gap.

In this paper, we find that in the presence of GDSE, the impurity
potential exhibits a zero threshold for the emergence of bound states. We
establish an exact mapping between the bound state energy and the required
impurity potential, demonstrating that even an infinitesimal impurity
potential can confine bound states in a non-Hermitian system exhibiting
GDSE. A key reason is that the GDSE ensures the presence of Bloch saddle
points, which eliminate barriers to impurity-bound state formation.

In two and higher dimensions, the geometry of equal amplitude con-
tours of wavefunction introduces a unique characteristic for non-Hermitian
impurity-bound states. We determine the geometry of bound states using
the mathematical concept of amoeba. In two dimensions, impurities can
host anisotropic, concave bound states, in sharp contrast to the isotropic,
convex bound states in Hermitian systems. Furthermore, we reveal a geo-
metric transition from convexity to concavity in bound states by manip-
ulating the impurity potential. This transition, characterized using our
method, is observable in experimental setups, such as through local density
of states patterns (See details in Supplementary Note. III).

Result

A general theory of bound states in non-Hermitian systems

We start from a general tight-binding Hamiltonian with finite range cou-
plings in two dimensions,
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where Hy(k,, k,) = Eﬁ’;i’_nt&,(eikx)S(eikY)l, (x, y) represents the posi-
tion of lattice site, and t;; indicates the hopping strength. The Bloch spec-
trum is formed by the eigenvalues of H,(k,, k,) as k, and k, scan over the
entire Brillouin zone (BZ), which we denote by oppc [red dots in Fig. 1a].
Note that though we focus on two-dimensional case here, the theory can be
easily generalized to higher dimensions(see more detail in the Supplemen-
tary Note. I).

To generate an impurity bound state, we place a single impurity
potential of strength A at the origin of the lattice, where the coordinate is set

to (o, ¥o) = (0, 0). The impurity potential takes the form

V=1) 6x,y)lx,y)(xyl. ©)

xy

One can tune the impurity strength A such that the excited bound state has
an energy Eps appearing beyond the region of oppc [the black cross in
Fig. 1a]. Utilizing Green’s function method, the wavefunction of this bound
state can be analytically obtained as®'

WE(x7y) = AWE((L O)GO(E7 .X,y), (3)

where Gy(E; x, y) = (x, y|1/(E — Hy)|0, 0) is the Green’s function, H,, is given
by Eq. (1), and y(0, 0) is determined by the wavefunction’s normalization
condition. Setting x and y to zero in Eq. (3), the relationship between the
bound state energy Eps and the required impurity strength A is established as

A7 (Egs) = Gy(Egs; 0,0). (4)

Under PBC, the Green’s function on the right-hand side of Eq. (4) can
be expanded under Bloch basis as an integral form, and thus the relationship

becomes

AN (Egs) / A, :
BT ) bz (@) Egs — Holk, k)

(©)

Typically, a state with energy within a continuum spectrum is expressed as a
scattering state. Correspondingly, the energy of a bound state should lie
outside the region of oppc. The critical point, where the bound state energy
merges with the PBC continuous spectrum, signifies a phase transition. This
phase transition determines the minimum impurity strength required to
create bound states. Consequently, we can define the set of minimum
impurity strengths as

A= {ElimE MEg)|E, € aUPBc}v ©)
BS ™ Ep

where doppc represents the boundary of PBC continuum spectrum, and E,,
denotes a spectral boundary point. We define the impurity strength
threshold A, as the minimum absolute value |A| in the set A. The Bloch
saddle points (BSPs), denoted as (k,, k;), refer to the saddle points in the BZ
where the relation holds: 9, H,(k;, k}) = 0 for i = x, y. In the following, we
demonstrate that zero threshold of impurity strength is ensured by the
presence of BSPs in the Bloch spectrum oppc.

The critical response to impurity potential near BSPs

Here, we examine excitations around the BSP energy, assumed to be at the
spectrum boundary Ej,. The lattice Bloch Hamiltonian can be expanded at
the BSP as H,(q,, q,) = E, + t(q; + aq, + bq,q,), where g, and g, are

deviations from the BSP momentum, and E,, t, a, b are expansion

Fig. 1 | Energy response of impurity strength.

a shows the PBC spectrum of the Hamiltonian

e/ cos(k, + k,) + ™/* cos k., with four black
points denoting the energies at its BSPs. The black
cross represents the bound state energy induced by
the impurity. b illustrates the 1D Bloch saddle lines
(BSLs) in the BZ, with brown lines representing
akyHO(kX7 k,) = 0 and gray lines for

O +k, Mo(ky, k,) = 0. The corresponding spectral
lines H,(k,, k,) are shown in the same color in (a).
The four intersection points, i.e., high-symmetry

k points in the BZ, are the BSPs and correspond to
the four vertices in the spectrum shown in (a). Show
the function |A(SE)|, corresponding to the blue and
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coefficients. The linear g, and g, terms are omitted since Ey, is a BSP. The g,q,
cross term can be eliminated through proper momentum basis rotation,

161> (sin(arg a))*
when |a? < sin(arg a—arg b) sin(arg b)*

around a BSP can be classified by the coefficients a, b. For demonstration, we
utilize the following concrete lattice Hamiltonian:

Therefore, the expanded Hamiltonian

Ho(k,, k,) = cosk, + acosk, + bsink, smk 7)

With a weak impurity potential, the excited bound state energy shifts slightly
from the BSP energy E;, = H,(0, 0), i.e., |0E| = |Eps — E}| < 1. Substituting
Eq. (7) into Eq. (5), when |b|, |§E| < 1, the relationship between the impurity
strength A and the bound state energy Eps becomes (see details in Supple-
mentary Note. I): A7'(8E) = A(5In2 — In B — In8E)/2m, where the

parameters A = \/(a —2b%)/(a? — ab*) and B = y/a(a + 1)/(a — bz)z.

Here, A"'(8E) diverges asymptotically as In E when 8E — 0, which is
expressed as:

A"Y(0E)  In OE. 8)

We emphasize that, as shown by Eq. (8), the bound state energy near the BSP
is highly sensitive to the impurity potential, verified in Fig. 1c. This contrasts
sharply with the linear response observed near the regular spectrum
boundary energy, depicted in Fig. 1d. This sensitivity can be utilized to detect
BSPs in higher-dimensional non-Hermitian systems* . As 8E approaches
zero, the required impurity potential A also tends to zero, indicating a zero
threshold at the BSPs, leading to the conclusion that BSPs ensure a zero
threshold for impurity potential.

Numerical verification for the zero threshold at BSPs is illustrated in
Fig. 1. As Epg approaches Epgp along the blue line in Fig. 1a, the required
impurity potential decreases to zero (Fig. 1c). Conversely, when Egg
approaches a regular spectral boundary energy along the orange trajectory
in Fig. 1a, the impurity potential reaches a finite value (Fig. 1d). Dashed lines
in Fig. ¢, d indicate the asymptotic behavior near the boundary.

A natural question arises: which systems ensure the existence of BSPs
in higher dimensions? The answer lies in systems exhibiting GDSE. In
GDSE, there are two special directions, k; and k,. When boundary cuts are
made along these directions, the open boundary eigenstates manifest as
Bloch waves. By imposing open boundary conditions along k; and periodic
boundary conditions along k,, the k, momentum is conserved, treating the
Hamiltonian as a 1D k;-subsystem for a fixed k,. With no skin effect in the k;
direction, the energy spectrum forms an arc whose endpoints satisfy
ok, Ho(ky, k) = 0. As k; varies from — m to m, these endpoints form two
lines (brown lines in Fig. 1b). Similarly, two lines can be obtained for k, (gray
lines in Fig. 1b). At their intersections, the BSP conditions 9, H,(k;, k}) = 0
for i = 1, 2 are satisfied, corresponding to four BSPs within the BZ. An
example with {k;, k,} = {k, k. + k,} is shown in Fig. 1b, where the inter-
sections are marked by black dots.

Tailoring the geometry of bound states

According to Eq. (3), the bound state wave function is determined by
Green’s function. The Green’s function can be expressed in an integral form
with the Hamiltonian H, given by Eq. (1):

dz,dz,
1 (2mi) 2,2,(E — Hy(2,, 2,))

& Inz,+ylnz,

Gy(Egs; x,y) = f )

Here, we extend the real momentum k to the complex value k = kj + iy
and definez; = ¢' % for j = x, y. Under PBC, the integration contour is the BZ
(lz4 = lz,| = 1), a torus in C~ space, denoted as T2.To compute this double
integral, we adopt a step-by-step integration strategy. Firstly, we evaluate the
first integral using the residue theorem. Noteondly, for the second integral,
as we are primarily concerned with the asymptotic behavior of the wave
function far from the impurity (|x|, [y| > 1), we can use the saddle-point

approximation to handle the second integral, resulting in:

¥, (3,7) o Gy(Egg: x,y) o 5O, (10)

Here, r=(x, y) and the complex momentum vector Kk (0) =
(k; (0), A Sy(9)) is a saddle point of the exponent xInz, +ylnz, =
xkx + yk in Eq. (9), depending on the spatial direction 8 = arg(r). Eq. (10)
demonstrates that the bound state wave function exhibits exponential
behavior characterized by the complex momentum k along a fixed direction
0, resulting in anisotropy in space. Therefore, we define the characteristic
localization I that satisfies the relation: WEBS(IX’ y)| / |1//EBS(O 0) =e},
which is further expressed as:

ucly +pl,=1. (11)

Here, (I,,1,) = I(cos 0,sin 0) forms a closed loop as 6 changes, which
characterizes the localization behavior and describes the geometric shape of
impurity bound states.

For a fixed direction 6, the complex momentum k is determined by
solving specific constraints (see details in the Supplementary Note. I). The
first constraint is the bulk characteristic equation,

(12)

F(Bas, ko k) = detlEyg — Ho(k

X9 y)]_o

The set of imaginary parts (4, ) of the complex momentum k that satisfy
the characteristic equation in Eq. (12) is termed amoeba, as represented by
the gray regions in Fig. 2b1, b2. Since Eps & 0opc, the corresponding amoeba
always features a central hole”, as shown by the blank region in Fig. 2b1, b2.
Moreover, by solving Eq. (12), k, or k can be expressed as a function of the
other. By applying the saddle pomt apprOXJmatlon o; (xk + yk )=0to
the exponential factor in Eq. (10) and utilizing the 1mphc1t functlon theorem
ViH, - dk = 0, the second constraint can be derived as

(13)

For the impurity bound state, the first constraint in Eq. (12) links the solution
domain of (,, u,) to the mathematical term amoeba; the second constraint in
Eq. (13), combined with Eq. (12), identifies several isolated points p,(6) on the
amoeba. By varying the spatial direction 6 = argr, u () forms a closed loop,
corresponding to the amoeba’s contour® ®. In Fig. 2bl, b2, the amoeba’s
contours are depicted by the black curves. The constraint in Eq. (13) is a
homogeneous function of x and y, depending solely on the spatial direction
0 = arctan(y/x). Consequently, the bound state wavefunction exhibits
exponential localization away from the impurity site but is anisotropic in real
space. Furthermore, by applying implicit function theorem Vi H,, - dk = 0 to
Eq. (13), it can be transformed into the form r - dk = 0. Notably, this is a
complex equation, and by taking its imaginary part, we obtain

ya;{X'HO — Xa]‘{y'HO =0.

r-du=0. (14)
This formula indicates that the inverse localization length u(6) of bound
states along each spatial direction r is determined by the value u(6) = (1, p1,)
on the amoeba’s contour, where the tangent direction is perpendicular to r.

As a result, for a fixed direction r, we can determine the inverse loca-
lization length u(6) using Eq. (12) and Eq. (13). By varying the spatial
direction 8 = argr, we find that the set of p(6) forms a closed loop on the
amoeba, corresponding to the amoeba’s contour. Additionally, Eq. (14)
indicates that the tangent direction of p(6) is perpendicular to r.

By substituting the values of (i, 4,) into Eq. (11), we can determine the
geometric shape of the bound state. As shown in Fig. 2a, the bound states
with energies Egs; and Egg, are depicted in Fig. 2cl, c2, respectively, with
their corresponding amoebas in Fig. 2bl, b2. To further investigate locali-
zation behaviors, we plot In |y_(x,0) and In |y (0, )] for these bound
states in Fig. 2d1, d2. Our ﬁndmgs indicate that the decay rates along the x
and y directions are determined by points on the amoeba’s contours,
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Fig. 2 | The relation between bound state’s geometry and amoeba’s contour.
Parameters {f; j, t_; 1, t1,0, t_1,0, 0,0} for Hamiltonian in Eq. (1) are set to be
{2,2, 1,1, — 2i}. a The red points represent the Bloch spectrum near the Bloch saddle
point (0, 0). The two gray regions indicate the range for energy whose amoeba has
two nodes (#1,04e = 2), which results in a concave wavefunction. And the white region
is the range where the amoeba has no node (#1,,04. = 0). The impurity strength is

A =2.66 + 0.96i for bound state with energy Eps; = H,(0,0) + 0.2 exp(i}) and

A =227 + 2.23i for Egg, = H,(0,0) + 0.2 exp(—if3m)). bl, b2 show the corre-
sponding amoeba’s contours for Epg; and Egg, respectively outlined by the black

(c2)
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curves. The red (blue) dot denotes the point of tangency between the red (blue)
dashed line and the amoeba’s contour. The red (blue) dashed line is perpendicular to
the red (blue) arrow. c1, c2 depict the amplitude |y|of the bound states for Egg; and
Egs, respectively. The gray dashed line is the equal amplitude curve of |y(x, y)|. d1,
d2 show a comparison of bound states between the simulated data (colored dots) and
the theoretical predictions (colored line). The red (blue) dots and line correspond to
the x(y)-axis. The slope of red (blue) line is given by the red(blue) point in (b1, b2).
The results are obtained from simulations performed on a 30 x 30 lattice.

marked by red and blue dots in Fig. 2bl, b2. Numerical verifications in
Fig. 2d1, d2 show that the slopes at these contour points, represented by red
and blue lines, match the numerical bound state wavefunctions, as indicated
by the red and blue dots.

We conclude that the amoeba’s contour encodes the localization
lengths of the bound state along each spatial direction. Therefore, the
amoeba’s contour’s geometric properties inevitably affect the shape of the
wave function. Furthermore, since the amoeba’s contour is uniquely
determined by the bulk Hamiltonian of the system, it establishes a con-
nection between non-Hermiticity and bound state geometric features.

Geometry transition of bound state under weak impurity analysis
Using perturbation analysis with a weak impurity potential, we demonstrate
a unique geometry transition in higher-dimensional non-Hermitian sys-
tems (see Supplementary Note. IV for strong impurity case). As mentioned,
non-Hermitian systems with GDSE ensure the existence of BSPs, allowing
bound state excitation by an infinitesimal impurity potential. Thus, GDSE
systems provide a platform to examine bound state geometry with weak
impurity excitation. The bound state geometry can be tailored by the
amoeba’s contour, determined by the characterization equation
f(Egs, k. k) = Epg — Ho(k,. k,). We focus on its expansion near the BSP
energy EBSP, generally expressed as:

f(Egs, kys k) = Epg — Eysp — ki — dekj (15)
Here, the linear term of k, and k,, vanishes due to the BSP condition, and
cross term k,k, is omitted for simplicity. By applying the constraints in Eq.
(12) and Eq. (13), we can derive an algebraic curve of order 8 that describes
the amoeba’s contour (see details in Supplementary Note. II). Based on Eq.
(11), we ultimately obtain an algebraic curve that features the bound state
geometry shape:

[} sina + E sin(a — )]’ — 4[ cos o + Bcos(a—0)] =4, (16

where a = arg(Eps — Epgp)- This curve describes the localization length of
the wave function along different directions and determines the shape of the
bound states.

When 6 = 0, the Hamiltonian reduces to Hermitian, and the geometry
curve collapses into a circle, given by

sin zxz(li + lﬁ)2 — 4 cos a(li + lJZ,) =4, (17)

In the Hermitian limit, the shape of the bound state is always circular or
elliptical due to scaling factors on k, or k,. However, when 6 # 0, varying «
causes a transition in the bound state shape from a regular convex curve
(Fig. 2b1) to a concave, dumbbell-like curve (Fig. 2b2), a feature unique to
higher-dimensional non-Hermitian systems. This corresponds to the
amoeba’s contour transition from a regular curve (Fig. 2b1) to an irregular
curve with multiple singular nodes (Fig. 2b2). A curve is convex if it has
positive or negative curvature throughout its path, while singular nodes,
which always appear in pairs due to reciprocity symmetry in GDSE systems,
occur where the curve intersects itself. Concave geometry of bound states
occurs ifand only if the phase (« — 6) or (6 — «) falls within (0, ), as detailed
in the Supplementary Note. II. For weak impurity excitation near BSPs,
when 0 < a <20 or —0 < a <0 (gray region in Fig. 2a), the amoeba contour
shows two nodes, resulting in a concave bound state wave function
geometry.

Conclusion

In summary, we investigate impurity-induced bound states in 2D non-
Hermitian lattice systems. The geometry of bound states is precisely
determined by the corresponding amoeba. The presence of BSPs eliminates
the threshold for the formation of impurity-bound states. The resulting
bound state wavefunctions around BSPs can exhibit concave and aniso-
tropic shapes, in stark contrast to the convex and isotropic configurations
typically observed in Hermitian systems. Furthermore, we unveil a geo-
metric transition from convexity to concavity in bound states by manip-
ulating the impurity potential. Since GDSE ensures the existence of BSPs,
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even an infinitesimal impurity potential in such systems can generate bound
states near the BSP energy, making them ideal platforms for studying weak
excitations. These findings demonstrate how non-Hermitian properties
significantly enrich the geometric configurations of bound states.

Code availability

All the computational codes that were used to generate the figures presented
in this study are available from the corresponding authors upon reasonable
request.
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